

 1

Introducing Java, Command Line, and NetBeans

Contents
Introducing Java, Command Line, and NetBeans .. 1
Overview .. 2

Java ... 2
Virtual Machine .. 2
Two Types of Executable ... 3
NetBeans .. 3
The NetBeans Site .. 4

Downloading .. 5
Java JRE and JDK .. 5
Packages and Classes ... 6
Methods .. 6
Properties .. 7
The Math Class – An Example ... 7
Drilling Down to Details .. 9
Preliminary Activities ... 9

Writing a Java Program ...10
DOS ...12
Easy Use of DOS ...14
DOS Summary ..17
Compiling a Java Program ..18
Path Problems ..19
DOS Arrow Use ..21
About the Class File ..21
Changing your File ..21
Altering the Program ...22

Applets ..24
Creating an Applet ...25
Writing an HTML File for an Applet ..26
HTML Tags for Applets ..27
Using the Applet Viewer ...27
Open the Web Page ...28
Jar Files..30

Using NetBeans ...30
Starting a Project ...30
Add a Java File ..32
Setting the Main Class ...34
Compiling an Individual File ...35
Note on the File and Package ..36

Debugging ...37
Items in the Tasks Table ..38
NetBeans and JApplet ...39
The HTML for the JApplet ...43
Editing the HTML File ..44
Finishing the Poem ..45
Viewing the HTML ...46
Opening and Closing Projects ...47
Other Topics to Review ...48

 2

Overview

This lab introduces you to the essentials of Java development and how to set up a

development environment for Java. Java was originally developed to be platform

independent, so as much as possible was done to ensure that anyone who has access to

the command prompt of a computer and the most elementary text editor can create Java

applications. In this lab, only the Windows operating system (DOS) is considered.

Java
Java was developed during the early 1990‘s by Sun Microsystems. Its key feature was

that it was ―platform independent.‖ This means that any program written in Java will

compile on any computer system. This was a fairly significant feature for a programming

language during the early 1990‘s since at that time, when programmers wrote a program

that would compile on a given type of operating system , they would have to rewrite it to

make it run on another operating system. Despite the appearance that there are only a few

operating systems, the fact is that there are many thousands of different systems used for

different things. Most people might think of a PC, a Mac, or a database or internet

server, but there are also a multitude of systems that perform such actions as controlling a

refrigerator, a toaster, an oven, a car radio, an interface for a hand-held control device for

heavy equipment, a phone, or a toy.

Virtual Machine
The developers at Sun were considering this market, and they came up with the idea of a

way to develop a programming language that would compile, not to an operating system,

but to a virtual machine. A virtual machine is a program that runs programs. Sun would

make virtual machines for any operating system on which anyone wanted to run a Java

program. This might sound involved, but consider that a virtual machine can be

developed by a programmer in very little time, This single program can be used to

support many thousands of programs.

 3

Two Types of Executable
Twenty years later, Java has become one of the world‘s leading computer programming

languages, especially with respect to applications developed for the internet. In this

respect, Java offers two main forms of executable program. One is called a console

program. Such a program executes on your computer without the use of a browser. The

other is called an applet. An applet is a program that executes within a web browser. To a

great extent, the capacity of Java to run on any machine made it an ideal language for

development of applications that could run in browsers.

In this lab, we work with both console applications and applets.

NetBeans
NetBeans is an integrated development environment s (IDE) for Java developers. It runs

on Linux and Windows systems. It has been developed with Java. The history of

NetBeans goes back almost as far as Java. It was originally a student project, started by

some students in the Czech Republic. It was an imitation of one of the first effectively

designed Windows IDEs, a program developed by Boreland called Delphi. In 1999, Sun

took over NetBeans, and from that point forward it continued to evolve.

NetBeans is far from the only Java IDE. There are hundreds of development

environments that have been introduced over the years for Java. One is ConTEXT.

Another is Eclipse. One that was very popular for a time is JBuilder, which is now

available only in a commercial edition. Most Java IDEs are freeware or open source.

Since Sun (now Oracle) decided to endorse NetBeans as its IDE of choice, it has become

the premier IDE for Java development. The only closely competing IDE is Eclipse, which

is popular in academic settings. Eclipse became popular because it supports many

programming languages. This now becoming true for NetBeans, which each year support

more languages and tools. In addition to allowing you to work with Java, NetBeans

currently provides modules that support C++, Python, Perl, and PHP. In addition, it

 4

supports JRun for testing and provides an HTML editor and other tools. Its full use far

exceeds the scope of this course.

The NetBeans Site
1. For exploratory purposes, go to the NetBeans site.

 http://netbeans.org/

2. Inspect the website. Here is the current appearance of the NetBeans website.

3. As you can see under the Community tab, as on open-source system, NetBeans is

maintained by an organization of people who work on a voluntary basis to maintain

it. They make the software available for general use. In some cases, corporations

might pay developers to work in an indirect way to work on NetBeans. This arises

because a corporation can derive benefits from the software by indirectly investing in

it.

4. The Plugins tab allows you to see modules that you can download and add to your

installation of NetBeans.

5. The Docs & Support tab provides endless information on how to use NetBeans to

develop with Java. It also addresses other languages, such as C++ and PHP. What is

available depends on what different developers have made available. In addition,

under this tab you find sample applications.

6. The IDE tab provides documentation and examples on the main capabilities of

NetBeans.

 5

Downloading
1. From the NetBeans.org site you can go to download the current version of NetBeans.

