
8

Input Fields

In this chapter:
• Text Component
• TextField
• TextArea
• Extending TextField

There are two fundamental ways for users to provide input to a program: they can
type on a keyboard, or they can select something (a button, a menu item, etc.)
using a mouse. When you want a user to provide input to your program, you can
display a list of choices to choose from or allow the user to interact with your pro-
gram by typing with the keyboard. Presenting choices to the user is covered in
Chapter 9, Pick Me. As far as keyboard input goes, the java.awt package provides
two options. The TextField class is a single line input field, while the TextArea

class is a multiline one. Both TextField and TextArea are subclasses of the class
TextComponent, which contains all the common functionality of the two. TextCom-
ponent is a subclass of Component, which is a subclass of Object. So you inherit all
of these methods when you work with either TextField or TextArea.

8.1 Text Component
By themselves, the TextField and TextArea classes are fairly robust. However, in
order to reduce duplication between the classes, they both inherit a number of
methods from the TextComponent class. The constructor for TextComponent is
package private, so you cannot create an instance of it yourself. Some of the activi-
ties shared by TextField and TextArea through the TextComponent methods
include setting the text, getting the text, selecting the text, and making it read-
only.

302

10 July 2002 22:21

8.1.1 TextComponent Methods
Contents

Both TextField and TextArea contain a set of characters whose content deter-
mines the current value of the TextComponent. The following methods are usually
called in response to an external event.

public String getText ()
The getText() method returns the current contents of the TextComponent as
a String object.

public void setText (String text)
The setText() method sets the content of the TextComponent to text. If the
TextComponent is a TextArea, you can embed newline characters (\n) in the
text so that it will appear on multiple lines.

Te xt selection

Users can select text in TextComponents by pressing a mouse button at a starting
point and dragging the cursor across the text. The selected text is displayed in
reverse video. Only one block of text can be selected at any given time within a sin-
gle TextComponent. Once selected, this block could be used to provide the user
with some text-related operation such as cut and paste (on a PopupMenu).

Depending on the platform, you might or might not be able to get selected text
when a TextComponent does not have the input focus. In general, the component
with selected text must have input focus in order for you to retrieve any informa-
tion about the selection. However, in some environments, the text remains
selected when the component no longer has the input focus.

public int getSelectionStart ()
The getSelectionStart() method returns the initial position of any selected
text. The position can be considered the number of characters preceding the
first selected character. If there is no selected text, getSelectionStart()
returns the current cursor position. If the start of the selection is at beginning
of the text, the return value is 0.

public int getSelectionEnd ()
The getSelectionEnd() method returns the ending cursor position of any
selected text—that is, the number of characters preceding the end of the
selection. If there is no selected text, getSelectionEnd() returns the current
cursor position.

8.1 TEXT COMPONENT 303

10 July 2002 22:21

304 CHAPTER 8: INPUT FIELDS

public String getSelectedText ()
The getSelectedText() method returns the currently selected text of the
TextComponent as a String. If nothing is selected, getSelectedText() returns
an empty String, not null.

public void setSelectionStart (int position) �

The setSelectionStart() method changes the beginning of the current
selection to position. If position is after getSelectionEnd(), the cursor posi-
tion moves to getSelectionEnd(), and nothing is selected.

public void setSelectionEnd (int position) �

The setSelectionEnd() method changes the end of the current selection to
position. If position is before getSelectionStart(), the cursor position
moves to position, and nothing is selected.

public void select (int selectionStart, int selectionEnd)
The select() method selects the text in the TextComponent from selection-

Start to selectionEnd. If selectionStart is after selectionEnd, the cursor
position moves to selectionEnd. Some platforms allow you to use select() to
ensure that a particular position is visible on the screen.

public void selectAll ()
The selectAll() method selects all the text in the TextComponent. It basically
does a select() call with a selectionStart position of 0 and a selectionEnd
position of the length of the contents.

Carets

Introduced in Java 1.1 is the ability to set and get the current insertion position
within the text object.

public int getCaretPosition () �

The getCaretPosition() method returns the current text insertion position
(often called the “cursor”) of the TextComponent. You can use this position to
paste text from the clipboard with the java.awt.datatransfer package
described in Chapter 16, Data Transfer.

public void setCaretPosition (int position) �

The setCaretPosition() method moves the current text insertion location of
the TextComponent to position. If the TextComponent does not have a peer
yet, setCaretPosition() throws the IllegalComponentStateException run-
time exception. If position < 0, this method throws the run-time exception
IllegalArgumentException. If position is too big, the text insertion point is
positioned at the end.

10 July 2002 22:21

Prior to Java version 1.1, the insertion location was usually set by calling
select(position, position).

Read-only text

By default, a TextComponent is editable. If a user types while the component has
input focus, its contents will change. A TextComponent can also be used in an out-
put-only (read-only) mode.

public void setEditable (boolean state)
The setEditable() method allows you to change the current editable state of
the TextComponent to state. true means the component is editable; false
means read-only.

public boolean isEditable ()
The isEditable() method tells you if the TextComponent is editable (true) or
read-only (false).

