@ Sun Educational Services

Java Programming
Language

SL-275

microsystems

Sun Educational Services

Java Programming Language September 1999



Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may
be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively
licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun Logo, Solstice, Java, JavaBeans, JDK, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trade-
marks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching
and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g) (2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015
(b)(6/95) and DFAR 227.7202-3(a).

X Window System is a product of the X Consortium, Inc.
DOCUMENTATION IS PROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.



@ Sun Educational Services

Preface

About This Course

Java Programming Language September 1999



@ Sun Educational Services

Course Goals

This course provides you with knowledge and skills to:

* Program and run advanced Java™ applications and

applets

e Help you prepare for the Sun™ Certified Java
Programmer and Developer examinations

Java Programming Language Preface, slide 2 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Course Overview

This course covers the following areas:
e Syntax of the Java programming language

e Object-oriented concepts as they apply to the Java
programming language

* Graphical user interface (GUI) programming
e Applet creation
e Multithreading

* Networking

Java Programming Language Preface, slide 3 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Course Map

The Java Programming Language Basics
, Identifiers, Expressions and
Getting Started | Keywords, and Typasl Flow Control Arrays |
Object-Oriented Programming
Objects Advanced
and Classes Language Features

Exception Handling

Exceptions

Developing Graphical User Interfaces

Bilding GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes

Applets

Introduction
to Java Applets

Multithreading

Threads |

Communications

Stream 1/O | . |
and Files Networking

Java Programming Language Preface, slide 4 of 17
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module-by-Module Overview

* Module 1 — Getting Started

* Module 2 - Identifiers, Keywords, and Types
* Module 3 — Expressions and Flow Control

e Module 4 — Arrays

* Module 5 — Objects and Classes

* Module 6 — Advanced Language Features

* Module 7 — Exceptions

* Module 8 — Building GUIs

Java Programming Language Preface, slide 5 of 17
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module-by-Module Overview

e Module 9 — The AWT Event Model

e Module 10 - The AWT Component Library
e Module 11 - Java Foundation Classes

* Module 12 — Introduction to Java Applets

e Module 13 — Threads

e Module 14 — Stream I/0 and Files

* Module 15 — Networking

Java Programming Language Preface, slide 6 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Course Objectives

* Describe key language features
* Compile and run a Java application

e Understand and use the online
hypertext Java technology
documentation

e Describe language syntactic elements
and constructs

e Understand the object-oriented
paradigm and use object-oriented
features of the language

e Understand and use exceptions
* Develop a graphical user interface

* Describe the Java technology
platform’s Abstract Window Toolkit
(AWT) used to build GUIs

Java Programming Language Preface, slide 7 of 17
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Course Objectives

* Program to take input from a GUI

e Understand event handling

e Describe the main features of Swing
* Develop Java applets

e Read and write to files and other data
sources

e Perform input and output to all
sources without the use of a GUI

e Understand the basics of
multithreading

e Develop multithreaded Java
applications and applets

* Develop Java client and server
programs using Transmission Control
Protocol/Internet Protocol (TCP /IP)
and User Datagram Protocol (UDP)

Java Programming Language Preface, slide 8 of 17
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Skills Gained by Module

Skills Gained

Module

]

15

Describe key language features

Compile and run a Java application

Understand and use the online hypertext
Java technology documentation

Describe language syntactic elements and
constructs

Understand the object-oriented paradigm
and use object-oriented features of the
language

Understand and use exceptions

Develop a GUI

Describe the Java technology platform’s
Abstract Window Toolkit used to build
GUIs

Create a program to take input from a
graphical user interface

Understand event handling

Describe the main features of Swing

Develop Java applets

Understand the basics of multithreading

Develop multithreaded Java applications
and applets

Read and write to files and other data
sources

Perform I/0 to all sources without the use
of a GUI

Java Programming Language

Preface, slide 9 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1




Sun Educational Services

Skills Gained

Module

il

1

TCP/IP and UDP

Develop Java client and server programs using

Java Programming Language

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Preface, slide 10 of 17



@ Sun Educational Services

Guidelines for Module Pacing

Module Day 1 Day 2 Day 3 Day 4 Day

About This Course AM.

Module 1 — Getting Started AM.

Module 2 — Identifiers, Keywords, and Types AM.

Module 3 — Expressions and Flow Control PM.

Module 4 — Arrays PM.

Module 5 — Objects and Classes AM.

Module 6 — Advanced Language Features PM.

Module 7 — Exceptions AM.

Module 8 — Building GUIs AM.

Module 9 — The AWT Event Model PM.

Module 10 — The AWT Component Library AM.

Module 11 - Java Foundation Classes AM.

Module 12 — Introduction to Java Applets PM.

Module 13 — Threads AM.

Module 14 — Stream I/O and Files P.M.

Module 15 — Networking P.M.
Java Programming Language Preface, slide 11 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Topics Not Covered

* General programming concepts. This is not a course for
people who have never programmed before.

* General object-oriented concepts.

Java Programming Language Preface, slide 12 of 17
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

How Prepared Are You?

Before attending this course, you should have completed
e SL-110: Java Programming For Non-Programmers

or have
* Created compiled programs with C or C++

* Created and edited text files using a text editor

e Used a World Wide Web (WWW) browser, such as
Netscape Navigator™

Java Programming Language Preface, slide 13 of 17
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Introductions

e Name

e Company affiliation

e Title, function, and job responsibility
* Programming experience

* Reasons for enrolling in this course

e Expectations for this course

Java Programming Language Preface, slide 14 of 17
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

How to Use Course Materials

e Course Map

* Relevance

e Overhead Image

* Lecture

e Exercise

* Check Your Progress
e Think Beyond

Java Programming Language Preface, slide 15 of 17
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Course Icons

e Reference

e Discussion @
7€

e Exercise

Java Programming Language Preface, slide 16 of 17
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Typographical Conventions

e Courier — Commands, files and directories, and on-
screen computer output

e Courierbold  —Input you type
e Courier italic — Variables and command-line
placeholders

e Palatino italics — Book titles, new words or terms, and
words that are emphasized

Java Programming Language Preface, slide 17 of 17
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 1

Getting Started

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics
. Identifiers, Expressions and
Getting Started Keywords, and Typesl Flow Control Arrays |

Object-Oriented Programming

Objects Advanced
and Classes Language Features

Exception Handling

Exceptions

Developing Graphical User Interfaces

The AWT The AWT Java Foundation

Building GUls Event Model Component Library Classes

Applets

Introduction
to Java Applets

Multithreading

Threads

Communications

Stream 1/O
and Files

Networking

Java Programming Language Module 1, slide 2 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

* Describe key features of Java programming language
e Describe the Java virtual machine’s (JVM) function
* Describe how garbage collection works

o List the three tasks performed by the Java platform that
handle code security

* Define the terms class, packages, applets, and applications

Java Programming Language Module 1, slide 3 of 28
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Write, compile, and run a simple Java application

e Use the Java technology application programming
interface (API) on-line documentation to identity the
methods of the javallang  package

Java Programming Language Module 1, slide 4 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

¢ [stheJava programming language a complete language
or is it just usetul for writing programs for the Web?

e Why is another programming language needed?

* How does the Java technology platform improve on
other language platforms?

Java Programming Language Module 1, slide 5 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

What Is the
Java Programming Language?

* The Java programming language is:

e A programming language
e A development environment
* An application environment

* A deployment environment

e Similar in syntax to C++; similar in semantics to
SmallTalk

e Used for developing both applets and applications

Java Programming Language Module 1, slide 6 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Primary Goals of the Java
Programming Language

e Provides an easy-to-use language by:
* Avoiding the pitfalls of other languages
* Being object-oriented

e Enabling users to create streamlined and clear code

Java Programming Language Module 1, slide 7 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Primary Goals of the Java
Programming Language

* Provides an interpreted environment for:
 Improved speed of development
* Code portability

e Enables users to run more than one thread of activity

* Supports dynamically changing programs during
runtime

e Furnishes better security

Java Programming Language Module 1, slide 8 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Primary Goals of the Java
Programming Language
The following features fulfill these goals:
e The Java virtual machine (JVM)
e Garbage collection

e Code security

Java Programming Language Module 1, slide 9 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The Java Virtual Machine

* Provides hardware platform specifications

e Reads compiled byte codes that are platform
independent

* Isimplemented as software or hardware

e Isimplemented in a Java technology development tool
or a Web browser

Java Programming Language Module 1, slide 10 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The Java Virtual Machine

* JVM provides definitions for the:
e Instruction set (central processing unit [CPU])
* Register set
e (lass file format
e Stack
e Garbage-collected heap

* Memory area

Java Programming Language Module 1, slide 11 of 28
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The Java Virtual Machine

* Bytecodes that maintain proper type discipline from the
code.

e The majority of type checking is done when the code is
compiled.

e Every Sun approved implementation of the JVM must
be able to run any compliant class file.

Java Programming Language Module 1, slide 12 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Garbage Collection
¢ Allocated memory that is no longer needed should be
deallocated

* In other languages, deallocation is the programmer’s
responsibility

e The Java programming language provides a system-
level thread to track memory allocation

e Garbage collection:

e Checks for and frees memory no longer needed
* Is done automatically

e Can vary dramatically across JVM implementations

Java Programming Language Module 1, slide 13 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Code Security

The Java application environment performs as follows:

Compile

javac Hello

Java

¢

Hello .class

Runtime

/
v

Java Programming Language

/ Byte _C_Ode
verifier

Interpreter

Class
loader

i

—_— — — —

SN
| code
\generator ,

—_ ) — —

'

( Hardware >

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 1, slide 14 of 28



@ Sun Educational Services

Java Runtime Environment

e Performs three main tasks:
e J.oads code
e Verifies code

e Executes code

Java Programming Language Module 1, slide 15 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Class Loader

e Loads all classes necessary for the execution of a
program

e Maintains classes of the local file system in separate
"namespaces”

* Prevents spoofing

Java Programming Language Module 1, slide 16 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Bytecode Verifier

Ensures that:
* The code adheres to the JVM specification
* The code does not violate system integrity

* The code causes no operand stack overflows or
underflows

e The parameter types for all operational code are
correct

* No illegal data conversions (the conversion of
integers to pointers) have occurred

Java Programming Language Module 1, slide 17 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

A Basic Java Application

HelloWorldApp.java

1/

2 Il Sample HelloWorld application

3/

4 public class HelloWorldApp{

5  public static void main (String args|]) {
6 System.out.printin("Hello World!);
[

8 }

Java Programming Language Module 1, slide 18 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Compiling and Running
HelloWorldApp

* Compiling HelloWorldApp.java

javac HelloWorldApp.java

* Running an application

java HelloWorldApp

* Locating common compile and runtime errors

Java Programming Language Module 1, slide 19 of 28
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Compile-Time Errors

e javac. Command not found

» HelloWorldApp.java:6: Method
printljava.lang.String) not found in class
java.io.PrintStream.

System.out.printl ~("Hello World!);

* In class HelloWorldApp :
main must be public and static

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 1, slide 20 of 28



@ Sun Educational Services

Runtime Errors

« Can'tfind class HelloWorldApp
e Naming

* One public class per file

Java Programming Language Module 1, slide 21 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The Source File Layout

Contains three "top-level” elements:
* An optional package declaration
* Any number of import statements

e (lass and interface declarations

Java Programming Language Module 1, slide 22 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Classes and Packages — An
Introduction

* Classes and packages:

e Prominent packages within the Java class library are:
java.lang
java.awt
java.applet
java.net
java.io
java.util

Java Programming Language Module 1, slide 23 of 28
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Using the Java API Documentation

* A set of hypertext markup language (HTML) files
provides information about the API

* One package contains hyperlinks to information on all
of the classes

e A class document includes the class hierarchy, a
description of the class, a list of member variables, a list
of constructors, and so on

Java Programming Language Module 1, slide 24 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Performing Basic Java Tasks

e Exercise objectives:

e Identify packages, classes, and methods in the Java
API documents

e Identify standard input and output methods

* Write, compile, and run two simple applications
using these methods

e Tasks:
e Read the documentation
* Create a Java application

e Use standard input and output

Java Programming Language Module 1, slide 25 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

* Describe key features of the Java programming
language

e Describe the Java virtual machine’s (JVM) function
* Describe how garbage collection works

e List the three tasks performed by the Java platform that
handle code security

e Define the terms class, packages, applets, and applications

e Write, compile, and run a simple Java application

Java Programming Language Module 1, slide 26 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Use the Java technology API online documentation to
identify the methods of the javalang  package.

Java Programming Language Module 1, slide 27 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

 How can you benefit from using this programming
language in your work environment?

Java Programming Language Module 1, slide 28 of 28

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 2

Identifiers, Keywords, and Types

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics

. Identifiers, Expressions and
Sl S I Keywords, and Types Flow Control Arrays

Object-Oriented Programming

Advanced
Language Features

Objects
and Classes

Exception Handling

Exceptions

Developing Graphical User Interfaces

The AWT
Event Model

Java Foundation

Building GUls cl

Component Library

The AWT I

Applets

Introduction
toJava Applets

Multithreading

Threads

Communications
Stream 1/0 I

and Files Networking

Java Programming Language Module 2, slide 2 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Use comments in a source program

e Distinguish between valid and invalid identifiers
* Recognize Java technology keywords

o List the eight primitive types

* Define literal values for numeric and textual types

* Define the terms class, object, member variable, and
reference variable

Java Programming Language Module 2, slide 3 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives
* Create a class definition for a simple class containing
primitive member variables
* Declare variables of class type
e Construct an object using new
* Describe default initialization

e Access the member variables of an object using the dot
notation

* Describe the significance of a reference variable
e State the consequences of assigning variables of class

type

Java Programming Language Module 2, slide 4 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

e What is your understanding of a class?

 What is your understanding of an object?

Java Programming Language Module 2, slide 5 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Comments

e Three permissible styles of comment in a Java
technology program are:

/| comment on one line

[* comment on one
or more lines */

[** documenting comment */

Java Programming Language Module 2, slide 6 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Semicolons, Blocks, and Whitespace

* A statement is a single line of code terminated by a
semicolony(;):

totals=a+b+c+d+e+f

* A blockis a collection of statements bounded by opening
and closing braces:

X

X <
+ +
PP

Java Programming Language Module 2, slide 7 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Semicolons, Blocks, and Whitespace

e You can use a block in a class definition:

public class Date {
int day;
int month;
int year;

}

®* You can nest block statements

* Any amount of whitespace is allowed in a Java program

Java Programming Language Module 2, slide 8 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Identifiers

e Are names given to a variable, class, or method
e Can start with a letter, underscore(_), or dollar sign($)
* Are case sensitive and have no maximum length

Examples:

identifier
username
user_name
_sys varl
$change

Java Programming Language Module 2, slide 9 of 33
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



Sun Educational Services

abstract
boolean
break
byte
case
catch
char
class
continue

default

Java Programming Language

Java Keywords

do
double
else
extends
false
final
finally
float

for

implements
import
instanceof
int
interface
long
native
new
null

package

private throw
protected throws
public transient
return true
short try
static void
super volatile
switch while
synchronized
this

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 2, slide 10 of 33



@ Sun Educational Services

Primitive Types

* The Java programming language defines eight
primitive types:

e Logical boolean

e Textual char

e Integral Dbyte, short, int, and long
e Floating double and float

Java Programming Language Module 2, slide 11 of 33
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Logical —boolean

* The boolean data type has two literals, true and
false.

e For example, the statement:
boolean truth = true;

declares the variable truth as boolean type and
assigns it a value of true.

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 2, slide 12 of 33



@ Sun Educational Services

Textual —char and String

char

* Represents a 16-bit Unicode character

 Must have its literal enclosed in single quotes(” )

e Uses the following notations:

lal

\t

\u????'

Java Programming Language

The letter a
A tab

A specific Unicode character, ????,
is replaced with exactly four
hexadecimal digits

Module 2, slide 13 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



|%%\//

Sun Educational Services

Textual —char and String

String

e Isnot a primitive data type; it is a class

e Has its literal enclosed in double quotes ("" )
"The quick brown fox jumps over the lazy dog.”

e Can be used as follows:

String greeting = "Good Morning !! \n
String err_msg = "Record Not Found ! "

Java Programming Language Module 2, slide 14 of 33
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Integral —byte ,short ,int ,and

long
e Uses three forms — Decimal, octal, or hexadecimal
2 The decimal value is two.
077 The leading zero indicates an octal
value.
OXBAAC The leading Ox indicates a

hexadecimal value.
e Has a default int

* Defines long by using the letter L or /

Java Programming Language Module 2, slide 15 of 33
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Integral —byte ,short ,int ,and
long

e Each of the integral data types have the following

range:

Integer Name or Type Range
Length yp 5
8 bits byte 27 t0 27-1
16 bits short 25102151
32 bits int 23402311
64 bits long 263 102031

Java Programming Language Module 2, slide 16 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Floating Point —float and double

e Defaultis double

* Floating point literal includes either a decimal point or
one of the following:

 Eor e (add exponential value)
e Forf (float )
e Dord (double )

3.14 A simple floating-point value (a double )
6.02E23 A large floating-point value
2.718F A simple float  size value

123.4E+306D A large double value with redundant D

Java Programming Language Module 2, slide 17 of 33
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Floating Point —float and double

e Floating point data types have the following ranges:

Float Length Name or Type
32 bits float
64 bits double
Java Programming Language Module 2, slide 18 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Variables, Declarations, and
Assignments

public class Assign {
public static void main(String args []) {

1
2
3
4 int X, y; // declare int variables

5 float z = 3.414f;// declare and assign float

6 double w = 3.1415;// declare and assign double

7 boolean truth = true;// declare and assign boolean
8 char c;// declare character variable

9 String str;// declare String

10 String strl = "bye";// declare and assign String variable

11 c ='A';/l assign value to char variable

12 str = "Hi out there!";// assign value to String variable

13 X =6;

14 y = 1000;// assign values to int variables

15 ...

16 }

17 }

Java Programming Language Module 2, slide 19 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Java Coding Conventions

e (lasses:

class AccountBook

class ComplexVariable

e Interfaces:

interface Account

e Methods:

balanceAccount()
addComplex()

Java Programming Language Module 2, slide 20 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Java Coding Conventions

e Variables:

currentCustomer

e Constants:

HEAD COUNT
MAXIMUM_SIZE

Java Programming Language Module 2, slide 21 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Understanding Objects

e Reviewing the history of objects

* Creating a new type, such as MyDate:

public class MyDate {
int day;
int month;
int year,

}

* Declaring a variable:

MyDate myBirth, yourBirth

e Accessing members:

myBirth.day = 26;
myBirth.month = 11;
yourBirth.year = 1960;

Java Programming Language Module 2, slide 22 of 33
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating an Object

e Declaration of primitive types allocates memory space

* Declaration of nonprimitive types does not allocate
memory space

e Declared variables are not the data itself, but references
(or pointers) to the data

Java Programming Language Module 2, slide 23 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating an Object — Memory
Allocation and Layout

* A declaration allocates storage only for a reference:

MyDate today
today = new MyDate();

today 27772

Java Programming Language Module 2, slide 24 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating an Object - Memory
Allocation and Layout

e Use the new operator to allocate and initialize storage:

MyDate today;
today=  new MyDate()
today 2727
day 0
month 0
year 0
Java Programming Language Module 2, slide 25 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating an Object — Memory
Allocation and Layout

e Assign newly created object to reference variable:

MyDate today;
today = new MyDate();

today | ox01abcdef
day 0
month 0
year 0
Java Programming Language Module 2, slide 26 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Assignment of Reference Variables

* Consider the following code fragment:

INntx=7;

Nty = Xx;

String s = “Hello 7
Stringt=s;

Java Programming Language Module 2, slide 27 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Assignment of Reference

Variables
iNntx=7;
inty = x;
String s = “Hello ",
Stringt=s;

e Two variables refer to single object

X 7 “Hello”
y 7/
s | 0x01234567
t | 0x01234567
t="World":

* Reassignment makes two variables
point to two objects

X 7 “Hello”
S | 0x01234567
I “World”
t | 0x12345678
Java Programming Language Module 2, slide 28 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Terminology Recap

e Class
* Object
e Reference type

e Member

Java Programming Language Module 2, slide 29 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Using Identifiers, Keywords,
and Types

* Exercise objectives:

e Using the correct Java keywords, create a class and
an object from the class

* Compile and run the program

e Verify that the references are assigned and
manipulated as described in this module

e Tasks:

* Create a class and corresponding objects

e Investigate reference assignments

Java Programming Language Module 2, slide 30 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Use comments in a source program

e Distinguish between valid and invalid identifiers
* Recognize Java technology keywords

o List the eight primitive types

* Define literal values for numeric and textual types

* Define the terms class, object, member variable, and
reference variable

Java Programming Language Module 2, slide 31 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress
* Create a class definition for a simple class containing
primitive member variables
* Declare variables of class type
e Construct an object using new
* Describe default initialization

e Access the member variables of an object using the dot
notation

* Describe the significance of a reference variable
e State the consequences of assigning variables of class

type

Java Programming Language Module 2, slide 32 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

* What classes and objects appear in your existing
applications?

Java Programming Language Module 2, slide 33 of 33

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 3

Expressions and Flow Control

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics
: | dentifiers, Expressions and
Object-Oriented Programming
Objects Advanced
and Classes Language Features

Exception Handling

Exceptions

Developing Graphical User Interfaces

Building GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes

Applets

Introduction
to Java Applets

i

Multithreading

Threads |

Communications

Stream 1/0 | . |
and Files Networking

Java Programming Language Module 3, slide 2 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Distinguish between instance and local variables
* Describe how instance variables are initialized

* Identify and correct a Possible reference before
assignment compiler error

* Recognize, describe, and use Java operators

e Distinguish between legal and illegal assignments ot
primitive types

Java Programming Language Module 3, slide 3 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Identify boolean expressions and their requirements
in control constructs

* Recognize assignment compatibility and required casts
in fundamental types

e Useif ,switch ,for ,while ,and do constructionsand
the labeled forms of break and continue as flow
control structures in a program

Java Programming Language Module 3, slide 4 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

 What types of variables are useful to programmers?

e Canmultiple classes have variables with the same name
and, if so, what is their scope?

 What types of control structures are used in other
languages? What methods do these languages use to
control flow?