Note that the version is likely to change once or twice each year. When you upgrade

to the newer versions, NetBeans makes it so that all your projects can be transferred

automatically from the previous version, and you can maintain several different

versions on any one computer at a given time.

2. Note that in the context of the classroom, the ITS group does the installation work for

us. When you are working on your own, you will need to install the IDE for yourself.

Downloading and installing the NetBeans IDE is wholly automated for Windows

other supported systems (Linux and Mac). Generally, when you install it, first

download the installation executable. Then perform the installation from there.

3. You can also download NetBeans from the Oracle site. In this situation, it is offered a

bundle with Java. One advantage of downloading the bundle is that you get both

NetBeans and the Java support programs, and both are installed at the same time by

the installation program.

4. If you obtain the two software packages separately, you must first install the software

from Oracle that supports Java before you can install NetBeans. If you try to do

otherwise, the NetBeans installation package advise you about what you must do first.

Generally, the software you require from Oracle is called the Java Development Kit

(JDK).

Java JRE and JDK
Java was developed in the early 1990‘s. The development team was headed by James

Gosling, a legendary figure in programming history.

1. One of the key characteristics of Java is that it is an object-oriented language (which

was far more important in the early 1990s than it is now). As an object-oriented

language, it requires that you write your programs as classes.

2. Another key feature of Java, as has already been mentioned, is that is uses a virtual

machine (VM). A virtual machine is a program that runs programs. Any computer

that is to run Java programs much must have a VM installed. The VM is known

generally as the Java Runtime Environment (JRE). This program is available free

of charge. To obtain it, you simply download and install it.

3. To develop Java programs, you require a Java Development Kit (JDK). The JDK

consists of over 4000 class definitions organized into hundreds of packages that you

can use as you develop Java applications. As with the JRE, you download the JDK

from the Oracle site.

4. To familiarize yourself with the scope of the JDK, see the following website.

 http://download-llnw.oracle.com/javase/6/docs/api/

 6

5. See the following figure. Note that if you intend to work with Java to any extent

whatsoever on an academic, independent, or professional basis, you should bookmark

this site (or the site corresponding to any version of the JDK you are using). It is

impractical to buy books on the class library because they cannot be updated quickly

enough to accommodate releases of the software. However, Sun has produced very

useful summaries of the libraries over the years, and presumably, Oracle will continue

to do the same.

Packages and Classes
If you look at the Java Platform Standard Edition website, you see that the information is

broken up into two general groupings, classes and packages. The terms prove essential to

understanding how to use Java.

1. A package is more or less analogous to a file folder or directory on a computer. A

package usually contains one or more classes.

2. A class is an abstract data type. It consists of methods and properties.

Methods
A method is another word for a function or subroutine. Some classes have many methods,

others only a few. To use a method, it is important to know how to use its parameters.

 7

Some methods are static, which means that they are called using the name of the class in

which they are defined.

Given that there are roughly 4000 classes in the java class library, there are many more

thousands of methods. Some classes, such as Math, contain fifty or more methods.

Others contain only a few.

Properties
Some Java classes provide properties. Another name for a property is attribute. Still

another name for a property is field. A property is an element of a class to which you can

assign values.

The Math Class – An Example
1. To get a sense of how to use the library site and what a class and its methods involve,

scroll down the class list until you reach the Math class.

2. Click the Math class. The following figure shows the top of the class page.

Note. The development team for Java was one of the first programming teams to

begin documenting class libraries in this way. Now the practice is universal.

3. Inspect the page. At the top of the page for the class, you see the package in which the

class is to be found (java.lang).

 8

4. Next inspect the information on the hierarchy of the class library. (This topic will be

covered in detail later.) The position of a class in a hierarchy determines what it

inherits from parent classes and what is inherited from it. The Math class inherits

certain capabilities from the Object lass. The Object class is the most primary class

in Java. As with ActionScript, almost all classes in Java are descendents of (or

derived from, or children of) the Object class.

5. Scroll down the Math class page. You see two sections: Field Summary and Method

Summary.

6. Note the following:

 A field is a value that the class contains that can be accessed in much the same

way that a method can be accessed. Such values are sometimes referred to as

properties. The values E (natural log) and PI are properties of the Math class.

They are values, in other words, that you can automatically use any time you use

the Math class.

 The list of methods follows. Each method is identified in terms of its return

values and its parameters. The return value is a value that the method delivers to

any place in a program in which you call the method. A parameter is a value that

you pass to a method. Many methods require several parameter values, and some

do not require any parameter values at all.

7. Note that after you become familiar with the control features of a language and how

to use basic algorithms, the major task you face as a programmer working in the

capacity of an application developer is learning how to use all the methods provided

by the class library.

 9

Drilling Down to Details
1. Find the method that reads as follows:

static double max(double a, double b)

Note: The name of the method is max(). The parameters are identified as a and b.

The data types of these parameters are of the data type double. Static means that

the method is called using the name of the class (Math.max(5.0, 7.65), for

example.) The word double preceding the name of the method is the type of the

returned value (also expressed as return type).

2. Click on the link (the name of the method).

3. You then see the explication of the max() method.

4. Generally, all method descriptions are similar. A body of text explains what the

method does. The parameter values are explained, and the values returned, if any,

are also explained. Attention is given to what the method does and how it is used.

If you read the text of this explanation, you can see that what this method does is

fairly simple. It takes two numbers as parameters (arguments) and returns the

value of the larger.

Preliminary Activities
Because Java was designed to make it so that you can use it without dependencies on

IDEs, this section deals with developing programs using a simple editor, the Command

window of DOS. In this widow, you issued DOS commands at the command line.

