
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android. 

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Network Programming:
Clients

3

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/java.html

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android. 

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Java EE training, please see training courses 
at http://courses.coreservlets.com/. 

JSF 2, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT, 
Android development, Java 6 and 7 programming,

SOAP-based and RESTful Web Services, Spring, Hibernate/JPA, 
XML, Hadoop, and customized combinations of topics. 

Taught by the author of Core Servlets and JSP, More 
Servlets and JSP, and this tutorial. Available at public 

venues, or customized versions can be held on-site at your
organization. Contact hall@coreservlets.com for details.



Agenda

• Creating sockets 
• Implementing a generic network client 
• Parsing data

– StringTokenizer
– String.split

• Getting user info from a mail server
• Retrieving files from an HTTP server 
• Retrieving Web documents by using the 

URL class 

5

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android. 

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Basic Idea

6



Client vs. Server

• Traditional definition
– Client: User of network services
– Server: Supplier of network services

• Problem with traditional definition
– If there are 2 programs exchanging data, it seems unclear
– Some situations (e.g., X Windows) seem reversed

• Easier way to remember distinction
– Server starts first. Server doesn’t specify host (just port).
– Client starts second. Client specifies host (and port).

• Analogy: Company phone line
– Installing phone is like starting server
– Extension is like port
– Person who calls is the client: he specifies both host 

(general company number) and port (extension)7

Client vs. Server (Continued)

• If server has to start first, why are we 
covering clients before we cover servers?
– Clients are slightly easier.
– We can test clients by connecting to existing servers that 

are already on the internet.

• Point: clients created in Java need not 
communicate with servers written in Java. 
– They can communicate with any server that accepts 

socket connections (as long as they know the proper 
communication protocol).

– Exception: ObjectInputStream and ObjectOutputStream 
allow Java programs to send complicated data structures 
back and forth. Only works in Java, though.

8



Steps for Implementing a Client

1. Create a Socket object
Socket client = new Socket("hostname", portNumber);

2. Create output stream to send data to the Socket 
// Last arg of true means autoflush -- flush stream
// when println is called
PrintWriter out =

new PrintWriter(client.getOutputStream(), true);

3. Create input stream to read response from server 
BufferedReader in = 
new BufferedReader
(new InputStreamReader(client.getInputStream()));

9

Steps for Implementing a Client 
(Continued)

4. Do I/O with the input and output Streams
– For the PrintWriter, use print, println, and printf, similar to 

System.out.print/println/printf
• The main difference is that you can create PrintWriters for 

different Unicode characters sets, and you can’t with 
PrintStream (the class of System.out).

– For the BufferedReader, call read to get a single character or an 
array of chars, or call readLine to get a whole line
• Note that readLine returns null if the connection was 

terminated (i.e. on EOF), but waits otherwise

– You can use ObjectInputStream and ObjectOutputStream for 
Java-to-Java communication. Very powerful and simple.

5. Close the socket when done
client.close();

• Also closes the associated input and output streams

10



Exceptions

• UnknownHostException
– If host passed to Socket constructor is not known to DNS 

server.
• Note that you may use an IP address string for the host

• IOException
– Timeout
– Connection refused by server
– Interruption or other unexpected problem

• Server closing connection does not cause an error when 
reading: null is returned from readLine

11

Helper Class: SocketUtils

• Idea
– It is common to make BufferedReader and PrintWriter 

from a Socket, so simplify the syntax slightly

• Code
public class SocketUtils {

public static BufferedReader getReader(Socket s) throws IOException {
return(new BufferedReader

(new InputStreamReader(s.getInputStream())));
}

public static PrintWriter getWriter(Socket s) throws IOException {
// Second argument of true means autoflush.
return (new PrintWriter(s.getOutputStream(), true));

}
}

12



A Generic Network Client

import java.net.*;  
import java.io.*;

public abstract class NetworkClient {
private String host;
private int port;

public String getHost() {
return(host);

}

public int getPort() {
return(port);

}

/** Register host and port. The connection won't
*  actually be established until you call
*  connect.
*/

public NetworkClient(String host, int port) {
this.host = host;
this.port = port;

}

13

A Generic Network Client 
(Continued)
public void connect() {
try {
Socket client = new Socket(host, port);
handleConnection(client);
client.close();

} catch(UnknownHostException uhe) {
System.out.println("Unknown host: " + host);
uhe.printStackTrace();

} catch(IOException ioe) {
System.out.println("IOException: " + ioe);
ioe.printStackTrace();

}
}

/** This is the method you will override when
*  making a network client for your task.
*/

protected abstract void handleConnection(Socket client)
throws IOException;