Java Programming Language Module 3, slide 5 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Variables and Scope

Local variables are:

* Variables that are defined inside a method and are
called local, automatic, temporary, or stack variables

* Created when the method is executed and destroyed
when the method is exited

* Variables that must be initialized before they are used
or compile-time errors will occur

Java Programming Language Module 3, slide 6 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Variable Initialization

Variable Value

byte 0

short 0

int 0

long oL

float 0.0f

double 0.0d

char \uO00O' (NULL)
boolean false

All reference types null

Java Programming Language

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 3, slide 7 of 31



Sun Educational Services

Operators

Separator 0 0 .
RtoL ++ -+~ data typg
LtoR * I %
LtoR + -
LtoR << >> >>>
LtoR < > <= >=instanceof
LtoR = I=
LtoR &
LtoR N
LtoR |
LtoR &&
LtoR |l
RtoL ?:
RtoL = *= = Y%= += = <<=
S>>z >>>= &= = =

Java Programming Language

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 3, slide 8 of 31



@ Sun Educational Services

Logical Expressions

* The Boolean operators supported are:

If- NOT & f- AND
|- OR A—XOR

e The bitwise operators are:

~ — Complement & —AND
|- OR N—XOR

* The bitwise operators can work with two Boolean
operands

Java Programming Language Module 3, slide 9 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Short -Circuit Logical Operators

e The operators are &&(AND) and || (OR)

e Operators can be used as follows:

MyDate d = null;
if ((d = null) && (d.day() > 31)) {
/I do something with d

}

Java Programming Language Module 3, slide 10 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

String Concatenation With +

e The + operator:

e Performs String concatenation

e Produces a new String

String salutation ="Dr.";
String name ="Pete " + "Seymour";
String title = salutation + name;

* One argument must be a String  object

e Non-strings are converted to String  objects
automatically

Java Programming Language Module 3, slide 11 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Right-Shift Operators >> and >>>

* Arithmetic or signed right shift (>>) is used as follows:

128 >> 1 returns 128/2 1l -64
256 >> 4 returns 256/2 4=16
-256 >> 4 returns -256/2 4=.16

e The sign bit is copied during the shift.
o A logical or unsigned right shift operator (>>>) is:

e Used for bit patterns
* Not copied during the shift

Java Programming Language Module 3, slide 12 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Left-Shift Operator (<<)

o [eft-shift works as follows:

128 << 1 retums 128 * 2 1 =256
16 <<2returns 16 * 2 2= 64
Java Programming Language Module 3, slide 13 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Casting

e Ifinformation is lost in an assignment, the programmer
must confirm the assighment with a typecast.

e The assignment between short and char requires an
explicit cast.

long bigValue = 99L;
int squashed = (int)(bigValue);

long bigval = 6; //6is anint type, OK
int smallval = 99L; // 99L is a long, illegal

Java Programming Language Module 3, slide 14 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Promotion and Casting of Expressions

e Variables are automatically promoted to a longer form
(such as int tolong ).

e Expression isassignment compatible if the variable type is
at least as large (the same number of bits) as the
expression type.

double z = 12.414F; /] 12.414F is float, OK
float z1 =12.414; // 12.414 is double, illegal

Java Programming Language Module 3, slide 15 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Branching Statements

The if , else statements:

if ( boolean expression ){
Statement or block ;
}

if (  condition Is true
statement or block ;
} else {
statement or block ;
}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 3, slide 16 of 31



@ Sun Educational Services

Branching Statements

The if , else statements:

int count;
count = getCount(); // a method defined in the program
if (count < 0) {
System.out.printin("Error: count value is negative.”);
} else {
System.out.printin("There will be " + count +
" people for lunch today.");

O~NOOTHA WN B

Java Programming Language Module 3, slide 17 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Branching Statements

The switch statement:

The switch statement syntax is:

switch( exprl ){

case constant?
Sstatements
break:

case constant3
Sstatements
break:
default:
Statements
break:

Java Programming Language Module 3, slide 18 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Branching Statements

The switch statement:

Int colorNum = 0O:

switch (colorNum) {

case O:
setBackground(Color.red);
break:

case 1.
setBackground(Color.green);

break:

default:;
setBackground(Color.black);
break:

}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 3, slide 19 of 31



@ Sun Educational Services

Looping Statements

The for statement:

for ( init_expr; boolean testexpr; alter_expr
statement or block ;

}

Example:

for (inti=0;1<10; i++) {
System.out.printin("Are you finished yet?");

}
System.out.printin("Finally!");

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

N

Module 3, slide 20 of 31



@ Sun Educational Services

Looping Statements

The while loop:

} while ( boolean ) {
statement or block :

}

Example:
inti=0:;

while (1< 10) {
System.out.printin("Are you finished yet?");
++:

}

System.out.printin("Done");

Java Programming Language Module 3, slide 21 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Looping Statements

The do/while  statement:

do{
statement or block :
} while ( boolean test ),

Example:
int1=0;

do{
System.out.printin("Are you finished yet?");
[++:

}while (i < 10);

System.out.printin("Done");

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 3, slide 22 of 31



@ Sun Educational Services

Special Loop Flow Control

o break[ label ]
e continue[  label ]

e |abel: statement /[ \Where statement  should
/I be aloop

Java Programming Language Module 3, slide 23 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Special Loop Flow Control

The break statement:

do {
statement or block;
if (condition is true)
break ;
} while (  boolean expression );

Java Programming Language Module 3, slide 24 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Special Loop Flow Control

The continue statement:

do {
statement or block;
f (boolean expression)
continue
} while (  boolean expression );

Java Programming Language Module 3, slide 25 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Special Loop Flow Control

Using break with labels:

loop:
do {
statement;
do {
statement;
statement;
If (boolean expression)

break loop ;
} while (  boolean expression )
statement;
}while ( boolean expression );

Java Programming Language Module 3, slide 26 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Special Loop Flow Control

Using continue  with labels:

test:
do {
statement;
do {
statement;
statement;
if (condition is true)
continue test ;
} while ( condition is true )
statement;
} while ( condition Is true );

Java Programming Language Module 3, slide 27 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Using Expressions

e Exercise objective:

* Write, compile, and run two arithmetic programs
that use identifiers, expressions, and control
structures

e Tasks:

e Use factorial application

* Create a geometry program

Java Programming Language Module 3, slide 28 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Distinguish between instance and local variables
* Describe how instance variables are initialized

* Identify and correct a Possible reference before
assignment compiler error

* Recognize, describe, and use Java operators

e Distinguish between legal and illegal assignments ot
primitive types

Java Programming Language Module 3, slide 29 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Identify boolean expressions and their requirements
in control constructs

* Recognize assignment compatibility and required casts
in fundamental types

e Useif ,switch ,for ,while ,and do constructionsand
the labeled forms of break and continue as flow
control structures in a program

Java Programming Language Module 3, slide 30 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

* What data types do most programming languages
use to group similar data elements together?

 How do you perform the same operation on all
elements of a group (for example, a matrix)?

 What data types does the Java programming
language use?

Java Programming Language Module 3, slide 31 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 4

Arrays

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics
. | Identifiers, | Expressions and
Getting Started Keywords, and Types Flow Control

Object-Oriented Programming
Objects Advanced
and Classes Language Features

Exception Handling

Exceptions |

Developing Graphical User Interfaces

Building GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes

Applets

Introduction
toJava Applets

Multithreading

Threads

Communications

Stream |/O
and Files

Networking

Java Programming Language Module 4, slide 2 of 15

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

* Declare and create arrays of primitive, class, or array
types

e Explain why elements of an array are initialized

e Given an array definition, initialize the elements of an
array

* Determine the number of elements in an array
* Create a multidimensional array

e Write code to copy array values from one array type to
another

Java Programming Language Module 4, slide 3 of 15

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

 What is the purpose of an array?

Java Programming Language Module 4, slide 4 of 15
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Declaring Arrays

e Group data objects of the same type

* Declare arrays of primitive or class types

char gf];
Point p[];

char [] s;
Point [] p;

* Create space for a reference

* Remember an array is an object not memory reserved
for primitive types

Java Programming Language Module 4, slide 5 of 15
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating Arrays

Use the new keyword to create an array object.

w
[

new char[20],
p = new Point[100];

p[0] = new Point();
p[1] = new Point();

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 4, slide 6 of 15



@ Sun Educational Services

Initializing Arrays

* Initialize an array element

* Create an array with initial values:

String names];

names = new String[3];
names[0] = "Georgianna";
names[1] = "Jen";
names[2] = "Simon";

Myclass array[] ={
new Myclass(),
new Myclass(),

10 new Myclass()

11

OCOoO~NOUIA,WNPE

13 Color palette[] ={
14 Color.blue,

15 Color.red,

16 Color.white
17 %

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 4, slide 7 of 15



@ Sun Educational Services

Multi-Dimensional Arrays

e Arrays of arrays:

int twoDim [][] = new int [4][];
twoDIm[0] = new Int[5];
twoDim[1] = new int[5];

int twoDim [][] = new int [J[4]; illegal

Java Programming Language Module 4, slide 8 of 15
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Multi-Dimensional Arrays

* Non-rectangular arrays of arrays:

twoDim([0] = new int[2];
twoDim[1] = new int[4];
twoDIim[2] = new int[6];
twoDim([3] = new int[8];

e Array of four arrays of five integers each:

int twoDIM[][] = new int[4][5];

Java Programming Language Module 4, slide 9 of 15

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Array Bounds
All array subscripts begin at 0:

int list]] = new int [10];

for (inti=0; i < listlength; i++) {
System.out.printin(list{i]);

}

Java Programming Language Module 4, slide 10 of 15

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Array Resizing

e Cannot resize an array
e Can use the same reference variable to refer to an
entirely new array:

Int elements[] = new Int[6];
elements = new int[10];

Java Programming Language Module 4, slide 11 of 15

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Copying Arrays
The System .arraycopy() method:

/loriginal array
int elements[]={1, 2,3,4,5,6};

/l new larger array
int hold[] ={10,9,8,7,6,5,4,3,2,1}

/l copy all of the elements array to the hold
/[ array, starting with the Oth index
System.arraycopy(elements, 0, hold, 0, elements.length);

OO NO OIS, WNPE

Java Programming Language Module 4, slide 12 of 15
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Using Arrays

e Exercise objectives:

* Define and initialize an array

e Write a program that defines, initializes, and uses
arrays

e Tasks:
e Use a basic array
e Create an array of arrays

* Create an anagram game

Java Programming Language Module 4, slide 13 of 15

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

* Declare and create arrays of primitive, class, or array
types

e Explain why elements of an array are initialized

e Given an array definition, initialize the elements of an
array

* Determine the number of elements in an array
* Create a multidimensional array

e Write code to copy array values from one array type to
another

Java Programming Language Module 4, slide 14 of 15

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

 How can you create a three-dimensional array?

 What is one disadvantage of using arrays?

Java Programming Language Module 4, slide 15 of 15

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 5

Objects and Classes

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics
. | Identifiers, | Expressions and |
Getting Started Keywords, and Types Flow Control Arrays

Object-Oriented Programming
Objects Advanced
and Classes Language Features

Exception Handling

Exceptions |

Developing Graphical User Interfaces

Building GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes

Applets

Introduction
toJava Applets

Multithreading

Threads

Communications

Stream |/O
and Files

Networking

Java Programming Language Module 5, slide 2 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

* Define encapsulation, polymorphism, and inheritance
e Use the access modifiers private  and public

* Develop a program segment to create and initialize an
object

e Invoke a method on a particular object
* Describe constructor and method overloading

* Describe the purpose of the this reference

Java Programming Language Module 5, slide 3 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

* Discuss why Java application code is reusable.
* In a Java program, identify the following:

e The package statement

e The import statement

¢ (Classes, member functions, and variables

e (Constructors

e Overloaded methods

e Overriden methods

e Parent class constructors

Java Programming Language Module 5, slide 4 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

* The elements of the Java programming language
covered so far exist in most languages regardless of
whether they are object-oriented.

 What features does the Java programming language
posess that make it an object-oriented language?

e What does the term object-oriented mean?

Java Programming Language Module 5, slide 5 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Object Fundamentals

e Key features:
e Encapsulation
e Polymorphism
e Inheritance

e Abstraction

e Classes and obijects

Java Programming Language Module 5, slide 6 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Classes and Objects

e A class is a template or model.
* An object is created based on that model.

* There is one copy of a class per program, but many
objects (instantiate using the new keyword).

* Methods define the operations for a class.

* Methods must belong to a class.

Java Programming Language Module 5, slide 7 of 50
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Classes and Objects

1 class Empinfo {

2 String name;

3 String designation;

4 String department;

5 }

6

7 Il Create instance

8 Emplinfo employee = new Emplnfo();

9

10 /I Initializes the three members

11 employee.name = "Robert Javaman employee.designation = "Manager ";
12 employee.department = "Coffee Shop ”;

13

14 System.out.printin(employee.name + “is 4+

15 employee.designation + “ at “ +

16 employee.department);

Java Programming Language Module 5, slide 8 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Classes and Objects

public class MyDate {
int day, month, year;

public void tomorrow() {
// code to increment day
}

~NOoO ok OWNE

}

MyDate d = new MyDate();
d.tomorrow();
inti=d.day;

WN -

Java Programming Language Module 5, slide 9 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Detining Methods

The method declaration takes the following form:

<modifiers >< retum type >< name>(
[< argument list  >])
[throws < exception >]{
< block >

}

Example:

public int addDays(int days) {
< block >/ Method code here

}

Java Programming Language Module 5, slide 10 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Pass-by-Value

* The Java programming language only passes
arguments by value

* When an object instance is passed as an argument to a
method, the value of the argument is a reference to the
object

e The contents of the object can be changed in the called
method, but the object reference is never changed

Java Programming Language Module 5, slide 11 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Thethis Reference

public class MyDate {
int day, month, year,

public void tomorrow() {
this.day = this.day + 1,
/l wrap around code...
}
}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 5, slide 12 of 50



@ Sun Educational Services

Data Hiding

public class MyDate {
private int day, month, year;

public void tomorrow() {
this.day = this.day + 1,
// validate day range
}
}

public class DateUser {
public static void main(String argsy]) {
MyDate mydate = new MyDate();
mydate.day = 21; // illegal!
}
}

Java Programming Language Module 5, slide 13 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Data Hiding

/I Part of MyDate class
public void setDay(int targetDay) {
if (targetDay > this.daysinMonth()) {

System.err.printin( “invalid day ” + targetDay);
}
else {
this.day = targetDay;
}
}
Java Programming Language Module 5, slide 14 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Encapsulation

e Hides the implementation details of a class
e Forces the user to use an interface to access data

e Makes the code more maintainable

Java Programming Language Module 5, slide 15 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Overloading Method Names

e It can be used as follows:

public void printin(int 1)
public void printin(float f)
public void printin(String s)

e Argument lists must ditfer.

e Return types can be different.

Java Programming Language Module 5, slide 16 of 50
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Constructing and Initializing Objects

e Calling new Xxxx() to allocate space for the new object
results in:

e Space for the new object is allocated and initialized to
0 or null.

e Explicit initialization is performed.

e A constructor is executed.

Java Programming Language Module 5, slide 17 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Explicit Member Initialization

public class Initialized {
private int X =5;
private String name = "Fred",;
private MyDate created = new MyDate();

/I Accessor methods go here

Java Programming Language Module 5, slide 18 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Constructors

* The method name must exactly match the classname.

e There must not be a return type declared for the
method.

Java Programming Language Module 5, slide 19 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Constructors

public class Xyz {
/I member variables go here

public Xyz() {
Il set up the object
}

public Xyz(int x) {
Il set up the object with a parameter

}
}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 5, slide 20 of 50



=

_ Sun Educational Services

Invoking Overloaded Constructors

public class Employee {
private String name;
private int salary;

public Employee(String n, int s) {

name =n;
salary =s;
}
public Employee(String n) {
this(n, 0);
}
public Employee() {
this( “Unknown”);
}

}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 5, slide 21 of 50



@ Sun Educational Services

The Default Constructor

* Isin every class
e Enables you to create object instances with new Xxx()

e [sinvalid if you add a constructor declaration with
arguments

Java Programming Language Module 5, slide 22 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Theisa Relationship
The Employee class:

public class Employee {
String name;
Date hireDate;
Date dateOfBirth;

}

Java Programming Language Module 5, slide 23 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Theisa Relationship

e The Manager class:

public class Manager {
String name;
Date hireDate;
Date dateOfBirth;
String department;
Employee subordinates ];

}

* Subclassing

Java Programming Language Module 5, slide 24 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The extends Keyword

public class Employee {
String name;
Date hireDate;
Date dateOfBirth:

}

public class Manager extends Employee {
String department;
Employee subordinates [];

}

Java Programming Language Module 5, slide 25 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Single Inheritance

 When a class inherits from only one class, it is called
single inheritance.

e Single inheritance makes code more reliable.

» [nterfaces provide the benefits of multiple inheritance
without drawbacks.

Java Programming Language Module 5, slide 26 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Employee

attributes
name
address
salary

methods
up_salary
promote

Java Programming Language

Single Inheritance

| =— Engineer

<—Secretary

-— Manager —=— Director

attributes _ attributes
bonus car allowance
methods methods
up_bonus up_allowance
promote

Inheritance examples

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 5, slide 27 of 50



@ Sun Educational Services

Constructors Are Not Inherited

* A subclass inherits all methods and variables from the
superclass (parent class).

e A subclass does not inherit the constructor from the
superclass.

e Two ways to include a constructor are:

e Use the default constructor

e Write one or more explicit constructors

Java Programming Language Module 5, slide 28 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Polymorphism

* Polymorphism is the ability to have many different
forms; for example, the Manager class has access to
methods from Employee class.

* An object has only one form.

* A reference variable has many forms; it can refer to
objects of different forms.

Java Programming Language Module 5, slide 29 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Polymorphism

Employee e = new Manager() //legal

Il lllegal attempt to assign Manager member
/I variable when object is a parent Employee class
e.department = "Finance",

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 5, slide 30 of 50



@ Sun Educational Services

Heterogeneous Collections

e Collections with a common class are called homogenous
collections.

e Collections with dissimilar objects are heterogeneous
collections.

Java Programming Language Module 5, slide 31 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Heterogeneous Collections

e Because a Manager is an Employee :

/I In the Employee class
public TaxRate findTaxRate( Employee e ){

}

Il Meanwhile, elsewhere in the application class
Manager m = new Manager() ;

TaxRate t = findTaxRate( m,

* An example of heterogeneous collection is:

Employee [] staff = new Employee[1024];
staff[0] = new Manager();
staff[1] = new Employee();

Java Programming Language Module 5, slide 32 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The instanceof  Operator

public class Employee extends Object
public class Manager extends Employee
public class Contractor extends Employee

public void method(Employee e) {
if (e instanceof Manager) {
Il Gets benefits and options
/I along with salary
} else if (e instanceof Contractor) {
I Gets hourly rates
} else{
Il regular employee

}
}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 5, slide 33 of 50



@ Sun Educational Services

Casting Objects

e Use instanceof  to test the type of an object.
e Restore full functionality of an object by casting.

e Check for proper casting using the following
guidelines:

e Casts up hierarchy are done implicitly.

e Downward casts must be to a subclass and checked
by the compiler.

* The object type is checked at runtime when runtime
errors can occur.

Java Programming Language Module 5, slide 34 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Overriding Methods

* A subclass can modity behavior inherited from a parent
class.

e A subclass can create a method with different
functionality than the parent’s method but with the
same:

* Name
* Return type

* Argument list

Java Programming Language Module 5, slide 35 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Overriding Methods

public class Employee {
String name;
int salary;
public String getDetails() {
return “Name: “ + name + “\n"” +
“Salary : “ + salary;

public class Manager extends Employee {
String department;

public String getDetails() {
return “Name: “ + name + “\n” +
“Manager of “ + department;

Java Programming Language Module 5, slide 36 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Overriding Methods

¢ Virtual method invocation:

Employe e e = new Manager();
e.getDetails();

e Compile-time type and runtime type

Java Programming Language Module 5, slide 37 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Rules About Overridden Methods

* Must have a return type that is identical to the method
it overrides

e Cannot be less accessible than the method it overrides

* Must throw exceptions that are same type as the
method being overridden

Java Programming Language Module 5, slide 38 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Rules About Overridden Methods

public class Parent {
public  void method() {}

}

public class Child extends Parent {
private  void method() {}

}

public class UseBoth {
public void otherMethod() {
Parent p1 = new Parent();
Parent p2 = new Child();
pl.method();
p2.method();

}
}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 5, slide 39 of 50



@ Sun Educational Services

The super Keyword

e super isused in a class to refer to its superclass.

e super is used to refer to the member variables of
superclass.

e Superclass behavior is invoked as if the object was part
of the superclass.

e Behavior invoked does not have to be in the superclass;
it can be further up in the hierarchy.

Java Programming Language Module 5, slide 40 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The super Keyword

public class Employee {
private String name;
private int salary;
public String getDetails() {
return Name: " + name + "\nSalary: " + salary;,

}
}

public class Manager extends Employee {
private String department;
public String getDetails() {
// call parent method
return  super.getDetalls O+
"\nDepartment: " + department;

Java Programming Language Module 5, slide 41 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



=

_ Sun Educational Services

Invoking Parent Class Constructors

* Initialization of objects is structured.

 When an object is initialized, the following sequence of
events occur:

e The memory space is allocated and initialized to
"zero" values

* Explicit initialization is performed for each class in
the hierarchy

e A constructor is called for each class in the hierarchy

Java Programming Language Module 5, slide 42 of 50
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



=

_ Sun Educational Services

Invoking Parent Class Constructors

e In many circumstances, the default constructor is used

to initialize the parent object.

public class Employee {
String name;
public Employee(String n) {
name =n;
}
}

public class Manager extends Employee {
String department;
public Manager(String s, String d) {
super(s)
department =d;
}
}

e If used, you must place super or this
of the constructor.

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

in the first line

Module 5, slide 43 of 50



@ Sun Educational Services

Packages

* You must specity package declaration at the beginning
of the source file.

* You are permitted only one package declaration per
source file.

Il Class Employee of the Finance department for the
/I ABC company
package abc.financeDept;

public class Employee {

}...

e Package names must be hierarchical and separated by
dots.

Java Programming Language Module 5, slide 44 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The import Statement

e Tells the compiler where to find classes to use

e Precedes all class declarations:

import abc.financeDept.*;

public class Manager extends Employee {
String department;
Employee subordinates [];

}

Java Programming Language Module 5, slide 45 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Directory Layout and Packages

e Packages are stored in the directory tree containing the
package name.

package abc.financedept

public class Employee {

}...

javac -d . Employee.java

Java Programming Language Module 5, slide 46 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Using Objects and Classes

e Exercise objective:

e Write, compile, and run three programs that use the
object-oriented concepts of inheritance, constructors,
and data hiding by modeling a bank account.

e Tasks:
* Create a bank account
e Create several account types

e (Create an online account service

Java Programming Language Module 5, slide 47 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

* Define encapsulation, polymorphism, and inheritance
e Use the access modifiers private  and public

* Develop a program segment to create and initialize an
object

e Invoke a method on a particular object
* Describe constructor and method overloading

* Describe the purpose of the this reference

Java Programming Language Module 5, slide 48 of 50
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

* Discuss why Java application code is reusable

* In a Java program, identify the following:

The package statement

The import statement

Classes, member functions, and variables
Constructors

Overloaded methods

Overriden methods

Parent class constructors

Java Programming Language Module 5, slide 49 of 50
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

* Now that you understand objects and classes, how
could you put this to use on a project you are working
on?

Java Programming Language Module 5, slide 50 of 50

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 6

Advanced Language Features

Java Programming Language September 1999



@Sun Educational Services
Course Map

The Java Programming Language Basics
: | | dentifiers, | Expressions and |
Getting Started Keywords, and Types Flow Control Arrays
Object-Oriented Programming
Objects Advanced
and Classes Language Features

Exception Handling

Exceptions

Developing Graphical User Interfaces

Building GUIs The AWT The AWT Java Foundation
9 Event Mode Component Library Classes

Applets

Introduction
to Java Applets

Multithreading

Threads |

Communications

Stream 1/0O .
and Files | Networking |

Java Programming Language Module 6, slide 2 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Describe static  variables, methods, and initializers
e Describe final classes, methods, and variables
e [ist the access control levels

e Identify deprecated classes and explain how to migrate
from JDK™ 1.0 to JDK 1.1 to JDK 1.2

* Describe how to apply collections and reflections

Java Programming Language Module 6, slide 3 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

* In a Java program, identify:
e static methods and variables
e public , private , protected, and default variables
e Use abstract classes and methods
e Explain how and when to use inner classes
e Explain how and when to use interfaces

e Describe the difference between == and equals()

Java Programming Language Module 6, slide 4 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance
e How can you keep a class or method from being
subclassed or overriden?

* How can you extend the use of array concepts to
objects?

Java Programming Language Module 6, slide 5 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Class (static ) Variables

e Are shared among all instances of a class
e Can be marked either as public or as private

e Can be accessed from outside the class if marked as
public  without an instance of the class

public class Count {
private int serialNumber;
private static int counter =0;

public Count() {
counter ++;
serialNumber = counter;

}
}

Java Programming Language Module 6, slide 6 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Class (static ) Methods

You can invoke static  method without any instance of the

class to which it belongs.

public class GeneralFunction {
public static int addUp(int x, int y) {
return X +;

}
}

public class UseGeneral {
public void method() {

inta=9;
intb =10;
int ¢ = GeneralFunction.addUp(a, b);
System.out.printin( "addUp() gives
}

}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

n + C);

Module 6, slide 7 of 45



@ Sun Educational Services

Static Initializers

e A class can contain code in a static block that does not
exist within a method body.

e Static block code executes only once, when the class is
loaded.