The following listing is an applet that toggles the editable status for a TextArea

and sets a label to show the current status. As you can see in Figure 8-1, platforms
can change the display characteristics of the TextComponent to reflect whether the
component is editable. (Windows 95 darkens the background. Motif and Windows
NT do nothing.)

import java.awt.*;
import java.applet.*;
public class readonly extends Applet {

TextArea area;
Label label;
public void init () {

setLayout (new BorderLayout (10, 10));
add ("South", new Button ("toggleState"));
add ("Center", area = new TextArea ("Help Me", 5, 10));
add ("North", label = new Label ("Editable", Label.CENTER));

}
public boolean action (Event e, Object o) {

if (e.target instanceof Button) {
if ("toggleState".equals(o)) {

area.setEditable (!area.isEditable ());
label.setText ((area.isEditable () ? "Editable" : "Read-only"));
return true;

}
}
return false;

}
}

8.1 TEXT COMPONENT 305

10 July 2002 22:21

306 CHAPTER 8: INPUT FIELDS

Read only (darker)Editable

Figure 8–1: Editable and read-only TextAreas

Miscellaneous methods

public synchronized void removeNotifiy ()
The removeNotify() method destroys the peer of the TextComponent and
removes it from the screen. Prior to the TextComponent peer’s destruction, the
current state is saved so that a subsequent call to addNotify() will put it back.
(TextArea and TextField each have their own addNotify() methods.) These
methods deal with the peer object, which hides the native platform’s imple-
mentation of the component. If you override this method for a specific
TextComponent, put in the customizations for your new class first, and call
super.removeNotify() last.

protected String paramString ()
When you call the toString() method of a TextField or TextArea, the default
toString() method of Component is called. This in turn calls paramString(),
which builds up the string to display. The TextComponent level potentially adds
four items. The first is the current contents of the TextComponent (getText()).
If the text is editable, paramString() adds the word editable to the string. The
last two items included are the current selection range (getSelectionStart()
and getSelectionEnd()).

8.1.2 TextComponent Events
With the 1.1 event model, you can register listeners for text events. A text event
occurs when the component’s content changes, either because the user typed
something or because the program called a method like setText(). Listeners are

10 July 2002 22:21

registered with the addTextListener() method. When the content changes, the
TextListener.textValueChanges() method is called through the protected
method processTextEvent(). There is no equivalent to TextEvent in Java 1.0; you
would have to direct keyboard changes and all programmatic changes to a com-
mon method yourself.

In addition to TextEvent listeners, Key, mouse, and focus listeners are registered
through the Component methods addKeyListener(), addMouseListener(),
addMouseMotionListener(), and addFocusListener(), respectively.

Listeners and 1.1 event handling

public synchronized void addTextListener(TextListener listener) �

The addTextListener() method registers listener as an object interested in
receiving notifications when a TextEvent passes through the EventQueue with
this TextComponent as its target. The listener.textValueChanged() method is
called when these events occur. Multiple listeners can be registered.

The following applet, text13, demonstrates how to use a TextListener to han-
dle the events that occur when a TextField is changed. Whenever the user
types into the TextField, a TextEvent is delivered to the textValueChanged()
method, which prints a message on the Java console. The applet includes a
button that, when pressed, modifies the text field tf by calling setText().
These changes also generate a TextEvent.

// Java 1.1 only
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
class TextFieldSetter implements ActionListener {

TextField tf;
TextFieldSetter (TextField tf) {

this.tf = tf;
}
public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals ("Set")) {
tf.setText ("Hello");

}
}

}
public class text13 extends Applet implements TextListener {

TextField tf;
int i=0;
public void init () {

Button b;
tf = new TextField ("Help Text", 20);
add (tf);
tf.addTextListener (this);
add (b = new Button ("Set"));
b.addActionListener (new TextFieldSetter (tf));

8.1 TEXT COMPONENT 307

10 July 2002 22:21

308 CHAPTER 8: INPUT FIELDS

}
public void textValueChanged(TextEvent e) {

System.out.println (++i + ": " + e);
}

}

public void removeTextListener(TextListener listener) �

The removeTextListener() method removes listener as an interested lis-
tener. If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvents with this TextComponent as
its target. processEvent() then passes the events along to any listeners for pro-
cessing. When you subclass TextComponent, overriding processEvent() allows
you to process all events yourself, before sending them to any listeners. In a
way, overriding processEvent() is like overriding handleEvent() using the 1.0
event model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processTextEvent(TextEvent e) �

The processTextEvent() method receives all TextEvents with this TextCompo-
nent as its target. processTextEvent() then passes them along to any listeners
for processing. When you subclass TextField or TextArea, overriding the
processTextEvent() method allows you to process all text events yourself,
before sending them to any listeners. There is no equivalent to processTex-

tEvent() within the 1.0 event model.