}
14



Example Client

public class NetworkClientTest extends NetworkClient {
public NetworkClientTest(String host, int port) {

super(host, port);
}

protected void handleConnection(Socket client)
throws IOException {

PrintWriter out = SocketUtil.getWriter(client);
BufferedReader in = SocketUtil.getReader(client);
out.println("Generic Network Client");
System.out.printf

("Generic Network Client:%n" +
"Connected to '%s' and got '%s' in response.%n",
getHost(), in.readLine());

}

15

Example Client (Continued)

public static void main(String[] args) {
String host = "localhost";
int port = 8088;
if (args.length > 0) {

host = args[0];
}
if (args.length > 1) {

port = Integer.parseInt(args[1]);
}
NetworkClientTest tester =

new NetworkClientTest(host, port);
tester.connect();

}
}

16



Example Client: Result

> java NetworkClientTest ftp.microsoft.com 21
Generic Network Client:
Made connection to ftp.microsoft.com and got 
‘220 Microsoft FTP Service’ in response
> 

17

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android. 

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Aside: String 
Formatting and Parsing

18



Formatting and Parsing 
Strategies

• Idea
– Simple to connect to a server and create Reader/Writer
– So, hard parts are formatting request and parsing response

• Approach
– Formatting requests

• Use printf (aka String.format)

– Parsing response: simplest
• Use StringTokenizer

– Parsing response: more powerful
• Use String.split with regular expressions

– Parsing response: most powerful
• Use Pattern and full regex library

– Not covered in this tutorial
19

Parsing Strings Using 
StringTokenizer

• Idea
– Build a tokenizer from an initial string
– Retrieve tokens one at a time with nextToken
– You can also see how many tokens are remaining 

(countTokens) or simply test if the number of tokens 
remaining is nonzero (hasMoreTokens) 

StringTokenizer tok
= new StringTokenizer(input, delimiters);

while (tok.hasMoreTokens()) {
doSomethingWith(tok.nextToken());

}

20



StringTokenizer

• Constructors
– StringTokenizer(String input, String delimiters)
– StringTokenizer(String input, String delimiters,

boolean includeDelimiters)
– StringTokenizer(String input)

• Default delimiter set is " \t\n\r\f" (whitespace)

• Methods
– nextToken(), nextToken(String delimiters)
– countTokens()
– hasMoreTokens()

• Also see methods in String class
– split, substring, indexOf, startsWith, endsWith, compareTo, …
– Java has good support for regular expressions

21

Interactive Tokenizer: Example

import java.util.StringTokenizer;

public class TokTest {
public static void main(String[] args) {

if (args.length == 2) {
String input = args[0], delimiters = args[1];
StringTokenizer tok

= new StringTokenizer(input, delimiters);
while (tok.hasMoreTokens()) {

System.out.println(tok.nextToken());
}

} else {
System.out.println

("Usage: java TokTest string delimiters");
}

}
}

22



Interactive Tokenizer: Result

> java TokTest http://www.microsoft.com/~gates/ :/.
http
www
microsoft
com
~gates

> java TokTest "if (tok.hasMoreTokens()) {" "(){. "
if
tok
hasMoreTokens

23

Parsing Strings using the split 
method of String

• Basic usage
– String[] tokens = mainString.split(delimiterString);

• Differences from StringTokenizer
– Entire string is the delimiter (not one-char delimiters)

• "foobar".split("ob") returns "fo" and "ar"
• "foobar".split("bo") returns "foobar"

– You can use regular expressions in the delimiter
• ^, $, *, +, ., etc for beginning of String, end of String, 0 or 

more, 1 or more, any one character, etc.
• See http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html#sum

– Unless you use "+", an empty string is returned between 
consecutive delimiters

• "foobar".split("o") returns "f", "", and "bar"
• "foobar".split("o+") returns "f" and "bar" 24



Importance of Regular 
Expressions

• Idea
– String.split and other 

methods use regular 
expressions

– So do many other languages. 
Knowing regex syntax is 
an important part of every
programmer’s repertoire.

• Tutorials
– http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#sum

– http://download.oracle.com/javase/tutorial/essential/regex/

25

From Randall Munroe and xkcd.com

Interactive Tokenizer: Example

public class SplitTest {
public static void main(String[] args) {

if (args.length == 2) {
String[] tokens = args[0].split(args[1]);
for(String token: tokens) {

if (token.length() != 0) {
System.out.println(token);

}
}

} else {
System.out.println

("Usage: java SplitTest string delimeters");
}

}
}

26



Interactive Tokenizer: Result

> java TokTest http://www.microsoft.com/~gates/ :/.
http
www
microsoft
com
~gates

> java SplitTest http://www.microsoft.com/~gates/ :/.
http
www.microsoft.com/~gates/

> java SplitTest http://www.microsoft.com/~gates/ [:/.]+
http
www
microsoft
com
~gates

27

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android. 