Java Programming Language Module 6, slide 8 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Static Initializers

1  public class StaticlnitDemo {

2 static inti = 5;

3

4 static {

5 System.out.printin("Static code i= "+ i++);
6 }

7}

8

9  public class Test {

11  public static void main(String args|[]) {

12 System.out.printin("Main code: i=" + StaticlnitDemao.i);
13}

14 }

Java Programming Language Module 6, slide 9 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Static Methods and Data

1  public class Car {

2 String color;

3 String model;

4

5 /I Specific to this instance.

6 int serialNumber

7

8 /I Accessible by all instances.

9 static int  nextSerialNumber =1;
10

11  public Car (String color, String model) {
12 this.color = color;

13 this.model = model;

14 serialNumber = nextSerialNumber++;
15 }

17  public void whoAmlI() {
18 System.out.printin(

19 “lama" + color + " " + model +

20 ", serial number =" + serialNumber);
21 }

22

23  public static void main (String args|]) {

24 Car JanesCar = new Car("Red", "Coupe");
25 Car JoesCar = new Car("Blue”, "Hatchback");
26

27 JanesCar.whoAmi();

28 JoesCar.whoAml();

29 }

30 }

Access class data:
nextSerialNumber or

Car.nextSerialNumber

Java Programming Language Module 6, slide 10 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Static Methods and Data

public class Car2 {
private String color;
private String model;

/I Specific to this instance.
private int serialNumber;

/I Accessible by all instances.
9 private static int nextSerialNumber = 1;

11  public Car2 (String color, String model) {
12 this.color = color;

13 this.model = model;

14 serialNumber = nextSerialNumber++;
15 }

17  public void whoAmlI() {
18 System.out.printin(

19 “lam a" + color + model +

20 ", serial number =" + serialNumber);
21 }

22

23 public static void getNextSerialNum () {
24 System.out.printin(

25 "The next available serial number is " +
26 nextSerialNumber);

27 }

28

29  public static void main (String args|[]) {
30 Car2 JanesCar = new Car2("Red", "Coupe");
31 Car2 JoesCar = new Car2("Blue”, "Hatchback™);

33 I/l Use nonstatic method to get instance data
34 JanesCar.whoAml();
35 JoesCar.whoAml();

36

37 /I Use static method to get class data

38 getNextSerialNum  ();

39 } // just to fit on page

Java Programming Language Module 6, slide 11 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Static Methods and Data

Car
JanesCar
instance data
serialNumber = 1; <«—| JanesCar.whoAmi()
getNextSerialNum() and main()
/
/
Car /
/
_ /
class (static) data y
nextSerialNumber = 3; -« — — — | getNextSerialNum() and main()
\
\
\
\
\
\
JoesCar \
\
. \
instance data \
serialNumber = 2; \ getNextSerialNum() and main()
JoesCar.whoAml()

Java Programming Language Module 6, slide 12 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Thefinal Keyword

e You cannot subclass a final class.
* You cannot override a final method.

e A final wvariableis a constant.

Java Programming Language Module 6, slide 13 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Abstract Classes

e A class that declares the existence of methods but not
the implementation is called an abstract  class.

* You can declare a class as abstract by marking it with
the abstract  keyword.

public abstract class Drawing {
public abstract void drawDot(int x, int y);
public void drawLine(int x1, int yl1,
int x2, int y2) {
/[ draw using the drawDot() method repeatedly.
}
}

e An abstract class can contain member variables and
non-abstract methods.

Java Programming Language Module 6, slide 14 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Interfaces

e An interface is a variation on the idea of an abstract
class.

e |In an interface , all the methods are abstract.

* You cansimulate multiple inheritance by implementing
such interfaces.

* The syntax is:

public interface Transparency {
public static final int OPAQUE=1,;
public static final int BITMASK=2,;
public static final int TRANSLUCENT=3;

public int getTransparency();

Java Programming Language Module 6, slide 15 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Interfaces

public class MyApplet extends Applet
implements Runnable, MouseL.istener

}

interface SayHello {
void printMessage();

}

class SayHellolmpl implements SayHello {
void printMessage() {
System.out.printin("Hello");

}
}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 6, slide 16 of 45



@ Sun Educational Services

Interfaces

e Interfaces are useful for:

e Declaring methods that one or more classes are
expected to implement

* Determining an object’s programming interface
without revealing the actual body of the class

e Capturing similarities between unrelated classes
without forcing a class relationship

Java Programming Language Module 6, slide 17 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Advanced Access Control

Modifier Same Class IS’:zlll<eage Subclass Universe
public Yes Yes Yes Yes
protected Yes Yes Yes
default Yes Yes
private Yes
Java Programming Language Module 6, slide 18 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Deprecation

* Deprecation is the obsoletion of class constructors and
method calls.

* Obsolete methods and constructors are replaced by
methods with a more standardized naming convention.

* When migrating code, compile the code with the
-deprecation  flag:

javac -deprecation MyFile.java

Java Programming Language Module 6, slide 19 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Deprecation

JDK 1.1 code, before deprecation is as
follows:

1 package myutilities;

2

3 import java.util.*;

4  import java.text.*;

5

6  public final class DateConverter {

7 private static String day_of the_week [] =

8 {"Sunday", "Monday", "Tuesday", "Wednesday",
9 "Thursday", "Friday", "Saturday"};

10

11  public static String getDayOfWeek (String theDate){
12 int month, day, year;

13

14 StringTokenizer st = new StringTokenizer (theDate, "/");
15

16 month = Integer.parselnt(st.nextToken ());

17 day = Integer.parselnt(st.nextToken());
18 year = Integer.parselnt(st.nextToken());
19 Date d = new Date (year, month, day);

20

21 return (day_of _the_week[d.getDay()]);

22}

23 }

Java Programming Language Module 6, slide 20 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Deprecation

Compiling previous code with the -deprecation

% javac -deprecation DateConverter.java
DateConverter.java:16: Note: The constructor java.util. Date(int,int,int) has been
deprecated.

Date d = new Date (year, month, day);

N

DateConverter.java:18: Note: The method int getDay() in class java.util. Date has
been deprecated.

return (day_of the week|d.getDay()]);

N

Note: DateConverter.java uses a deprecated API.Please consult the documentation for
a better alternative.
3 warnings

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

flag yields:

Module 6, slide 21 of 45



@Sun Educational Services
Deprecation

A JDK 1.3 version rewritten is:

package myutilities;

import java.util.*;
import java.text.*;

public final class DateConverter2 {
private static String day_Of The_Week[] =
{"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};

©CoOoO~NOOUThA,WNE

N
= O

public static String getDayOfWeek (String theDate) {

12 Date d = null;

13 SimpleDateFormat sdf = new SimpleDateFormat("MM/dd/yy");
14

15 try {

16 d = sdf.parse (theDate);
17 } catch (ParseException e) {
18 System.out.println (e);

19 e.printStackTrace();

20 }

21

22 Il Create a GregorianCalendar object
23 Calendar c =

24 new GregorianCalendar(

25 TimeZone.getTimeZone("EST"),Locale.US);

26 c.setTime (d);

27

28 return(

29 day_ Of The Week][(c.get(Calendar.DAY_OF_ WEEK)-1)]);

30 }

31 }

Java Programming Language Module 6, slide 22 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The == Operator Versus equals()
Method

e Theequals() @ and == methods determine if reference
values refer to the same object.

e The equals() method isoverriddenin classes toreturn
true if the contents and type of two separate objects
match.

Java Programming Language Module 6, slide 23 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
toString() Method

e Converts an object to a String

e Converts a primitive type to a String,  but uses
wrapper classes that have the method

e Overrides to provide information about the object in
readable format

Java Programming Language Module 6, slide 24 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Inner Classes

e Added toJDK 1.1

e Allow a class definition to be placed inside another class
definition

e Group classes that logically belong together

e Have access to their enclosing class’s scope

Java Programming Language Module 6, slide 25 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Properties of Inner Classes

* You can use the class name only within the defined
scope, except when used in a qualified name.

The name of the inner class must differ from the
enclosing class.

e The inner class can be defined inside a method.

Any variable, either a local variable or a formal
parameter, can be accessed by methods within an

inner class provided the variable is marked as
final

Java Programming Language Module 6, slide 26 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Properties of Inner Classes

e The inner class can use both class and instance variables

of enclosing classes and local variables of enclosing
blocks.

e The inner class can be defined as abstract.

* Only inner classes can be declared as private  or
protected

* An inner class can act as an interface implemented by
another inner class.

Java Programming Language Module 6, slide 27 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Properties of Inner Classes
* Inner classes that are declared static  automatically
become top-level classes.

* Inner classes cannot declare any static  members; only
top-level classes can declare static  members.

An inner class wanting to use a static  must declare
static  in the top-level class.

Java Programming Language Module 6, slide 28 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Wrapper Classes

e Look at primitive data elements as objects

Primitive Data Type Wrapper Class
boolean Boolean
byte Byte
char Character
short Short
int Integer
long Long
float Float
double Double
Java Programming Language Module 6, slide 29 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Wrapper Classes

int pInt = 500;
Integer wint = new Integer(pint);

int p2 = wint.intValue();

Java Programming Language Module 6, slide 30 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Collection API

* A collection (or a container) is a single object
representing a group of objects known as its elements.

e Collection classes Vector , Bits , BitSet , Stack |,
Hashtable , LinkedList , and so on are supported.

e The Collection API contains interfaces that maintain
objects as a:

e Collection  — A group of objects with no specific
ordering

e Set — A group of objects with no duplication

o List dgroup of ordered objects; duplication is
perm1tte

Java Programming Language Module 6, slide 31 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The Vector Class

The Vector class provides methods for working with
dynamic arrays of varied element types.

java.lang.Object
|

i — java.util.AbstractCollection
L _ java.util. AbstractList

L . _java.util.Vector

Java Programming Language Module 6, slide 32 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Synopsis

e Each vector maintains a capacity and
capacitylncrement

* Aselements are added, storage for the vector increases
in chunks up to the size of the capacitylncrement
variable.

Java Programming Language Module 6, slide 33 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Constructors

e public Vector()
e public Vector(int initialCapacity)

e public Vector(int initialCapacity,
Int capacitylncrement)

Java Programming Language Module 6, slide 34 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Variables

e protected int capacitylncrement
e protected int elementCount

e protected Object elementData]]

Java Programming Language Module 6, slide 35 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Methods

public final int size()
public final boolean contains(Object elem)
public final int indexOf(Object elem)

public final synchronized
Object elementAt(int index)

public final synchronized void
setElementAt(Object obj, int index)

public final synchronized void
removeElementAt(int index)

public final synchronized void
addElement(Object obj)

public final synchronized void
insertElementAt(Object obj, int index)

Java Programming Language Module 6, slide 36 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The Vector Class

1 import java.util.*;

2

3 public class MyVector extends Vector {
4 public MyVector() {

5

6 Il storage capacity & capacitylncrement
7 super(1,1);

8 }

9

10  public void addInt(int i) {

11

12 // addElement requires Object arg
13 addElement(new Integer(i));

16  public void addFloat(float f) {
17 addElement(new Float(f));
18 }

20  public void addString(String s) {
21 addElement(s);
22 }

24 public void addCharArray(char a]]) {
25 addElement(a);
26}

Java Programming Language Module 6, slide 37 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

The Vector Class

27  public void printVector() {
28 Object o;

30 /I compare with capacity()
31 int length = size();
32 System.out.printin("Number of vector elements is " +

33 length + " and they are:");

34

35 for (inti=0;i<length; i++) {

36 o = elementAt(i);

37

38 if (0 instanceof char[]) {

39

40 /I An array's toString() method does not print
41 /Il what we want.

42 System.out.printin(String.copyValueOf((char[]) 0));
43 } else {

44 System.out.printin(o.toString());

45 }

46 }

47 '}

48

49  public static void main(String args|[]) {
50 MyVector v = new MyVector();

51 int digit = 5;

52 float real = 3.14F;

53 char letters[] ={'a’, 'b', 'c', 'd" };

54 String s = new String("High there!");
55

56 v.addInt(digit);

57 v.addFloat(real);

58 v.addString(s);

59 v.addCharArray(letters);

60

61 v.printVector();

62 }

63 }

Java Programming Language Module 6, slide 38 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Retlection API

Can be used to:

e Construct new class instances and new arrays
e Access and modify fields of objects and classes
* Invoke methods on objects and classes

e Access and modify elements of arrays

Java Programming Language Module 6, slide 39 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Reflection API Features

java.lang.Class
java.lang.reflect.Field
java.lang.reflect.Method
java.lang.reflect.Array

java.lang.reflect. Constructor

Java Programming Language Module 6, slide 40 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Reflection API Security Model

* The Java Security Manager controls access to the core
Reflection API on a class-by-class basis.

e Standard Java programming language access control is
enforced when:

e AField isused to getor seta field value
e A Method is used to invoke a method

e A Constructor is used to create and initialize a
new instance of a class

Java Programming Language Module 6, slide 41 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Working With Advanced
Language Features

e Exercise objective:

* Rewrite, compile, and run three programs that use
the bank account model and employ advanced
object-oriented features, such as inner classes, vector
classes, and interfaces

e Tasks:
* Modify the bank account

e [Use inner classes

e Addfind and delete methods to MyVector class

Java Programming Language Module 6, slide 42 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Describe static  variables, methods, and initializers
e Describe final classes, methods, and variables
e [ist the access control levels

e Identify deprecated classes and explain how to migrate
from JDK 1.0 to JDK 1.1 to JDK 1.2

* Describe how to apply collections and reflections

Java Programming Language Module 6, slide 43 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

* In a Java program, identify:
e static methods and variables

e public , private , protected, and default
variables

e Use abstract classes and methods
e Explain how and when inner classes are used
e Explain how and when interfaces are used

e Describe the difference between == and equals()

Java Programming Language Module 6, slide 44 of 45
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

e What features of the Java programming language are
used to deal with runtime error conditions?

Java Programming Language Module 6, slide 45 of 45

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 7

Exceptions

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics
: Identifiers, | Expressions and |
Sttt Keywords, and Types Flow Control Arrays

Object-Oriented Programming

Advanced
Language Features

Objects
and Classes

Exception Handling

Exceptions

Developing Graphical User Interfaces

Buildina GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes

Applets

Introduction
to JavaApplets

Multithreading

Threads

Communications

Stream |/O
and Files

Networking

Java Programming Language Module 7, slide 2 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

* Define exceptions

e Use try, catch, and finally statements
* Describe exception categories

e Identify common exceptions

* Develop programs to handle your own exceptions

Java Programming Language Module 7, slide 3 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

* In most programming languages, how do you resolve
runtime errors?

Java Programming Language Module 7, slide 4 of 17
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exceptions

e The Exception class defines mild error conditions that
your program encounters.

e Exceptions can occur when:
e The file you try to open does not exist
* The network connection is disrupted

e Operands being manipulated are out of prescribed
ranges

e The class file you are interested in loading is missing

e An error class defines serious error conditions

Java Programming Language Module 7, slide 5 of 17
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exception Example

1 public class HelloWorld {
9 public static void main (String args[]) {

10 inti=0;
11
12 String greetings [] ={
13 "Hello world!",
14 "No, | mean it!",
15 "HELLO WORLD!""
16 %
17
18 while (i< 4) {
19 System.out.printin (greetingsi));
20 I++;
21 }
22}
23}
Java Programming Language Module 7, slide 6 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

try and catch Statements

try {
/I code that might throw a particular exception

} catch (MyExceptionType e) {
/Il code to execute if a MyExceptionType exception is thrown
} catch (Exception e) {
/I code to execute if a general Exception  exception is thrown

~NOoO o, WNPRE

}

Java Programming Language Module 7, slide 7 of 17
g &g Languag

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Call Stack  Mechanism

 [f an exception is not handled in the current try/catch
block, it is thrown to the caller of that method.

* If the exception gets back to the main method and is not
handled there, the program is terminated abnormally.

Java Programming Language Module 7, slide 8 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

finally Statement

try {
startFaucet();

waterLawn();
} finally {
stopFaucet();

}

O, wWNPE

Java Programming Language Module 7, slide 9 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exception Example Revisited

public class HelloWorld2 {
public static void main (String argsl]) {
inti=0;

1
2
3
4
5 String greetings [] = {
6
7
8

"Hello world!",
“No, | mean it!",
"HELLO WORLD!!"
9 %
10
11 while (i < 4) {
12 try {
13 System.out.println (greetingsli]);
14 } catch (ArraylndexOutOfBoundsException e){
15 System.out.printin("Re-stting Index Value");
16 i=-1;
17 } finally {
18 System.out.printin("This is always printed");
19 }
20
21 i++;
22 }
23 }
24 '}
Java Programming Language Module 7, slide 10 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exception Categories

___ VirtualMachineError R
—FEmor __| _ _ OutOfMemoryError StackOverflowError
L AWTErmor
Throwable — ___ ArithmeticException
RuntimeExcepton _____|  NullPointerException
| Exception L IndexOutOfBoundsException
__ EOFException
IOExcepton | _ _
| FileNotFoundException
Java Programming Language Module 7, slide 11 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Common Exceptions

 ArithmeticException

NullPointerException

NegativeArraySizeException

ArraylndexOutOfBoundsException

SecurityException

Java Programming Language Module 7, slide 12 of 17
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The Handle or Declare Rule

e Handle the exception by using the try-catch-
finally block.

* Declare that the code causes an exception by using the
throws clause.

Java Programming Language Module 7, slide 13 of 17
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating Your Own Exceptions

1  public class ServerTimedOutException extends Exception {
2 private int port;

3

4 public ServerTimedOutException(String reason, int port) {
5 super(reason);

6 this.port = port;

7}

8

9 /I Use Exception class’s getMessage() to get the
10 // reason the exception was madE

11

12  public int getPort() {

13 return port;

14}

15 }

Java Programming Language Module 7, slide 14 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Handling User-Detined Exceptions

1  public void connectMe(String serverName) throws ServerTimedOutException {
2 int success;

3 int portToConnect = 80;

4 success = open(serverName, portToConnect);

5 if (success ==-1) {

6 throw new ServerTimedOutException("Could not connect"”, 80);
7}

8 }

1  public void findServer() {

2 try {

3 connectMe(defaultServer);

4 } catch (ServerTimedOutException e) {

5 System.out.printin(

6 "Server timed out, trying alternative");

7 try {

8 connectMe(alternativeServer);

9 } catch (ServerTimedOutException el) {

10 System.out.printin(

11 "Error: " + el.getReason() +

12 " connecting to port " + el.getPort());

13 }

14 }

15 }

Java Programming Language Module 7, slide 15 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

* Define exceptions

e Use try, catch, and finally statements
* Describe exception categories

e Identify common exceptions

* Develop programs to handle your own exceptions

Java Programming Language Module 7, slide 16 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

 What features does the Java application environment
have that support user interface development?

Java Programming Language Module 7, slide 17 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 8

Bulding GUIs

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics

. Identifiers, Expressions and
Getting Started | Keywords, and Types Flow Control Arrays

Object-Oriented Programming

Objects Advanced
and Classes Language Features

Exception Handling

Exceptions |

Developing Graphical User Interfaces

Building GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes

Applets

Introduction
to Java Applets

Multithreading

Threads |

Communications

Stream |/O
and Files

Networking

Java Programming Language Module 8, slide 2 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

* Describe the AWT package and its components

* Define the terms containers, components, and layout
managers, and how they work together to build a
graphical user interface (GUI)

e Use layout managers

e Use the FlowLayout , BorderLayout |, GridLayout ,and
CardLayout managers to achieve a desired dynamic
layout

* Add components to a container

e Use the Frame and Panel containers appropriately

Java Programming Language Module 8, slide 3 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives
* Describe how complex layouts with nested containers
work
* In a Java program, identify the following:
e Containers

e The associated layout managers

* The layout hierarchy of all components

Java Programming Language Module 8, slide 4 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

* Asa platform-independent programming language,
how is Java technology used to make the GUI platform
independent?

Java Programming Language Module 8, slide 5 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The AWT

* Provides basic GUI components that are used in all Java
applets and applications

e (Contains classes that can be extended and their
properties inherited; classes can also be abstract

e Ensures that every GUI component that is displayed on
the screen is a subclass of the abstract class Component

e Has Container , which is an abstract subclass of
Component and includes two subclasses:

e Panel
* Window

Java Programming Language Module 8, slide 6 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

The java.awt

java.lang.

Object

" BorderLayout
CardLayout
CheckboxGroup
Color
Dimension
Event

Font
FlowLayout
FontMetrics
Graphics
GridBagConstraints
GridBagLayout
GridLayout
Image

Insets

Point

Polygon
Rectangle
Toolkit

Component

Button
Canvas
Checkbox
Choice
Container
Label

List
Scrollbar
TextComponent

Panel ~

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

MenuComponent — - —

| Window _
ScrollPane

Package

Menu - PopupMenu
CheckboxMenultem

) MenuBar
Menultem - -

. Applet  (java.applet package)

-~

"™ - |Dialog
Frame

— - — FileDialog

_ _ _| TextArea
TextField

Exceptions — AWTEXxception

Errors — AWTError

Module 8, slide 7 of 37



@ Sun Educational Services

Containers
* The two main types of containers are Window and
Panel .

* Windows are objects of java.awt.\Window

e Panel s are objects of java.awt.Panel

Java Programming Language Module 8, slide 8 of 37
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Building Graphical User Intertaces

e The position and size of a component in a container is
determined by a layout manager.

* You can control the size or position of components by
disabling the layout manager.

You must then use setLocation() ,setSize() ,or

setBounds() on components to locate them in the
container.

Java Programming Language Module 8, slide 9 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Frame

* [s a subclass of Window
e Has title and resizing corners

* Inherits from Container and adds components with
the add() method

e Canbe used to create invisible Frame objects with a title
specified by a string.

* Has BorderLayout as the default layout manager

e Uses the setLayout method to change the default
layout manager

Java Programming Language Module 8, slide 10 of 37
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

MyFrame.java

import java.awt.*;
public class MyFrame extends Frame {

public MyFrame (String str) {
super(str);

}

public static void main (String args[]) {

10 MyFrame fr = new MyFrame("Hello Out There!™);
11 fr.setSize(500,500);

12 fr.setBackground(Color.blue);

13 fr.setVisible(true);

14}

15 }

O©CoO~NOUILA,WNE

Java Programming Language Module 8, slide 11 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

MyFrame.java

«[ Hello Out There!

[=iHello Dut There!  [H[=]

Java Programming Language Module 8, slide 12 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Panel

e Provides a space for components
e Allows subpanels to have their own layout manager

e Adds components with the add() method

Java Programming Language Module 8, slide 13 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

FrameWithPanel.java

import java.awt.*;

public class FrameWithPanel extends Frame {

/I Constructor
public FrameWithPanel (String str) {
super(str);

}

public static void main (String args[]) {
FrameWithPanel fr =
new FrameWithPanel("Frame with Panel");
Panel pan = new Panel();

fr.setSize(200,200);
fr.setBackground(Color.blue);
fr.setLayout(null); // Override default layout mgr

pan.setSize(100,100);
pan.setBackground(Color.yellow);

fr.add(pan);
fr.setVisible(true);

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 8, slide 14 of 37



@ Sun Educational Services

FrameWithPanel.java

" ©|  Frame with Panel E2i Frame with Panel  [Mj=] E3

Java Programming Language Module 8, slide 15 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Container Layouts

FlowLayout

BorderLayout

GridLayout

CardLayout

GridBagLayout

Java Programming Language Module 8, slide 16 of 37
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Detfault Layout Managers

Component

Container

\ Frame Dialog / AN Applet !