If you override processTextEvent(), remember to call the method
super.processTextEvent(e) last to ensure that regular event processing can
occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

8.2 TextField
TextField is the TextComponent for single-line input. Some constructors permit
you to set the width of the TextField on the screen, but the current LayoutMan-
ager may change it. The text in the TextField is left justified, and the justification
is not customizable. To change the font and size of text within the TextField, call
setFont() as shown in Chapter 3, Fonts and Colors.

10 July 2002 22:21

The width of the field does not limit the number of characters that the user can
type into the field. It merely suggests how wide the field should be. To limit the
number of characters, it is necessary to override the keyDown() method for the
Component. Section 8.4 contains an example showing how to do this.

8.2.1 TextField Methods
Constructors

public TextField ()
This constructor creates an empty TextField. The width of the TextField is
zero columns, but it will be made wide enough to display just about one char-
acter, depending on the current font and size.

public TextField (int columns)
This constructor creates an empty TextField. The TextField width is
columns. The TextField will try to be wide enough to display columns charac-
ters in the current font and size. As I mentioned previously, the layout man-
ager may change the size.

public TextField (String text)
This constructor creates a TextField with text as its content. In Java 1.0 sys-
tems, the TextField is 0 columns wide (the getColumns() result), but the sys-
tem will size it to fit the length of text. With Java 1.1, getColumns() actually
returns text.length.

public TextField (String text, int columns)
This constructor creates a TextField with text as its content and a width of
columns.

The following example uses all four constructors; the results are shown in Figure
8-2. With the third constructor, you see that the TextField is not quite wide
enough for our text. The system uses an average width per character to try to
determine how wide the field should be. If you want to be on the safe side, specify
the field’s length explicitly, and add a few extra characters to ensure that there is
enough room on the screen for the entire text.

import java.awt.TextField;
public class texts extends java.applet.Applet {

public void init () {
add (new TextField ()); // A
add (new TextField (15)); // B
add (new TextField ("Empty String")); // C
add (new TextField ("Empty String", 20)); // D

}
}

8.2 TEXTFIELD 309

10 July 2002 22:21

310 CHAPTER 8: INPUT FIELDS

A

D

C

B

Figure 8–2: Using the TextField constructors

Sizing

public int getColumns ()
The getColumns() method returns the number of columns set with the con-
structor or a later call to setColumns(). This could be different from the dis-
played width of the TextField, depending upon the current LayoutManager.

public void setColumns (int columns) �

The setColumns() method changes the preferred number of columns for the
TextField to display to columns. Because the current LayoutManager will do
what it wants, the new setting may be completely ignored. If columns < 0, set-
Columns() throws the run-time exception IllegalArgumentException.

public Dimension getPreferredSize (int columns) �

public Dimension preferredSize (int columns) ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of a TextField with a width of columns. The columns

specified may be different from the number of columns designated in the con-
structor.

preferredSize() is the Java 1.0 name for this method.

public Dimension getPreferredSize () �

public Dimension preferredSize () ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of the TextField. Without the columns parameter, this
getPreferredSize() uses the constructor’s number of columns (or the value
from a subsequent call to setColumns()) to calculate the TextField’s pre-
ferred size.

10 July 2002 22:21

preferredSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize (int columns) �

public Dimension minimumSize (int columns) ✩

The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of a TextField with a width of columns. The columns speci-
fied may be different from the columns designated in the constructor.

minimumSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize () �

public Dimension minimumSize ()
The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of the TextField. Without the columns parameter, this
getMinimumSize() uses the constructor’s number of columns (or the value
from a subsequent call to setColumns()) to calculate the TextField’s mini-
mum size.

minimumSize() is the Java 1.0 name for this method.

Echoing character

It is possible to change the character echoed back to the user when he or she
types. This is extremely useful for implementing password entry fields.

public char getEchoChar ()
The getEchoChar() method returns the currently echoed character. If the
TextField is echoing normally, getEchoChar() returns zero.

public void setEchoChar (char c) �

public void setEchoCharacter (char c) ✩

The setEchoChar() method changes the character that is displayed to the user
to c for every character in the TextField. It is possible to change the echo
character on the fly so that existing characters will be replaced. A c of zero,
(char)0, effectively turns off any change and makes the TextField behave nor-
mally.

setEchoCharacter() is the Java 1.0 name for this method.

public boolean echoCharIsSet ()
The echoCharIsSet() method returns true if the echo character is set to a
nonzero value. If the TextField is displaying input normally, this method
returns false.

