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Agenda

• Creating sockets 
• Implementing a generic network client 
• Parsing data

– StringTokenizer
– String.split

• Getting user info from a mail server
• Retrieving files from an HTTP server 
• Retrieving Web documents by using the 

URL class 
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Basic Idea
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Client vs. Server

• Traditional definition
– Client: User of network services
– Server: Supplier of network services

• Problem with traditional definition
– If there are 2 programs exchanging data, it seems unclear
– Some situations (e.g., X Windows) seem reversed

• Easier way to remember distinction
– Server starts first. Server doesn’t specify host (just port).
– Client starts second. Client specifies host (and port).

• Analogy: Company phone line
– Installing phone is like starting server
– Extension is like port
– Person who calls is the client: he specifies both host 

(general company number) and port (extension)7

Client vs. Server (Continued)

• If server has to start first, why are we 
covering clients before we cover servers?
– Clients are slightly easier.
– We can test clients by connecting to existing servers that 

are already on the internet.

• Point: clients created in Java need not 
communicate with servers written in Java. 
– They can communicate with any server that accepts 

socket connections (as long as they know the proper 
communication protocol).

– Exception: ObjectInputStream and ObjectOutputStream 
allow Java programs to send complicated data structures 
back and forth. Only works in Java, though.
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Steps for Implementing a Client

1. Create a Socket object
Socket client = new Socket("hostname", portNumber);

2. Create output stream to send data to the Socket 
// Last arg of true means autoflush -- flush stream
// when println is called
PrintWriter out =

new PrintWriter(client.getOutputStream(), true);

3. Create input stream to read response from server 
BufferedReader in = 
new BufferedReader
(new InputStreamReader(client.getInputStream()));
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Steps for Implementing a Client 
(Continued)

4. Do I/O with the input and output Streams
– For the PrintWriter, use print, println, and printf, similar to 

System.out.print/println/printf
• The main difference is that you can create PrintWriters for 

different Unicode characters sets, and you can’t with 
PrintStream (the class of System.out).

– For the BufferedReader, call read to get a single character or an 
array of chars, or call readLine to get a whole line
• Note that readLine returns null if the connection was 

terminated (i.e. on EOF), but waits otherwise

– You can use ObjectInputStream and ObjectOutputStream for 
Java-to-Java communication. Very powerful and simple.

5. Close the socket when done
client.close();

• Also closes the associated input and output streams

10



Exceptions

• UnknownHostException
– If host passed to Socket constructor is not known to DNS 

server.
• Note that you may use an IP address string for the host

• IOException
– Timeout
– Connection refused by server
– Interruption or other unexpected problem

• Server closing connection does not cause an error when 
reading: null is returned from readLine
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Helper Class: SocketUtils

• Idea
– It is common to make BufferedReader and PrintWriter 

from a Socket, so simplify the syntax slightly

• Code
public class SocketUtils {

public static BufferedReader getReader(Socket s) throws IOException {
return(new BufferedReader

(new InputStreamReader(s.getInputStream())));
}

public static PrintWriter getWriter(Socket s) throws IOException {
// Second argument of true means autoflush.
return (new PrintWriter(s.getOutputStream(), true));

}
}
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A Generic Network Client

import java.net.*;  
import java.io.*;

public abstract class NetworkClient {
private String host;
private int port;

public String getHost() {
return(host);

}

public int getPort() {
return(port);

}

/** Register host and port. The connection won't
*  actually be established until you call
*  connect.
*/

public NetworkClient(String host, int port) {
this.host = host;
this.port = port;

}
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A Generic Network Client 
(Continued)
public void connect() {
try {
Socket client = new Socket(host, port);
handleConnection(client);
client.close();

} catch(UnknownHostException uhe) {
System.out.println("Unknown host: " + host);
uhe.printStackTrace();

} catch(IOException ioe) {
System.out.println("IOException: " + ioe);
ioe.printStackTrace();

}
}

/** This is the method you will override when
*  making a network client for your task.
*/

protected abstract void handleConnection(Socket client)
throws IOException;

}
14



Example Client

public class NetworkClientTest extends NetworkClient {
public NetworkClientTest(String host, int port) {

super(host, port);
}

protected void handleConnection(Socket client)
throws IOException {

PrintWriter out = SocketUtil.getWriter(client);
BufferedReader in = SocketUtil.getReader(client);
out.println("Generic Network Client");
System.out.printf

("Generic Network Client:%n" +
"Connected to '%s' and got '%s' in response.%n",
getHost(), in.readLine());