To compile and run a Java program, you must first install the JDK and the JRE. Oracle

makes it very easy to install the JRE since the JRE is intended for use by general

computer users rather than programmers. It is analogous to the Flash player, and its

primary use is to support Java applets embedded in web pages or applications that run on

the desktop. (An applet is a program that runs in a web page. An application is one that

runes on the desktop.)

http://download-llnw.oracle.com/javase/6/docs/api/java/lang/Math.html#max(double, double)

 10

To be able to compile programs in Windows environments, you must issue a command or

set the Path variables so that the computer will be able to recognize the commands you

issue. If you want the story from the ground up, here is the Oracle site:

http://download.oracle.com/javase/tutorial/getStarted/cupojava/win32.html

Writing a Java Program
Note: If your computer in the lab does not allow you to access the command line, then

this portion of the lab cannot be performed. Even if you cannot perform the tasks given in

this portion of the lab, however, it is a good idea to familiarize yourself with it.

1. Create a folder on your desktop and name it Java0100.

2. Access the Notepad application in the Program list. (Press Window r and type

Notepad.)

3. Highlight and copy the following code into Notepad.

public class HelloWorld {

 /**

 * Prints Hello World! to the prompt

 */

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

}

Note that the file defines a class named HelloWorld. The class contains one

method, main(). All classes that are to run as applications must contain a

main() method that is named and defined as you see in the code example. The

code that the main() method contains can vary endlessly, of course. The only

 11

action that this program performs is to print out the expression ―Hello World‖

to the command line. The line of code that makes this happen is the following:

 System.out.println("Hello World!");

Note that the lines that beginning with /** and ending with */ are

comments. These lines are not read by the compiler. This is a form of

comment that is used for a special form of documentation called Javadocs.

4. Save the file as HelloWorld.java to the Java0100 directory on your desktop.

a. The Encoding must be set to ANSI.

b. Type the file type, java, following a dot (or period) after the name of the file.

See the following figure.

5. You then see the file in Windows Explorer. You can now open it in either Notepad or

Wordpad. Each time you save it, make certain you select the same save options.

 12

DOS
Disk Operating System (DOS) is the operating system used for Windows. Although,

technically, Windows itself is an operating system, it remains that behind the scenes,

DOS is at work. DOS is a command-line system, as are all other operating systems.

1. Press the Window key and r. In the dialog that appears, type cmd and click OK. See

the following figure.

2. A DOS command window appears.

3. Set the color of the window by selecting Properties from the control icon on the

upper left of the command window. Click the Colors tab. (See the following figure.)

 13

4. Click the radio buttons and the color picker selections to set the Screen Background

to white and the Screen Text to black. Click OK when you finish.

5. Click OK to save the properties for future windows with the same title.

6. What you see varies according to the configuration of your computer, but the

command window appears as follows after you have reset the font and background

colors. (See the following figure.)

 14

Easy Use of DOS
1. A programming language referred to as DOS (like the operating system) allows you

to interact with DOS. In this context, it is not our concern to learn a great deal about

DOS , but you can see the basic commands if you type the following at the command

prompt:

 help

Note. Generally, if you write programs that work at the DOS level, they are

called batch programs. The programming language used in such programs is

called QBASIC (which can be viewed as an extension of DOS). Another term

for such a program is shell script. A DOS shell script is a batch program.

Usually, programmers write scripts to automate the execution of the actions

we perform in this section.

2. After you type help at the command prompt and press return, you see the full range

of commands available to you. (See the following figure.)

 15

3. At the command line, type the following command and a space. Do not press Enter;

just type the two letters and a space following:

 cd

4. Your window appears as follows:

5. Now open the directory you just created on your desktop (Java0100).

6. In the Windows Explorer window, click and hold on the on the name of file you

created (HelloWorld.java) and drag it over to the DOS command window. Release

it. The path is automatically copied to the DOS window:

 16

7. To be able to reach the correct directory, delete the name of the file from the

characters that have been copied. To accomplish this, working in the command

window, carefully use the left arrow key to move the cursor to the final ‗a‘ of ―java‖

and then press the Delete key once. Then press the Backspace key and delete all the

characters up to the last ―0‖ in the name of the directory. See the following figure.

8. Press Enter. The CD command executes and you see that the path to the directory

you created on your desktop is now showing.

9. Type the following command at the command prompt and press Enter:

dir

10. You see the contents of the directory, which for now holds only your

HelloWorld.java file. (See the following figure.)

 17

DOS Summary
The following table provides a summary of the most frequently used DOS commands.

Note that you can type these commands as either capital or lower-case letters. To obtain

specific information on any one command, type the word help followed by the

command. For example, for help on dir, type the following command:

help dir

* This is an asterisk, It is called a wildcard. You can use it to replace any character.
For example, to check a directory for HelloWorld.java, you can type DIR H*. The
asterisk tells the system to look for any file name beginning with H. You might
also type *.java to see all the files that are of the type java.

CD This changes the current directory. When you follow this command with two dots
(periods) you navigate up a level (CD ..) To navigate up two or more levels, use
dots in combination with slashes (CD ..\ .. or CD ../..). If you want to navigate
down a directory, then you follow CD with the name of the next level down. You
can use the slashes to navigated down several directories, separating them
using the slash. (CD/nextDown/nextDownAfter)

CLS Clears the screen.

COPY Copies one or more files to another location.

cmd Starts a new instance of the Windows command interpreter.

DATE Displays or sets the date.

DEL Deletes one or more files. Use this for files. Type DEL file_name. For the

HelloWorld.class file, for example, you type del HelloWorld.class.