8.2 TEXTFIELD 311

10 July 2002 22:21

312 CHAPTER 8: INPUT FIELDS

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the TextField peer. If you override this
method, first call super.addNotify(), then add your customizations for the
new class. Then you will be able to do everything you need with the informa-
tion about the newly created peer.

protected String paramString ()
When you call the toString() method of TextField, the default toString()
method of Component is called. This in turn calls paramString(), which builds
up the string to display. The TextField level can add only one item. If the
echo character is nonzero, the current echo character is added (the method
getEchoChar()). Using new TextField ("Empty String", 20), the results
displayed could be:

java.awt.TextField[0,0,0x0,invalid,text="Empty String",editable,selection=0-0]

8.2.2 TextField Events
With the 1.0 event model, TextField components can generate KEY_PRESS and
KEY_ACTION (which calls keyDown()), KEY_RELEASE and KEY_ACTION_RELEASE

(which calls keyUp()), and ACTION_EVENT (which calls action()).

With the 1.1 event model, you register an ActionListener with the method addAc-

tionListener(). Then when the user presses Return within the TextField the
ActionListener.actionPerformed() method is called through the protected
TextField.processActionEvent() method. Key, mouse, and focus listeners are
registered through the three Component methods of addKeyListener(),
addMouseListener(), and addFocusListener(), respectively.

Action

public boolean action (Event e, Object o)
The action() method for a TextField is called when the input focus is in the
TextField and the user presses the Return key. e is the Event instance for the
specific event, while o is a String representing the current contents (the
getText() method).

Keyboard

public boolean keyDown (Event e, int key)
The keyDown() method is called whenever the user presses a key. keyDown()
may be called many times in succession if the key remains pressed. e is the
Event instance for the specific event, while key is the integer representation of
the character pressed. The identifier for the event (e.id) for keyDown() could

10 July 2002 22:21

be either Event.KEY_PRESS for a regular key or Event.KEY_ACTION for an
action-oriented key (i.e., an arrow or function key). Some of the things you
can do through this method are validate input, convert each character to
uppercase, and limit the number or type of characters entered. The tech-
nique is simple: you just need to remember that the user’s keystroke is actually
displayed by the TextField peer, which receives the event after the TextField
itself. Therefore, a TextField subclass can modify the character displayed by
modifying the key field (e.key) of the Event and returning false, which
passes the Event on down the chain; remember that returning false indicates
that the Event has not been completely processed. The following method uses
this technique to convert all input to uppercase.

public boolean keyDown (Event e, int key) {
e.key = Character.toUppercase (char(key));
return false;

}

If keyDown() returns true, it indicates that the Event has been completely pro-
cessed. In this case, the Event never propagates to the peer, and the keystroke
is never displayed.

public boolean keyUp (Event e, int key)
The keyUp() method is called whenever the user releases a key. e is the Event
instance for the specific event, while key is the integer representation of the
character pressed. The identifier for the event (e.id) for keyUp() could be
either Event.KEY_RELEASE for a regular key or Event.KEY_ACTION_RELEASE for
an action-oriented key (i.e., an arrow or function key). Among other things,
keyUp() may be used to determine how long the key has been pressed.

Mouse

Ordinarily, the TextField component does not trigger any mouse events.

NOTE Mouse events are not generated for TextField with JDK 1.0.2. Your
run-time environment may behave differently. See Appendix C for
more information about platform dependencies.

Focus

The TextField component does not reliably generate focus events.

8.2 TEXTFIELD 313

10 July 2002 22:21

314 CHAPTER 8: INPUT FIELDS

NOTE The GOT_FOCUS and LOST_FOCUS events can be generated by
TextFields, but these events are not reliable across platforms. With
Java 1.0, they are generated on most UNIX platforms but not on Win-
dows NT/95 platforms. They are generated on all platforms under
Java 1.1. See Appendix C for more information about platform
dependencies.

public boolean gotFocus (Event e, Object o)
The gotFocus() method is triggered when the TextField gets the input focus.
e is the Event instance for the specific event, while o is a String representation
of the current contents (getText()).

public boolean lostFocus (Event e, Object o)
The lostFocus() method is triggered when the input focus leaves the
TextField. e is the Event instance for the specific event, while o is a String

representation of the current contents (getText()).

Listeners and 1.1 event handling

With the 1.1 event model, you register event listeners that are told when an event
occurs. You can register text event listeners by calling the method TextCompo-

nent.addTextListener().

public void addActionListener(ActionListener listener) �

The addActionListener() method registers listener as an object interested
in receiving notifications when an ActionEvent passes through the EventQueue
with this TextField as its target. The listener.actionPerformed() method is
called when these events occur. Multiple listeners can be registered. The fol-
lowing code demonstrates how to use an ActionListener to reverse the text in
the TextField.