N s ~N 7~
~ - ~ —
~ - _ - L

_____

BorderLayout FlowLayout

Java Programming Language Module 8, slide 17 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
A Simple FlowLayout
Example

import java.awt.*;

1

2

3 public class ExGui {
4 private Frame f;

5 private Button b1,
6 private Button b2;
7
8

public void go() {
9 f = new Frame("GUI example™);
10 f.setLayout(new FlowLayout());
11 b1l = new Button("Press Me");
12 b2 = new Button("Don't press Me");
13 f.add(bl);
14 f.add(b2);

15 f.pack();

16 f.setVisible(true);
17  }

18

19 public static void main(String args[]) {
20 ExGui guiWindow = new ExGui();
21 guiWindow.go();

22}

23 }

7| GUI example f23 GUI example M=l 1

Don't press Mel

Don't press Me |

Java Programming Language Module 8, slide 18 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

FlowLayout Manager

e Default layout for Panel s

e Components added from left to right
* Default alighment is centered

e Uses components” preferred sizes

e Use the constructor to tune behavior

Java Programming Language Module 8, slide 19 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

MyFlow.java

import java.awt.*;

1
2
3 public class MyFlow {

4 private Frame f;

5 private Button buttonl, button2, button3;
6

7

8

public void go() {

f = new Frame("Flow Layout");
9 f.setLayout(new FlowLayout());
10 button1 = new Button("Ok");
11 button2 = new Button("Open");
12 button3 = new Button("Close");
13 f.add(buttonl);
14 f.add(button2);
15 f.add(button3);
16 f.setSize(100,100);
17 f.setVisible(true);
18 }

20  public static void main(String args|]) {
21 MyFlow mflow = new MyFlow();

22 mflow.go();

23 }

24 '}

Java Programming Language Module 8, slide 20 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

MyFlow.java

" = | Flow Lay | ER Flow Layout

DI-:| Dpen| After user or pro- DI-:| Dpen| Clt}se|
gram resizes

Close | >

]
== gﬁ Flow Layout _ O] x|

Open After user or pro-
i | gram resizes m-;l Open | Close |

Close | -

Java Programming Language Module 8, slide 21 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

24
25
26
27
28
29

ExGui2.java

import java.awt.*;

public class ExGuiZ2 {

private Frame f;
private Button bn, bs, bw, be, bc;

public void go() {
f = new Frame("Border Layout");
bn = new Button("B1");
bs = new Button("B2");
bw = new Button("B3");
be = new Button("B4");
bc = new Button("B5");

f.add(bn, BorderLayout. NORTH );
f.add(bs, BorderLayout.SOUTH);
f.add(bw, BorderLayout. WEST);

f.add(be, BorderLayout.EAST);

f.add(bc, BorderLayout. CENTER);

f.setSize(200,200);
f.setVisible(true);

}

public static void main(String args[]) {
ExGui2 guiwWindow?2 = new ExGui2();
guiwindow2.go();

}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 8, slide 22 of 37



_ Sun Educational Services

ExGui2.java

Bk BorderLayout Bk BorderLayout

| E1 I E1

B BS B3 B BS B3
| B2 | | B2 |
After window is resized *
E%Burder Layout S [=] E3 g’a‘ﬂurder Layout M=l E3
g Bi
B3 B4 B4 B3 B5 B4
B2 B2

After window is resized *

Java Programming Language Module 8, slide 23 of 37
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

GridLayout Manager

 Components are added left to right, top to bottom.
o All regions are equally sized.

* The constructor specifies the rows and columns.

Java Programming Language Module 8, slide 24 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
GridEx.Java

import java.awt.*;

1

2

3 public class GridEXx {

4 private Frame f;

5 private Button b1, b2, b3, b4, b5, b6;
6
7
8

public void go() {
f = new Frame("Grid Example");
9 f.setLayout (new GridLayout(3,2));

11 bl = new Button("1");
12 b2 = new Button("2");
13 b3 = new Button("3");
14 b4 = new Button("4");
15 b5 = new Button("5");
16 b6 = new Button("6");

18 f.add(bl);
19 f.add(b2);
20 f.add(b3);
21 f.add(b4);
22 f.add(b5);
23 f.add(b6);

24

25 f.pack();

26 f.setVisible(true);
27 }

28

29  public static void main(String args|]) {
30 GridEx grid = new GridEx();

31 grid.go();

32}

33 }

Java Programming Language Module 8, slide 25 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

GridEx.Java

T = Grid example |
1 2
1] 2 After window is resized
—_—
4 3 4
5| B
I L
Eﬁﬁrid Example !EI

Egﬁ[i___ !E _. ................ 1 .................. | 2

S 2 After window is resized A
—_— 3 4
] i 5 6
Java Programming Language Module 8, slide 26 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



|$Sun Educational Services

CardLayout Manager

e .

|
E‘Eﬁ Card Test _ (O] EE% Card Test (O] x|

. .

Java Programming Language Module 8, slide 27 of 37
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

This is the first Panel




@Sun Educational Services

CardLayout Manager

import java.awt.*;
import java.awt.event.*;

1
2
3
4  public class CardTest implements MouseListener {
5 private Panel p1, p2, p3, p4, p5;

6 private Label Ib1, Ib2, Ib3, b4, Ib5;

7

8 /I Declare a CardLayout object to call its methods.
9 private CardLayout myCard,;

10  private Frame f;

12 public void go() {

13 f = new Frame ("Card Test");
14 myCard = new CardLayout();
15 f.setLayout(myCard);

17 /I Create the panels that | want
18 /Il to use as cards.
19 pl = new Panel();
20 p2 = new Panel();
21 p3 = new Panel();
22 p4 = new Panel();
23 p5 = new Panel();

25 Il Create a label to attach to each panel, and
26 /I change the color of each panel, so they are
27 Il easily distinguishable

29 Ibl = new Label("This is the first Panel");
30 pl.setBackground(Color.yellow);
31 pl.add(lbl);

33 Ib2 = new Label("This is the second Panel");
34 p2.setBackground(Color.green);
35 p2.add(lb2);

37 Ib3 = new Label("This is the third Panel");
38 p3.setBackground(Color.magenta);
39 p3.add(Ib3);

Java Programming Language Module 8, slide 28 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

CardLayout Manager

41 Ib4 = new Label("This is the fourth Panel");
42 p4.setBackground(Color.white);
43 p4.add(Ib4);

45 Ib5 = new Label("This is the fifth Panel");
46 p5.setBackground(Color.cyan);
47 p5.add(Ib5);

49 /I Set up the event handling here.
50 pl.addMouseListener(this);
51 p2.addMouseListener(this);
52 p3.addMouseListener(this);
53 p4.addMouseListener(this);
54 p5.addMouselListener(this);

56 /I Add each panel to my CardLayout
57 f.add(pl, "First");

58 f.add(p2, "Second");

59 f.add(p3, "Third");

60 f.add(p4, "Fourth");

61 f.add(p5, "Fifth");

63 // Display the first panel.
64 myCard.show(f, "First");

66 f.setSize(200,200);
67 f.setVisible(true);

70  public void mousePressed(MouseEvent e) {
71 myCard.next(f);
72}

74  public void mouseReleased(MouseEvent e) { }
75  public void mouseClicked(MouseEvent e) { }
76  public void mouseEntered(MouseEvent e) { }
77  public void mouseExited(MouseEvent e) { }

Java Programming Language Module 8, slide 29 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
CardLayout Manager

79 public static void main (String args|[]) {
80 CardTest ct = new CardTest();

81 ct.go();

82

83 }

Java Programming Language Module 8, slide 30 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

GridBagLayout Manager

e Complex layout facilities can be placed in a grid.
* A single component can take its preferred size.

* A component can extend over more than one cell.

Java Programming Language Module 8, slide 31 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
ExGui3.jJava

import java.awt.*;

1

2

3 public class ExGui3 {

4 private Frame f;

5 private Panel p;

6 private Button bw, bc;

7 private Button bfile, bhelp;
8

9 public void go() {

10 f = new Frame("GUI example 3");
11 bw = new Button("West");

12 bc = new Button("Work space region");
13 f.add(bw, BorderLayout. WEST));
14 f.add(bc, BorderLayout. CENTER);
15 p = new Panel();

16 bfile = new Button("File");

17 bhelp = new Button("Help");

18 p.add(bfile);

19 p.add(bhelp);

20 f.add(p, BorderLayout. NORTH);

21 f.pack();

22 f.setVisible(true);
23 }

24

25  public static void main(String args[]) {
26 ExGui3 gui = new ExGui3();

27 gui.go();

28 }

29 }

Java Programming Language Module 8, slide 32 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Output of ExGuI3.java

| GUlexample3 [E36UI example 3 [H[=] E3
File| Help| FiIEl Helpl

| west | work space region |I EWES’[ | Wiork space region |

§ x
| GUI le 3
= example 3 GUI example 3 I[=] E3
File | Help
File| Help| File | Hetp |

West Woaork space regqian \Wark space region

Java Programming Language Module 8, slide 33 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Exercise: Building GUIs

e Exercise objective:

e Develop two graphical user interfaces using the
AWT

e Tasks:

e (Create a calculator GUI

e (Create an account GUI

Java Programming Language Module 8, slide 34 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

* Describe the AWT package and its components

* Define the terms containers, components, and layout
managers, and how they work together to build a
graphical user interface (GUI)

e Use layout managers

e Use the FlowLayout , BorderLayout |, GridLayout ,and
CardLayout managers to achieve a desired dynamic
layout

* Add components to a container

e Use the Frame and Panel containers appropriately

Java Programming Language Module 8, slide 35 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress
* Describe how complex layouts with nested containers
work
* In a Java program, identify the following:
e Containers

e The associated layout managers

* The layout hierarchy of all components

Java Programming Language Module 8, slide 36 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

* You now know how to display a GUI on the computer
screen. What do you need to make the GUI useful?

Java Programming Language Module 8, slide 37 of 37

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 9

The AWT Event Model

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics

. I dentifiers, Expressions and
€Ly St il | Keywords, and Types Flow Control Arrays

Object-Oriented Programming
Objects Advanced
and Classes Language Features

Exception Handling

Exceptions

Developing Graphical User Interfaces
The AWT The AWT Java Foundation
Event Model Component Library Classes
Applets

Introduction
to Java Applets

Multithreading

Building GUIs

Threads

Communications

Stream |/O
and Files

Networking

Java Programming Language Module 9, slide 2 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Write code to handle events that occur in a GUI

e Describe the concept of adapter classes, including how
and when to use them

* Determine the user action that originated the event
from the event object details

* Create the appropriate interface and event handler
methods for a variety of event types

Java Programming Language Module 9, slide 3 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

e What parts are required for a GUI to make it useful?

 How does a graphical progam handle a mouse click or
any other type of user interaction?

Java Programming Language Module 9, slide 4 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

WhatIs an Event?

e Events — Objects that describe what happened
e Event sources — The generator of an event

* Event handlers — A method that receives an event
object, deciphers it, and processes the user’s interaction

Java Programming Language Module 9, slide 5 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

JDK 1.0 Event Model Versus Java 2
SDK Event Model

e Hierarchical model (JDK 1.0)
* Delegation model (JDK 1.1 and beyond)

Java Programming Language Module 9, slide 6 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Hierarchical Model (JDK 1.0)

e |s based on containment

C Button Action event

Java Programming Language Module 9, slide 7 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Hierarchical Model (JDK 1.0)

e Advantages:

e Uses object-oriented principles
* Disadvantages:

* An event can be handled only by the component
from which it originated or by one of the containers
of the originating component

e To handle events, you must either subclass the
component that receives the event or create a
handleEvent() method at the base container

Java Programming Language Module 9, slide 8 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Delegation Model

Frame Panel and Frame
event handlers

Panel _—
Action event

-
( Button §< Action handler

! actionPerformed (ActionEvent e) {

Java Programming Language Module 9, slide 9 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Delegation Model

import java.awt.*;

public class TestButton {
public static void main(String args[]) {

Frame f = new Frame("Test");
Button b = new Button("Press Me!");
b.addActionListener(new ButtonHandler());
f.add(b,BorderLayout. CENTER);
f.pack();

10 f.setVisible(true);

11}

O©CoO~NOUILA,WNE

import java.awt.event.*;

public class ButtonHandler implements ActionListener {
public void actionPerformed(ActionEvent e) {
System.out.printin("Action occurred");
System.out.printin(
"Button's label is :" + e.getActionCommand());

O©CoO~NOOUOTA,WNE

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 9, slide 10 of 24



@ Sun Educational Services

Delegation Model (JDK 1.1 and
Beyond)

e Advantages:
e Events are not accidentally handled

* You can create and use filter (adapter) classes to
classify event actions

e Thereis better distribution of work among the classes
* Disadvantage:

e You should not combine two event models

Java Programming Language Module 9, slide 11 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Frame With a Single Button

import java.awt.*;

1
2
3 public class TestButton {

4 public static void main(String args[]) {

5 Frame f = new Frame("Test");

6 Button b = new Button("Press Me!");

7 b.addActionListener(new ButtonHandler());
8 f.add(b,BorderLayout. CENTER);

9 f.pack();

10 f.setVisible(true);

Java Programming Language Module 9, slide 12 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

The ButtonHandler
Class

import java.awt.event.*;

1
2
3  public class ButtonHandler implements ActionListener {
4 public void actionPerformed(ActionEvent e) {

5 System.out.printin("Action occurred");

6 System.out.printin(

7 "Button's label is :" + e.getActionCommand());

8
9

Java Programming Language Module 9, slide 13 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



==

Sun Educational Services

Event Categories

java.util. EventObject

java.awt. AWTEvent

java.awt.event ActionEvent ContainerEvent
AdjustmentEvent FocusEvent -

‘ KeyEvent
ComponentEvent InputEvent
, MouseEvent
ltemEvent WindowEvent
TextEvent L -
java.beans.beancontext I
BeanContextEvent

Java Programming Language Module 9, slide 14 of 24
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Java GUI Behavior

Category Interface Name Methods

Action ActionListener actionPerformed(ActionEvent)

Item [temListener itemStateChanged(ltemEvent)

Mouse motion  MouseMotionListener mouseDragged(MouseEvent)
mouseMoved(MouseEvent)

Mouse button ~ MouseListener mousePressed(MouseEvent)
mouseReleased(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mouseClicked(MouseEvent)

Key KeyListener keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

Focus FocusListener focusGained(FocusEvent)
focusLost(FocusEvent)

Adjustment AdjustmentListener  adjustmentValueChanged
(AdjustmentEvent)

Component ComponentListener componentMoved(ComponentEvent)

componentHidden(ComponentEvent)
componentResized(ComponentEvent)

componentShown(ComponentEvent)

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 9, slide 15 of 24



@Sun Educational Services
Java GUI Behavior

Category Interface Name Methods

Window WindowListener windowClosing(WindowEvent)
windowOpened(WindowEvent)
windowlconified(WindowEvent)
windowDeiconified(WindowEvent)
windowClosed(WindowEvent)
windowActivated(WindowEvent)
windowDeactivated(WindowEvent)

Container ContainerListener componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

Text TextListener textValueChanged(TextEvent)

Java Programming Language Module 9, slide 16 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Complex Example

import java.awt.*;
import java.awt.event.*;

implements MouseMotionListener,
MouselListener {
private Frame f;

1
2
3
4  public class TwoListen
5
6
7
8 private TextField tf;

(o]

10  public void go() {

11 f = new Frame("Two listeners example");
12 f.add(new Label ("Click and drag the mouse"),
13 BorderLayout. NORTH);

14 tf = new TextField (30);

15 f.add (tf, BorderLayout. SOUTH);

16

17 f.addMouseMotionListener(this);

18 f.addMouseListener (this);

19 f.setSize(300, 200);

20 f.setVisible(true);

21 }

22

23 /I These are MouseMotionListener events
24 public void mouseDragged (MouseEvent e) {

25 String s =

26 "Mouse dragging: X ="+ e.getX() +
27 "Y ="+ e.getY();

28 tf.setText (S);

29 }

30

31 public void mouseEntered (MouseEvent e) {
32 String s = "The mouse entered"”;

33 tf.setText (S);

34 }

35

36  public void mouseExited (MouseEvent e) {
37 String s = "The mouse has left the building™;
38 tf.setText (s);

39 }

Java Programming Language Module 9, slide 17 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Complex Example

40

41 /I Unused MouseMotionListener method.

42 /I All methods of a listener must be present in the
43  /l class even if they are not used.

44  public void mouseMoved (MouseEvent e) { }
45

46  // Unused MouseListener methods.

47  public void mousePressed (MouseEvent e) { }
48  public void mouseClicked (MouseEvent e) { }
49  public void mouseReleased (MouseEvent e) { }
50

51  public static void main(String args[]) {

52 TwolListen two = new TwolListen();

53 two.go();

54 }

55 }

Java Programming Language Module 9, slide 18 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Multiple Listeners
e Multiple listeners cause unrelated parts of a program to
react to the same event

o All registered listeners call their handlers when the
event occurs

Java Programming Language Module 9, slide 19 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Event Adapters

e The listener classes that you define can extend adapter
classes and override only the methods that you need.

e For example:

1 import java.awt.*;

2  import java.awt.event.*;

3

4  public class MouseClickHandler extends MouseAdapter {
5

6 /' We just need the mouseClick handler, so we use

7 /l the an adapter to avoid having to write all the

8 /I event handler methods

9

10  public void mouseClicked (MouseEvent e) {

11 /I Do stuff with the mouse click...

12}

13 }

Java Programming Language Module 9, slide 20 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

29
30
31
32

Java Programming Language

Anonymous Classes

import java.awt.*;
import java.awt.event.*;

public class AnonTest {
private Frame f;
private TextField tf;

public void go() {
f = new Frame("Anonymous classes example");
f.add(new Label("Click and drag the mouse"),
BorderLayout.NORTH);
tf = new TextField (30);
f.add (tf, BorderLayout. SOUTH);

f.addMouseMotionListener( new MouseMotionAdapter() {
public void mouseDragged (MouseEvent e) {
String s = "Mouse dragging: X ="+ e.getX() +
"Y ="+ e.getY();
tf.setText (s);
}

} ); /] <- note the closing parenthesis

f.addMouseListener (new MouseClickHandler());
f.setSize(300, 200);
f.setVisible(true);

public static void main(String args[]) {
AnonTest obj = new AnonTest();

obj.go();

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 9, slide 21 of 24



@ Sun Educational Services

Exercise: Working With Events

e Exercise objective:

* Write, compile, and run the revised Calculator GUI
and Account GUI codes to include event handlers.

e Tasks:
e Re-create the calculator GUI

e Re-create the account GUI

Java Programming Language Module 9, slide 22 of 24
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Write code to handle events that occur in a GUI

e Describe the concept of adapter classes, including how
and when to use them

* Determine the user action that originated the event
from the event object details

* Create the appropriate interface and event handler
methods for a variety of event types

Java Programming Language Module 9, slide 23 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

You now know how to set up a Java GUI for both
graphic output and interactive user input. However,
only a few of the components from which GUIs can
be built have been described. What other components

would be useful in a GUI?

Java Programming Language Module 9, slide 24 of 24

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 10

The AWT Component Library

Java Programming Language September 1999



@Sun Educational Services
Course Map

The Java Programming Language Basics
. | dentifiers, Expressions and
CEMYEETE: | Keywords, and Typesl Flow Control Arrays |
Object-Oriented Programming
Objects Advanced
and Classes Language Features

Exception Handling

Exceptions

Developing Graphical User Interfaces

Building GUIs The AWT The AWT Java Foundation
g Event Model Component Library Classes

Applets

Introduction
toJava Applets

i

Multithreading

Threads |

Communications

Stream 1/0O .
and Files | Networking |

Java Programming Language Module 10, slide 2 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Identity key AWT components

e Use AWT components to build user interfaces for real
programs

e Control the colors and fonts used by an AWT
component

e Use the Java printing mechanism

Java Programming Language Module 10, slide 3 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

* You now know how to set up a Java GUI for both
graphic output and interactive user input. However,
only a few of the components from which GUIs can be

built have been described. What other components
would be useful in a GUI?

Java Programming Language Module 10, slide 4 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Features of the AWT

e AWT components provide mechanisms for controlling
the interface appearance, including color and font.

 The AWT also supports printing. (It was added in the
JDK 1.1 release.)

Java Programming Language Module 10, slide 5 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a Button

f = new Frame("Sample Button");
Button b = new Button("Sample");
b.addActionListener(this);
f.add(b);

A WNBE

.................................................

public void actionPerformed  (ActionEvent ae) {
System.out.printin( "Button press received. ");
System.out.printin( "Button’s action command is: "+
ae.getActionCommand());

OO0k, WN PR

b = new Button("Sample");
b.setActionCommand("Action Command Was Here!");
b.addActionListener(this);

f.add(b);

A WN P

Java Programming Language Module 10, slide 6 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a Checkbox

1 f=new Frame("Sample Checkbox");

5 one = new Checkbox("One", true);

6 two = new Checkbox("Two", false);

7 three = new Checkbox("Three", false);
8
9

one.addltemListener(this);
10 two.addltemListener(this);
11 three.addltemListener(this);

13 f.setLayout(new FlowLayout());
14 f.add(one);
15 f.add(two);
16 f.add(three);

| —| sample Checkbox | - | | &3 Sample Checkbox  [MI[=] E3

| W One _ITwo _IThree ¥ one [ Twoi [ Three

Java Programming Language Module 10, slide 7 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating the ItemListener  Interface

1 class Handler implements ItemListener {

2 public void itemStateChanged(ltemEvent ev) {

3 String state = "deselected";

4 if (ev.getStateChange() == ItemEvent.SELECTED){

5 state = "selected";

6 }

7 System.out.printin(ev.getitem() + " " + state);

8 }

9 }

Java Programming Language Module 10, slide 8 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating the CheckboxGroup —Radio
Buttons

f = new Frame("CheckBoxGroup");

cbg = new CheckboxGroup();

one = new Checkbox("One", chg, false);
two = new Checkbox("Two", cbg, false);
three = new Checkbox('Three", cbg, true);

f.setLayout(new FlowLayout());

O©CoO~NOOTA,WNE

one.addItemListener(this);
10 two.addltemListener(this);
11 three.addltemListener(this);

13 f.add(one);
14 fadd(two);
15 fadd(three);

| —|5ample Radiobuttol - | _| k=3 Sample Radiobutt... [E[=] B3

1 J0ne  Two (@ Three " iOnel ¢ Two (® Three

Java Programming Language Module 10, slide 9 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



|%%\//

Sun Educational Services

~NOoO ok OWNE

Java Programming Language

f = new Frame("Sample Choice");
choice = new Choice();
choice.addltem("First");
choice.addltem("Second");
choice.additem("Third");
choice.addItemListener(this);
f.add(choice, BorderLayout. CENTER);

| [ Choice

| First _||

! |
" +| Choice

First I_n |

Second
Third

Creating a Choice

5o M= B3
First 4

[5a.. M=l E3
v

" First

Third

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 10, slide 10 of 32



@ Sun Educational Services

Canvas

e Provides a blank space to draw, write text, or receive
keyboard or mouse input

—| Canwvas | +|_ [EiCanva: M=

Java Programming Language Module 10, slide 11 of 32
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Creating a Canvas

1 import java.awt.*;

2  import java.awt.event.*;

3 import java.util.*;

4

5 public class MyCanvas extends Canvas
6 implements KeyListener{

7 private int index;

8 Color colors[] = { Color.red, Color.green, Color.blue };
9

10  public void paint(Graphics g) {

11 g.setColor(colors[ index ]);

12 g.fillRect(0, O, getSize().width, getSize().height);
13}

14

15  public void keyTyped(KeyEvent ev) {
16 index++;

17 if (index == colors.length ) {

18 index = 0;

19 }

20 repaint();

21 }

22

23 /' Unused KeyListener methods
24 public void keyPressed(KeyEvent ev) { }
25  public void keyReleased(KeyEvent ev) { }

26

27  public static void main(String args[]) {
28 Frame f = new Frame("Canvas");
29 MyCanvas mc = new MyCanvas();

30 mc.setSize(150, 150);
31 f.add(mc, BorderLayout. CENTER);

32 mc.requestFocus();

33 mc.addKeyListener(mc);

34 f.pack();

35 f.setVisible(true);

36 }

37 }

Java Programming Language Module 10, slide 12 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a Label

1  Frame f = new Frame("Label");
2  Label Ib = new Label("Hello");

3  f.add(lb);
=]
[=3 Label =]
Hello
Java Programming Language Module 10, slide 13 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a TextHeld

1  Frame f = new Frame("TextField");
2  TextField tf = new TextField("Single line" 7, 30);
3 tf.addActionListener(this);
4 f.add(tf);
[=3 TextField I =]
I Bingle Line
Java Programming Language Module 10, slide 14 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a TextArea