}
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Example Client (Continued)

public static void main(String[] args) {
String host = "localhost";
int port = 8088;
if (args.length > 0) {

host = args[0];
}
if (args.length > 1) {

port = Integer.parseInt(args[1]);
}
NetworkClientTest tester =

new NetworkClientTest(host, port);
tester.connect();

}
}

16



Example Client: Result

> java NetworkClientTest ftp.microsoft.com 21
Generic Network Client:
Made connection to ftp.microsoft.com and got 
‘220 Microsoft FTP Service’ in response
> 
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Aside: String 
Formatting and Parsing
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Formatting and Parsing 
Strategies

• Idea
– Simple to connect to a server and create Reader/Writer
– So, hard parts are formatting request and parsing response

• Approach
– Formatting requests

• Use printf (aka String.format)

– Parsing response: simplest
• Use StringTokenizer

– Parsing response: more powerful
• Use String.split with regular expressions

– Parsing response: most powerful
• Use Pattern and full regex library

– Not covered in this tutorial
19

Parsing Strings Using 
StringTokenizer

• Idea
– Build a tokenizer from an initial string
– Retrieve tokens one at a time with nextToken
– You can also see how many tokens are remaining 

(countTokens) or simply test if the number of tokens 
remaining is nonzero (hasMoreTokens) 

StringTokenizer tok
= new StringTokenizer(input, delimiters);

while (tok.hasMoreTokens()) {
doSomethingWith(tok.nextToken());

}

20



StringTokenizer

• Constructors
– StringTokenizer(String input, String delimiters)
– StringTokenizer(String input, String delimiters,

boolean includeDelimiters)
– StringTokenizer(String input)

• Default delimiter set is " \t\n\r\f" (whitespace)

• Methods
– nextToken(), nextToken(String delimiters)
– countTokens()
– hasMoreTokens()

• Also see methods in String class
– split, substring, indexOf, startsWith, endsWith, compareTo, …
– Java has good support for regular expressions

21

Interactive Tokenizer: Example

import java.util.StringTokenizer;

public class TokTest {
public static void main(String[] args) {

if (args.length == 2) {
String input = args[0], delimiters = args[1];
StringTokenizer tok

= new StringTokenizer(input, delimiters);
while (tok.hasMoreTokens()) {

System.out.println(tok.nextToken());
}

} else {
System.out.println

("Usage: java TokTest string delimiters");
}

}
}

22



Interactive Tokenizer: Result

> java TokTest http://www.microsoft.com/~gates/ :/.
http
www
microsoft
com
~gates

> java TokTest "if (tok.hasMoreTokens()) {" "(){. "
if
tok
hasMoreTokens

23

Parsing Strings using the split 
method of String

• Basic usage
– String[] tokens = mainString.split(delimiterString);

• Differences from StringTokenizer
– Entire string is the delimiter (not one-char delimiters)

• "foobar".split("ob") returns "fo" and "ar"
• "foobar".split("bo") returns "foobar"

– You can use regular expressions in the delimiter
• ^, $, *, +, ., etc for beginning of String, end of String, 0 or 

more, 1 or more, any one character, etc.
• See http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html#sum

– Unless you use "+", an empty string is returned between 
consecutive delimiters

• "foobar".split("o") returns "f", "", and "bar"
• "foobar".split("o+") returns "f" and "bar" 24



Importance of Regular 
Expressions

• Idea
– String.split and other 

methods use regular 
expressions

– So do many other languages. 
Knowing regex syntax is 
an important part of every
programmer’s repertoire.

• Tutorials
– http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#sum

– http://download.oracle.com/javase/tutorial/essential/regex/
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From Randall Munroe and xkcd.com

Interactive Tokenizer: Example

public class SplitTest {
public static void main(String[] args) {

if (args.length == 2) {
String[] tokens = args[0].split(args[1]);
for(String token: tokens) {

if (token.length() != 0) {
System.out.println(token);

}
}

} else {
System.out.println

("Usage: java SplitTest string delimeters");
}

}
}

26



Interactive Tokenizer: Result

> java TokTest http://www.microsoft.com/~gates/ :/.
http
www
microsoft
com
~gates

> java SplitTest http://www.microsoft.com/~gates/ :/.
http
www.microsoft.com/~gates/

> java SplitTest http://www.microsoft.com/~gates/ [:/.]+
http
www
microsoft
com
~gates
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Problems with 
Blocking IO
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A Client to Verify Email 
Addresses