// Java 1.1 only
import java.applet.*;
import java.awt.*;
import java.awt.event.*;

class MyAL implements ActionListener {
public void actionPerformed(ActionEvent e) {

System.out.println ("The current text is: " +
e.getActionCommand());

if (e.getSource() instanceof TextField) {
TextField tf = (TextField)e.getSource();
StringBuffer sb = new StringBuffer (e.getActionCommand());
tf.setText (sb.reverse().toString());

}
}

}

10 July 2002 22:21

public class text11 extends Applet {
public void init () {

TextField tf = new TextField ("Help Text", 20);
add (tf);
tf.addActionListener (new MyAL());

}
}

public void removeActionListener(ActionListener listener) �

The removeActionListener() method removes listener as a interested lis-
tener. If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvents with this TextField as its
target. processEvent() then passes them along to any listeners for processing.
When you subclass TextField, overriding processEvent() allows you to pro-
cess all events yourself, before sending them to any listeners. In a way, overrid-
ing processEvent() is like overriding handleEvent() using the 1.0 event
model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processActionEvent(ActionEvent e) �

The processActionEvent() method receives all ActionEvents with this
TextField as its target. processActionEvent() then passes them along to any
listeners for processing. When you subclass TextField, overriding the method
processActionEvent() allows you to process all action events yourself, before
sending them to any listeners. In a way, overriding processActionEvent() is
like overriding action() using the 1.0 event model.

If you override the processActionEvent() method, remember to call
super.processActionEvent(e) last to ensure that regular event processing
can occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

The following applet is equivalent to the previous example, except that it overrides
processActionEvent() to receive events, eliminating the need for an ActionLis-

tener. The constructor calls enableEvents() to make sure that events are deliv-
ered, even if no listeners are registered.

// Java 1.1 only
import java.applet.*;
import java.awt.*;

8.2 TEXTFIELD 315

10 July 2002 22:21

316 CHAPTER 8: INPUT FIELDS

import java.awt.event.*;

class MyTextField extends TextField {
public MyTextField (String s, int len) {

super (s, len);
enableEvents (AWTEvent.ACTION_EVENT_MASK);

}
protected void processActionEvent(ActionEvent e) {

System.out.println ("The current text is: " +
e.getActionCommand());

TextField tf = (TextField)e.getSource();
StringBuffer sb = new StringBuffer (e.getActionCommand());
tf.setText (sb.reverse().toString());
super.processActionEvent(e)

}
}
public class text12 extends Applet {

public void init () {
TextField tf = new MyTextField ("Help Text", 20);
add (tf);

}
}

8.3 TextArea
TextArea is the TextComponent for multiline input. Some constructors permit you
to set the rows and columns of the TextArea on the screen. However, the Layout-
Manager may change your settings. As with TextField, the only way to limit the
number of characters that a user can enter is to override the keyDown() method.
The text in a TextArea appears left justified, and the justification is not customiz-
able.

In Java 1.1, you can control the appearance of a TextArea scrollbar; earlier ver-
sions gave you no control over the scrollbars. When visible, the vertical scrollbar is
on the right of the TextArea, and the horizontal scrollbar is on the bottom. You
can remove either scrollbar with the help of several new TextArea constants; you
can’t move them to another side. When the horizontal scrollbar is not present, the
text wraps automatically when the user reaches the right side of the TextArea.
Prior to Java 1.1, there was no way to enable word wrap.

8.3.1 TextArea Variables
Constants

The constants for TextArea are new to Java 1.1; they allow you to control the visi-
bility and word wrap policy of a TextArea scrollbar. There is no way to listen for the
events when a user scrolls a TextArea.

10 July 2002 22:21

public static final int SCROLLBARS_BOTH �

The SCROLLBARS_BOTH mode is the default for TextArea. It shows both scroll-
bars all the time and does no word wrap.

public static final int SCROLLBARS_HORIZONTAL_ONL Y �

The SCROLLBARS_HORIZONTAL_ONLY mode displays a scrollbar along the bottom
of the TextArea. When this scrollbar is present, word wrap is disabled.

public static final int SCROLLBARS_NONE �

The SCROLLBARS_NONE mode displays no scrollbars around the TextArea and
enables word wrap. If the text is too long, the TextArea displays the lines sur-
rounding the cursor. You can use the cursor to move up and down within the
TextArea, but you cannot use a scrollbar to navigate. Because this mode has
no horizontal scrollbar, word wrap is enabled.

public static final int SCROLLBARS_VERTICAL_ONL Y �

The SCROLLBARS_VERTICAL_ONLY mode displays a scrollbar along the right
edge of the TextArea. If the text is too long to display, you can scroll within
the area. Because this mode has no horizontal scrollbar, word wrap is enabled.

8.3.2 TextArea Methods
Constructors

public TextArea ()
This constructor creates an empty TextArea with both scrollbars. The
TextArea is 0 rows high and 0 columns wide. Depending upon the platform,
the TextArea could be really small (and useless) or rather large. It is a good
idea to use one of the other constructors to control the size of the TextArea.

public TextArea (int rows, int columns)
This constructor creates an empty TextArea with both scrollbars. The
TextArea is rows high and columns wide.

public TextArea (String text)
This constructor creates a TextArea with an initial content of text and both
scrollbars. The TextArea is 0 rows high and 0 columns wide. Depending upon
the platform, the TextArea could be really small (and useless) or rather large.
It is a good idea to use one of the other constructors to control the size of the
TextArea.

public TextArea (String text, int rows, int columns)
This constructor creates a TextArea with an initial content of text. The
TextArea is rows high and columns wide and has both scrollbars.

