
15

Toolkit and Peers

In this chapter:
• Toolkit
• The Peer Interfaces

This chapter describes the Toolkit class and the purposes it serves. It also
describes the java.awt.peer package of interfaces, along with how they fit in with
the general scheme of things. The most important advice I can give you about the
peer interfaces is not to worry about them. Unless you are porting Java to another
platform, creating your own Toolkit, or adding any native component, you can
ignore the peer interfaces.

15.1 Toolkit
The Toolkit object is an abstract class that provides an interface to platform-spe-
cific details like window size, available fonts, and printing. Every platform that sup-
ports Java must provide a concrete class that extends the Toolkit class. The Sun
JDK provides a Toolkit for Windows NT/95 (sun.awt.win32.MToolkit [Java1.0]
or sun.awt.windows.MToolkit [Java1.1]), Solaris/Motif
(sun.awt.motif.MToolkit), and Macintosh (sun.awt.macos.MToolkit). Although
the Toolkit is used frequently, both directly and behind the scenes, you would
never create any of these objects directly. When you need a Toolkit, you ask for it
with the static method getDefaultToolkit() or the Component.getToolkit()

method.

You might use the Toolkit object if you need to fetch an image in an application
(getImage()), get the font information provided with the Toolkit (getFontList()
or getFontMetrics()), get the color model (getColorModel()), get the screen
metrics (getScreenResolution() or getScreenSize()), get the system clipboard
(getSystemClipboard()), get a print job (getPrintJob()), or ring the bell
(beep()). The other methods of Toolkit are called for you by the system.

489

10 July 2002 22:23



490 CHAPTER 15: TOOLKIT AND PEERS

15.1.1 Toolkit Methods
Constructors

public Toolkit() — cannot be called by user
Because Toolkit is an abstract class, it has no usable constructor. To get a
Toolkit object, ask for your environment’s default toolkit by calling the static
method getDefaultToolkit() or call Component.getToolkit() to get the
toolkit of a component. When the actual Toolkit is created for the native envi-
ronment, the awt package is loaded, the AWT-Win32 and AWT-Callback-Win32

or AWT-Motif and AWT-Input threads (or the appropriate threads for your envi-
ronment) are created, and the threads go into infinite loops for screen main-
tenance and event handling.

Pseudo -Constructors

public static synchronized Toolkit getDefaultToolkit ()
The getDefaultToolkit() method returns the system’s default Toolkit

object. The default Toolkit is identified by the System property awt.toolkit,
which defaults to an instance of the sun.awt.motif.MToolkit class. On the
Windows NT/95 platforms, this is overridden by the Java environment to be
sun.awt.win32.MToolkit (Java1.0) or sun.awt.windows.MToolkit (Java1.1).
On the Macintosh platform, this is overridden by the environment to be
sun.awt.macos.MToolkit. Most browsers don’t let you change the system
property awt.toolkit. Since this is a static method, you don’t need to have a
Toolkit object to call it; just call Toolkit.getDefaultToolkit().

Currently, only one Toolkit can be associated with an environment. You are
more than welcome to try to replace the one provided with the JDK. This per-
mits you to create a whole new widget set, outside of Java, while maintaining
the standard AWT API.

System information

public abstract ColorModel getColorModel ()
The getColorModel() method returns the current ColorModel used by the sys-
tem. The default ColorModel is the standard RGB model, with 8 bits for each
of red, green, and blue. There are an additional 8 bits for the alpha compo-
nent, for pixel-level transparency.

10 July 2002 22:23



public abstract String[] getFontList ()
The getFontList() method returns a String array of the set Java fonts avail-
able with this Toolkit. Normally, these fonts will be understood on all the Java
platforms. The set provided with Sun’s JDK 1.0 (with Netscape Navigator and
Internet Explorer, on platforms other than the Macintosh) contains Times-
Roman, Dialog, Helvetica, Courier (the only fixed-width font), DialogInput,
and ZapfDingbat.