1  f=new Frame("TextArea";
2  ta=new TextArea("Hello!", 4, 30);
3  f.add(ta, BorderLayout. CENTER);

TextArea
\HEHG' \ j
4
25 TextArea =] Ei

Java Programming Language Module 10, slide 15 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Text Components

o TextArea and TextField are subclasses

e TextArea and TextField inherit the default behavior for
keystrokes from TextComponent

Java Programming Language Module 10, slide 16 of 32
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creatinga List Component

1  Listlst = new List(4, true);
2 Ist.add("Hello");
3 Ist.add("there™);
4  Ist.add("how");

f=3 List _ (O]

Helio

there

by
Java Programming Language Module 10, slide 17 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a Dialog

d = new Dialog(f, "Dialog", true);
d.setLayout(new GridLayout(2,1));
dl = new Label("Hello, 'm a Dialog");
db1 = new Button("OK");

d.add(dl);

d.add(dbl);

d.pack();

~NOoO ok OWNE

—

Cialog

Hello, I'm a Dialeg

0]

[E3 Dialog
Hello, I'm a Dialog

Java Programming Language

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 10, slide 18 of 32



@Sun Educational Services
Creating a FileDialog

1 FileDialog d = new FileDialog(parentFrame, "FileDialog");
2 d.setVisible(true); // block here until OK selected
3 String fname = d.getDirectory() + d.getFile();

T FileDialog
Enter path or folder name:
I Ahamesimonr/my javasd
Filter Files -
I ¥ ab,clazs ﬁ
Act$l.clazs
Folders gct$2.class
i ct+c.1a33
= ~  |Act, java
adwjavaextras any.class
averager / |Albzervable,clazs
I‘J— s AppAudio,clazs ¥
Enter file name:
I
0K | Updatel Cancel |
i FileDialog EE
Laoak i I _ 1§ examples j | fj{l IE
ActionCommandButton. class % MuDialogZ. class
@ ActionCommandButton.java @ MuDialogZ.java
M pCanvas, clazs @ MyFilelialog.class
@ MpCarvas java @ MuyFileDialog.java
MuDialog. clazs %MyLi&t.cIa&s
@ MypDialog.java @ kulist.java
i
File name: I Open I
Files of tupe: I.-’-'A.II Files [*.%] j Cancel |
Java Programming Language Module 10, slide 19 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Creating a ScrollPane

1  Frame f = new Frame("ScrollPane");
2 Panel p = new Panel();
3  ScrollPane sp = new ScrollPane();
4  p.setLayout(new GridLayout(3, 4));
5 .
6
7 .
8 sp.add(p);
9 f.add(sp, BorderLayout. CENTER");
10 f.setSize(100, 100);
11 f.setVisible(true);
] ScrollPane
] E:_e: Sam... =] -
%]
Button 0 ] .............................
Button 4 | Bu
Button 3|1
N Buttan7 | Buix
Ruttnan Al 1)/ ll—l J 4
j S J— =]
Java Programming Language Module 10, slide 20 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Menu

e Must be added to a menu container
* Includes a help menu:

 setHelpMenu(Menu)

Java Programming Language Module 10, slide 21 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a MenuBar

1 Frame f = new Frame("MenuBar");
2 MenuBar mb = new MenuBar();
3 f.setMenuBar(mb);

[ [  MenuBar fiMenuBar B[=1 3

Java Programming Language Module 10, slide 22 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a Menu

f = new Frame("Menu™);
mb = new MenuBar();
m1 = new Menu("File");
m2 = new Menu("Edit");
m3 = new Menu("Help");
mb.add(m1);
mb.add(m?2);
mb.setHelpMenu(m3);
f.setMenuBar(mb);

O©CoO~NOUILA,WNE

E"g,ah'lenu =] E3

T File Ecit Hel
B Menu :

File | Edit Help |
-

Java Programming Language Module 10, slide 23 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

OCoO~NOUITA,WNE

Creating a Menultem

mil = new Menultem("New");
mi2 = new Menultem("Save");
mi3 = new Menultem("Load");
mi4 = new Menultem("Quit");
mil.addActionListener(this);
mi2.addActionListener(this);
mi3.addActionListener(this);
mid.addActionListener(this);
ml.add(mil);

ml.add(mi2);

ml.add(mi3);
ml.addSeparator();
ml.add(mid);

fﬂ Sample Menu

|Fi|e Edit Help |

-|NEMI
Load
Save

Quit

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

o —

Egj Sample Menu Hi=]E3

File

Edit Help
Mewy
Save
Lo
it
Module 10, slide 24 of 32



@Sun Educational Services

O©CoO~NOULPE,WNE

Creating a
CheckBoxMenultem

mb = new MenuBar();

m1 = new Menu("File");

m2 = new Menu("Edit");

m3 = new Menu("Help");
mb.add(m1);

mb.add(m?2);
mb.setHelpMenu(m?3);
f.setMenuBar(mb);

mi2 = new Menultem("Save");
mi2.addActionListener(this);
ml.add(mi2);

mi5 = new CheckboxMenultem("Persistent”);
mi5.addItemListener(this);
ml.add(mi5);

BEd CheckboxMenultem

File | Edit Help

Save

4 Persistent

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Egg CheckboxMenultem =]

{Il-l Eclit Help

Save

v Persistent

Module 10, slide 25 of 32



@ Sun Educational Services

Creating a PopupMenu

1  Frame f = new Frame("PopupMenu");
2  Button b = new Button("Press Me");
3 PopupMenu p = new PopupMenu("Popup™);
4  Menultem s = new Menultem("Save");
5 Menultem Id = new Menultem("Load");

6 b.addActionListener(this);
7  f.add(b,BorderLayout. CENTER);
8 p.add(s);
9  p.add(ld);
10 f.add(p);

" =| PopupMenu

public void actionPerformed(ActionEvent ev) {

p.show(b, 10, 10);

1
2
3 [/ display popup at (10,10) relative to b
4
5}

Java Programming Language Module 10, slide 26 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Controlling Visual Aspects

e Colors:
e setForeground()
e setBackground()

Example:

Int r = 255;
Color ¢ = new Color(r, 0, 0);

Java Programming Language Module 10, slide 27 of 32
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Controlling Visual Aspects

e Fonts:

* You can use the setFont()  method to specify the
font used for displaying text.

e Dialog , Dialoginput , Serif , and SansSerif are
valid font names.

Java Programming Language Module 10, slide 28 of 32
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Printing

e Allow the use of local printer conventions:

Frame f = new Frame("Print test");

Toolkit t = f.getToolkit();

PrintJob job = t.getPrintJob(f, "MyPrintJob", null);
Graphics g = job.getGraphics();

A OWN P

* Draw on the graphics object

* Send the graphics object to printer

e End the printjob

e Obtain a new graphic for each page use:

f.printComponents(g);

Java Programming Language Module 10, slide 29 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Creating a Paint Program
Layout

e Exercise objective:

e Practice creating a more sophisticated GUI
application that uses many components

e Tasks:

* Create a Java application to use classes and objects

* Investigate reference assignments

Java Programming Language Module 10, slide 30 of 32
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Identity key AWT components

e Use AWT components to build user interfaces for real
programs

e Control the colors and fonts used by an AWT
component

e Use the Java printing mechanism

Java Programming Language Module 10, slide 31 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

¢ What would make the AWT work better?

Java Programming Language Module 10, slide 32 of 32

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 11

Java Foundation Classes

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics
. | Identifiers, | Expressions and |
Getting Started Keywords, and Types Flow Control Arrays

Object-Oriented Programming

Advanced
L anguage Features

Objects
and Classes

Exception Handling

Exceptions

Developing Graphical User Interfaces

Building GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes
Applets
Introduction
to Java Applets
Multithreading
Threads
Communications
Stream 1/0O .
and Files Networking
Java Programming Language Module 11, slide 2 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Identify the key features of Java Foundation Classes

e Describe the key features of com.sun.java.swing
package

* Identify Swing components

* Define containers and components, and explain how they
work together to build a Swing GUI

e Write, compile, and run a basic Swing application

e Use top-level containers, such as JFrame and JApplet
effectively

Java Programming Language Module 11, slide 3 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

e While the AWT by itself is useful, it is a part of a new set
of classes, called Java Foundation Classes (JFC), that, as
a whole, take GUIs to a new level. What exactly is JFC

and, in particular, what is Swing? What can Swing do
that AWT cannot?

Java Programming Language Module 11, slide 4 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Introduction

e Java Foundation Classes (JFC) consists of five APIs:
e AWT
e Java 2D
* Accessibility
e Drag and Drop

* Swing

Java Programming Language Module 11, slide 5 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Swing Introduction

e Pluggable look and feel:

e Application appears to be plattorm specific

* There are custom Swing components
e Swing architecture:

* Built around APIs that implement various parts of
AWT

* Most components do not use platform-specific
implementations like AWT

Java Programming Language Module 11, slide 6 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Swing Hierarchy

java.awt.Container

com.sun.java.swing.JComponent

JTextArea _
— | JTextField JPasswordField

L. . HtmlEditorKit
AbstractButton -

| | JTextComponent

JToggleButton JCheckBox
JPanel JButton | JRadioButton

JComboBox JMenultem
JLabel —

JLayeredPane JRadioButtonMenultem

JList JCheckBoxMenultem
JToolBar JMenu

JMenuBar
JPopupMenu
JPanel
JScrollBar
JScrollPane
JSlider
JTable
JSeparator
JTree
JProgressBar
JRootPane

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 11, slide 7 of 22



@ Sun Educational Services

Swing Components

January -
w_ Fehruanry
March
g ! | April E
JApplet JComboBox JList

Java Programming Language Module 11, slide 8 of 22
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Swing Components

Label 1

=

A

[v| Check 1
® Radio 2

o

JLabel JButton
JToggleButton

Java Programming Language

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

E‘i Select an Option

@ s SWIMNG coal?

Canced

JOptionPane

Module 11, slide 9 of 22



@ Sun Educational Services

A Basic Swing Application

— HelloSwing +

I'm a Swing button!

Number of button clicks: 0

Java Programming Language Module 11, slide 10 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
HelloSwing

import java.awt.*;

import java.awt.event.*;

import com.sun.java.swing.*;
import com.sun.java.accessibility.*;

public class HelloSwing implements ActionListener {
private JFrame jFrame;
private JLabel jLabel;
private JPanel jPanel;

10  private JButton jButton;

11  private AccessibleContext accContext;

OCoO~NOUITA,WNE

13  private String labelPrefix = "Number of button clicks: *;
14  private int numClicks = 0;

16  public void go() {

17 /[ Here is how you can set up a particular
18 I/l lookAndFeel. Not necessary for default.
19 Il

20 I try {

21 /I UlManager.setLookAndFeel(

22 /I UlManager.getLookAndFeel());

23 /l'} catch (UnsupportedLookAndFeelException e) {
24 /I System.err.printin("Couldn't use the " +
25 Il "default look and feel " + e);

26 I}

28 jFrame = new JFrame("HelloSwing");
29 jLabel = new JLabel(labelPrefix + "0");

31 jButton = new JButton("l am a Swing button!");
33 /I Create a shortcut: make ALT-A be equivalent

34 /Il to pressing mouse over button.
35 jButton.setMnemonic('i");

36

37 jButton.addActionListener(this);

38

Java Programming Language Module 11, slide 11 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
HelloSwing

39 /l Add support for accessibility.
40 accContext = jButton.getAccessibleContext();
41 accContext.setAccessibleDescription(

42 "Pressing this button increments " +
43 "the number of button clicks");
44

45 /I Set up pane.

46 /I Give it a border around the edges.

47 jPanel = new JPanel();

48 jPanel.setBorder(

49 BorderFactory.createEmptyBorder(30,30,10,30));

51 /I Arrange for compts to be in a single column.
52 jPanel.setLayout(new GridLayout(0, 1));

54 // Put compts in pane, not in JFrame directly.
55 jPanel.add(jButton);

56 jPanel.add(jLabel);

57 jFrame.setContentPane(jPanel);

59 /I Set up a WindowListener inner class to handle
60 // window's quit button.

61 WindowListener wl = new WindowAdapter() {

62 public void windowClosing(WindowEvent e) {
63 System.exit(0);

64 }

65 }

67 jFrame.addWindowListener(wl);

69 jFrame.pack();

70 jFrame.setVisible(true);

71}

72

73 /I Button handling.

74  public void actionPerformed(ActionEvent e) {

75 numClicks++;

76 jLabel.setText(labelPrefix + numClicks);

77}

Java Programming Language Module 11, slide 12 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

HelloSwing

78

79  public static void main(String[] args) {

80 HelloSwing helloSwing = new HelloSwing();
81 helloSwing.go();

82 }
83 }
Java Programming Language Module 11, slide 13 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Basic Swing Application

e Importing Swing packages

e Choosing the look and feel:
 getLookAndFeel()

e Setting up a Window container
e JFrame is similar to Frame

* You cannot add components directly to JFrame

e A content pane contains all of the Frame’s visible
components except menu bar

Java Programming Language Module 11, slide 14 of 22
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Basic Swing Application

e Setting up Swing components:

e HelloSwing.java example instantiates four Swing
components: JFrame, JButton , JLabel , and JPanel

* Supporting assistive technologies:

e HelloSwing.java example code supports assistive
technologies
1 accContext = jButton.getAccessibleContext();

2 accContext.setAccessibleDescription(
3 "Pressing this button increments " + "the number of button clicks.");

Java Programming Language Module 11, slide 15 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Building a Swing GUI

e Top-level containers (JFrame, JApplet , JDialog , and
JWindow )

e Lightweight components (such as JButton , JPanel ,
and JMenu)

e Swing components are added to a content pane
associated with a top-level container

Java Programming Language Module 11, slide 16 of 22
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Building a Swing GUI

import java.awt.*;
import com.sun.java.swing.*;

1

2

3

4  public class SwingGUI {

5 private JFrame topLevel,

6 private JPanel jPanel;

7 private JTextField jTextField;
8 private JList jList;

10  private JButton b1,

11  private JButton b2;

12  private Container contentPane;

14  private Object listData[] = {
15 new String("First selection"),

16 new String("Second selection™),
17 new String("Third selection")
18 }

19

20  public void go() {
21 topLevel = new JFrame("Swing GUI");

23 /Il Set up the JPanel, which contains the text field
24 I/ and list.

25 jPanel = new JPanel();

26 jTextField = new JTextField(20);

27 jList = new JList(listData);

28

29 contentPane = topLevel.getContentPane();
30 contentPane.setLayout(new BorderLayout());
31

32 bl = new JButton("1");
33 b2 = new JButton("2");
34 contentPane.add(b1, BorderLayout. NORTH);
35 contentPane.add(b2, BorderLayout. SOUTH);

Java Programming Language Module 11, slide 17 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Building a Swing GUI

37 jPanel.setLayout(new FlowLayout());

38 jPanel.add(jTextField);

39 jPanel.add(jList);

40 contentPane.add(jPanel, BorderLayout. CENTER);

42 topLevel.pack();
43 topLevel.setVisible(true);
44 }

46  public static void main (String args[]) {
47 SwingGUI swingGUI = new SwingGUI();
48 swingGUI.go();

49 }
50 }
— Swing GUI =
1
First selection
Second selection
Thind selection
2
Java Programming Language Module 11, slide 18 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The JComponent Class

e Swing components that are subclasses of JComponent
* Borders

* Double buffering

e Tool tips

e Keyboard navigation

e Application-wide pluggable look and feel

Java Programming Language Module 11, slide 19 of 22
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Creating Swing Applications

e Exercise objective:

* Write, compile, and run a simple and an advanced
Swing GUI program using Swing components

e Tasks:

* Create a basic Swing application

* Create a text editor using Swing

Java Programming Language Module 11, slide 20 of 22
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Identify the key features of Java Foundation Classes

e Describe the key features of com.sun.java.swing
package

* Identify Swing components

* Define containers and components, and explain how they
work together to build a Swing GUI

e Write, compile, and run a basic Swing application

e Use top-level containers, such as JFrame and JApplet
effectively

Java Programming Language Module 11, slide 21 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

* You now know how to program GUI applications.
Suppose you want to run a GUI application using a Web
browser. How is this done?

Java Programming Language Module 11, slide 22 of 22

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 12

Introduction to Java Applets

Java Programming Language September 1999



@Sun Educational Services
Course Map

The Java Programming Language Basics
. Identifiers, Expressions and
Getting Started | Keywords, and Typesl Flow Control Arrays |
Object-Oriented Programming
Objects Advanced
and Classes Language Features

Exception Handling

Exceptions |

Developing Graphical User Interfaces

Buildina GUIs The AWT The AWT Java Foundation
g Event Model Component Library Classes

Applets
Introduction
toJava Applets

Multithreading

Threads |

Communications

Stream /O | . |
and Files Networking

Java Programming Language Module 12, slide 2 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Differentiate between a standalone application and an

applet
* Write an HTML tag to call a Java applet

* Describe the class hierarchy of the applet and AWT
classes

* Create the HelloWorld.Java  applet
e List the major methods of an applet

* Describe and use the painting model of AWT

Java Programming Language Module 12, slide 3 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Use applet methods to read images and files from URLs

e Use <param> tags to configure applets

Java Programming Language Module 12, slide 4 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

e What advantages do applets provide?

Java Programming Language Module 12, slide 5 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

WhatIs an Applet?

A Java class that can be:

* Embedded within an HTML page and downloaded and
executed by a Web browser

* Loaded using the browser as follows:
 Load URL
* Load the HTML document
e Load applet classes

* Run the applet

Java Programming Language Module 12, slide 6 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Applet Security Restrictions

* Most browsers prevent the following:
e Runtime execution of another program
e File I/O (input/output)
e Calls to any native methods

e Attempts to open a socket to any system except the
host that provided the applet

Java Programming Language Module 12, slide 7 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Applet Class Hierarchy

java.lang.Object

java.awt.Component

java.awt.C(lntainer

java.awt.Window java.awt.Panel

java.awt.Frame java.applet.Applet

Java Programming Language Module 12, slide 8 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Key Applet Methods
o init()
start()

stop()
destroy()

e paint()

Java Programming Language Module 12, slide 9 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Applet Display

e Applets are graphical in nature

e The browser environment calls the paint() method

1  importjava.awt.*;

2  import java.applet.*;

3

4  public class HelloWorld extends Applet {

5 public void paint(Graphics g

6 g.drawString("Hello World!", 25, 25);

[

8 }

Java Programming Language Module 12, slide 10 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



=

_ Sun Educational Services

Applet Methods and the Applet Life
Cycle

e init()
e Called when the applet is created

¢ Can be used to initialize data values
o start()
* Called when the applet becomes visible

o stop()

e Called when the applet becomes invisible

Java Programming Language Module 12, slide 11 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

AWT Painting

e paint(Graphics g)

e repaint()

e update(Graphics Q)

Java Programming Language Module 12, slide 12 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

AWT Painting

i

repaint( ) AWT thread (waiting)

Exposure

update() - clear ;
area and then
call paint()

Java Programming Language Module 12, slide 13 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1




@ Sun Educational Services

Applet Display Strategies

* Maintain a model of the display

e Usepaint() torender the display based only on the
model

e Update the model and call repaint() to change the
display

Java Programming Language Module 12, slide 14 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

What Is the appletviewer  ?

A Java application that:

e Enables you to run applets without using a Web
browser

e Loads the HTML file supplied as an argument
appletviewer HelloWorld.html

* Needs at least the following HTML code:

9 <applet code=HelloWorld.class width=100 height=100>
10 </applet>

Java Programming Language Module 12, slide 15 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The applet Tag

<applet

[archive=archiveList]

code=appletFile.class

width=pixels height=pixels
[codebase=codebaseURL]

[alt=alternate Text]
[name=appletinstanceName]
[align=alignment]

[vspace=pixels] [nspace=pixels]

>

[<param name=appletAttributel value=value>]
[<param name=appletAttribute2 value=value>]

[alternateHTML]
</applet>

Java Programming Language Module 12, slide 16 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Additional Applet Facilities

e getDocumentBase() - Returns a URLobject that
describes the directory of the current browser page

e getCodeBa se() — Returns a URLobject that describes
the source directory of the applet class

e getimage(URL base, String target) and
getAudioClip(URL base, String target) — Use the

URLobject as a starting point

Java Programming Language Module 12, slide 17 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

A Simple Image Test

1 /I Applet which shows an image of Duke in surfing mode
2

3 import java.awt.*;

4  import java.applet.Applet;

5

6  public class Hwimage extends Applet {
7 Image duke;

8

9 public void init() {

10 duke = getlmage(getDocumentBase(),
11 "graphics/surferDuke.gif");

12}

13

14  public void paint(Graphics g) {

15 g.drawlmage(duke, 25, 25, this);
16 }

17 }

Java Programming Language Module 12, slide 18 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

AudioClip

* Playing a clip
play(URL soundDirectory, String soundFile);
play(URL soundURL);

Java Programming Language Module 12, slide 19 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
A Simple Audio Test

/I Applet which plays a sound once

import java.awt.Graphics;
import java.applet.Applet;

public class HwAudio extends Applet {
public void paint(Graphics g) {
g.drawString("Audio Test", 25, 25);
play(getCodeBase(), "sounds/cuckoo.au");
o }
1}

PP OO0O~NOOTA,WNE

Java Programming Language Module 12, slide 20 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Looping an AudioClip

* Loading an AudioClip
e Playing an AudioClip
e Stopping an AudioClip

Java Programming Language Module 12, slide 21 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

O©CoO~NOUILA,WNE

A Simple Looping Test

/I Applet which continuously repeats a sound

import java.awt.Graphics;
import java.applet.*;

public class HwLoop extends Applet {
AudioClip sound;

public void init() {
sound = getAudioClip(getCodeBase(), "sounds/cuckoo.au");

}

public void paint(Graphics g) {
g.drawString("Audio Test", 25, 25);
}

public void start() {
sound.loop();

}

public void stop() {
sound.stop();
}
}

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 12, slide 22 of 31



@ Sun Educational Services

Mouse Input
e mouseClicked - The mouse has been clicked (mouse
button pressed and then released in one motion)
e mouseEntered — The mouse cursor enters a component
e mouseExited — The mouse cursor leaves a component
 mousePressed — The mouse button is pressed down

e mouseReleased - The mouse button is later released

Java Programming Language Module 12, slide 23 of 31
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
A Simple Mouse Test

/I This applet is HelloWorld extended to watch for mouse
/[ input. "Hello World!" is reprinted at the location of
/l the mouse press.

import java.awt.Graphics;
import java.awt.event.*;
import java.applet.Applet;

OCoO~NOUITA,WNE

public class HwMouse

10 extends Applet

11 implements MouseListener {

12

13  private int mouseX = 25;

14  private int mouseY = 25;

15

16 // Register this applet instance to catch

17 /I MouseListener events.