DIR Displays a list of files and subdirectories in a directory. A significant addition to
the DIR command is DIR/P, which allows you to see the contents of a directory a
page at a time.

ECHO Displays messages, or turns command echoing on or off.

EXIT Quits the CMD.EXE program (command interpreter).

HELP Provides Help information for Windows commands.

MD Creates a directory. Same as MKDIR.

MKDIR Creates a directory. Type the command and then the name of the directory you
want to create. MKDIR directory_name.

 18

RD Removes a directory. Removes a directory. Use with caution. To remove a
directory, remove its contents first. The system prompts you to ensure that you
want to delete the contents. You type RD directory_name.

REN Renames a file or files. You type the command, the name to be changed and the
new name: REN old_name new_name

RENAME Renames a file or files. (Same as REN.)

TIME Displays or sets the system time.

TITLE Sets the window title for a CMD.EXE session.

TREE Graphically displays the directory structure of a drive or path.

TYPE Displays the contents of a text file.

VER Displays the Windows version.

VOL Displays a disk volume label and serial number.

XCOPY Copies files and directory trees.

Compiling a Java Program
1. To verify that you can perform the actions detailed in this section, issue the following

command at the command prompt:

 java -version

2. The response to this command is that you see the current version of the Java JDK. If

you see no response of this type, then you must use a special approach to compiling

your program. Jump momentarily to the next section if this is necessary.

3. To compile your Java file, type the following command at the command prompt and

press return.

 javac HelloWorld.java

4. After you issue the command, if your program contains no errors, and the Java

compiler has been configured correctly, you see only that the prompt is refreshed.

This signals success.

 19

5. Issue the following command at the command prompt to see the newly created *.class

file:

dir

6. Now run you new HelloWorld program. To accomplish this task, issue the following

command at the command prompt.

 java HelloWorld

7. The program executes, and you see the message that it delivers printed at the

command prompt.

Path Problems
A ―path‖ is a directory path stored in your computer that allows it to know the location of

a given program. If the path is set for the program, then you can execute the program for

any directory on your computer. If it is not set, then you must explicitly state the path

before you can execute the program.

Refer to this section if you are having problems with getting the javac, java –version,

or other Java commands to work. It is likely that the class path is not set. As mentioned

 20

previously, the class path tells the computer where to find the executable that compiles

your Java file.

Normally, if the path is set, to compile a java program, you open a DOS command

window and issue the following command:

javac HelloWorld.java

If the path is not set, however, you run into problems because the system cannot respond

to the command. You see a message that tells you that the program cannot be compiled.

The system cannot find the javac program—which is the compiler for Java.

To overcome this difficulty, use the following approach:

1. Follow the instructions given earlier and have a DOS window open.

2. To find out which path to use, use windows Explorer to navigate to the Java directory

in which the Java JDK has been installed. It is likely to be in the Program Files

directory. Navigate to this directory and then find the Java subdirectory. From there

navigate to the bin directory. In the bin directory, you find the java executable. See

the following figure.

3. For the path shown in the previous figure, then, you can copy out the information you

need and prefix it to the javac command. The command with the qualifying path

appears as follows (yours might differ): You must enclose directory names that

contain spaces with double quotes (as with ―Program Files‖).

 C:\”Program Files”\Java\jdk1.6.0_01\bin\javac HelloWorld.java

Here is exactly how the command for the previous section (given the

computer being used) is issued. The command prompt is shown in colored

italics. This is the path to the directory in which Java file resides. The path to

the javac program is shown in dark type.

C:\Documents and Settings\HP_Administrator\Desktop\Java0100>C:\"Program

Files"\Java\jdk1.6.0_01\bin\javac HelloWorld.java

4. The command you execute is issued from the prompt of the command window, and

when you issue it, you must have navigated in the command window to the same

directory that contains the file you want to execute.

 21

DOS Arrow Use
Note that you can use the up and down arrow keys in DOS to repeatedly issue commands

you have already issued. This makes it to that you do not have to retype commands.

Simply arrow to the command and press enter. Use this option as much as possible.

About the Class File
As you develop a program, you must repeatedly change it and compile it to check

whether the changes you have made have resulted in what you are seeking to do.

Each time you want to change a *.java file and use the javac command to regenerate it,

you must first delete the previous version of the *.class file. The Java compiler cannot

overwrite the old *.class file.

1. To remove an old version of a *.class file, issue the following command.

 del HelloWorld.class

2. Issue the dir command to see that the *.class file has been deleted.

3. If you then issue the dir command, you see that the directory no longer contains a

*.class file. At this point, reissue the following command to update your work:

 javac HelloWorld.java

4. Issue the following command to see the newly generated file file.

 dir

Changing your File
1. At the DOS prompt, issue the following command, which duplicates the

HelloWorld.java file and saves it under a new name.

 copy HelloWorld.java Cocoon.java

2. Issue the following command, which opens the Cocoon.java file with Notepad:

 notepad Cocoon.java

3. Change the text of the file so that it reads as follows:

public class Cocoon{

 /**

 * Prints Emily Dickison's poem

 * http://www.bartleby.com/113/index2.html

 */

 public static void main(String[] args) {

 22

 System.out.println("From cocoon forth a butterfly");

 }

}

4. Compile and execute your file using the procedure detailed in the previous sections.

The steps are as follows:

javac Cocoon.java

java Cocoon

5. Recompile and get in a development frame of mind.

a. Do not close the Notepad file. Leave it open and use Alt + Tab to

switch back and forth between it and the command line.

b. At the command prompt, use the arrow keys in the command line to

retrieve previous commands and alter them.)

c. Here is how you might set up your desktop to work in a convenient

way.

d. After you change your *.java file, save it.

e. Delete the old *.class file by issuing the following command:

 del Cocoon.class

Altering the Program
1. Alter the program. Copy the following line as many times as are needed and place a

line of Dickinson‘s poem in each line. The lines of the poem are given in step five.