In Java 1.1, getFont() reports all the 1.0 font names. It also reports Serif,
which is equivalent to TimesRoman; San Serif, which is equivalent to Hel-
vetica; and Monospaced, which is equivalent to Courier. The names Times-
Roman, Helvetica, and Courier are still supported but should be avoided.
They have been deprecated and may disappear in a future release. Although
the JDK 1.1 reports the existence of the ZapfDingbat font, you can’t use it. The
characters in this font have been remapped to Unicode characters in the
range \u2700 to \u27ff.

public abstract FontMetrics getFontMetrics (Font font)
The getFontMetrics() method returns the FontMetrics for the given Font

object. You can use this value to compute how much space would be required
to display some text using this font. You can use this version of getFontMet-
rics() (unlike the similar method in the Graphics class) prior to drawing any-
thing on the screen.

public int getMenuShortcutKeyMask() �

The getMenuShortcutKeyMask() method identifies the accelerator key for
menu shortcuts for the user’s platform. The return value is one of the modi-
fier masks in the Event class, like Event.CTRL_MASK. This method is used inter-
nally by the MenuBar class to help in handling menu selection events. See
Chapter 10, Would You Like to Choose from the Menu? for more information
about dealing with menu accelerators.

public abstract PrintJob getPrintJob (Frame frame, String jobtitle, Properties props) �

The getPrintJob() method initiates a print operation, PrintJob, on the user’s
platform. After getting a PrintJob object, you can use it to print the current
graphics context as follows:

// Java 1.1 only
PrintJob p = getToolkit().getPrintJob (aFrame, "hi", aProps);
Graphics pg = p.getGraphics();
printAll (pg);
pg.dispose();
p.end();

With somewhat more work, you can print arbitrary content. See Chapter 17,

15.1 TOOLKIT 491

10 July 2002 22:23



492 CHAPTER 15: TOOLKIT AND PEERS

Printing, for more information about printing. The frame parameter serves as
the parent to any print dialog window, jobtitle ser ves as the identification
string in the print queue, and props ser ves as a means to provide platform-spe-
cific properties (default printer, page order, orientation, etc.). If props is
(Properties)null, no properties will be used. props is particularly interesting
in that it is used both for input and for output. When the environment creates
a print dialog, it can read default values for printing options from the proper-
ties sheet and use that to initialize the dialog. After getPrintJob() returns, the
properties sheet is filled in with the actual printing options that the user
requested. You can then use these option settings as the defaults for subse-
quent print jobs.

The actual property names are Toolkit specific and may be defined by the
environment outside of Java. Furthermore, the environment is free to ignore
the props parameter altogether; this appears to be the case with Windows
NT/95 platforms. (It is difficult to see how Windows NT/95 would use the
properties sheet, since these platforms don’t even raise the print dialog until
you call the method getGraphics().) Table 15-1 shows some of the properties
recognized on UNIX platforms; valid property values are shown in a fixed-
width font.

Table 15–1: UNIX Printing Properties

Property Name Meaning and Possible Values

awt.print.printer The name of the printer on your system to send the
job to.

awt.print.fileName The name of the file to save the print job to.

awt.print.numCopies The number of copies to be printed.

awt.print.options Other options to be used for the run-time system’s
print command.

awt.print.destination Whether the print job should be sent to a printer or
saved in a file.

awt.print.paperSize The size of the paper on which you want to print—
usually, letter.

awt.print.orientation Whether the job should be printed in portrait or
landscape orientation.

public static String getProperty (String key, String defaultValue) �

The getProperty() method retrieves the key property from the system’s
awt.properties file (located in the lib director y under the java.home director y). If
key is not a valid property, defaultValue is returned. This file is used to
provide localized names for various system resources.

10 July 2002 22:23



public abstract int getScreenResolution ()
The getScreenResolution() method retrieves the resolution of the screen in
dots per inch. The sharper the resolution of the screen, the greater number of
dots per inch. Values vary depending on the system and graphics mode. The
PrintJob.getPageResolution() method returns similar information for a
printed page.

public abstract Dimension getScreenSize ()
The getScreenSize() method retrieves the dimensions of the user’s screen in
pixels for the current mode. For instance, a VGA system in standard mode will
return 640 for the width and 480 for the height. This information is extremely
helpful if you wish to manually size or position objects based upon the physical
size of the user’s screen. The PrintJob.getPageDimension() method returns
similar information for a printed page.

public abstract Clipboard getSystemClipboard() �

The getSystemClipboard() method returns a reference to the system’s clip-
board. The clipboard allows your Java programs to use cut and paste opera-
tions, either internally or as an interface between your program and objects
outside of Java. For instance, the following code copies a String from a Java
program to the system’s clipboard:

// Java 1.1 only
Clipboard clipboard = getToolkit().getSystemClipboard();
StringSelection ss = new StringSelection("Hello");
clipboard.setContents(ss, this);

Once you have placed the string "Hello" on the clipboard, you can paste it
anywhere. The details of Clipboard, StringSelection, and the rest of the
java.awt.datatransfer package are described in Chapter 16, Data Transfer.

public final EventQueue getSystemEventQueue() �

After checking whether the security manager allows access, this method
returns a reference to the system’s event queue.

protected abstract EventQueue getSystemEventQueueImpl() �

getSystemEventQueueImpl() does the actual work of fetching the event queue.
The toolkit provider implements this method; only subclasses of Toolkit can
call it.