18  public void init() {

19 addMouselListener(this);

20 }

21

22 public void paint(Graphics g) {

23 g.drawString("Hello World!", mouseX, mouseY));
24}

25

26 /I Process the mousePressed MouseListener event
27  public void mousePressed(MouseEvent evt) {
28 mouseX = evt.getX();

29 mouseY = evt.getY();

30 repaint();

31 }

32

33 /I We are not using the other mouse events.
34  public void mouseClicked(MouseEvent e) { }
35  public void mouseEntered(MouseEvent e) { }
36  public void mouseExited(MouseEvent e) { }

37  public void mouseReleased(MouseEvent e) { }
38 }

Java Programming Language Module 12, slide 24 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Reading Parameters

e Applet code

1 <html>
2  <applet code=DrawAny.class width=200 height=200>
3  <param name=image value="graphics/duke.gif">
4  </applet>
5 </html>
e Program code
1 import java.awt.*;
2  import java.applet.*;
3
4  public class DrawAny extends Applet {
5 Image im;
6
7 public void init() {
8 String imageName = getParameter ("image");
9
10 if (imageName ==null) {
11 System.out.printin(
12 "Error: Cannot find image");
13 System.exit(0);
14 }
15
16 im = getimage(getDocumentBase(), imageName);
17 }
18

19  public void paint(Graphics g) {
20 g.drawlmage(im, 0, 0, this);
21 }

22 }

23

Java Programming Language Module 12, slide 25 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Dual Purpose Code
Sample

/I Applet/Application which shows an image of
// Duke in surfing mode

import java.applet.Applet;
import java.awt.*;

import java.awt.event.*;
import java.util.*;

O©CoO~NOULPE,WNE

public class AppletApp extends Applet {
10 Date date;

12 public void init() {
13 date = new Date();
14 }

16  public void paint (Graphics g) {

17 g.drawString("This Java program started at", 25, 25);
18 g.drawString(date.toString(), 25, 60);

19 }

21 /I An application will require a main()
22  public static void main (String args|[]) {

23

24 Il Create a Frame to house the applet

25 Frame frame = new Frame("Application");
26

27 /I Create an instance of the class (applet)
28 AppletApp app = new AppletApp();

30 /I Add it to the center of the frame
31 frame.add(app, BorderLayout. CENTER);
32 frame.setSize (250, 150);

Java Programming Language Module 12, slide 26 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Dual Purpose Code
Sample

34 Il Register the AppletApp class as the
35 /I listener for a Window Destroy event
36 frame.addWindowListener (new WindowAdapter() {

37 public void windowClosing (WindowEvent e) {
38 System.exit(0);

39 }

40 )

41

42 /I Call the applet methods

43 app.init();

44 app.start();

45 frame.setVisible(true); // Invokes paint()
46 }

47 '}

Java Programming Language Module 12, slide 27 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Creating Applets

e Exercise objective:
e Become familiar with programming Java applets

e Tasks:
 Write an applet

* (Create concentric squares

* Create a rollover applet

Java Programming Language Module 12, slide 28 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Differentiate between a standalone application and an

applet
* Write an HTML tag to call a Java applet

* Describe the class hierarchy of the applet and AWT
classes

* Create the HelloWorld.Java  applet

e List the major methods of an applet

* Describe and use the painting model of AWT

e Use applet methods to read images and files from URLs

Java Programming Language Module 12, slide 29 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Use <param> tags to configure applets

e Use the URL object to fetch sounds and images into
your applet

e Handle various mouse events within the applet

* Pass parameters to an applet from an HTML file using
the <param > tags

Java Programming Language Module 12, slide 30 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Think Beyond

 How can you use applets on your company’s Web page
to improve the overall presentation?

Java Programming Language Module 12, slide 31 of 31

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 13

Threads

Java Programming Language September 1999



@Sun Educational Services

Course Map

The Java Programming Language Basics
. | Identifiers, | Expressions and |
Cailigsaiee Keywords, and Types Flow Control Arrays

Object-Oriented Programming

Objects Advanced
and Classes L anguage Features

Exception Handling

Exceptions

Developing Graphical User Interfaces

Buildina GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes

Applets
Introduction
to Java Applets

Multithreading

Communications

Stream 1/0 .
and Files | Networking |

Java Programming Language Module 13, slide 2 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Define a thread

* Create separate threads in a Java program, controlling
the code and data that are used by that thread

e Control the execution of a thread and write platform-
independent code with threads

e Describe the difficulties that might arise when multiple
threads share data

e Usewait() and notify() to communicate beween
threads

Java Programming Language Module 13, slide 3 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Use synchronized to protect data from corruption

e Explain why suspend() , resume() , and stop()
methods have been deprecated in JDK 1.2

Java Programming Language Module 13, slide 4 of 44
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

 How do you get programs to perform multiple tasks?

Java Programming Language Module 13, slide 5 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Threads

e What are threads?
e Virtual CPU

Java Programming Language Module 13, slide 6 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Three Parts of a Thread

e CPU
e Code
e Data

Java Programming Language Module 13, slide 7 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating the Thread

1  public class ThreadTest {

2 public static void main(String args[]) {
3 Xyz r = new Xyz();

4 Thread t = new Thread(r);

5 t.start();
6

7

8

}

}
9 class Xyz implements Runnable {
10 inti;
11
12 public void run() {
13 i=0;
14
15 while (true) {
16 System.out.printin("Hello " + i++);
17 if (i==50) {
18 break;
19 }
20 }
21}
22 }
Java Programming Language Module 13, slide 8 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating the Thread

e Multithreaded programming:

e Multiple threads from the same Runnable instance

e Threads share the same data and code

Java Programming Language Module 13, slide 9 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Starting the Thread

e Using the start() = method

* Placing the thread in runnable state

Java Programming Language Module 13, slide 10 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Thread Scheduling

New sleep() timeout Otherwise
or blocked
thread join() s
or
start() interupt()
or
join()

Scheduler

completes

wait() synchronized()

Lock
available

Blocked in
object’s
wait)  pool

Blocked in
object’s
lock pool

notify()
interupt()

Java Programming Language Module 13, slide 11 of 44
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Thread Scheduling

1  public class Xyz implements Runnable {
2 public void run() {

3 while (true) {

4 /Il do lots of interesting stuff

5 :

6 Il Give other threads a chance

7 try {

8 Thread.sleep(10);

9 } catch (InterruptedException e) {

10 /I This thread’s sleep was interrupted
11 /[ by another thread

12 }

13 }

14 '}

15 }

Java Programming Language Module 13, slide 12 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Terminating a Thread

public class Xyz implements Runnable {
private boolean timeToQuit=false;

while(! timeToQuit) {

}...

1
2
3
4 public void run() {
5
6
7
8 /I clean up before run() ends

©

}
10
11  public void stopRunning() {
12 timeToQuit=true;
13}
14 }
15
16 public class ControlThread {
17  private Runnable r = new Xyz();
18 private Thread t = new Thread(r);
19
20  public void startThread() {
21 t.start();
22}
23
24 public void stopThread() {
25 Il use specific instance of Xyz
26 r.stopRunning();
27 }
28 }

Java Programming Language Module 13, slide 13 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Basic Control of Threads

e Testing threads:
o iSAlive()

e Putting threads on hold:
 sleep()

* join()

Java Programming Language Module 13, slide 14 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Putting Threads on Hold

1  public class Xyz implements Runnable {
2 ..

3 public void run() {

4 while (running) {

5 // do your task

6 try {

7 Thread.sleep ((int)(Math.rando() * 100));
8 } catch (InterruptedException e) {

9 I/l somebody woke me up

10 }

11

12 }

13}

14 }

15

16 public class TTest {

17  public static void main(String args|[]) {
18 Runnable r = new Xyz();

19 Thread t1 = new Thread(r);

20 tl.start();

21 }

22 }

Java Programming Language Module 13, slide 15 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Putting Threads on Hold

public void doTask() {
TimerThread tt = new TimerThread (100);
tt.start ();

1
2
3
4 ..
5 // Do stuff in parallel with the other thread for
6 //awhie

7

8

/ Wait here for the timer thread to finish

9 try{

10 ttjoin ();

11 } catch (InterruptedException e) {
12 /I tt came back early

13 }

15 // Now continue in this thread

16 }...

Java Programming Language Module 13, slide 16 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Extending the Thread Class

1  public class MyThread extends Thread {
2 public void run() {

3 while (running) {

4 /Il do lots of interesting stuff

5 try {

6 sleep(100);

7 } catch (InterruptedException e) {
8 /Il sleep interrupted

9 }

10 }

11}

12

13  public static void main(String args|[]) {
14 Thread t = new MyThread();

15 t.start();

16 }

17 }

Java Programming Language Module 13, slide 17 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Selecting a Way to Create Threads

e Implementing Runnable :

e Better object-oriented design
* Single inheritance
e Consistency

e Extending Thread :

e Simpler code

Java Programming Language Module 13, slide 18 of 44
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Using the synchronized  Keyword

1  public class MyStack {

2 intidx = 0;

3 char [] data = new char[6];
4

5 public void push(char c) {
6 data[idx] = c;

7 idx++;

8 }

9

10  public char pop() {

11 idx--;

12 return data[idx];

13}

14 }

Java Programming Language Module 13, slide 19 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The Object Lock Flag

e Every object has a flag that can be thought of as a "lock
flag"

e synchronized allows interaction with the lock flag

Object this Thread before synchronized(this)
O ™~ public void push(char c) {
A —®  synchronized (this) {
[ \ data[idx] = c;
Code or . _
behavior idx++;
}
Data or J
state
Java Programming Language Module 13, slide 20 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



=

|%fk Sun Educational Services

The Object Lock Flag

Object this
Lock flag missing

Y

Code or
behavior

Data or
state

Java Programming Language

Thread, trying to execute
synchronized(this)

Waiting for  public char pop() {

object lock | synchronized (this) {

idx--;
return data[idx];

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 13, slide 21 of 44



@ Sun Educational Services

Releasing the Lock Flag
* Released when the thread passes the end of the
synchronized() code block

e Automatically released when a break or exception is
thrown by the synchronized() code block

Java Programming Language Module 13, slide 22 of 44
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

synchronized  —Putting It Together

e All access to delicate data should be synchronized.

* Delicate data protected by synchronized should be
private.

Java Programming Language Module 13, slide 23 of 44
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

synchronized  —Putting It Together

* The following two code segments are equivalent:

public void push(char c) {
synchronized(this) {

public synchronized void push(char c) {

Java Programming Language Module 13, slide 24 of 44
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Deadlock

e Is two threads, each waiting for a lock from the other
* Isnot detected or avoided
e Can be avoided by:

e Deciding on the order to obtain locks
* Adhering to this order throughout

* Releasing locks in reverse order

Java Programming Language Module 13, slide 25 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Thread Interaction—wait() and

notify()

® Scenario:

e Consider yourself and a cab driver as two threads
* The problem:

 How to determine when you are at your destination
e The solution:

* You notity the cabbie of your destination and relax

e Cabbie drives and notifies you upon arrival at your
destination

Java Programming Language Module 13, slide 26 of 44
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Thread Interaction

e wait) and notify()
* The pools:
 Wait pool
e Lock pool

Java Programming Language Module 13, slide 27 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Monitor Model for Synchronization

* Leave shared data in a consistent state
e Ensure programs cannot deadlock

* Do not put threads expecting different notifications in
the same wait pool

Java Programming Language Module 13, slide 28 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Producer

1 public void run() {

2 char c;

3

4 for (inti=0; i< 200; i++) {

5 ¢ = (char)(Math.random() * 26 +'A");

6 theStack.push(c);

7 System.out.printin("Producer” + num + ": " + ¢);
8 try {

9 Thread.sleep((int)(Math.random() * 300));

10 } catch (InterruptedException e) {

11 /[ ignore it

12 }

13 }

14 '}

Java Programming Language Module 13, slide 29 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Consumer

1 public void run() {

2 char c;

3 for (inti=0; i< 200; i++) {

4 ¢ = theStack.pop();

5 System.out.printin("Consumer” + num + ": " + ¢);
6

7 try {

8 Thread.sleep((int)(Math.random() * 300));

9 } catch (InterruptedException e) { }

10

11 }

12}

Java Programming Language Module 13, slide 30 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
SyncStack Class

13 public class SyncStack {
14 private  Vector buffer = new Vector(400, 200);

15

16  public synchronized  char pop() {

17}

18

19  public synchronized  void push(char c) {

20 }

Java Programming Language Module 13, slide 31 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
pop() Method

1 public synchronized char pop() {

2 char c;

3 while (buffer.size() == 0) {

4 try {

5 this.wait();

6 } catch (InterruptedException e) {

7 /Il ignore it...

8 }

9 }

10 ¢ = ((Character)buffer.remove(buffer.size()-1)).
11 charValue();

12 return c;

13}

Java Programming Language Module 13, slide 32 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
push() Method

1 public synchronized void push(char c) {

2 this.notify();

3 Character charObj = new Character(c);

4 buffer.addElement(charObj);

5 }

Java Programming Language Module 13, slide 33 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

SyncTest.jJava

package mod13;
public class SyncTest {

public static void main(String[] args) {

SyncStack stack = new SyncStack();

Producer p1 = new Producer(stack);
Thread prodT1 = new Thread (pl);
prodT1.start();

Producer p2 = new Producer(stack);
Thread prodT2 = new Thread (p2);
prodT2.start();

Consumer cl1 = new Consumer(stack);
Thread consT1 = new Thread (c1);
consTL1.start();

Consumer c2 = new Consumer(stack);
Thread consT2 = new Thread (c2);
consT2.start();

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 13, slide 34 of 44



@Sun Educational Services

Producer.java

package mod13;

1
2
3 public class Producer implements Runnable {
4 private SyncStack theStack;
5 private int num;

6 private static int counter = 1;

7
8

public Producer (SyncStack s) {

9 theStack = s;

10 num = counter++;

11}

12

13  public void run() {

14 char c;

15 for (inti=0;i<200; i++) {

16 ¢ = (char)(Math.random() * 26 +'A");

17 theStack.push(c);

18 System.out.printin("Producer” + num + ": " + ¢);
19 try {

20 Thread.sleep((int)(Math.random() * 300));

21 } catch (InterruptedException e) {

22 /[ ignore it

23 }

24 }

25 }

26 }

Java Programming Language Module 13, slide 35 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Consumer.java

package mod13;

1
2
3 public class Consumer implements Runnable {
4 private SyncStack theStack;
5 private int num;

6 private static int counter = 1;

7
8

public Consumer (SyncStack s) {

9 theStack = s;

10 num = counter++;
11}

12

13  public void run() {
14 charc;

15 for (inti=0; i< 200; i++) {
16 c = theStack.pop();

17 System.out.printin("Consumer" + num + ": " + ¢);

18

19 try {

20 Thread.sleep((int)(Math.random() * 300));

21 } catch (InterruptedException e) { }

22

23 }

24}

25 }

Java Programming Language Module 13, slide 36 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
SyncStack.java

1 package mod13;

2

3 import java.util.Vector;

4

5  public class SyncStack {

6 private Vector buffer = new Vector(400, 200);
7

8 public synchronized char pop() {

9 char c;

10 while (buffer.size() == 0) {

11 try {

12 this.wait();

13 } catch (InterruptedException e) {
14 /l'ignore it...

15 }

16 }

17 ¢ = ((Character)buffer.remove(buffer.size()-1)).
18 charValue();

19 return c;

20 }

21

22 public synchronized void push(char c) {
23 this.notify();

24 Character charObj = new Character(c);
25 buffer.addElement(charObj);

26}

27 }

Java Programming Language Module 13, slide 37 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The suspend() and resume()
Methods

* Have been deprecated in J]DK 1.2
e Should be replaced with wait() and notify()

Java Programming Language Module 13, slide 38 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Thestop() Method

e Releases the lock before it terminates
e (Can leave shared data in an inconsistent state

e Should be replaced with wait() and notify()
e Should create long-lived threads

Java Programming Language Module 13, slide 39 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Proper Thread Control

1  public class ControlledThread extends Thread {
2 static final int SUSP = 1;

3 static final int STOP = 2;

4 static final int RUN = 0;

5 private int state = RUN;

6

7

8

public synchronized void setState(int s) {

state = s;
9 if (s==RUN){
10 notify();
11 }
12}
13

14  public synchronized boolean checkState() {
15 while ( state == SUSP ) {

16 try {

17 walit();

18 } catch (InterruptedException e) {
19 /I ignore

20 }

21 }

22 if ( state == STOP ) {
23 return false;

24 }

25 return true;

26}

27

28  public void run() {
29 while (true ) {
30 // doSomething();

31

32 /I Be sure shared data is in consistent state in
33 Il case the thread is waited or marked for exiting
34 Il from run()

35 if ('checkState() ) {

36 break;

37 }

38 }

39 }}/justto fit it on this page

Java Programming Language Module 13, slide 40 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Using Multithreaded
Programming

* Exercise objectives:

e Become familiar with the concepts of multithreading
by writing some multithreaded programs

e Create a multithreaded applet

e Tasks:
e (Create three threads

* Incorporate animation

Java Programming Language Module 13, slide 41 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Define a thread

* Create separate threads in a Java program, controlling
the code and data that are used by that thread

e Control the execution of a thread and write platform-
independent code with threads

e Describe the difficulties that might arise when multiple
threads share data

e Use keyword synchronized to protect data from
corruption

e Usewalt() and notify() to communicate beween
threads

Java Programming Language Module 13, slide 42 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

e Use synchronized to protect data from corruption

e Explain why suspend(), resume(), and stop()
methods have been deprecated in JDK 1.2

Java Programming Language Module 13, slide 43 of 44
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

* Do you have applications that could benefit from being
multithreaded?

Java Programming Language Module 13, slide 44 of 44

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 14

Stream I1/0 and Files

Java Programming Language September 1999



@Sun Educational Services
Course Map

The Java Programming Language Basics
. | Identifiers, | Expressions and |
Getting Started Keywords, and Types Flow Control Arrays
Object-Oriented Programming
Objects Advanced
and Classes Language Features

Exception Handling

Exceptions

Developing Graphical User Interfaces

Building GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes

Applets

Introduction
to Java Applets

f

Multithreading

Threads |

Communications

Stream |/O . |

Java Programming Language Module 14, slide 2 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives
* Describe and use the streams philosophy of the
java.lo  package

¢ Construct file and filter streams, and use them
appropriately

e Distinguish readers and writers from streams, and
select appropriately between them

e Examine and manipulate files and directories
* Read, write, and update text and data files

e Use the Serialization interface to persist the state of
objects

Java Programming Language Module 14, slide 3 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

* What mechanisms are in place within the Java
programming language to read and write from files?

Java Programming Language Module 14, slide 4 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Stream1/0

* A stream is either a source of bytes or a destination for
bytes.

* The two basic types of streams are:

* Input stream

e QOutput stream
* Node streams read from or write to a specific place.

e Filter streams use node streams as input or output.

Java Programming Language Module 14, slide 5 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Stream Fundamentals

w
o 0] r I d
| '/X/
"Flow" of
' bytes down
stream
e
read()
h (
Node InputStream FilterinputStream
(for example, from file)
Java Programming Language Module 14, slide 6 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

InputStream  Methods

® The three basic read() methods:

e int read()
e int read(byte[])
* int read(byte[], int, int)

e The other methods:

void close()

int available()

skip(long)

boolean markSupported()
void mark(int)

void reset()

Java Programming Language Module 14, slide 7 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
OutputStream Methods

e The three basic write()  methods:

e void write(int)
» void write(byte[])
« void write(byte[], int, int)

e The other methods:

» void close()
» void flush()

Java Programming Language Module 14, slide 8 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Basic Stream Classes

InputStream
SequencelnputStream FilelnputStream
PipedinputStream ByteArraylnputStream
FilterlnputStream ObjectinputStream
DatalnputStream
PushbackinputStream BufferedinputStream
Java Programming Language Module 14, slide 9 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Basic Stream Classes

e FilelnputStream and FileOutputStream
e BufferedinputStream and BufferOutputStream
e DatalnputStream  and DataOutputStream

e PipedinputStream  and PipedOutputStream

Java Programming Language Module 14, slide 10 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

URL Input Streams

1 java.net.URL imageSource;

2

3 try{

4 imageSource = new URL("http://mysite.com/~info");

5 }catch ( MalformedURLEXxception e) {

6  /lignore

7}

8

9 images|[0] = getimage(imageSource, "Duke/T1.gif");

Java Programming Language Module 14, slide 11 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Opening an Input Stream

InputStream is = null;
String datafile = new String("Data/data.1-96");
byte buffer[] = new byte[24];
try {
/I new URL throws a MalformedURLEXxception
/I URL.openStream() throws an IOException
is = (new URL(getDocumentBase(),datafile)).openStream();
} catch (Exception e) {
Il'ignore
0}

P OoO~NOOOUITS WNBE

Now you can use it to read information, just as with a FilelnputStream object:

11 try {
12 is.read(buiffer, O, buffer.length);

13 } catch (IOException e1) {
14 //ignore
15}

Java Programming Language Module 14, slide 12 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Readers and Writers

e The Java programming language uses Unicode to
represent strings and characters.

e |nputStreamReader  and OutputStreamWriter
convert Unicode to platform-specific code.

e Chain BufferedReader and BufferedWriter to

InputStreamReader  and OutputStreamWriter
for efficiency.

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 14, slide 13 of 25



@ Sun Educational Services

Reading String Input
import java.io.*;
public class Charlnput {

1

2

3

4

5 public static void main (String argsl])
6 throws java.io.lOException {

7

8

String s;
InputStreamReader ir;
9 BufferedReader in;
10
11 ir = new InputStreamReader(System.in);
12 in = new BufferedReader(ir);
13
14 while ((s = in.readLine()) != null) {
15 System.out.printin("Read: " + s);
16 }
17}
18 }
Java Programming Language Module 14, slide 14 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a New Flle Object

e File myFile;

e myFile = new File("mymotd");

e myFile =new File("/", "mymotd");

e /[ more useful if the directory or filename
/I is a variable

File myDir = new File("/");
myFile = new File(myDir, "mymotd");

Java Programming Language Module 14, slide 15 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

File Testsand Utilities

e Fille names:

String getName()
String getPath()

String getAbsolutePath()
String getParent()

boolean

e Flle tests:

boolean
boolean
boolean
boolean
boolean
boolean

Java Programming Language

renameTo(File newName)

exists()
canWrite()
canRead()
isFile()
isDirectory()
iIsAbsolute();

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 14, slide 16 of 25



@ Sun Educational Services

File Testsand Utilities

e (General file information and utilities:

long lastModified()
long length()
boolean delete()

e Directory utilities:

boolean mkdir()
String[] list()

Java Programming Language Module 14, slide 17 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a Random Access File

e With the file name:

MyRAFile = new RandomAccessFile(
String name, String mode);

e With a File object:

MmyRAFile = new RandomAccessFile(
File file, String mode);

Java Programming Language Module 14, slide 18 of 25
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Random Access Files

* long getFilePointer()
« void seek(long pos)

* long length()

Java Programming Language Module 14, slide 19 of 25
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Serialization

e Saving an object to permanent storage
is called persistence.

* Only the object’s data are serialized.

e Data marked with the transient
keyword are not serialized.

1  public class MyClass implements Serializable {
2 public  transient  Thread myThread,

3 private String customerlID,;

4 private int total;

5 }

1  public class MyClass implements Serializable {
2 public transient Thread myThread;

3 private transient String customerlID;
4 private int total,

5 1}

Java Programming Language Module 14, slide 20 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Writing an Object to a File
Stream

1 import java.io.*;

2 import java.util.Date;

3

4  public class SerializeDate {

5

6 SerializeDate() {

7 Date d = new Date ();

8

9 try {

10 FileOutputStream f =

11 new FileOutputStream ("date.ser");
12 ObjectOutputStream s =

13 new ObjectOutputStream (f);

14 s.writeObject (d);

15 s.close ();

16 } catch (IOException e) {

17 e.printStackTrace ();

18 }

19 }

20

21  public static void main (String args[]) {
22 new SerializeDate();

23 }

24 '}

Java Programming Language Module 14, slide 21 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Reading an Object From a File Stream

1 import java.io.*,

2  import java.util.Date;

3

4  public class UnSerializeDate {

5

6 UnSerializeDate () {

7 Date d = null;

8

9 try {

10 FilelnputStream f =

11 new FilelnputStream ("date.ser");
12 ObjectinputStream s =

13 new ObjectinputStream (f);
14 d = (Date) s.readObject ();

15 s.close ();

16 } catch (Exception e) {

17 e.printStackTrace ();

18 }

19

20 System.out.printin(

21 "Unserialized Date object from date.ser");
22 System.out.printin("Date: "+d);
23 }

24

25  public static void main (String args[]) {
26 new UnSerializeDate();

27 }

28 }

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Module 14, slide 22 of 25



@ Sun Educational Services

Exercise: Getting Acquainted With /0O

e Exercise objective:

e Become familiar with stream I/O by writing
programs that perform I/O to files

e Tasks:
* Open afile
* Create a simple database program

e Use persistence

Java Programming Language Module 14, slide 23 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress
* Describe and use streams philosophy of the java.io
package

¢ Construct file and filter streams, and use them
appropriately

e Distinguish readers and writers from streams, and
select appropriately between them

e Examine and manipulate files and directories
* Read, write, and update text and data files

e Use the Serialization interface to persist the state of
objects

Java Programming Language Module 14, slide 24 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

* Do you have applications that require file I/O?