The following example uses the first four constructors. The results are shown in
Figure 8-3. With the size-less constructors, notice that Windows 95 creates a rather

8.3 TEXTAREA 317

10 July 2002 22:21

318 CHAPTER 8: INPUT FIELDS

large TextArea. UNIX systems create a much smaller area. Depending upon the
LayoutManager, the TextAreas could be resized automatically.

import java.awt.TextArea;
public class textas extends java.applet.Applet {

public void init () {
add (new TextArea ()); // A
add (new TextArea (3, 10)); // B
add (new TextArea ("Empty Area")); // C
add (new TextArea ("Empty Area", 3, 10)); // D

}
}

A

D C

B

Figure 8–3: TextArea constructor

public TextArea (String text, int rows, int columns, int scrollbarPolicy) �

The final constructor creates a TextArea with an initial content of text. The
TextArea is rows high and columns wide. The initial scrollbar display policy is
designated by the scrollbarPolicy parameter and is one of the TextArea con-
stants in the previous example. This constructor is the only way provided to
change the scrollbar visibility; there is no setScrollbarVisibility() method.
Figure 8-4 displays the different settings.

10 July 2002 22:21

SCROLLBARS_BOTH

SCROLLBARS_HORIZONTAL_ONLY

SCROLLBARS_VERTICAL_ONLY

SCROLLBARS_NONE

Figure 8–4: TextArea policies

Setting text

The text-setting methods are usually called in response to an external event. When
you handle the insertion position, you must translate it from the visual row and
column to a one-dimensional position. It is easier to position the insertion point
based upon the beginning, end, or current selection (getSelectionStart() and
getSelectionEnd()).

public void insert (String string, int position) �

public void insertText (String string, int position) ✩

The insert() method inserts string at position into the TextArea. If posi-
tion is beyond the end of the TextArea, string is appended to the end of the
TextArea.

insertText() is the Java 1.0 name for this method.

public void append (String string) �

public void appendText (String string) ✩

The append() method inserts string at the end of the TextArea.

appendText() is the Java 1.0 name for this method.

public void replaceRange (String string, int startPosition, int endPosition) �

public void replaceText (String string, int startPosition, int endPosition) ✩

The replaceRange() method replaces the text in the current TextArea from
startPosition to endPosition with string. If endPosition is before startPo-
sition, it may or may not work as expected. (For instance, on a Windows 95
platform, it works fine when the TextArea is displayed on the screen. However,
when the TextArea is not showing, unexpected results happen. Other plat-
forms may vary.) If startPosition is 0 and endPosition is the length of the
contents, this method functions the same as TextComponent.setText().

8.3 TEXTAREA 319

10 July 2002 22:21

320 CHAPTER 8: INPUT FIELDS

replaceText() is the Java 1.0 name for this method.

Sizing

public int getRows ()
The getRows() method returns the number of rows set by the constructor or a
subsequent call to setRows(). This could be different from the displayed
height of the TextArea.

public void setRows (int rows) �

The setRows() method changes the preferred number of rows to display for
the TextField to rows. Because the current LayoutManager will do what it
wants, the new setting may be ignored. If rows < 0, setRows() throws the run-
time exception IllegalArgumentException.

public int getColumns ()
The getColumns() method returns the number of columns set by the con-
structor or a subsequent call to setColumns(). This could be different from
the displayed width of the TextArea.

public void setColumns (int columns) �

The setColumns() method changes the preferred number of columns to dis-
play for the TextArea to columns. Because the current LayoutManager will do
what it wants, the new setting may be ignored. If columns < 0, setColumns()
throws the run-time exception IllegalArgumentException.

public Dimension getPreferredSize (int rows, int columns) �

public Dimension preferredSize (int rows, int columns) ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of the TextArea with a preferred height of rows and
width of columns. The rows and columns specified may be different from the
current settings.

preferredSize() is the Java 1.0 name for this method.

public Dimension getPreferredSize (int rows, int columns) �

public Dimension preferredSize () ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of the TextArea. Without the rows and columns parame-
ters, this getPreferredSize() uses the constructor’s number of rows and
columns to calculate the TextArea’s preferred size.

preferredSize() is the Java 1.0 name for this method.

10 July 2002 22:21

public Dimension getMinimumSize (int rows, int columns) �

public Dimension minimumSize (int rows, int columns) ✩

The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of the TextArea with a height of rows and width of
columns. The rows and columns specified may be different from the current
settings.

minimumSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize () �

public Dimension minimumSize () ✩

The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of the TextArea. Without the rows and columns parame-
ters, this getMinimumSize() uses the current settings for rows and columns to
calculate the TextArea’s minimum size.

minimumSize() is the Java 1.0 name for this method.