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Problems with 
Blocking IO

28



A Client to Verify Email 
Addresses

• Talking to a mail server
– One of the best ways to get comfortable with a 

network protocol is to telnet to the port a server is 
on and try out commands interactively

• Example talking to apl.jhu.edu’s server
> telnet apl.jhu.edu 25
Trying 128.220.101.100 ...Connected … Escape character … 
220 aplcenmp.apl.jhu.edu Sendmail SMI-8.6/SMI-SVR4 ready …
expn hall
250 Marty Hall <hall@aplcenmp.apl.jhu.edu>
expn root
250 Gary Gafke <…>
250 Tom Vellani <…>
quit
221 aplcenmp.apl.jhu.edu closing connection
Connection closed by foreign host29

Address Verifier

public class AddressVerifier extends NetworkClient {
private String username;

public AddressVerifier(String username, String 
hostname,

int port) {
super(hostname, port);
this.username = username;

}

public static void main(String[] args) {
if (args.length != 1) {

usage();
}
MailAddress address = new MailAddress(args[0]);
new AddressVerifier(address.getUsername(),

address.getHostname(), 25);
}

30



Address Verifier (Continued)

protected void handleConnection(Socket client)
throws IOException {

PrintWriter out = SocketUtil.getWriter(client);
InputStream rawIn = client.getInputStream();
byte[] response = new byte[1000];
// Clear out mail server's welcome message.
rawIn.read(response);
out.println("EXPN " + username);
// Read the response to the EXPN command.
int numBytes = rawIn.read(response);
// The 0 means to use normal ASCII encoding.
System.out.write(response, 0, numBytes);
out.println("QUIT");

}
...

}
31

Main point: you can only use readLine if either
• You know how many lines of data will be sent (call readLine that many times)
• The server will close the connection when done, as with HTTP servers (call readLine until you get null)

MailAddress

public class MailAddress {
private String username, hostname;

public MailAddress(String emailAddress) {
String[] pieces = emailAddress.split("@");
if (pieces.length != 2) {
System.out.println("Illegal email address");
System.exit(-1);

} else {
username = pieces[0];
hostname = pieces[1];

}
}

public String getUsername() {
return(username);

}
public String getHostname() {
return(hostname);

}
}32



Address Verifier: Result

> java AddressVerifier tbl@w3.org
250 <timbl@hq.lcs.mit.edu>

> java AddressVerifier timbl@hq.lcs.mit.edu
250 Tim Berners-Lee <timbl>

> java AddressVerifier gosling@mail.javasoft.com
550 gosling... User unknown

33

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android. 

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Web (HTTP) Clients

34



Brief Aside: Using the HTTP 
GET Command

• For the URL http://www.apl.jhu.edu/~hall/
Unix> telnet www.apl.jhu.edu 80
Trying 128.220.101.100 ...
Connected to aplcenmp.apl.jhu.edu.
Escape character is '^]'.
GET /~hall/ HTTP/1.0

HTTP/1.1 200 OK
Date: Fri, 24 Aug 2007 18:06:47 GMT
Server: Apache/2.0.49 (Unix) mod_ssl/2.0.49 ...
Last-Modified: Tue, 07 Aug 2007 18:50:50 GMT
...
Connection: close
Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC 
"-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>
...
</HTML>Connection closed by foreign host.
Unix> 

35

Using HTTP 1.0 vs. HTTP 1.1

• Advantage of 1.1
– You can connect to hosts that are using virtual hosting

• I.e., sites that host multiple domain names on the same machine

• E.g., for URL http://somehost/somepath
HTTP 1.0
Connect to somehost on port 80
GET /somepath HTTP/1.0
Blank line

HTTP 1.1
Connect to somehost on port 80
GET /somepath HTTP/1.1
Host: somehost
Connection: close
Blank line

36



Talking to Web Servers 
Interactively

• Telnet
– Most people think of telnet as a tool for logging into a 

remote server on default login port (23)
– But, it is really more general: a tool for connecting to a 

remote server on any port and interactively sending 
commands and looking at results

• Enabling telnet on Windows 7 or Vista
– Starting with Windows Vista, telnet is disabled by default

• To enable it, see http://technet.microsoft.com/
en-us/library/cc771275(WS.10).aspx

• Or Google for “install telnet windows 7” and above page 
will come up #1

• You may also need to turn on local echo – Unix telnet 
clients are much more convenient