Java Programming Language Module 14, slide 25 of 25

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Module 15

Networking

Java Programming Language September 1999



@Sun Educational Services
Course Map

The Java Programming Language Basics
. | I dentifiers, | Expressions and |
Cilligetite Keywords, and Types Flow Control Arrays
Object-Oriented Programming
Objects Advanced
and Classes L anguage Features

Exception Handling

Exceptions

Developing Graphical User Interfaces

Building GUIs The AWT The AWT Java Foundation
9 Event Model Component Library Classes

Applets

Introduction
to Java Applets

Multithreading

Threads |

Communications

Stream 1/O | .

Java Programming Language Module 15, slide 2 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Objectives

e Create a minimal Transmission Control Protocol/

Internet Protocol (TCP/IP) server and a minimal TCP/
IP client:

» ServerSocket

e Socket

* Create a minimal User Datagram Protocol (UDP) server
and a minimal UDP client:

« DatagramSocket

« DatagramPacket

Java Programming Language Module 15, slide 3 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Relevance

e How can a communication link between a client
machine and a server on the network be established?

Java Programming Language Module 15, slide 4 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Networking

e Sockets:
e Sockets hold two streams
e Setting up the connection:

* Set up is similar to a telephone system

Java Programming Language Module 15, slide 5 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Networking With Java Technology

¢ Addressing the connection:

e Address or name of remote machine
e Port number to identify purpose

e Port numbers:

e Range from 0-65535

Java Programming Language Module 15, slide 6 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



Sun Educational Services

Java Networking Model

Server

ServerSocket

ServerSocket.accept()

Socket()

(port #)

Register with
this service

Wait for a
connection

Client

Socket (host, port#

(Attempt to connect)

)

OutputStream

InputStream

-

Socket.close ()

Java Programming Language
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

OutputStream

> InputStream

Socket.close ()

Module 15, slide 7 of 21



@Sun Educational Services

Minimal TCP /IP Server

import java.net.*;
import java.io.*;

1
2
3
4  public class SimpleServer {

5 public static void main(String args[]) {
6 ServerSocket s = null;

7

8

Socket s1;
String sendString = "Hello Net World!";
9 int slength = sendString.length();

10 OutputStream slout;
11 DataOutputStream dos;

12

13 I/l Register your service on port 5432
14 try {

15 s = new ServerSocket(5432);

16 } catch (IOException e) {
17 /Il ignore

18 }
19
Java Programming Language Module 15, slide 8 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Minimal TCP /IP Server

20 // Run the listen/accept loop forever
21 while (true) {

22 try {

23 /I Wait here and listen for a connection

24 sl=s.accept();

25

26 /I Get a communication stream associated with
27 Il the socket

28 slout = s1.getOutputStream();

29 dos = new DataOutputStream (slout);

30

31 I/ Send your string!

32 /I (UTF provides machine independence)

33 dos.writeUTF(sendString);

34

35 /I Close the connection, but not the server socket
36 dos.close();

37 slout.close();

38 sl.close();

39 } catch (IOException e) {

40 /I ignore

41 }

42 }

43 }

44 '}

Java Programming Language Module 15, slide 9 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Minimal TCP/IP Client

import java.net.*;
import java.io.*;

public static void main(String argsl])
throws IOException {
int c;
9 Socket s1;
10 InputStream s1lin;
11 DatalnputStream dis;

1
2
3
4  public class SimpleClient {
5
6
7
8

13 // Open your connection to a server, at port 5432
14 /I localhost used here
15 sl = new Socket("127.0.0.1",5432);

17 /I Get an input file handle from the socket and
18 /l read the input

19 slin = sl.getinputStream();

20 dis = new DatalnputStream(s1in);

22 String st = new String (dis.readUTF());
23 System.out.printin(st);

25 /l When done, just close the connection and exit
26 dis.close();

27 slin.close();

28 sl.close();

Java Programming Language Module 15, slide 10 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

UDP Sockets

e Are used for connection-less protocol
* Messages are not guaranteed

e Are supported in Java technology through the
DatagramSocket and DatagramPacket classes

Java Programming Language Module 15, slide 11 of 21
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The Datagram Packet

DatagramPacket has two constructors: one for receiving
data and one for sending data.

« DatagramPacket(
byte [] recvBuUf, int readLength)

« DatagramPacket(
byte [] sendBuf, int sendLength,
InetAddress iaddr, int iport)

Java Programming Language Module 15, slide 12 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The DatagramSocket

DatagramSocket has three constructors:
 Datagr amSocket()
o DatagramSoc ket(int port)

« DatagramSocke t(int port, InetAddress iaddr)

Java Programming Language Module 15, slide 13 of 21
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Minimal UDP Server

1 import java.io.*;

2  import java.net.*,

3 import java.util.*;

4

5  public class UdpServer{

6

7 /[This method retrieves the current time on the server
8 public byte[] getTime(){

9 Date d= new Date();

10 return d.toString().getBytes();
11}

12

13 // Main server loop.
14 public void go() throws IOException {

16 DatagramSocket datagramSocket;
17 /l Datagram packet from the client
18 DatagramPacket inDataPacket;
19 I/l Datagram packet to the client
20 DatagramPacket outDataPacket;
21 /I Client return address

22 InetAddress clientAddress;

23 /I Client return port

24 int clientPort;

25 /l Incoming data buffer. Ignored.
26 byte[] msg= new byte[10];

27 /I Stores retrieved time

28 byte[] time;

30 /I Allocate a socket to man port 8000 for requests.
31 datagramSocket = new DatagramSocket(8000);
32 System.out.printin("UDP server active on port 8000");

Java Programming Language Module 15, slide 14 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Minimal UDP Server

34 /I Loop forever
35 while(true) {

36

37 /I Set up receiver packet. Data will be ignored.

38 inDataPacket = new DatagramPacket(msg, msg.length);
39

40 /I Get the message.

41 datagramSocket.receive(inDataPacket);

42

43 /I Retrieve return address information, including

44 /Il InetAddress and port from the datagram packet
45 /I just recieved.

46

47 clientAddress = inDataPacket.getAddress();

48 clientPort = inDataPacket.getPort();

49

50 /I Get the current time.

51 time = getTime();

52

53 /[set up a datagram to be sent to the client using the
54 /lcurrent time, the client address and port

55 outDataPacket =

56 new DatagramPacket(

57 time, time.length, clientAddress, clientPort);

58

59 /ffinally send the packet

60 datagramSocket.send(outDataPacket);

61 }

62 }

63

Java Programming Language Module 15, slide 15 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Minimal UDP Server

64  public static void main(String args|[]) {
65 UdpServer udpServer = new UdpServer();

66

67 try {

68 udpServer.go();

69 } catch (IOException e) {

70 System.out.printin(

71 "IOException occured with socket.");
72 System.out.println (e);

73 System.exit(1);

74 }

75 }

76 '}

Java Programming Language Module 15, slide 16 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services
Minimal UDP Client

import java.io.*;
import java.net.*;

1

2

3

4  public class UdpClient {
5

6 public void go()

7 throws IOException,

8 UnknownHostException {

10 DatagramSocket datagramSocket;
11 /[ Datagram packet to the server

12 DatagramPacket outDataPacket;
13 // Datagram packet from the server
14 DatagramPacket inDataPacket;

15 /I Server host address

16 InetAddress serverAddress;

17 Il Buffer space.

18 byte[] msg = new byte[100];

19 I/l Received message in String form.
20 String receivedMsg;

22 /I Allocate a socket by which messages are sent
23 /I and received.
24 datagramSocket = new DatagramSocket();

26 /[ Server is running on this same machine for this

27 /Il example.

28 Il This method can throw an UnknownHostException.
29 serverAddress = InetAddress.getLocalHost();

31 /I Set up a datagram request to be sent to the server.
32 /I Send to port 8000.

33 outDataPacket =

34 new DatagramPacket(msg, 1, serverAddress, 8000);

36 /I Make the request to the server.
37 datagramSocket.send(outDataPacket);

Java Programming Language Module 15, slide 17 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Minimal UDP Client

39 /I Set up a datagram packet to receive
40 /] server's response.
41 inDataPacket = new DatagramPacket(msg, msg.length);

43 /l Receive the time data from the server
44 datagramSocket.receive(inDataPacket);

46 /I Print the data received from the server
47 receivedMsg = new String(

48 inDataPacket.getData(), 0, inDataPacket.getLength());
49 System.out.printin(receivedMsg);

50

51 /lclose the socket

52 datagramSocket.close();

53 }

54

55  public static void main(String args|]) {
56 UdpClient udpClient = new UdpClient();

58 try {
59 udpClient.go();
60 } catch (Exception e) {

61 System.out.println ("Exception occured with socket.");

62 System.out.printin (e);

63 System.exit(1);

64 }

65 }

66 }

Java Programming Language Module 15, slide 18 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Exercise: Using Socket Programming

e Exercise objective:

e Gain experience using sockets by implementing a
client and server which communicate using sockets

e Tasks:

e (reate sockets

e Use a multithreaded server

Java Programming Language Module 15, slide 19 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check Your Progress

* Develop code to set up network connection
e Understand TCP/IP and UDP protocol

e Use ServerSocket and Socket classes for
implementing TCP/IP client and servers

e Use DatagramPacket and DatagramSocket for
effecting a UDP-based network communication

Java Programming Language Module 15, slide 20 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

e There are several advanced Java platform topics, many
of which are addressed in other SunEd courses. See
Appendix A for a brief discourse on some of them. Be
sure and check out the JavaSoft web site
(www.javasoft.com ) as well.

Java Programming Language Module 15, slide 21 of 21

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Appendix B

Using the GridBagLayout

Java Programming Language September 1999



@ Sun Educational Services

Layout Managers

e Position and size components in a Container
e Adhere to a policy
e Make absolute coordinates platform dependent
* Determine limitations of:
* FlowLayout
 GridLayout
» BorderLayout

Java Programming Language Appendix B, slide 2 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The GridBaglLayout

* Divides the region into rows and columns

e Sizes components to fit width, height, both, or neither of
their regions (one or more contiguous rows and one or
more contiguous columns)

Java Programming Language Appendix B, slide 3 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The GridBaglLayout

* Row/column count determined by cell usage

* Row/column basic size determined by contents

" -| GridBag Example |
1 2 3
-] I | — 1 __
| [
N | _ 1 -
5 6 | | 8
| ¥
— |
| | |
Java Programming Language Appendix B, slide 4 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The GridBaglLayout

e Use of "spare" space is determined by weight.

 Components can fit width, height, or both of the region.

T =] | GridiEag E:-:a'rnple
1 2 3 :
- ; E===1 — -
U I S S B
I I I
| I
a 6 | 1
I I
U || S
I Fi I
| I I
I I I
| | |
Java Programming Language Appendix B, slide 5 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The GridBaglLayout

* Components are located within a region by an anchor.

e Fill can make the anchor ineffective.

[ [ T GridBag Etample I'Lﬂ I GridBag Example
1 2 3 1 2 3 |
I 4 I 4 I
i — = - - = -l == — — — -
I I I
5 || 6 : 5 8 3
R _ S e
I I I I I
| | |I ! | -
! . .
] ] ] ] ] ]
| | | | | |
Java Programming Language Appendix B, slide 6 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
The GridBagConstraints Class

e For each component, specify:
e Top left corner of cell with gridx and gridy
e (Cell size with gridwidth  and gridheight
e Capacity with fill
* anchor
e For each row and column, specify:

e Capacity with weightx and weighty

Java Programming Language Appendix B, slide 7 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Designing with GridBaglLayout

e Sketch all components

e Sketch all components on resized container

e Identify all gridlines and rowhence/column counts

* Identify stretchy rows/columns and allocate weights
 Identify starting row/column for each component

o Identify width/height for each component

e Identify fill  for each component

e Identify anchor for each component

e Define row/column weights for each component

Java Programming Language Appendix B, slide 8 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Example

Basic, unexpanded layout proposal

Basic, expanded layout proposal

Java Programming Language Appendix B, slide 9 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

o WINPT O

(o3}

Java Programming Language

Loose componen

0 | 2 |3| 4
| [ |
| ||
4 — - - e 4 — - e e ] — — — — — |_|_ _____ -
| I
T = o= —— T === | -
| I
™ — — — L I F [ -
i I
| 1 b= _
| I
T T T = I [ | ——— -
| ||
T === = e T == = — -
| ||
| [ |
| (|
W Extra column
0o 2 v 3% g
| | | |
| | | |
| I ! I
| | | i
1= |
I | | I
| | | |
B N 1 s
| | | |
| | | |
| | | |
_____ | [ I N I
| | | |
| | | |
______ | - " *t -4 —-—"—"—""7t === =7 -
| | | |
| | | |
______ | e A S S ———— N
| | | |
: : : :
| |

Appendix B, slide 10 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Example

1
2 3 4 5
8
9
6 7
10
11
12

Compone grid . gridwidt gridheig
nt x oy, ht

1 0 0 5 1

2 0 1 1 1

3 1 1 1 1

4 2 1 1 1

5 3 1 2 1

6 0 2 1 4

7 1 2 3 4

8 4 2 1 1

9 4 3 1 1

10 4 4 1 1

11 4 5 1 1

12 0 6 5 1

Java Programming Language Appendix B, slide 11 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



Sun Educational Services

0 ! 1 ! 2 3 4
[ [ [ [
0 : 1: ! !
| | | i
ol | ) E— = L * L5
| i i |
2 | | | | 8
S | [ KR SRR | Re—
| | | |
3 | | | | 9
| 7 | | |
- 6 0 el T =1 —
| | | ' 10
4 | | | |
e fF——————— = +————q—-———f ===
| | | |
5
| | | | 1
i i | === == = = T === = =
6 | 12 | |
| | | |
|

Java Programming Language

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1

Appendix B, slide 12 of 17



@ Sun Educational Services

Example

" ©| GridBag Example | ([ | GridBag Example
1 1
2 || 3 4 || 3 2 3 || 4 5
a
(5]
2
6 Fil
10 .2
11 2 7
10
12
11
12
Java Programming Language Appendix B, slide 13 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@Sun Educational Services

Example

import java.awt.*;
import com.sun.java.swing.*;

1
2
3
4 public class ExampleGB {

5 public static void main(String args]]) {

6  JFrame f=new JFrame(“GridBag Example”);

7  Container ¢ = f.getContentPane();

8  c.setLayout(new GridBagLayout());

9  GridBagAdder.add(c, new Canvas(), 3,2,1, 1,1, 0,

10  GridBagConstraints.NONE, GridBagConstraints. CENTER);

11  GridBagAdder.add(c, new JButton(“1"), 0, 0, 5, 1, O, O,

12 GridBagConstraints.HORIZONTAL, GridBagConstraints. CENTER);
13  GridBagAdder.add(c, new JButton(2"), 0,1, 1,1, 0, O,

14  GridBagConstraints.BOTH, GridBagConstraints. CENTER);

15 GridBagAdder.add(c, new JButton(“3"), 1,1, 1,1, 1, 0,

16  GridBagConstraints.HORIZONTAL, GridBagConstraints. CENTER);
17 GridBagAdder.add(c, new JButton(“4”), 2,1, 1,1, 0, O,

18  GridBagConstraints.BOTH, GridBagConstraints.CENTER);

19 GridBagAdder.add(c, new JButton("5"), 3,1, 2, 1, 0, O,

20  GridBagConstraints. HORIZONTAL, GridBagConstraints. CENTER);
21 GridBagAdder.add(c, new JButton(“6"), 0, 2, 1, 4, 0, O,

22  GridBagConstraints. HORIZONTAL, GridBagConstraints. CENTER);
23 GridBagAdder.add(c, new JButton(“7”), 1, 2, 3, 4, 0, 0,

24  GridBagConstraints.BOTH, GridBagConstraints.CENTER);

25 GridBagAdder.add(c, new JButton(“8”), 4,2, 1, 1,0, 1,

26  GridBagConstraints.BOTH, GridBagConstraints. CENTER);

27 GridBagAdder.add(c, new JButton(“9”), 4, 3,1, 1,0, 1,

28  GridBagConstraints.BOTH, GridBagConstraints. CENTER);

29 GridBagAdder.add(c, new JButton(*10"),4,4,1,1,0, 1,

30  GridBagConstraints.BOTH, GridBagConstraints. CENTER);

31 GridBagAdder.add(c, new JButton(“11"), 4,5, 1, 1,0, 1,

32  GridBagConstraints.BOTH, GridBagConstraints. CENTER);

33 GridBagAdder.add(c, new JButton(“12"), 0, 6, 5, 1, 0, O,

34  GridBagConstraints. HORIZONTAL, GridBagConstraints. CENTER);
35 f.pack();

36 f.setVisible(true);

Java Programming Language Appendix B, slide 14 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Example

38 static class GridBagAdder {

39 /I OKto reuse this as we overwrite all elements every time

40 /I Note that this is not threadsafe however!

41 static GridBagConstraints cons = new GridBagConstraints();
42  public static void add(Container cont, Component comp, int x, int'y,
43  intwidth, int height, int weightx, int weighty, int fill, int anchor) {
44 cons.gridx =X;

45  cons.gridy =vy;

46 cons.gridwidth = width;

47  cons.gridheight = height;

48  cons.weightx = weightx;

49  cons.weighty = weighty;

50  consill =fil;

51  cons.anchor = anchor;

52  contadd(comp, cons);

53 }

54 }

55}

Java Programming Language Appendix B, slide 15 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
RELATIVE and REMAINDER

e Shorthand for position, size, or both

e Forgridx /gridy :
RELATIVE => extends to the next position

e For gridwidth  /gridheight
RELATIVE => extends to last one

e For gridwidth  /gridheight
REMAINDER=> extends to last one

e Careful use of these helps maintenance, but it:

e Makes adding order significant

 Might decrease readability of code

Java Programming Language Appendix B, slide 16 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services
Think Beyond

e Are there any layout effects that you cannot handle
using the layout managers you now understand?

Java Programming Language Appendix B, slide 17 of 17

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

ADOUL THIS COUTSE uunereriririiiriisissinsisrisrisiisiiisissessissississssssssssssesssssessessessssssssossosees Preface-1
COUTSE GOALS .ttt e et e e et e e e eeaaae e s eeaaaeeeeensaeeesenssaeessennraeeeennes Preface-2
COUTSE OVEIVIEW ..ttt ettt e e ettt e e e e ettt e e e eeetaaeeeeebaeeeeeeasaeeseessssaeeeessseeeessssseesennsaseeaanes Preface-3
COUTSE MAP .ot Preface-4
Module-by-Module OVEIVIEW ..........cccoiiiiiiiiiiiiiiiiii e Preface-5
COUTSE ODJECLIVES ...ttt Preface-7
Skills Gained by Module .........cccooiiiiiiiiiii Preface-9
Guidelines for Module Pacing ..o Preface-10
TOPIcsS NOt COVETEA .....coiiiiiiiiiiiiii e Preface-11
How Prepared Are YOU? ..o Preface-12
| 53R 0 To AU Ta] 5 T0) o V- JNU OO RRRRRUPRRURRRPRRRN Preface-13
How to Use Course MaterialS .......ceoovueiiiiuieiiiieeeeieeeeee ettt eaeeeereeeenreeeens Preface-14
COUTSE ICOMIS .. eete e e e et e e e e et e e e eetaeeeeeeataeeeeensaseeeennsaseeeenseeeeeennes Preface-15
Typographical CONVENIONS .........cccciiiiiiiiiiiiiiiiii e Preface-16

L@ Y 7 7 1-1
COUISE MAP ..oviiiiiiiciit e 1-2
ODJECLIVES ... 1-3
RELEVAIICE ..ttt ettt e e et e e et e e e tae e e eateeeeaaeeeeaeeeeseeeenteeeenteeeenteeenssaeeesseeenreeennnes 1-5
What Is the Java Programming Language? ...........cccccoeeveveiiiiiiiiininiiicccceeee s 1-6
Primary Goals of the Java Programming Language ............cccccoviiiiniiiiiiiiiiiiicccce, 1-7
The Java Virtual MacChine ........ccoooiiiiiiiiieiicceececeee ettt ettt e te e s ee e veesabeesaesaseeseessseennes 1-10
Garbage ColleCtiOn ........cooviiiiiiiiiii s 1-13
COdE SECUTILY ..ouvviiiiiiiiiic s 1-14
Java Runtime ENVITONIMENT ......ccccviiiiiiiiiiicee ettt et e e e e e e e seaa e e e enaaeeeesnnsaaaaans 1-15
(@ =TT 3) I Y=Y <) (SRRSO 1-16
Bytecode VETifier ... 1-17
Compiling and Running HellOWOrIAADPD ..o 1-19
Compile-Time EITOTS .....cccooiiiiiiiiiiiiic s 1-20
RUNEIINE EITOTS cooiiiiiiiieeeeeee ettt e et e e e e e e e et e e e e e s seesasbbaaaeeseseeesssassrareeseessanns 1-21

Java Programming Language i of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The Source File LayouLt .......ccccoiiiiiiiiiic s 1-22
Classes and Packages — An INtroduction ..........ccccooeveviiiiiiiiiiniicccccc 1-23
Using the Java API Documentation ... 1-24
Exercise: Performing Basic Java Tasks .........cccccoviiiiiiiiniiiiicccccc 1-25
Check YOUT PTOZISS ....ouvuiiiiiiiiiiiiecc et 1-26
Think BeyOnd ..o 1-28
Identifiers, Keywords, ANd TYPES ........cuuvurvervevevresrisuisunsininsissississisississessessessssssssssssssssessens 2-1
COUTSE MAP . 2-2
ODJECLIVES ...t 2-3
REIEVANCE ... s 2-5
COMIMENES .ttt 2-6
Semicolons, Blocks, and Whitespace ... 2-7
TAENEIFIOLS ..o 2-9
Java KeYWOIAS ..ottt 2-10
Primitive TYPES ..ccooiiiiiiiiiiii s 2-11
Logical = DOOLEAN .........cuoviiiiiiiii e 2-12
Textual — char and StrNG ... 2-13
Integral — byte, short, int, and IoNg .........cccoeiiiiiiiiiii 2-15
Floating Point — float and double ... 2-17
Variables, Declarations, and ASSIGNMENLS ............ccceuiiiiiiiiiiiiiiic s 2-19
Java Coding CONVENLIONS ......ccciviiiiiiiiiiiiiiiiic e 2-20
Understanding ODbJECES ..o 2-22
Creating an ODJECt ........coviiiiiiiiii s 2-23
Creating an Object — Memory Allocation and Layout ...........ccccooeiiiiiiiiiniiiccs 2-24
Assignment of Reference Variables ..o 2-27
Assignment of Reference Variables ... 2-28
Terminology RECAP .....ccoiuiiiiiiiiiiiiii s 2-29
Exercise: Using Identifiers, Keywords, and Types ..o 2-30
Check YOUT PTOZISS ....ouviiiiiiiiiiiiectc et 2-31
Java Programming Language ii of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Think Beyomnd ........ccooiiiiiiiii s 2-33
Expressions and FIOW CONEYOL .....uoeievrevrivrivrisiiiiiisinsinsississisiesiiisisessessesnesnesssseessens 3-1
COUTSE MAP .ot 3-2
ODJECLIVES ..ttt 3-3
REIEVANCE ...t s 3-5
Variables and SCOPE ..o 3-6
Variable InitialiZation ..o 3-7
OPETALOTS ..ottt 3-8
Logical EXPIeSSIONS ......ccciuiiiiiiiiiiiiiiiiiiccic e s 3-9
Short -Circuit Logical Operators ..o 3-10
String Concatenation With + ........ccccoooiiiii 3-11
Right-Shift Operators >> and >>> ... 3-12
Left-Shift OPperator (K<) ..o 3-13
CASTINIE vveveeiiietec e 3-14
Promotion and Casting of EXPIeSSIONS .........cccciiiiiiiiiiiiiiiiiiiiiicicic s 3-15
Branching Statements ..o 3-16
Looping StatemMeNts ... 3-20
Special Loop FIOW CONIOL .......ccccoiiiiiiiiiiiiiiiiiici s 3-23
Exercise: UsING EXPIESSIONS ......c.ooviiiiiiiiiiiiieiecccttt et 3-28
Check YOUT PTOZISS ....ouviiiiiiiiiiiiiectt st 3-29
Think BeyOnd ..o 3-31
ATTAYS conrvvrvevriiiiiisieisiiinniiisieiisesieisisisiessssesssessssesssesssssssssssssessssssssessssssssesssesssssssssssssesssssssseses 4-1
COUISE MAP .oviiiiiiit s 4-2
ODJECLIVES ..ot 4-3
REIEVANCE ... s 4-4
DeClaring ATTAYS .....coeuiiiiiiiieiciiieteiec ettt 4-5
CTeatiNg ATTAYS ..ooiviiiiiiiiiiiicc et s et a e a e a e 4-6
INItiAliZING ATTAYS ..ooviviviiiiiiiiic s 4-7