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the TextArea peer. If you override this
method, call super.addNotify() first, then add your customizations for the
new class. You will then be able to do everything you need with the informa-
tion about the newly created peer.

public int getScrollbarVisibility() �

The getScrollbarVisibility() method retrieves the scrollbar visibility set-
ting, which is set by the constructor. There is no setScollbarVisibility()

method to change the setting. The return value is one of the TextArea con-
stants: SCROLLBARS_BOTH, SCROLLBARS_HORIZONTAL_ONLY, SCROLLBARS_NONE, or
SCROLLBARS_VERTICAL_ONLY.

protected String paramString ()
When you call the toString() method of TextArea, the default toString()
method of Component is called. This in turn calls paramString(), which builds
up the string to display. The TextArea level adds the number of rows and
columns for the TextArea, and Java 1.1 adds the scrollbar visibility policy.
Using new TextArea("Empty Area", 3, 10), the results displayed could be:

java.awt.TextArea[text0,0,0,0x0,invalid,text="Empty Area",
editable,selection=0-0, rows=3,columns=10, scrollbarVisibility=both]

8.3 TEXTAREA 321

10 July 2002 22:21

322 CHAPTER 8: INPUT FIELDS

8.3.3 TextArea Events
With the 1.0 event model, the TextArea component can generate KEY_PRESS and
KEY_ACTION (which calls keyDown()) along with KEY_RELEASE and
KEY_ACTION_RELEASE (which called keyUp()). There is no ACTION_EVENT generated
for TextArea.

NOTE The GOT_FOCUS and LOST_FOCUS events can be generated by this com-
ponent but not reliably across platforms. Currently, they are gener-
ated on most UNIX platforms but not on Microsoft Windows NT/95
under Java 1.0. These events are generated under Java 1.1.

Similarly, the mouse events are not generated with JDK 1.0.2. See
Appendix C for more information about platform dependencies.

With the Java 1.1 event model, there are no listeners specific to TextArea. You
can register key, mouse, and focus listeners through the Component methods of
addKeyListener(), addMouseListener(), and addFocusListener(), respectively.
To register listeners for text events, call TextComponent.addTextListener().

Action

The TextArea component has no way to trigger the action event, since carriage
return is a valid character. You would need to put something like a Button on the
screen to cause an action for a TextArea. The following Rot13 program demon-
strates this technique. The user enters text in the TextArea and selects the Rotate
Me button to rotate the text. If the user selects Rotate Me again, it rotates again,
back to the original position. Without the button, there would be no way to trigger
the event. Figure 8-5 shows this example in action.

import java.awt.*;

public class Rot13 extends Frame {
TextArea ta;
Component rotate, done;
public Rot13 () {

super ("Rot-13 Example");
add ("North", new Label ("Enter Text to Rotate:"));
ta = (TextArea)(add ("Center", new TextArea (5, 40)));
Panel p = new Panel ();
rotate = p.add (new Button ("Rotate Me"));
done = p.add (new Button ("Done"));
add ("South", p);

}
public static void main (String args[]) {

Rot13 rot = new Rot13();
rot.pack();

10 July 2002 22:21

rot.show();
}
public boolean handleEvent (Event e) {

if (e.id == Event.WINDOW_DESTROY) {
hide();
dispose();
System.exit (0);
return true;

}
return super.handleEvent (e);

}
public boolean action (Event e, Object o) {

if (e.target == rotate) {
ta.setText (rot13Text (ta.getText()));
return true;

} else if (e.target == done) {
hide();
dispose();
System.exit (0);

}
return false;

}
String rot13Text (String s) {

int len = s.length();
StringBuffer returnString = new StringBuffer (len);
char c;
for (int i=0;i<len;i++) {

c = s.charAt (i);
if (((c >= ’A’) && (c <= ’M’)) ||

((c >= ’a’) && (c <= ’m’)))
c += 13;

else if (((c >= ’N’) && (c <= ’Z’)) ||
((c >= ’n’) && (c <= ’z’)))
c -= 13;

returnString.append (c);
}
return returnString.toString();

}
}

Keyboard

Ordinarily, the TextArea component generates all the key events.

public boolean keyDown (Event e, int key)
The keyDown() method is called whenever the user presses a key. keyDown()
may be called many times in succession if the key remains pressed. e is the
Event instance for the specific event, while key is the integer representation of
the character pressed. The identifier for the event (e.id) for keyDown() could
be either Event.KEY_PRESS for a regular key or Event.KEY_ACTION for an
action-oriented key (i.e., an arrow or function key). Some of the things you
can do through this method are validate input, convert each character to