System.out.println("From cocoon forth a butterfly");

 23

2. Here is an example of how your program appears after the first few lines:

public class Cocoon{

 /**

 * Prints Emily Dickison's poem

 * http://www.bartleby.com/113/index2.html

 */

 public static void main(String[] args) {

 System.out.println("\n Emily Dikinson (1830 - 1886) ");

 System.out.println("\n");

 System.out.println(" FROM cocoon forth a butterfly");

 System.out.println(" As lady from her door");

 System.out.println(" Emerged—a summer afternoon—");

 System.out.println(" Repairing everywhere,");

 System.out.println("\n");

 }

}

3. The complete poem is provided further along (see step 5). Study the code and then

finish the poem using the lines provided . Note the following:

 The \n causes the program to force a line return. You must insert the following

line after each stanza:

 System.out.println("\n");

 Space precedes the first letter of each line of the poem, and this is preserved in

what you see in the output.

 Add only one stanza at a time. Recompile and execute as you go. Do not attempt

to make everything work at once.

 Try working a few lines of the poem at a time, compiling as you go to check for

syntax errors.

4. Remember as you go that you must delete the *.class file each time you recompile,

5. Here are the lines for the complete poem:

FROM cocoon forth a butterfly

As lady from her door

Emerged-a summer afternoon-

Repairing everywhere,

Without design, that I could trace,

 24

Except to stray abroad

On miscellaneous enterprise

The clovers understood.

Her pretty parasol was seen

Contracting in a field

Where men made hay, then struggling hard

With an opposing cloud,

Where parties, phantom as herself,

To Nowhere seemed to go

In purposeless circumference,

As ’t were a tropic show.

And notwithstanding bee that worked,

And flower that zealous blew,

This audience of idleness

Disdained them, from the sky,

Till sundown crept, a steady tide,

And men that made the hay,

And afternoon, and butterfly,

Extinguished in its sea.

Note, the source site for the poem is as follows:

http://www.bartleby.com/113/index2.html

Applets
When it was first introduced roughly 20 years ago, one of the most noted features of Java

was its ability of its programs to run in web browsers. Its ability to do so results from the

JRE, which supplements the operations of the major browsers.

When Java applets run inside a browser, they do not directly interact with the operating

system of the computer on which they are running. This limitation is usually listed under

the rubric of security. Does the program have the ability to violate the integrity of the

computer on which it is running? The JRE is designed to make it so that this does not

easily happen. It provides a secure way of running applications on a computer.

 25

An applet is a program that runs inside a browser, and with few exceptions, it is just the

same as a regular java program. It accesses the JRE and runs using it. Since it runs inside

a browser, however, it must be embedded in a web page—an html file.

Creating an Applet
1. To create a HelloWeb applet, begin by once again using Notepad to create a file. This

time, call the file HelloWeb.java. Save this file to working directory 0100Java.

2. Copy the following body of code to the file and once again save it.

/*

 HelloWeb.java

*/

import java.awt.Graphics;

import javax.swing.JApplet;

public class HelloWeb extends JApplet {

 public void paint(Graphics g) {

 g.drawString("Hello, World Wide Web!", 10, 50);

 }//end paint

}//end class

Note that the text of this program differs from the HelloWorld.java program

in fairly significant ways, which will be discussed later on in detail. For now,

however, note that the class extends JApplet. JApplet is a class specifically

designed to accommodate web pages. The primary method in the applet is the

paint() method, and this method attends to displaying whatever the applet

displays. To display the message, it uses a Graphics object (named g), which

calls the drawString() method.

3. Compile the HelloWeb.java file exactly the same way as you did the

HelloWorld.java file. Here is the command you type to compile it:

 javac HelloWeb.java

4. After you compile the file, issue the DIR command. You see that the javac utility

generates a *.class file.

5. Note that this is an applet, so you cannot run it from the command line. To see it

execute, you must put it in a web page.

 26

Writing an HTML File for an Applet
To run your applet, you must create an HTML document. The HTML document allows

you to perform two types of action. The first is to use a test utility, the Applet Viewer, to

test your applet. The second allows you to run your applet within your browser.

1. At the command line, issue the following command:

 notepad HelloWeb.html

2. Save the file to your 0100Java directory.

3. Copy the following HTML code to the file and once again save the file:

<html>

 <head>

 <title>HelloWeb Applet</title>

 </head>

 <body>

 <h1 align=center>HelloWeb Applet</h1>

 <center>

 <applet name="HelloWeb"

 code="HelloWeb.class"

 width=150

 height=100>

 </applet>

 </center>

 </body>

 </html>

Note that the *.html extension identifies the document so that your browser

can read it. In the HelloWeb.html file, the words in the angle brackets (<>)

are HTML tags. The only tag set that you need to include an applet in a web

page is <applet</applet>, and you must, at a minimum, assign a value to

the code, width, and height properties of the applet tag. This simply names

the applet you are trying to run.

The following table provides you with a breakdown of what the tags mean.

Opening and closing brackets must enclose each tag, but in the case of the

applet tag, you also work with tag attributes. Tag attributes fit inside the

opening and closing tag brackets. Tags also occur in sets, so for each opening

tag, you must provide a closing tag. To create a closing tag, you precede the

tag name with a slash (<\>).