Images

The Toolkit provides a set of basic methods for working with images. These meth-
ods are similar to methods in the Applet class; Toolkit provides its own implemen-
tation for use by programs that don’t have access to an AppletContext (i.e.,

15.1 TOOLKIT 493

10 July 2002 22:23



494 CHAPTER 15: TOOLKIT AND PEERS

applications or applets that are run as applications). Remember that you need an
instance of Toolkit before you can call these methods; for example, to get an
image, you might call Toolkit.getDefaultToolkit().getImage("myImage.gif").

public abstract Image getImage (String filename)
The getImage() method with a String parameter allows applications to get an
image from the local filesystem. Its argument is either a relative or absolute
filename for an image in a recognized image file format. The method returns
immediately; the Image object that it returns is initially empty. When the image
is needed, the system attempts to get filename and convert it to an image. To
force the file to load immediately or to check for errors while loading, use the
MediaTracker class.

NOTE This version of getImage() is not usable within browsers since it will
throw a security exception because the applet is trying to access the
local filesystem.

public abstract Image getImage (URL url)
The getImage() method with the URL parameter can be used in either applets
or applications. It allows you to provide a URL for an image in a recognized
image file format. Like the other getImage() methods, this method returns
immediately; the Image object that it returns is initially empty. When the image
is needed, the system attempts to load the file specified by url and convert it
to an image. You can use the MediaTracker class to monitor loading and check
whether any errors occurred.

public abstract boolean prepareImage (Image image, int width, int height,
ImageObser ver obser ver)

The prepareImage() method is called by the system or a program to force
image to start loading. This method can be used to force an image to begin
loading before it is actually needed. The Image image will be scaled to be
width height. A width and height of -1 means image will be rendered
unscaled (i.e., at the size specified by the image itself). The observer is the
Component on which image will be rendered. As the image is loaded across the
network, the observer’s imageUpdate() method is called to inform the
obser ver of the image’s status.

public abstract int checkImage (Image image, int width, int height, ImageObserver observer)
The checkImage() method returns the status of the image that is being ren-
dered on observer. Calling checkImage() only provides information about
the image; it does not force the image to start loading. The image is being
scaled to be width height. Passing a width and height of –1 means the image
will be displayed without scaling. The return value of checkImage() is some

10 July 2002 22:23



combination of ImageObserver flags describing the data that is now available.
The ImageObserver flags are: WIDTH, HEIGHT, PROPERTIES, SOMEBITS,
FRAMEBITS, ALLBITS, ERROR, and ABORT. Once ALLBITS is set, the image is com-
pletely loaded, and the return value of checkImage() will not change. For
more information about these flags, see Chapter 12, Image Processing.

The following program loads an image; whenever paint() is called, it displays
what information about that image is available. When the ALLBITS flag is set,
checkingImages knows that the image is fully loaded, and that a call to draw-

Image() will display the entire image.

import java.awt.*;
import java.awt.image.*;
import java.applet.*;
public class checkingImages extends Applet {

Image i;
public void init () {

i = getImage (getDocumentBase(), "ora-icon.gif");
}
public void displayChecks (int i) {

if ((i & ImageObserver.WIDTH) != 0)
System.out.print ("Width ");

if ((i & ImageObserver.HEIGHT) != 0)
System.out.print ("Height ");

if ((i & ImageObserver.PROPERTIES) != 0)
System.out.print ("Properties ");

if ((i & ImageObserver.SOMEBITS) != 0)
System.out.print ("Some-bits ");

if ((i & ImageObserver.FRAMEBITS) != 0)
System.out.print ("Frame-bits ");

if ((i & ImageObserver.ALLBITS) != 0)
System.out.print ("All-bits ");

if ((i & ImageObserver.ERROR) != 0)
System.out.print ("Error-loading ");

if ((i & ImageObserver.ABORT) != 0)
System.out.print ("Loading-Aborted ");

System.out.println ();
}
public void paint (Graphics g) {

displayChecks (Toolkit.getDefaultToolkit().checkImage(i, -1, -1, this));
g.drawImage (i, 0, 0, this);

}
}

Here’s the output from running checkingImages under Java 1.0; it shows that
the width and height of the image are loaded first, followed by the image
properties and the image itself. Java 1.1 also displays Frame-bits once the
image is loaded.