8.3 TEXTAREA 323

10 July 2002 22:21

324 CHAPTER 8: INPUT FIELDS

Figure 8–5: TextArea with activator button

uppercase, and limit the number or type of characters entered. The tech-
nique is simple: you just need to remember that the user’s keystroke is actually
displayed by the TextArea peer, which receives the event after the TextArea

itself. Therefore, a TextArea subclass can modify the character displayed by
modifying the key field (e.key) of the Event and returning false, which
passes the Event on down the chain; remember that returning false indicates
that the Event has not been completely processed. The following method uses
this technique to convert all alphabetic characters to the opposite case:

public boolean keyDown (Event e, int key) {
if (Character.isUpperCase ((char)key)) {

e.key = Character.toLowerCase ((char)key);
} else if (Character.isLowerCase ((char)key)) {

e.key = Character.toUpperCase ((char)key);
}
return false;

}

If keyDown() returns true, it indicates that the Event has been completely pro-
cessed. In this case, the Event never propagates to the peer, and the keystroke
is never displayed.

public boolean keyUp (Event e, int key)
The keyUp() method is called whenever the user releases a key. e is the Event
instance for the specific event, while key is the integer representation of the
character pressed. The identifier for the event (e.id) for keyUp() could be
either Event.KEY_RELEASE for a regular key, or Event.KEY_ACTION_RELEASE for
an action-oriented key (i.e., an arrow or function key).

Mouse

Ordinarily, the TextArea component does not trigger any mouse events.

10 July 2002 22:21

NOTE Mouse events are not generated for TextArea with JDK 1.0.2. See
Appendix C for more information about platform dependencies.

Focus

The TextArea component does not reliably generate focus events.

NOTE The GOT_FOCUS and LOST_FOCUS events can be generated by this com-
ponent but not reliably across platforms. With the JDK, they are gen-
erated on most UNIX platforms but not on Microsoft Windows
NT/95 under JDK 1.0. These events are generated with JDK 1.1. See
Appendix C for more information about platform dependencies.

public boolean gotFocus (Event e, Object o)
The gotFocus() method is triggered when the TextArea gets the input focus.
e is the Event instance for the specific event, while o is a String representation
of the current contents (getText()).

public boolean lostFocus (Event e, Object o)
The lostFocus() method is triggered when the input focus leaves the
TextArea. e is the Event instance for the specific event, while o is a String rep-
resentation of the current contents (getText()).

Listeners and 1.1 event handling

There are no listeners specific to the TextArea class. You can register Key, mouse,
and focus listeners through the Component methods of addKeyListener(),
addMouseListener(), and addFocusListener(), respectively. Also, you register lis-
teners for text events by calling TextComponent.addTextListener().

8.4 Extending Te xtField
To extend what you learned so far, Example 8-1 creates a sub-class of TextField
that limits the number of characters a user can type into it. Other than the six con-
structors, all the work is in the keyDown() method. The entire class follows.

8.4 EXTENDING TEXTFIELD 325

10 July 2002 22:21

326 CHAPTER 8: INPUT FIELDS

Example 8–1: The SizedTextField Class Limits the Number of Characters a User can Type

import java.awt.*;
public class SizedTextField extends TextField {

private int size; // size = 0 is unlimited
public SizedTextField () {

super ("");
this.size = 0;

}
public SizedTextField (int columns) {

super (columns);
this.size = 0;

}
public SizedTextField (int columns, int size) {

super (columns);
this.size = Math.max (0, size);

}
public SizedTextField (String text) {

super (text);
this.size = 0;

}
public SizedTextField (String text, int columns) {

super (text, columns);
this.size = 0;

}
public SizedTextField (String text, int columns, int size) {

super (text, columns);
this.size = Math.max (0, size);

}
public boolean keyDown (Event e, int key) {

if ((e.id == Event.KEY_PRESS) && (this.size > 0) &&
(((TextField)(e.target)).getText ().length () >= this.size)) {
// Check for backspace / delete / tab—let these pass through
if ((key == 127) || (key == 8) || (key == 9)) {

return false;
}
return true;

}
return false;

}
protected String paramString () {

String str = super.paramString ();
if (size != 0) {

str += ",size=" + size;
}
return str;

}
}

Most of the SizedTextField class consists of constructors; you really don’t need to
provide an equivalent to all the superclass’s constructors, but it’s not a bad idea.

10 July 2002 22:21

The keyDown() method looks at what the user types before it reaches the screen
and acts accordingly. It checks the length of the TextField and compares it to the
maximum length. It then does another check to see if the user typed a Backspace,
Delete, or Tab, all of which we want to allow: if the field has gotten too long, we
want to allow the user to shorten it. We also want to allow tab under all circum-
stances, so that focus traversal works properly. The rest of the logic is simple:

• If the user typed Backspace, Delete, or Tab, return false to propagate the
event.

• If the field is too long, return true to prevent the event from reaching the
peer. This effectively ignores the character.

8.4 EXTENDING TEXTFIELD 327

10 July 2002 22:21

	Text Component
	TextComponent Methods
	TextComponent Events

	TextField
	TextField Methods
	TextField Events

	TextArea
	TextArea Variables
	TextArea Methods
	TextArea Events

	Extending TextField