 27

HTML Tags for Applets
Item Discussion

html This tag opens and closes an HTML document. Everything you want to include in

an HTML document falls between the opening and closing html tags.

head This tag provides an address space for an HTML document. You use the title tag

within the head tag to make it so your browser can display the name of your
document.

body This designates the main part of your web page. Within the body, you place the

applet and text.

h1 This tag creates a heading, such as the one you see at the top of this section.

center This tag causes anything that follows it (text or your applet) to be centered in the

web page.

applet This tag identifies an applet. It has four required attributes: name, code, width,

and height. Unless you assign values to these four attributes, your applet tag is
not likely to successfully display. The units of measure are picture elements
(pixels) of your monitor..

name The name attribute is what you name your applet relative to the web page. You

can name your applet anything you want for use within your HTML document.

code The code attribute is the name of your applet as you have compiled it. Since you

have named your file HelloWeb.java and generated a class file named
HelloWeb.class, you must assign HelloWeb.class to the code attribute.

width This is the minimum width of your applet. If you do not make this large enough,

your applet might not appear.

height This is the minimum height of your applet. If you do not designate enough height,

your applet might not appear.

Using the Applet Viewer
Before you try to run your applet in your browser, first test it. To test it, you can use the

applet viewer. This is a utility program that accompanies the JDK. Its name when you

execute it at the command line is appletviewer. This utility allows you to test applets

without having to invoke a browser. It displays only the output of your applet. To use the

applet viewer, you must embed your applet in an HTML page.

1. To test run your applet, type following command at the command prompt:

 appletviewer HelloWeb.html

2. You see the following window appear on your desktop.

 28

3. Inspect the viewer. You see only the text that you use the Java code to generate. You

see nothing of the HTML page.

4. To close the Applet Viewer, click the control (X) button and then select Close.

Open the Web Page
1. The applet view is handy, but there are other, practical ways, to test your applet.

 Open Windows explorer and click on the HelloWeb.html file.

 Alternatively, type the following command at the command prompt:

HelloWeb.html

2. You see the following web page:

3. Note the feature. The applet in this case consists of the words, ―Hello, World Wide

Web! The large message at the top is created using HTML.

4. Replace the code in the HelloWeb.html file with the following:

 29

<html>

 <head>

 <title>HelloWeb Applet</title>

 </head>

 <body>

 <h1 align=center>HelloWeb Applet</h1>

 <table border = 10 cellspacing = 1 cellpadding = 4 align = center>

 <tr>

 <td>

 <center>

 <applet name="HelloWeb"

 code="HelloWeb.class"

 width=150

 height=100>

 </applet>

 </center>

 </td>

 </tr>

 </table>

 </body>

 </html>

5. Inspect the code. This is a more comprehensive *.html file. When you run it, you see

the applet inside a table, and in the tab of the browser, you see the name of the file.

6. At this point, save and close Notepad and the Command window.

 30

Jar Files
There are still a few fundamental operations that it is good to know about when using

Java in a command-line context. One central notion is that of a *.jar file. We will

examine the *.jar file in another context.

Using NetBeans
The NetBeans IDE helps you develop Java and other files, including *.html files. Tasks

become much easier, but at the same time, there is a bit more to understand.

Note. This lab introduces you to uses of NetBeans that fairly restrictive. In

future labs, you‘ll find that NetBeans can be used in a number of flexible

ways that free you from having to use either application or applet projects.

You can develop any program as an element in a Java class library, so that the

project-oriented perspective falls away and you build things from scratch.

Starting a Project
1. Open NetBeans and from the File menu select New Project. The New Project dialog

appears.

2. Click the Java folder and Java Application. Then click Next. You see the New Project

Application dialog.

3. As illustrated in the following figure, do the following:

 31

 In the Project Name field, type 0100Java.

 Click the Browse button and navigate to the folder you have created on the

desktop. (This folder is is also named 0100Java.)

 Click the two checkboxes at the bottom to deselect Create Main Class and Set as

Main Project.

 Click Finish.

4. NetBeans creates a project file for you. Initially, what you see appears as shown in

the following figure.

 32

Add a Java File
1. Click to activate the Files tab in the IDE.

2. Click to open the 0100Java tree.

 33

3. Locate the src folder under the 0100Java class folder. Right click on the src folder

and select New > Java Main Class. (If you do not see Java Main Class, then select

Other. This will show you the Java Main Class option.)

4. You see the New Java Main Class dialog. (See the following figure.)

5. As illustrated in the preceding figure, in the Class name field, type HelloWorld.

6. In the Package field, type introfiles. Click Finish.

 34

7. You see the main interface of NetBeans once again (see the following figure). Do the

following:

a. Verify that the Files tab is active.

b. Click the src and introfiles folders to drill down to the HelloWorld.java

file.

c. Click the HelloWorld.java file to make it appear in the editing panel. (This

should already be the case.)

Setting the Main Class
When working with NetBeans, every project involving an application (rather than an

applet) has a main class file. A main class file is a file that contains a main() method. A

given project might have several files that contain main() methods (used for testing), but

with an application, one file must be the starting point for the execution of the

application. This file is the file that is first executed as your project is built. Building a

project involves assembling all the relevant files into a single application. Not all files in

a project need to be part of a single application, however. You can work with many

separate files as separate programs that one project happens to contain.

1. To designate a main class file, click on the green triangle in the tool bar. (Alternative,

press F6.)