37

Talking to Web Servers 
Interactively

• Problem
– MS Windows telnet client works poorly for this

• Linux, Solaris, and MacOS telnet clients work fine for this

• Solution: WebClient
– Simple graphical user interface to communicate with 

HTTP servers 
– User can interactively specify:

• URL with host, port, and URI
• HTTP request headers

– HTTP request is performed in a separate thread
– Response document is placed in a scrollable text area
– Download all source files for WebClient from tutorial 

home page38



WebClient: Example

39

A Class to Retrieve a Given URI 
from a Given Host

import java.net.*;
import java.io.*;

public class UriRetriever extends NetworkClient {
private String uri;

public static void main(String[] args) {
UriRetriever retriever =
new UriRetriever(args[0], Integer.parseInt(args[1]),

args[2]);
retriever.connect();

}

public UriRetriever(String host, int port,
String uri) {

super(host, port);
this.uri = uri;

}

40



A Class to Retrieve a Given URI 
from a Given Host (Continued)
// It is safe to use blocking IO (readLine) since
// HTTP servers close connection when done, 
// resulting in a null value for readLine.

protected void handleConnection(Socket client)
throws IOException {

PrintWriter out = SocketUtil.getWriter(client);
BufferedReader in = SocketUtil.getReader(client);
out.printf("GET %s HTTP/1.1\r\n", uri);
out.printf("Host: %s\r\n", getHost());
out.printf("Connection: close\r\n\r\n");
String line;
while ((line = in.readLine()) != null) {

System.out.println(line);
}

}
}

41

A Class to Retrieve a Given URL

public class UrlRetriever {
public static void main(String[] args) {
checkUsage(args);
UrlParser parser = new UrlParser(args[0]);
UriRetriever uriClient = 
new UriRetriever(parser.getHost(), parser.getPort(), 

parser.getUri());
uriClient.connect();

}

/** Warn user if the URL was forgotten. */

private static void checkUsage(String[] args) {
if (args.length != 1) {
System.out.println("Usage: UrlRetriever <URL>");
System.exit(-1);

}
}

}
42



A Class to Retrieve a Given URL 
(Parser)

public class UrlParser {
private String host;
private int port = 80;
private String uri;

public UrlParser(String url) {
StringTokenizer tok = new StringTokenizer(url);
String protocol = tok.nextToken(":");
checkProtocol(protocol);
host = tok.nextToken(":/");
try {
uri = tok.nextToken("");
if (uri.charAt(0) == ':') {
tok = new StringTokenizer(uri);
port = Integer.parseInt(tok.nextToken(":/"));
uri = tok.nextToken("");

}
} catch(NoSuchElementException nsee) {
uri = "/";

}
} ... // getters and setters43

UrlRetriever in Action

• No explicit port number

Prompt> java UrlRetriever
http://www.coreservlets.com/JSF-Tutorial

HTTP/1.1 301 Moved Permanently
Date: Sat, 31 Jul 2010 13:33:44 GMT
Server: Apache
Location: http://www.coreservlets.com/JSF-Tutorial/
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>301 Moved Permanently</TITLE>
</HEAD><BODY>
<H1>Moved Permanently</H1>
The document has moved <A HREF="http://www.coreservlets.com/JSF-Tutorial/">here</A>.<P>
</BODY></HTML>

44

Note the missing slash at the end of the URL. Real 
URL is http://www.coreservlets.com/JSF-Tutorial/



UrlRetriever in Action 
(Continued)

• Explicit port number

Prompt> java UrlRetriever
http://www.google.com:80/bingSearch

HTTP/1.1 404 Not Found
Content-Type: text/html; charset=UTF-8
X-Content-Type-Options: nosniff
Date: Sat, 31 Jul 2010 13:40:09 GMT
Server: sffe
Content-Length: 1364
X-XSS-Protection: 1; mode=block
Connection: close

<html><head>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<title>404 Not Found</title>…
<body>…</body>
</html>45

Writing a Web Browser

• Wow! We just wrote a Web browser in 3 
pages of code.
– Didn't format the HTML, but still not bad for 3 pages
– But we can do even better…

46



Browser in 1 Page: Using URL

public class UrlRetriever2 {
public static void main(String[] args) {
try {
URL url = new URL(args[0]);
BufferedReader in = new BufferedReader(

new InputStreamReader(
url.openStream()));

String line;
while ((line = in.readLine()) != null) {
System.out.println("> " + line);

}
in.close();

} catch(MalformedURLException mue) { // URL c'tor
System.out.println(args[0] + "is an invalid URL: "