Width Height
Width Height Properties Some-bits
Width Height Properties Some-bits All-bits

15.1 TOOLKIT 495

10 July 2002 22:23



496 CHAPTER 15: TOOLKIT AND PEERS

Width Height Properties Some-bits All-bits
Width Height Properties Some-bits All-bits
... (Repeated Forever More)

public abstract Image createImage (ImageProducer producer)
This createImage() method creates an Image object from an ImageProducer.
The producer parameter must be some class that implements the ImagePro-

ducer inter face. Image producers in the java.awt.graphics package are Fil-
teredImageSource (which, together with an ImageFilter, lets you modify an
existing image) and MemoryImageSource (which lets you turn an array of pixel
information into an image). The image filters provided with java.awt.image

are CropImageFilter, RGBImageFilter, AreaAveragingScaleFilter, and
ReplicateScaleFilter. You can also implement your own image producers
and image filters. These classes are all covered in detail in Chapter 12.

The following code uses this version of createImage() to create a modified
version of an original image:

Image i = Toolkit.getDefaultToolkit().getImage (u);
TransparentImageFilter tf = new TransparentImageFilter (.5f);

Image j = Toolkit.getDefaultToolkit().createImage (
new FilteredImageSource (i.getSource(), tf));

public Image createImage (byte[] imageData) �

This createImage() method converts the entire byte array in imageData into
an Image. This data must be in one of the formats understood by this AWT
Toolkit (GIF, JPEG, or XBM) and relies on the “magic number” of the data to
determine the image type.

public Image createImage (byte[] imageData, int offset, int length) �

This createImage() method converts a subset of the byte data in imageData

into an Image. Instead of starting at the beginning, this method starts at off-
set and goes to offset+length-1, for a total of length bytes. If offset is 0
and length is imageData.length, this method is equivalent to the previous
method and converts the entire array.

The data in imageData must be in one of the formats understood by this AWT
Toolkit (GIF, JPEG, or XBM) and relies on the “magic number” of the data to
determine the image type.

NOTE For those unfamiliar with magic numbers, most data files are
uniquely identified by the first handful or so of bytes. For instance,
the first three bytes of a GIF file are “GIF”. This is what createIm-
age() relies upon to do its magic.

10 July 2002 22:23



Miscellaneous methods

public abstract void beep () �

The beep() method attempts to play an audio beep. You have no control over
pitch, duration, or volume; it is like putting echo ˆG in a UNIX shell script.

public abstract void sync ()
The sync() method flushes the display of the underlying graphics context.
Normally, this is done automatically, but there are times (particularly when
doing animation) when you need to sync() the display yourself.

15.2 The Peer Interfaces
Each GUI component that AWT provides has a peer. The peer is the implementa-
tion of that component in the native environment. For example, the Choice com-
ponent in AWT corresponds to some native object that lets the user select one or
more items from a list. As a Java developer, you need to worry only about the inter-
face of the Choice object; when someone runs your program, the Choice object is
mapped to an appropriate native object, which is the Choice peer, that “does the
right thing.” You don’t really care what the peer is or how it’s implemented; in fact,
the peer may look (and to some extent, behave) differently on each platform.

The glue that allows an AWT component and its peer to work together is called a
peer interface. A peer interface is simply an interface that defines the methods that
the peer is required to support. These interfaces are collected in the package
java.awt.peer. For example, this package contains the ButtonPeer inter face,
which contains the single method setLabel(). This means that the native object
used to implement a Button must contain a method called setLabel() in order
for AWT to use it as a button peer. (It’s not quite that simple; since a button is also
a Component, the button’s peer must also implement the ComponentPeer inter face,
which is much more complicated.)