• Talking to a mail server
– One of the best ways to get comfortable with a 

network protocol is to telnet to the port a server is 
on and try out commands interactively

• Example talking to apl.jhu.edu’s server
> telnet apl.jhu.edu 25
Trying 128.220.101.100 ...Connected … Escape character … 
220 aplcenmp.apl.jhu.edu Sendmail SMI-8.6/SMI-SVR4 ready …
expn hall
250 Marty Hall <hall@aplcenmp.apl.jhu.edu>
expn root
250 Gary Gafke <…>
250 Tom Vellani <…>
quit
221 aplcenmp.apl.jhu.edu closing connection
Connection closed by foreign host29

Address Verifier

public class AddressVerifier extends NetworkClient {
private String username;

public AddressVerifier(String username, String 
hostname,

int port) {
super(hostname, port);
this.username = username;

}

public static void main(String[] args) {
if (args.length != 1) {

usage();
}
MailAddress address = new MailAddress(args[0]);
new AddressVerifier(address.getUsername(),

address.getHostname(), 25);
}

30



Address Verifier (Continued)

protected void handleConnection(Socket client)
throws IOException {

PrintWriter out = SocketUtil.getWriter(client);
InputStream rawIn = client.getInputStream();
byte[] response = new byte[1000];
// Clear out mail server's welcome message.
rawIn.read(response);
out.println("EXPN " + username);
// Read the response to the EXPN command.
int numBytes = rawIn.read(response);
// The 0 means to use normal ASCII encoding.
System.out.write(response, 0, numBytes);
out.println("QUIT");

}
...

}
31

Main point: you can only use readLine if either
• You know how many lines of data will be sent (call readLine that many times)
• The server will close the connection when done, as with HTTP servers (call readLine until you get null)

MailAddress

public class MailAddress {
private String username, hostname;

public MailAddress(String emailAddress) {
String[] pieces = emailAddress.split("@");
if (pieces.length != 2) {
System.out.println("Illegal email address");
System.exit(-1);

} else {
username = pieces[0];
hostname = pieces[1];

}
}

public String getUsername() {
return(username);

}
public String getHostname() {
return(hostname);

}
}32



Address Verifier: Result

> java AddressVerifier tbl@w3.org
250 <timbl@hq.lcs.mit.edu>

> java AddressVerifier timbl@hq.lcs.mit.edu
250 Tim Berners-Lee <timbl>

> java AddressVerifier gosling@mail.javasoft.com
550 gosling... User unknown
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Web (HTTP) Clients
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Brief Aside: Using the HTTP 
GET Command

• For the URL http://www.apl.jhu.edu/~hall/
Unix> telnet www.apl.jhu.edu 80
Trying 128.220.101.100 ...
Connected to aplcenmp.apl.jhu.edu.
Escape character is '^]'.
GET /~hall/ HTTP/1.0

HTTP/1.1 200 OK
Date: Fri, 24 Aug 2007 18:06:47 GMT
Server: Apache/2.0.49 (Unix) mod_ssl/2.0.49 ...
Last-Modified: Tue, 07 Aug 2007 18:50:50 GMT
...
Connection: close
Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC 
"-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
...
</HTML>Connection closed by foreign host.
Unix> 
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Using HTTP 1.0 vs. HTTP 1.1

• Advantage of 1.1
– You can connect to hosts that are using virtual hosting

• I.e., sites that host multiple domain names on the same machine

• E.g., for URL http://somehost/somepath
HTTP 1.0
Connect to somehost on port 80
GET /somepath HTTP/1.0
Blank line

HTTP 1.1
Connect to somehost on port 80
GET /somepath HTTP/1.1
Host: somehost
Connection: close
Blank line

36



Talking to Web Servers 
Interactively

• Telnet
– Most people think of telnet as a tool for logging into a 

remote server on default login port (23)
– But, it is really more general: a tool for connecting to a 

remote server on any port and interactively sending 
commands and looking at results

• Enabling telnet on Windows 7 or Vista
– Starting with Windows Vista, telnet is disabled by default

• To enable it, see http://technet.microsoft.com/
en-us/library/cc771275(WS.10).aspx

• Or Google for “install telnet windows 7” and above page 
will come up #1

• You may also need to turn on local echo – Unix telnet 
clients are much more convenient