+ mue);
} catch(IOException ioe) { // Stream constructors
System.out.println("IOException: " + ioe);

}
}

}
47

UrlRetriever2 in Action

Prompt> java UrlRetriever2 http://www.yahoo.com/
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">
<html lang="en-US" class="y-fp-bg y-fp-pg-grad  bkt701">
<!-- m2 template 0 -->
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Yahoo!</title>
<meta name="description" content="Welcome to Yahoo!, the world's most visited 
home page. Quickly find what you're searching for, get in touch with friends
and stay in-the-know with the latest news and information.">
<meta name="keywords" content="yahoo, yahoo home page, yahoo homepage, 
yahoo search, yahoo mail, yahoo messenger, yahoo games, news, finance, sport, 
entertainment">

…

48



Useful URL Methods

• openConnection
– Yields a URLConnection which establishes a connection to 

host specified by the URL
– Used to retrieve header lines and to supply data to the HTTP 

server

• openInputStream
– Returns the connection’s input stream for reading

• toExernalForm
– Gives the string representation of the URL

• getRef, getFile, getHost, getProtocol, getPort
– Returns the different components of the URL

49

Using the URL Methods: 
Example

import java.net.*;

public class UrlTest {
public static void main(String[] args) {
if (args.length == 1) {
try {
URL url = new URL(args[0]);
System.out.println
("URL: " + url.toExternalForm() + "\n" +
"  File:      " + url.getFile() + "\n" +
"  Host:      " + url.getHost() + "\n" +
"  Port:      " + url.getPort() + "\n" +
"  Protocol:  " + url.getProtocol() + "\n" +
"  Reference: " + url.getRef());

} catch(MalformedURLException mue) {
System.out.println("Bad URL.");

}
} else
System.out.println("Usage: UrlTest <URL>");

}
}50



Using the URL Methods, Result

> java UrlTest http://www.irs.gov/mission/#squeezing-them-dry
URL: http://www.irs.gov/mission/#squeezing-them-dry
File:      /mission/
Host:      www.irs.gov
Port:      -1
Protocol:  http
Reference: squeezing-them-dry

51

Note: If the port is not explicitly stated in the URL, then the 
standard port for the protocol is assumed and getPort returns –1

A Real Browser Using Swing

• The JEditorPane class has builtin support for 
HTTP and HTML

52



Browser in Swing: Code

import javax.swing.*;
import javax.swing.event.*;
...

public class Browser extends JFrame implements HyperlinkListener, 
ActionListener {

private JEditorPane htmlPane;
...

public Browser(String initialURL) {
...
try {

htmlPane = new JEditorPane(initialURL);
htmlPane.setEditable(false);
htmlPane.addHyperlinkListener(this);
JScrollPane scrollPane = new JScrollPane(htmlPane);
getContentPane().add(scrollPane, BorderLayout.CENTER);

} catch(IOException ioe) {
warnUser("Can't build HTML pane for " + initialURL 

+ ": " + ioe);
}

53

Browser in Swing (Continued)

...
Dimension screenSize = getToolkit().getScreenSize();
int width = screenSize.width * 8 / 10;
int height = screenSize.height * 8 / 10;
setBounds(width/8, height/8, width, height);
setVisible(true);

}

public void actionPerformed(ActionEvent event) {
String url;
if (event.getSource() == urlField)

url = urlField.getText();
else // Clicked "home" button instead of entering URL

url = initialURL;
try {

htmlPane.setPage(new URL(url));
urlField.setText(url);

} catch(IOException ioe) {
warnUser("Can't follow link to " + url + ": " + ioe);

}
}

54



Browser in Swing (Continued)

...
public void hyperlinkUpdate(HyperlinkEvent event) {
if (event.getEventType() ==

HyperlinkEvent.EventType.ACTIVATED) {
try {
htmlPane.setPage(event.getURL());
urlField.setText(event.getURL().toExternalForm());

} catch(IOException ioe) {
warnUser("Can't follow link to " 

+ event.getURL().toExternalForm() + 
": " + ioe);

}
}

}

55

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android. 

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

56



Summary

• Open a Socket
– new Socket("hostname-or-IP-Address", port)

• Get a PrintWriter to send data to server
– new PrintWriter(client.getOutputStream(), true);

• Get a BufferedReader to read server data
– new BufferedReader

(new InputStreamReader(client.getInputStream()));
• Notes

– readLine (from PrintWriter) blocks until data received or 
connection closed (null returned in that case)

– HTTP servers normally close the connection after 
sending data, so readLine returns null at the end

– String.split and StringTokenizer help parse strings
57

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android. 

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

58

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.