Java Programming Language iii of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Multi-Dimensional ATTAYS ......ccccciviiiriniiiiiiiiieieeicie et 4-8
ATTaY BOUNAS .o 4-10
ATTAY RESIZING «..ooviiiiiiiiiic e 4-11
Exercise: USING ATTAYS ....cccocoiiiiiiiiiiitiiiicicetc et a s 4-13
Check YOUT PTOZISS ....ouvuiiiiiiiiiiiiecc et 4-14
Think BeyOnd ..o 4-15
ODjects ANA CLASSES ....ucueruverrivrisrisriiiiisinisississississssisststsessssssssssssssstssssssssssssssssssssssessessess 5-1
COUTSE MAP . 5-2
ODJECLIVES ...t 5-3
REIEVANCE ... s 5-5
Object Fundamentals ...........ccccoovoiiiiiiiiiii s 5-6
Classes and ODJECtS .......ccciuiiiiiiiiiiiiiiii s 5-7
Defining Methods ... 5-10
Pass-Dy-ValUe .......ccccouiiiiiiiii s 5-11
The this Reference ... 5-12
Data HidiNg ....ccooiiiiiiiiiic 5-13
ENCapsulation ... 5-15
Overloading Method NamMes ... 5-16
Constructing and Initializing ODbjects ... 5-17
Explicit Member INitialiZation ..........cccocovieiiiiiiiniiiniiicc s 5-18
CONSEIUCTOTS ..viiiiiiiicc e 5-19
Invoking Overloaded CONSIIUCIOLS .........coiuiiiiiiiiiiiiiiicc e 5-21
The Default CONSEITUCLOT .......ccooiiiiiiiiiiiiiiii s 5-22
Theisa RelationShip ... 5-23
The extends KeyWord ... 5-25
Single INNeTItANCe ........coiiiieicc 5-26
Constructors Are Not Inherited ... 5-28
POlYyMOIPRISIN ..ot 5-29
Heterogeneous COlleCtioNS ..........ccoouiiiiiiiiiiiiiiicc s 5-31
Java Programming Language iv of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

The INStanceof OPeTrator .........cccciiiiiiiiiiiiiiiic s 5-33
CastiNg ODJECES ....cvviiiiiiiii s 5-34
Overriding Methods ... 5-35
Rules About Overridden Methods ..........ccccioiiiiiiiiniiiiiiiiiiiee e 5-38
The SUPEr KeYWOId ....ccvoviiiiiiicee s 5-40
Invoking Parent Class CONStIUCLOLS .......cccoviiuiiiiiiiiiiiiiiiici s 5-42
PaCKAZES ...viiiiiicii e 5-44
The iImport Statement ... 5-45
Directory Layout and Packages ... 5-46
Exercise: Using Objects and Classes ...........ccccciviiiiiiiiiiiiiniiiiiiicccccceecees 5-47
Check YOUT PTOZISS ....ouiiiiiiiiiiiiect s 5-48
Think BeyOnd ..o 5-50
Advanced Language FEATUTES .......ivivinrivrinrinsiniisiisiisinisissessisussissisisessessessssssssssesssssens 6-1
COUISE MAP ..oviiiiiiic s 6-2
ODJECLIVES ...t 6-3
REIEVANICE ...t 6-5
Class (StatiC) VAriables ........cccevirieirieieieiesester ettt ettt ettt s b e bt ese et e st ensenes 6-6
Static INTHALIZETS ..oouiiiiieiiiiiicicee ettt 6-8
Static Methods and Data ..........cccccooiiiiiiiiiiii s 6-10
The fiNal KEYWOTId .....cocvoviiiiiie s 6-13
ADSEIACE CLASSES ...ttt ettt 6-14
INEETTACES ..o 6-15
INEETEACES ..ttt 6-16
Advanced Access CONEIOL .......oouoiiiiiiiiiiiecee ettt 6-18
DEPTECAtION ...ooviiiiiiiiiiiicic s 6-19
The == Operator Versus equals() Method ...........cccccooviiiiiiiiiii 6-23
toString() IMEENOM ...ttt 6-24
INNET CLASSES ...ttt s 6-25
Properties of INNer CIASSES .........ccovviiiiiniiiiiiiiicic s 6-26
Java Programming Language v of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

WIAPPET CLASSES ..ottt s 6-29
COlleCtion APT .....c.oiiiiiiii 6-31
The VECIOr  Class .....cocuiiiiiiiiiiiiiic e s 6-32
SYIOPSIS «..viviritiietcieice ettt a e 6-33
CONSIIUCEOTS ...ttt 6-34
Variables ... s 6-35
MENOAS ..o 6-36
The VECIOr  Class ..o 6-37
The VECIOr  Class ....ccoiiiiiiiiiiiii s 6-38
Reflection AP ..o 6-39
Reflection API Security Model .........cccooviiiiiiiiiiiiiiiiiccc s 6-41
Exercise: Working With Advanced Language Features ...........c.ccccccooiviniiiiiiis 6-42
Check YOUT PTOZIESS ....c.oiiiiiiiiiiiiiiccc e 6-43
Think BEYONd .....coovoiiiii s 6-45
EXCOPTIONS .ouveurevrirnviiriitriiiiiiniissiisieisesnesssssssssessesssessssssssssesssessssssssssssssesssesssessssssessssssosssons 7-1
COUTSE MAP .ot 7-2
ODJECLIVES ..o 7-3
REIEVANCE ...t s 7-4
EXCOPHIONS .ooviiiiiic s 7-5
Exception EXamPLe ... 7-6
try and catch Statements ... 7-7
Call Stack MeChaniSImL .........ccciiiiiiiiiiiiiic s 7-8
finally Statement ..........ccoooiiiiiiiii s 7-9
Exception Example Revisited ... 7-10
EXCeption Cat@GOTies .......coiviiiiiiiiiiiitiicictec s 7-11
CommOn EXCEPHIONS .....cuiuiiieiiiiiiiic 7-12
The Handle or Declare Rule ... 7-13
Creating Your OwWn EXCEPHIONS ......ccooviiiiiiiiiiiiicicccccc s 7-14
Handling User-Defined EXCEPHIONS ........cccovviviiiiiiiiiiiiiiiiiciccccccce s 7-15
Java Programming Language vi of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Check YOUT PTOZIESS ....c.oiiiiiiiiiiiiiciccc s 7-16
Think BeYOmnd ........ccooiiiiiiiiii s 7-17
BUIAING GULIS ...uuueveevinviriiniirinrisristisiisiisisisississississssisstsstssssssssesssssssssssssssssssssssssssssssssssssssssseons 8-1
COUTSE MAP .ot 8-2
ODJECLIVES ..o 8-3
REIEVAIICE ...ttt sttt sttt sa e aea 8-5
The AWT oo 8-6
The java.awt PACKage ... 8-7
CONAINETS ...t a e s sb s 8-8
Building Graphical User INterfaces ............ccccoviiiiiiiiiiiiiccc s 8-9
FIAIME ettt 8-10
IMYFTAMIEJAVA ettt ettt ettt ettt et e st e b e e st e s bt et e ea e e s bt enbesatesaeenseeneenseensesntenseensennes 8-11
PANEL e 8-13
FrameWIthPaNELJaVa ..ottt ettt st be ettt nee 8-14
ContaiNer  LaYOULS ..ot 8-16
Default Layout Managers ..........ccccoviiiiiiiiiiiiiiccc s 8-17
A Simple FlowLayout EXample ..........cccccooiiiiiiiiiiicccccc s 8-18
FIOWLAYOUL  IMANAGET ......cooviuiiiiiiiiiiiiiicic s 8-19
IMYFIOW.JAVA ettt ettt et e sttt e st e b e e st e st e e s e ense st e enseessesseensaessenseenseessenseensennes 8-20
EXGUIZJAVA oottt ettt sttt et ettt et e s b e s bt e bt e st e st e st e st e b e b e nbeeaeene e st ene e st entensenes 8-22
GrdLAYOUt  IMANAEGET .....c.cciiiiiiiiiiiiciieci bbb 8-24
GEHAEXJAVA ceeeeieeieieeieet ettt et et st et et e st este e st e sseesseessesseesseessesseenseassenseesseassenseenseassenseensanssensanns 8-25
GridBagLayout  Manager .........cccccciiiiiiiiiiiiiiiicicii 8-31
EXGUIBJAVA oottt ettt et et e sttt et e st e bt e a e et e e be e a e e sae et e en e e aeebeentenaeenteeaes 8-32
Output 0f EXGUI3JAVA ....ooviiiiiiiiiiiiiiiicicce e s 8-33
Exercise: BUilding GUIS ........ccccooiiiiiiiiiiiiiiic s 8-34
Check YOUT PrOGIess ... 8-35
Think Beyond ........cccoiiiiiiiii s 8-37
Java Programming Language vii of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



==

Sun Educational Services

The AWT EVENT MOEL ........uuueeeeeeeveeeeiereeeeriereessseeeeessaseessssessssssssssssssessssssssssssssssssssssssssassssns 9-1
COUTSE MAP .ot 9-2
ODJECLIVES ..ttt 9-3
REIEVANCE ...ttt ettt ettt e et e s et e b e e b e ese e beesseeseesbeessessaesseessessaesbaessesssensesssesseensenses 9-4
WHRAt IS QN EVENL? ..ottt ettt ettt et e e s abe e beesabeesbeessbeenseessseesseessseenseenssens 9-5
JDK 1.0 Event Model Versus Java 2 SDK Event Model...........ccooveeiieeiiiiiiciecieeeeeee e 9-6
Hierarchical Model (JDK 1.0) .ooueooiiiiiiiieeeeeet ettt st ettt 9-7
Delegation MOdel ... 9-9
Delegation Model ... 9-10
Frame With a Single BUttOn ........cccooioiiiiiii s 9-12
The ButtonHANAIETr CIASS ....ccuvieiiiiiieiieeeeeee ettt ettt et et ae e veeesbeeaeeesbeebeessaeenees 9-13
Event CateGOTies .......ccoiiiiiiiiiiiiciietcc s 9-14
JAVA GUI BERAVIOT ...ccuiiiiiiieieeteteeeseeeete ettt ettt st et e e e st e e b e staebeesaasseessaessessaenseessasseensanses 9-15
Complex EXaMPIE ......occiiiiiiiiiiiiiiiii s 9-17
Complex EXaAMPIE ....cooviiiiiiiiiiiiiiiicc s 9-18
Multiple LISEENETS ......cocveviieieiiiiiiciceeeeee s 9-19
Event Adapters ... s 9-20
ANONYMOUS ClASSES .....ovviiiiiiiiiciiii s 9-21
Exercise: Working With EVENts ..o 9-22
Check YOUT PrOGIess ... 9-23
Think Beyond ........ccoiiiiiiiii s 9-24

The AWT Component LIDYATY ......eoeeevevserresrisuisiisininissississississssisesesessssessessessossssessens 10-1
COUTSE MAP ..ot 10-2
ODJECLIVES ..ttt 10-3
REIEVANCE ...ttt ettt ettt e e et e st e e b e s be e beessesssesseessesseassaessesssesseessasseessaessasssensanssensean 10-4
Features Of the AWT ...ttt ettt e et e aa e e be e s b e e sbeessaeenseesssassseasseeenses 10-5
Creating @ BUION  ...c.oooiiiiic e 10-6
Creating a CheCKDOX  ......c.oooviiiiiiii s 10-7
Creating the ItemListener Interface ... 10-8

Java Programming Language viii of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a ChOICE  ........coiiiiiiiii e 10-10
CANVAS ot 10-11
Creating a LADEI ..o 10-13
Creating a TEXIFIEIA  .o.ooi e 10-14
Creating a TEXIAIBA  ...coviiicccc e 10-15
Text COMPONENLS .....ooiviiiiiiiiii e 10-16
Creating a LISt COMPONENL ......ocooiiiiiiiiiiiiiiic e 10-17
Creating a DIAlog  ...ooooiiiii s 10-18
Creating a FileDialog ..o 10-19
Creating a SCIOlPANE ..o 10-20
IMBIMU et 10-21
Creating @ MENUBAK ..........cccoiiiiiiiiiiic e 10-22
Creating @ MENU .......ccooviiiiiiicc s 10-23
Creating a MENUIEIM ..o 10-24
Creating a CheckBOXMENUIEM ... 10-25
Creating a POPUPMENU ........cooviiiiiiiiciiecc st 10-26
Controlling Visual ASPECtS .........ccoovviiiiiiiiiiiiiiiiiiiccce s 10-27
PIINEINE oo s 10-29
Exercise: Creating a Paint Program Layout ..o 10-30
Check YOUT PTOZISS ....cviiiiiiiiiiiiietc e 10-31
Think Beyond ... 10-32
Java FOUunAdation CLASSES ........cuuvurvuesersissinsuisississississsssssssssssssssssssssssssssssssssssssssssssssssssssnes 11-1
COUTSE MAP .ot 11-2
ODJECLIVES ..t 11-3
REIEVANCE ... 11-4
INEFOAUCHION ..o 11-5
SWING INtrodUCHON ......ciiiiiiiiiii s 11-6
SWiINE HIerarchy ... 11-7
SWING COMPONENLS .....cvoviiiiiiiitiiie e 11-8
Java Programming Language ix of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

A Basic SWing APPLCAtiON ........ccoeiiiiiiiiiiiiiiicc s 11-10
HEHOSWING oottt ettt et e et e et e e aa et e e b e e seesseesbeessesssenseessasseesseessesssenseessansean 11-11
HEHOSWING ettt ettt et h et st e s ae et e et e s bt ebesabesaeenbeentesaeensesntenaean 11-12
HEHIOSWING oottt ettt ettt et e et e st e e b e et e sse e beensesseenseensesseensaensenssensennsensean 11-13
Basic SWing APPliCAtiON ........ccooiioiiiiiiiiiiecc 11-14
Building a SWing GUI ..o 11-16
The JCOMPONENE CASS ..ecvveiveeieeeieiieieeeeiteete et eteete st esteetesseeteeseesseessessaesseesseessesseeseessasseensesssessenns 11-19
Exercise: Creating Swing Applications ..........cccoevvveieiiiiiiiniiiiiniiiicccccccc s 11-20
Check YOUT PrOGress ... 11-21
Think Beyond ........cccoiiiiiiiii s 11-22
Introduction to JAUA APPIELS ...eueivivivisrisriniiiisiiininsisisiesieieisesissessessesssssssssesnes 12-1
COUTSE MAP ..ot 12-2
ODJECLIVES ..ttt 12-3
REIEVANCE ... 12-5
What Is an APPLet? ..o s 12-6
Applet Security ReStIICHIONS .......ccovvuiiiiiiiiiiiiiiiiiciccc s 12-7
Applet Class Hierarchyy ... 12-8
Key Applet Methods .......ccoiiiiiiiiiiiiiii s 12-9
APPLEt DISPLAY ..o 12-10
Applet Methods and the Applet Life Cycle ..o 12-11
AWT PaiNtINg oo 12-12
Applet Display Strategies ... 12-14
What Is the QPPIEIVIEWET 7 ettt ettt ettt et bbb et st et eneenean 12-15
The applet TAG ....c.cooiiiiiiiic s 12-16
Additional Applet Facilities ..o 12-17
A Simple IMage Test ........ccvveiiiiiiiic s 12-18
AUAIOCHD ettt ettt et et e st et e st e s bt et e e st e s b e e beestesse et e eneenseensesseenseenseeneenseens 12-19
A SIMple AUIO TESt ..o s 12-20
Looping an AUCIOCHD  .oviii s 12-21
Java Programming Language x of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

A Simple LoOping TeSt ........ccovviiiiiiiiiiiiicc s 12-22
MOUSE INPUL ..o 12-23
A SImple Mouse TeSt ..o 12-24
Reading Parameters ..o 12-25
Dual Purpose Code SampIe ..........ccoovvviiiiiiiiiiiiicceee s 12-26
Exercise: Creating APPLets ... 12-28
Check YOUT PIOZIeSS ....c.coviiiiiiiiiiiiicicciiic s 12-29
Think BEYONd .....coovoiiiii s 12-31
THYCAMS «eveeveereeereecreeesreecreecstescssecsseesssscsseesssssssessssssssessssssssassssssssessssssssesssssssssssssssnsessssssssasssane 13-1
COUTSE MAP .ot 13-2
ODJECLIVES ..o 13-3
RELEVAIICE ...ttt ettt ettt 13-5
TRIEAAS ..o s 13-6
Three Parts of @ Thread ... 13-7
Creating the Thread ... 13-8
Starting the Thread ... 13-10
Thread SChedULING .........ccooviiiiiii s 13-11
Terminating a Thread ... 13-13
Basic Control of Threads ... 13-14
Putting Threads on HOId ........ccccooviiiiiii s 13-15
Extending the Thread Class ..o 13-17
Selecting a Way to Create Threads ... 13-18
Using the synchronized Keyword ..o 13-19
The Object LOCK Flag ..o 13-20
The Object LOCK Flag .......cccooiiiiiiiiiiiiiii s 13-21
Releasing the LOCK Flag .........cccooiiiiiiiiiiic s 13-22
synchronized  — Putting It Together ... 13-23
DEadIOCK ... 13-25
Thread Interaction —wait() and NOLIY() oo 13-26
Java Programming Language xi of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Thread INETACION ......coiiiiieiiierer ettt sttt sb bt ettt et st s bt e b ebe e st et esnenean 13-27
Monitor Model for Synchronization ... 13-28
PIOGUCET ettt ettt b e bbbt ettt et e e e b e s bt sbeebesbe e st et enbeneen 13-29
CONSUMET .. sa e s a e en s 13-30
POP() MEINOA ettt ettt b e bttt b et e et e b et e s b e beeae e st et et ensenee 13-32
PUSN()  MELROA ..ttt ettt et 13-33
SYNCTESLJAVA coeeeeieieeeteeeete ettt ettt e ettt e e e s te et e e st e s st esseesse st e enseessesseenseensenseensennsanseensennes 13-34
PIOQUCEIJAVA oottt ettt b et a e bt e st et e st et e st e besbesseebesseeneensentensan 13-35
CONSUMBIJAVA  c.eeeiieiieieeite ettt ettt et et e e et e st e et e e s te s bt et e e st esbe e st e estenseenseeatesseenseentesseensesnsanseensennes 13-36
Y [0S =T 1 = Y- TSRS 13-37
The suspend() and resume() MethoOds .....ccceveeirieiiieieeee et 13-38
The StOP()  MEthOd ......oveiieiee ettt sttt 13-39
Proper Thread CONtrol ... 13-40
Exercise: Using Multithreaded Programming ............cccccoeveieininininiiiniinicccccccees 13-41
Check YOUT PrOGress ... 13-42
Think Beyond ........cccoiiiiiiii s 13-44
SHeAM I/O ANA FileS ..cuuuvuirvivviiniriniiiiiiiiinniisisssisssissssssssssssssssssssssssssssssssssssssssssssssssssssasss 14-1
COUTSE MAP ..ottt 14-2
ODJECLIVES ..ttt 14-3
RELEVAIICE ..ottt ettt ettt ettt e e st e st e s b e e st e st s st e st ent et e s enbesbesseeseeseentensensensan 14-4
SEECAIIL L/ O ettt et ettt e et e e s e e s e et e e e e e e s e s s e s s aaeteeeessaesssaataeeeessesasssassaeseaesssanas 14-5
Stream FUNAAamENTALS ......cc.eouiviriiiiiiicieeee ettt bbbt ettt 14-6
InputStream Methods ..........ccovviiiiiiiii s 14-7
OutputStream Methods ... 14-8
Basic STream CIASSES .....ccuevueruiriiriiriiriieiieietestest sttt ettt ettt st b sttt et et st sbe e bt et et et et enten 14-9
URL INPUt SET@AMS ..ot 14-11
Opening an Input Stream ... 14-12
REAAETS aNd WTIILETS ....eoiiiiiiiiiieiieieeeete ettt ettt ettt ettt sbe s bbbt e e teneens 14-13
Reading String INPUL ... 14-14
Java Programming Language xii of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Creating a New File  Object ........ccoooiiiiiiiiiiiic e 14-15
File  Tests and UHLHES ........ccocooiiiiiiiiiiiiii s 14-16
Creating a Random Access File ... 14-18
Random Access FIles ..o 14-19
SerialiZAtION ...voviiiiiiii 14-20
Writing an Object to a File Stream ... 14-21
Reading an Object From a File Stream ..., 14-22
Exercise: Getting Acquainted With I/O ..o 14-23
Check YOUT PrOGress ... 14-24
Think Beyond ........cccoiiiiiiiii s 14-25
INEEWOTKING woouvervvnvirinrirrirriiiiiiiiniiniissisiiiiisisississessessessesssessesssssessessessssssssssssssssssssssssssssnes 15-1
COUTSE MAP ..ot 15-2
ODJECLIVES ..ttt 15-3
REIEVANCE ... 15-4
INEEWOTKING ..ot 15-5
Networking With Java TechnolOgy .........cccccoviiiiiiiiiiiiiiicc s 15-6
Java Networking Model ... 15-7
MINEIMAL TICP /IR SOIVET ettt ettt et e e e e e e et e e e e e seess st e eeeesseseessrasaeeeeesesaessssaeseeesssenas 15-8
Minimal TCP /IP SEIVET ......ccovviiiiiiiiiiiiiiiiciciic s 15-9
MINIMAL TCP /TP CLIENT coooeeeeeieeeeeiee ettt ettt et e e e eaaeeeseeaaeeseseastessssaseessssasseessssnseesssnsseessns 15-10
UDDP SOCKELS ..ottt sttt 15-11
The DatagramPackel ... 15-12
The DatagramSOCKet ..o s 15-13
MiNIimal UDP SEIVET .....c.coueiriiriiiiiiiiieieieieteeeete ettt 15-14
Minimal UDP CHEN ......ccoiiiiiiiiiiiinic s 15-17
Exercise: Using Socket Programming ...........ccooveviiiiiiniiiiiiiiieccec s 15-19
Check YOUT PrOgress ... 15-20
Think Beyond ........cccoiiiiiiiii s 15-21
Java Programming Language xiii of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



@ Sun Educational Services

Using the GridBagLayOUL — ......cccvveieiininisiiniiininininnisniiiisisisisnesnsnsisesessessssssssessosees B-1

Layout Managers ..ot B-2

The GrOBAgLAYOUL ..ottt ettt et e st e e e s ae et e e b e ese e seesseessenseensesseenseensensnensanns B-3

The GridBagConstraints CIASS ettt sttt ettt b ettt b e B-7

Designing with GridBagLayout ... B-8

EXQIMPLE o B-9

RELATIVE and REMAINDER ......ccooiiiiiiiiieneeeeteeete ettt st ettt et st s B-16

Think Beyond ..o B-17

Java Programming Language xiv of xiv

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services September 1999, Revision C.1



Copyright 1999 Sun Microsystems Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce
produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans I’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéemes Berkeley 4.3 BSD licenciés par I'Université de Californie. UNIX est une marque déposée aux Etats-Unis et dans d’autres
pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, le logo Sun, sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.

Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marques déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

L’interfaces d'utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox
pour larecherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur
l'interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

L’accord du gouvernement américain est requis avant I'exportation du produit.

Le systéme X Window est un produit de X Consortium, Inc.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT

EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A
L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFACON.