2. The Run Project dialog appears, as shown in the following figure. Click OK.

 35

3. The project compiles, and the Output panel appears. At this point you see the

following message:

run:

BUILD SUCCESSFUL (total time: 0 seconds)

Compiling an Individual File
As you add more files to a project, you can compile the files separately by right clicking

in the editing panel and selecting Run File. The file you designate is compiled, and you

see the output in the Output panel.

1. To explore compiling in NetBeans, select and delete all the code in the

HelloWorld.java file.

2. Copy and paste the following code into the HelloWorld.java file.

package introfiles;

public class HelloWorld {

 /**

 * Prints Hello World! to the prompt

 */

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

 36

}

3. After you paste the code into the panel, select Source > Format.

4. Right click either on the file in the src tree on in the editing area and select Run File.

5. You see the following output in the Output panel (it appears in the lower part of the

IDE, adjacent to the Tasks tab).

run:

Hello World!

BUILD SUCCESSFUL (total time: 1 second)

Note on the File and Package
This section is optional.

The only change from the previous version of the HelloWorld.java file is the inclusion

of the package statement:

 package introfiles;

Packages are not required, but in this context, NetBeans has created a package for you.

Generally, professional programmers will always use packages. The package directive

identifies the directory in which the HelloWorld.java file is located. This directory is

has been automatically generated by Netbeans and is called introfiles. You can

confirm this is you glance at the project panel:L

Outside of NetBeans, if you decide to work with the file in the command line context, a

few changes in how you run the file must be made. Assume, for example, that you open a

command window and navigate to the directory in the NetBeans project folder (src) that

contains the HelloWorld.java file.

In this location, you still issue the following command:

javac HelloWorld.java

 37

This command, as you know, generates a *.class file.

In NetBeans, the class file is placed in a colder named classes, which is under the build

director. Further it is placed in its package folder, introfiles.

To run the folder, you must cd to the classes folder. Then, in the classes folder, you issue

the following command:

java introfiles.HelloWorld

Here is a screen shot showing the issuance of the command:

When you issue this command, you are accessing the program through the package that

contains it. Any file that is developed using a package must be accessed this way.

When you are working with NetBeans, you do not have to worry about this, however.

Debugging
Debugging is an essential aspect of programming. When working with NetBeans, the

Tasks tab is an essential part of debugging. It provide information on syntax and other

errors that occur as you are programming.

1. To see how the Tasks tab works, type five dashed in the main function just before the

closing brace. As you type the dashes, an exclamation mark appears to the right,

showing that you have typed incorrect syntax. that a line of dashes that will cause a

compiler error has been highlighted. (See the following figure.)

 38

2. Compile. To accomplish this, right click in the edit pane and select Run File.

3. You immediately see an error dialog.

4. Click Cancel to stop the compiler.

Items in the Tasks Table
1. Click the Tasks tab.

2. Click the icon on the left to display the tasks:

 39

3. Double click on the item that reads ―illegal start of expression.‖ Notice where this

takes you in the program. When you look at this line, you see that there are no

problems.

4. Double click on the item that reads ―unexpected type.‖ Notice where this takes you in

the program. When you look at this line, you see that four expected characters have

been typed into the program.

5. Delete the four characters (the four dashes).

6. From the top menu, select Source > Format.

7. Right click in the edit area and select Run File. This time the program successfully

compiles, and you see ―Hello World!‖ printed in the Output panel.

NetBeans and JApplet
A Java program that runs in a browser is generally referred to as an applet. When Java

was first introduced, the Applet class supported such programs. Over time, however, the

developers of Java decided to introduce a revised version of the Applet class. This is the

JApplet class. JApplet is derived from Applet and provides a number of improvements.

Generally, as you develop applets, derive your classes from JApplet.

Add a new project to NetBeans. To accomplish this, select File > New Project.

1. Select Java and Java Class Library. Then click Next.

 40

2. You see the New Java Class Library dialog. See the following figure.

3. Name the project 0010JApp. It is not necessary browse to set a new directory. This

will be saved to same directory, by default, at the previous project.

4. Click Finish.

You see the new project in the NetBeans interface.

5. Click the new project and then the Files tab, so that you see the scr folder.

 41

6. Right click on the scr folder and select New > Java class.

You see the New Java Class dialog.

7. As shown in the previous figure, in the New Java Class dialog, name the new class

FirstJApp and click Finish.

 42

Note that this time around, no package has been created. This is a practice that

will be followed in subsequent exercises.

You see the template of a class file in the edit panel.

8. Delete the code of the newly generated file and replace it with the following:

import java.awt.Container;

import java.awt.*;

import javax.swing.*;

public class FirstJApp extends JApplet {

 JTextArea outputArea;

 public void init() {

 outputArea = new JTextArea(4, 60);

 Font font = new Font("Verdana", Font.BOLD, 15);

 outputArea.setFont(font);

 outputArea.setForeground(Color.BLUE);

 Container c = getContentPane();

 c.add(outputArea);

 outputArea.setText(

 "Hands by Robinson Jeffers"

 + "\n Inside a cave in a narrow canyon near Tassajara"

 + "\n The vault of rock is painted with hands,"

 + "\n A multitude of hands in the twilight, "

 + "a cloud of men’s palms, no more,");

 }

}

9. Right click on the FirstJApp.java file in the src tree and select Run File. The

Applet Viewer appears, and you see the applet.

 43

The HTML for the JApplet
At this point, just by running the FirstJApp.java file using NetBeans, you have

automatically generated class and an HTML files.