37

Talking to Web Servers 
Interactively

• Problem
– MS Windows telnet client works poorly for this

• Linux, Solaris, and MacOS telnet clients work fine for this

• Solution: WebClient
– Simple graphical user interface to communicate with 

HTTP servers 
– User can interactively specify:

• URL with host, port, and URI
• HTTP request headers

– HTTP request is performed in a separate thread
– Response document is placed in a scrollable text area
– Download all source files for WebClient from tutorial 

home page38



WebClient: Example

39

A Class to Retrieve a Given URI 
from a Given Host

import java.net.*;
import java.io.*;

public class UriRetriever extends NetworkClient {
private String uri;

public static void main(String[] args) {
UriRetriever retriever =
new UriRetriever(args[0], Integer.parseInt(args[1]),

args[2]);
retriever.connect();

}

public UriRetriever(String host, int port,
String uri) {

super(host, port);
this.uri = uri;

}

40



A Class to Retrieve a Given URI 
from a Given Host (Continued)
// It is safe to use blocking IO (readLine) since
// HTTP servers close connection when done, 
// resulting in a null value for readLine.

protected void handleConnection(Socket client)
throws IOException {

PrintWriter out = SocketUtil.getWriter(client);
BufferedReader in = SocketUtil.getReader(client);
out.printf("GET %s HTTP/1.1\r\n", uri);
out.printf("Host: %s\r\n", getHost());
out.printf("Connection: close\r\n\r\n");
String line;
while ((line = in.readLine()) != null) {

System.out.println(line);
}

}
}

41

A Class to Retrieve a Given URL

public class UrlRetriever {
public static void main(String[] args) {
checkUsage(args);
UrlParser parser = new UrlParser(args[0]);
UriRetriever uriClient = 
new UriRetriever(parser.getHost(), parser.getPort(), 

parser.getUri());
uriClient.connect();

}

/** Warn user if the URL was forgotten. */

private static void checkUsage(String[] args) {
if (args.length != 1) {
System.out.println("Usage: UrlRetriever <URL>");
System.exit(-1);

}
}

}
42



A Class to Retrieve a Given URL 
(Parser)

public class UrlParser {
private String host;
private int port = 80;
private String uri;

public UrlParser(String url) {
StringTokenizer tok = new StringTokenizer(url);
String protocol = tok.nextToken(":");
checkProtocol(protocol);
host = tok.nextToken(":/");
try {
uri = tok.nextToken("");
if (uri.charAt(0) == ':') {
tok = new StringTokenizer(uri);
port = Integer.parseInt(tok.nextToken(":/"));
uri = tok.nextToken("");

}
} catch(NoSuchElementException nsee) {
uri = "/";

}
} ... // getters and setters43

UrlRetriever in Action

• No explicit port number

Prompt> java UrlRetriever
http://www.coreservlets.com/JSF-Tutorial

HTTP/1.1 301 Moved Permanently
Date: Sat, 31 Jul 2010 13:33:44 GMT
Server: Apache
Location: http://www.coreservlets.com/JSF-Tutorial/
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved <A HREF="http://www.coreservlets.com/JSF-Tutorial/">here</A>.<P>
</BODY></HTML>

44

Note the missing slash at the end of the URL. Real 
URL is http://www.coreservlets.com/JSF-Tutorial/



UrlRetriever in Action 
(Continued)

• Explicit port number

Prompt> java UrlRetriever
http://www.google.com:80/bingSearch

HTTP/1.1 404 Not Found
Content-Type: text/html; charset=UTF-8
X-Content-Type-Options: nosniff
Date: Sat, 31 Jul 2010 13:40:09 GMT
Server: sffe
Content-Length: 1364
X-XSS-Protection: 1; mode=block
Connection: close

<html><head>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<title>404 Not Found</title>…
<body>…</body>
</html>45

Writing a Web Browser

• Wow! We just wrote a Web browser in 3 
pages of code.
– Didn't format the HTML, but still not bad for 3 pages
– But we can do even better…
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Browser in 1 Page: Using URL

public class UrlRetriever2 {
public static void main(String[] args) {
try {
URL url = new URL(args[0]);
BufferedReader in = new BufferedReader(

new InputStreamReader(
url.openStream()));

String line;
while ((line = in.readLine()) != null) {
System.out.println("> " + line);

}
in.close();

} catch(MalformedURLException mue) { // URL c'tor
System.out.println(args[0] + "is an invalid URL: "

+ mue);
} catch(IOException ioe) { // Stream constructors
System.out.println("IOException: " + ioe);