With one exception, there is a one-to-one correspondence between Component

classes and peer interfaces: a Window has a WindowPeer, a Checkbox has a Checkbox-
Peer, and so on. The one exception is a new peer interface that appears in Java
1.1: the LightweightPeer, which doesn’t have a corresponding component. The
LightweightPeer is used by components that exist purely in Java, don’t have a
native peer, and are displayed and managed by another container. Lightweight-
Peer makes it easier to create new components or containers that can behave like
other components, but don’t subclass Canvas or Panel and don’t correspond to
anything in the native environment. The best usage I can think of is to subclass
Container to create a lightweight Panel. If you are only using a Panel to manage

15.2 THE PEER INTERFACES 497

10 July 2002 22:23



498 CHAPTER 15: TOOLKIT AND PEERS

layout, there is no need for a peer to be created to process events. This should
result in substantial resource savings where multiple panels need to be created just
to help with layout. The following code is all you need to create a LightWeight-

Panel:

import java.awt.*;
public class LightWeightPanel extends Container {
}

There also tends to be a one-to-one relationship between the peer methods and
the methods of the Java component. That is, each method in the peer interface
corresponds to a method of the component. However, although a peer must
implement each method in its peer interface, it doesn’t necessarily have to do any-
thing in that method. It’s entirely possible for a platform to have a native button
object that doesn’t let you set the label. In this case, the button peer would imple-
ment the setLabel() method required by the ButtonPeer inter face, but it
wouldn’t do anything. Of course, the component may also have many methods
that don’t correspond to the peer methods. Methods that don’t correspond to any-
thing in the peer are handled entirely within Java.

The ComponentPeer inter face is the parent of all non-menu objects in the peer
package. The MenuComponentPeer is the parent of all menu objects. The trees mir-
ror the regular object hierarchies. Figure 15-1 shows the object hierarchy diagram.

Creating a Java component (e.g., Button b = new Button ("Foo")) does not
create the peer. An object’s peer is created when the object’s addNotify() method
is called. This is usually when the component’s container is added to the screen.
The call to a component’s addNotify() method in turn calls the appropriate
createxxxx() method of the Toolkit (for a Button, createButton()). Figure 15-2
shows the process.

When you remove a component from a container by calling remove(), the con-
tainer calls the component’s removeNotify() method. This usually results in a call
to the peer’s dispose() method. Depending on the particular component,
removeNotify() may be overridden to perform additional work. Removing a Com-
ponent from a Container does not destroy the Component. The next time the
method addNotify() is called, the component must be recreated by the peer, with
its previous characteristics. For instance, when a TextField is removed, the current
text, plus the start and stop points for the current selection, are saved. These will
be restored if you add the text field to its container again. For some components,
like a Label, there is no need to retain any additional information.

A component’s peer needs to exist only when the user is interacting with it. If you
are developing resource-intensive programs, you might want to consider drawing
the components manually when they do not have the focus and using the peer
only when they actually have input focus. This technique can save a considerable

10 July 2002 22:23



KEY extendsINTERFACE INFREQUENTLY USED

FontPeer

ComponentPeer

java.awt.peer ButtonPeer

CanvasPeer

CheckboxPeer

ChoicePeer

ContainerPeer

LabelPeer

ListPeer

ScrollbarPeer

TextComponentPeer

WindowPeer

ScrollPanePeer

FramePeer

DialogPeer FileDialogPeer

TextFieldPeer

TextAreaPeer

MenuComponentPeer

MenuBarPeer

MenuItemPeer

CheckboxMenuItemPeer

MenuPeer

LightweightPeer

PanelPeer

PopupMenuPeer

Figure 15–1: java.awt.peer object hierarchy

amount of memory resources but requires extra work on your part as a developer
and goes beyond the scope of this book. The LightweightPeer inter face appears
to be designed to make this process easier: you could create a dummy button that
doesn’t do anything and uses the LightweightPeer. Whenever the mouse enters
the button’s space, you could quickly remove the dummy button and add a real
button.

The peer interfaces are listed in their entirety in the reference section. We won’t
list them here, primarily because you don’t need to worry about them unless
you’re porting Java to a new platform. Each method in a peer interface corre-
sponds exactly to the similarly named method in the matching component.
LightweightPeer is the only exception, because it doesn’t have a matching compo-
nent, but that’s easy to take care of: as you’d expect, LightweightPeer doesn’t

15.2 THE PEER INTERFACES 499

10 July 2002 22:23



500 CHAPTER 15: TOOLKIT AND PEERS

Button
Native Button

(peer object)

Toolkit

createButton()

Java-Land

addNotify()

Real World

Figure 15–2: Creating a Button peer

define any methods. (Of course, a peer that implements LightweightPeer would
still need to implement the methods inherited from ComponentPeer, but those are
inherited when you subclass Component.)

10 July 2002 22:23


	Toolkit
	Toolkit Methods

	The Peer Interfaces