1. To view the HTML file, click the build and classes folders in the Files tab of the

project. As illustrated by the following figure, you see the HTML and the class files.

2. Right click on the FirstJApp.html file and select View.

3. You see the applet displayed in a web page in your default browser.

 44

Editing the HTML File
Notice that the first view you have of the applet you have just created reveals a problem.

The problem is that the end of the line is truncated. You see only ―Tas‖ when the poem

reads ―Tassajara.‖

This occurs because the size of the applet needs to be changed.

1. Double click on the FirstJApp.html file in the Files panel of NetBeans.

2. You see the text of the HTML file in the edit window.

3. Find the width property an change its assigned value from 350 to 450. Save your

work.

You now see the full text.

 45

Finishing the Poem
1. Double click on the FirstJApp.java file to reactivate it in the editor window.

2. Note the following snippet of code from the FirstJApp.java file.

 outputArea.setText(

 "Hands by Robinson Jeffers"

 + "\n Inside a cave in a narrow canyon near Tassajara"

 + "\n The vault of rock is painted with hands,"

 + "\n A multitude of hands in the twilight, "

 + "a cloud of men’s palms, no more,");

 }

3. This code differs from what you have worked with before in Java because it consists

of concatenated strings.

4. The entire string is used as an argument to the setText() function.

5. To finish the poem, by moving the closing parenthesis of the setText() function down

two lines.

6. Then on the line above the closing parenthesis, type a plus (+) sign, double quotes, a

newline escape sequence (\n), and then the words, followed by closing double

quotes. (See the bolded line.) You‘ll find that NetBeans provides an intelligent text

editor, so much of the typing will be finished for you.

 outputArea.setText(

 "Hands by Robinson Jeffers"

 + "\n Inside a cave in a narrow canyon near Tassajara"

 + "\n The vault of rock is painted with hands,"

 + "\n A multitude of hands in the twilight, "

 + "a cloud of men’s palms, no more,"

 + "\nNo other picture. There’s no one to say");

7. Note that the line that begins with ―a cloud‖ is not preceded by an escape sequence.

This is because the line continues the previous line.

 46

8. Having familiarized yourself with how to add one new line, add the rest of the poem.

The text of the complete poem follows. Verify which lines you have already added.

As you append the lines, do so carefully, as before, adding only a few lines at a time.

Each time you change the file, save it, right click on the file name, and select Run File

to see the results in the applet viewer. At this point, do not view the output in the

HTML file.

Robinson Jeffers

Inside a cave in a narrow canyon near Tassajara

The vault of rock is painted with hands,

A multitude of hands in the twilight, a cloud of men’s palms, no more,

No other picture. There’s no one to say

Whether the brown shy quiet people who are dead intended

Religion or magic, or made their tracings

In the idleness of art; but over the division of years these careful

Signs-manual are now like a sealed message

Saying: \"Look: we also were human; we had hands, not paws. All hail

You people with the cleverer hands, our supplanters

In the beautiful country; enjoy her a season, her beauty, and come down

And be supplanted; for you also are human.\"

9. Modify your source code to allow for as many lines as there are in the poem:

 outputArea = new JTextArea(1, 60);

10. Modify your HTML file so that it can accommodate the size of the generated applet.

To accomplish this, access the HTML file, as before. Locate the width and height

properties. Change them to 700 and 400, respectively, as follows:

<APPLET codebase="classes" code="FirstJApp.class" width=700 height=400></APPLET>

Viewing the HTML
1. Create a folder on your desktop named TestHTML.

2. Open Windows Explorer and navigate o the build directory of the 0010JApp project

folder.

3. Copy the classes directory and the DirsJApp.html file to the TestHTML folder..

4. Paste the folder and the *.HTML file into the TestHTML folder.

5. Double click on the *.HTML file in the TestHTML folder and see it execute in the

browser.

 47

6. If you do not see all the poem, right click on the *.HTML file in the TestHTML folder

and select Open with WordPad. (WordPad allows you to open your files with line

returns. It is located in WindowsNT/Accessories.)

7. Modify the APPLET height property so that the applet is 450 pixels high:

<APPLET codebase="classes" code="FirstJApplet.class" width=450

height=450></APPLET>

8. Test again. Now the applet opens and shows the whole image. If all the lines are not

showing, modify the height attribute once again.

Opening and Closing Projects
1. Working in the Projects panel, right click successively on the two projects you

have created thus far and select Close.

2. Having closed the two projects, reopen them. NetBeans does not have a given file

type for its projects. Instead, it identifies projects according to the folders that

contain the files. Accordingly, when you want to open a NetBeans file, select

Project > Open, and navigate to the folder that contains you NetBeans project

folders. Click on the folder to open the project. See the following figure.

 48

3. The project opens and you can then begin working on it.

4. Prior to terminating your user session, close all your projects and transfer the

project folders to your portable storage device.

Other Topics to Review
1. If you are going to rename a file in NetBeans, right click on the name of the file and

select Refactor.

2. To format code, select Source > Format.

3. To view compiler errors, select Window > Tasks. The Tasks panel shows you

specific problems with your code. Click on a line in the tasks list, and you will be

taken to the problem line.

4. To see the toolbar that allows you to click to insert comments, select View > Show

Editor Toolbar.

5. If you want to see the difference between two versions of a file, open one of the files,

and select Tools > Diff.

6. To copy your project, close the project in NetBeans and then copy the project folder

to your flash drive. Even if you close out of NetBeans without closing a project

before moving it, no harm will be done. When NetBeans opens, it resets its properties

so that any projects that it no longer tried to open moved or deleted projects.

