
Chapter 13: Multithreading
Threads Concept
Creating Threads by Extending the Thread class
Creating Threads by Implementing the Runnable
Interface
Controlling Threads and Thread Status
Thread Groups
Synchronization
Creating Threads for Applets
Case Studies

Threads Concept
Multiple
threads on
multiple
CPUs Thread 3

Thread 2

Thread 1

Multiple
threads
sharing a
single CPU Thread 3

Thread 2

Thread 1

Creating Threads by Extending the
Thread class

// Custom thread class
public class CustomThread extends Thread
{
 ...
 public CustomThread(...)
 {
 ...
 }

 // Override the run method in Thread
 public void run()
 {
 // Tell system how to run custom thread
 ...
 }

 ...
}

// Client class
public class Client
{
 ...
 public someMethod()
 {
 ...
 // Create a thread
 CustomThread thread = new CustomThread(...);

 // Start a thread
 thread.start();
 ...
 }

 ...
}

Example 13.1
Using the Thread Class to
Create and Launch Threads

Objective: Create and run three threads:
– The first thread prints the letter a 100 times.
– The second thread prints the letter b 100

times.
– The third thread prints the integers 1 through

100.

Example 13.1
Using the Thread Class to

Create and Launch Threads, cont.

TestThread

Run

Click the Run button to access the DOS prompt; then
type java TestThread

Creating Threads by Implementing
the Runnable Interface

// Custom thread class
public class CustomThread
 implements Runnable
{
 ...
 public CustomThread(...)
 {
 ...
 }

 // Implement the run method in Runnable
 public void run()
 {
 // Tell system how to run custom thread
 ...
 }

 ...
}

// Client class
public class Client
{
 ...
 public someMethod()
 {
 ...
 // Create an instance of CustomThread
 CustomThread customThread
 = new CustomThread(...);

 // Create a thread
 Thread thread = new Thread(customThread);

 // Start a thread
 thread.start();
 ...
 }

 ...

Example 13.2
Using the Runnabel Interface to

Create and Launch Threads
Objective: Create and run three threads:
– The first thread prints the letter a 100 times.
– The second thread prints the letter b 100

times.
– The third thread prints the integers 1 through

100. Run
Click the Run button to access the DOS prompt;
then type

java TestRunnable

TestRunnable

Controlling Threads
and Thread States

void run()

Invoked by the Java runtime system to execute the thread. You
must override this method and provide the code you want your
thread to execute.

void start()

Starts the thread, which causes the run() method to be invoked.
Called by the runnable object in the client class.

static void sleep(long millis)
throws InterruptedException

Puts the runnable object to sleep for a specified
time in milliseconds.

Controlling Threads
and Thread States, cont.

void stop()

Stops the thread. (deprecated in JDK 1.2)

void suspend() (deprecated in JDK 1.2)
Suspends the thread. Use the resume() method to resume.

void resume() (deprecated in JDK 1.2)
Resumes the thread suspended with the suspend() method.

Thread Priority
Each thread is assigned a default priority of
Thread.NORM_PRIORITY. You can reset the
priority using setPriority(int priority).

Some constants for priorities include
Thread.MIN_PRIORITY
Thread.MAX_PRIORITY
Thread.NORM_PRIORITY

Thread States

Thread created

new

ready

running

finished

blocked

start

run
yield, or time

expired
stop or

complete

stop

suspend,
sleep, or wait

stop

resume,
notify, or
notifyAll

Thread Groups
Construct a thread group using the
ThreadGroup constructor:
ThreadGroup g = new ThreadGroup("timer
thread group");

Place a thread in a thread group using the
Thread constructor:
Thread t = new Thread(g, new
ThreadClass(), "This thread");

Thread Groups, cont.

To find out how many threads in a group are
currently running, use the activeCount()
method:

System.out.println("The number of “

+ “ runnable threads in the group ” +

g.activeCount());

Synchronization

A shared resource may be corrupted if it is
accessed simultaneously by multiple threads. For
example, two unsynchronized threads accessing
the same bank account causes conflict.