}
}

}
47

UrlRetriever2 in Action

Prompt> java UrlRetriever2 http://www.yahoo.com/
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">
<html lang="en-US" class="y-fp-bg y-fp-pg-grad  bkt701">
<!-- m2 template 0 -->
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Yahoo!</title>
<meta name="description" content="Welcome to Yahoo!, the world's most visited 
home page. Quickly find what you're searching for, get in touch with friends
and stay in-the-know with the latest news and information.">
<meta name="keywords" content="yahoo, yahoo home page, yahoo homepage, 
yahoo search, yahoo mail, yahoo messenger, yahoo games, news, finance, sport, 
entertainment">

…
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Useful URL Methods

• openConnection
– Yields a URLConnection which establishes a connection to 

host specified by the URL
– Used to retrieve header lines and to supply data to the HTTP 

server

• openInputStream
– Returns the connection’s input stream for reading

• toExernalForm
– Gives the string representation of the URL

• getRef, getFile, getHost, getProtocol, getPort
– Returns the different components of the URL

49

Using the URL Methods: 
Example

import java.net.*;

public class UrlTest {
public static void main(String[] args) {
if (args.length == 1) {
try {
URL url = new URL(args[0]);
System.out.println
("URL: " + url.toExternalForm() + "\n" +
"  File:      " + url.getFile() + "\n" +
"  Host:      " + url.getHost() + "\n" +
"  Port:      " + url.getPort() + "\n" +
"  Protocol:  " + url.getProtocol() + "\n" +
"  Reference: " + url.getRef());

} catch(MalformedURLException mue) {
System.out.println("Bad URL.");

}
} else
System.out.println("Usage: UrlTest <URL>");

}
}50



Using the URL Methods, Result

> java UrlTest http://www.irs.gov/mission/#squeezing-them-dry
URL: http://www.irs.gov/mission/#squeezing-them-dry
File:      /mission/
Host:      www.irs.gov
Port:      -1
Protocol:  http
Reference: squeezing-them-dry

51

Note: If the port is not explicitly stated in the URL, then the 
standard port for the protocol is assumed and getPort returns –1

A Real Browser Using Swing

• The JEditorPane class has builtin support for 
HTTP and HTML

52



Browser in Swing: Code

import javax.swing.*;
import javax.swing.event.*;
...

public class Browser extends JFrame implements HyperlinkListener, 
ActionListener {

private JEditorPane htmlPane;
...

public Browser(String initialURL) {
...
try {

htmlPane = new JEditorPane(initialURL);
htmlPane.setEditable(false);
htmlPane.addHyperlinkListener(this);
JScrollPane scrollPane = new JScrollPane(htmlPane);
getContentPane().add(scrollPane, BorderLayout.CENTER);

} catch(IOException ioe) {
warnUser("Can't build HTML pane for " + initialURL 

+ ": " + ioe);
}

53

Browser in Swing (Continued)

...
Dimension screenSize = getToolkit().getScreenSize();
int width = screenSize.width * 8 / 10;
int height = screenSize.height * 8 / 10;
setBounds(width/8, height/8, width, height);
setVisible(true);

}

public void actionPerformed(ActionEvent event) {
String url;
if (event.getSource() == urlField)

url = urlField.getText();
else // Clicked "home" button instead of entering URL

url = initialURL;
try {

htmlPane.setPage(new URL(url));
urlField.setText(url);

} catch(IOException ioe) {
warnUser("Can't follow link to " + url + ": " + ioe);

}
}
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Browser in Swing (Continued)

...
public void hyperlinkUpdate(HyperlinkEvent event) {
if (event.getEventType() ==

HyperlinkEvent.EventType.ACTIVATED) {
try {
htmlPane.setPage(event.getURL());
urlField.setText(event.getURL().toExternalForm());

} catch(IOException ioe) {
warnUser("Can't follow link to " 

+ event.getURL().toExternalForm() + 
": " + ioe);

}
}

}
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Wrap-Up
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Summary

• Open a Socket
– new Socket("hostname-or-IP-Address", port)

• Get a PrintWriter to send data to server
– new PrintWriter(client.getOutputStream(), true);

• Get a BufferedReader to read server data
– new BufferedReader

(new InputStreamReader(client.getInputStream()));
• Notes

– readLine (from PrintWriter) blocks until data received or 
connection closed (null returned in that case)

– HTTP servers normally close the connection after 
sending data, so readLine returns null at the end

– String.split and StringTokenizer help parse strings
57
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Questions?
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