Step balance thread[i] thread[j]

1 0 newBalance = bank.getBalance() + 1;

2 0 newBalance = bank.getBalance() + 1;

3 1 bank.setBalance(newBalance);

4 1 bank.setBalance(newBalance);

Example 13.3
Showing Resource Conflict

Objective: create and launch 100 threads,
each of which adds a penny to a piggy bank.
Assume that the piggy bank is initially
empty.

Example 13.3, cont

PiggyBank

-balance

+getBalance
+setBalance

1

100

PiggyBankWithoutSync

-PiggyBank bank
-Thread[] thread

+main

Object

Object

AddAPennyThread

+run()

Thread
1

1

PiggyBankWithoutSync Run

The synchronized keyword

To avoid resource conflicts, Java uses the
keyword synchronized to synchronize
method invocation so that only one thread can
be in a method at a time. To correct the data-
corruption problem in Example 13.3, you can
rewrite the program as follows:

PiggyBankWithSync Run

Creating Threads for Applets

In Example 12.1, "Displaying a Clock," you drew a
clock to show the current time in an applet. The
clock does not tick after it is displayed. What can
you do to let the clock display a new current time
every second? The key to making the clock tick is
to repaint it every second with a new current time.
You can use the code given below to override the
start() method in CurrentTimeApplet:

Creating Threads for Applets
public void start()
{
while (true)
{
stillClock.repaint();
try
{
Thread.sleep(1000);

}
catch(InterruptedException ex)
{
}

}
}

What is wrong in this code?
As long as the while loop is
running, the browser cannot serve
any other event that might be
occurring.

Creating a Thread to run the
while loop

public class MyApplet extends
JApplet implements Runnable

{ private Thread timer = null;
public void init()
{ timer = new Thread(this);
timer.start();

}
...
public void run()
{ ... }

}

Creating a Thread to run the
while loop, cont.

public void run()
{ while (true)
{ repaint();
try
{ thread.sleep(1000);
waitForNotificationToResume();

}
catch (InterruptedException ex)
{ }

}
}

Creating a Thread to run the
while loop, cont.

private synchronized void
waitForNotificationToResume()
throws InterruptedException

{
while (suspended)
wait();

}

Creating a Thread to run the
while loop, cont.

public synchronized void resume()
{

if (suspended)
{

suspended = false;
notify();

}
}

public synchronized void suspend()
{

suspended = true;

}

Example 13.4 Displaying a
Running Clock in in an Applet

Objective: Simulate a running clock by using a
separate thread to repaint the clock.

ClockApplet

Run Applet Viewer

Example 13.5
Controlling a Group of Clocks

13 ClockGroup

-clockPanel1
-clockPanel2
-clockPanel3
-jbtResumeAll
-jbtSuspendAll

+jbtResumeAll()
+jbtSuspendAll()
+actionPerformed(e)
+main
+init()

JApplet

ClockPanel

-jlblTitle
-clock
jbtResume
-jbtSuspend

+setTitle(String title)
+resume()
+suspend()
+actionPerformed(e)

Clock

+run()
+suspend()
+resume()

StillClock

1 1

ActionListenerRunnable

ClockGroup ClockPanel Clock Run

	Chapter 13: Multithreading
	Threads Concept
	Creating Threads by Extending the Thread class
	Example 13.1Using the Thread Class to Create and Launch Threads
	Example 13.1Using the Thread Class to Create and Launch Threads, cont.
	Creating Threads by Implementing the Runnable Interface
	Example 13.2Using the Runnabel Interface to Create and Launch Threads
	Controlling Threads and Thread States
	Controlling Threads and Thread States, cont.
	Thread Priority
	Thread States
	Thread Groups
	Thread Groups, cont.
	Synchronization
	Example 13.3Showing Resource Conflict
	Example 13.3, cont
	The synchronized keyword
	Creating Threads for Applets
	Creating Threads for Applets
	Creating a Thread to run the while loop
	Creating a Thread to run the while loop, cont.
	Creating a Thread to run the while loop, cont.
	Creating a Thread to run the while loop, cont.
	Example 13.4 Displaying a Running Clock in in an Applet
	Example 13.5Controlling a Group of Clocks

