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Topics in This Section

• How layout managers simplify interface 
design

• Standard layout managers
– FlowLayout, BorderLayout, CardLayout, GridLayout, 

GridBagLayout, BoxLayout

• Positioning components manually
• Strategies for using layout managers 

effectively
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Layout Managers

• Assigned to each Container
– Give sizes and positions to components in the window
– Helpful for windows whose size changes or that display 

on multiple operating systems

• Relatively easy for simple layouts 
– But, it is surprisingly hard to get complex layouts with a 

single layout manager

• Controlling complex layouts
– Use nested containers (each with its own layout manager)
– Use invisible components and layout manager options
– Write your own layout manager
– Turn some layout managers off and arrange 

some things manually6
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Managers
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FlowLayout

• Default layout for Panel, JPanel, and Applet
• Behavior

– Resizes components to their preferred size
– Places components in rows left to right, top to bottom

• Rows are centered by default

• Constructors
– FlowLayout()

• Centers each row and keeps 5 pixels between entries in a row and 
between rows

– FlowLayout(int alignment)
• Same 5 pixels spacing, but changes the alignment of the rows
• FlowLayout.LEFT, FlowLayout.RIGHT, FlowLayout.CENTER

– FlowLayout(int alignment, int hGap, int vGap)
• Specify the alignment as well as the horizontal and vertical spacing between 

components (in pixels)
8



FlowLayout: Example

public class FlowTest extends Applet {
public void init() {
// setLayout(new FlowLayout()); [Default]
for(int i=1; i<6; i++) {

add(new Button("Button " + i));
}

}
}
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BorderLayout

• Default for Frame, JFrame, Dialog, JApplet
• Behavior

– Divides the Container into five regions
• Each region is identified by a corresponding 
BorderLayout constant
– NORTH, SOUTH, EAST, WEST, and CENTER

– NORTH and SOUTH respect the preferred height of the 
component

– EAST and WEST respect the preferred width of the 
component

– CENTER is given the remaining space

• Is allowing a maximum of five components 
too restrictive? Why not?
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BorderLayout (Continued)

• Constructors
– BorderLayout()

• Border layout with no gaps between components

– BorderLayout(int hGap, int vGap)
• Border layout with the specified empty pixels between 

regions

• Adding Components
– add(component, BorderLayout.REGION)
– Always specify the region in which to add the component

• CENTER is the default, but specify it explicitly to avoid 
confusion with other layout managers
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BorderLayout: Example

public class BorderTest extends Applet {
public void init() {

setLayout(new BorderLayout());
add(new Button("Button 1"), BorderLayout.NORTH);
add(new Button("Button 2"), BorderLayout.SOUTH);
add(new Button("Button 3"), BorderLayout.EAST);
add(new Button("Button 4"), BorderLayout.WEST);
add(new Button("Button 5"), BorderLayout.CENTER);

}
}
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GridLayout

• Behavior
– Divides window into equal-sized rectangles based upon 

the number of rows and columns specified
• Items placed into cells left-to-right, top-to-bottom, based 

on the order added to the container

– Ignores the preferred size of the component; each 
component is resized to fit into its grid cell

– Too few components results in blank cells
– Too many components results in extra columns
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GridLayout (Continued)

• Constructors
– GridLayout()

• Creates a single row with one column allocated per 
component

– GridLayout(int rows, int cols)
• Divides the window into the specified number of rows and 

columns
• Either rows or cols (but not both) can be zero

– GridLayout(int rows, int cols, 
int hGap, int vGap)

• Uses the specified gaps between cells
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GridLayout, Example

public class GridTest extends Applet {
public void init() {

setLayout(new GridLayout(2,3)); // 2 rows, 3 cols
add(new Button("Button One"));
add(new Button("Button Two"));
add(new Button("Button Three"));
add(new Button("Button Four"));
add(new Button("Button Five"));
add(new Button("Button Six"));

}
}
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CardLayout

• Behavior
– Stacks components on top of each other, displaying the 

top one
– Associates a name with each component in window

Panel cardPanel;
CardLayout layout new CardLayout();
cardPanel.setLayout(layout);
...
cardPanel.add("Card 1", component1);
cardPanel.add("Card 2", component2);
...
layout.show(cardPanel, "Card 1");
layout.first(cardPanel);
layout.next(cardPanel);

16



CardLayout, Example
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GridBagLayout
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GridBagLayout

• Behavior
– Divides the window into grids, without requiring the 

components to be the same size
• About three times more flexible than the other standard 

layout managers, but nine times harder to use

– Each component managed by a grid bag layout is 
associated with an instance of GridBagConstraints

• The GridBagConstraints specifies:
– How the component is laid out in the display area 

– In which cell the component starts and ends

– How the component stretches when extra room is available

– Alignment in cells

– Java 5 introduced SpringLayout, with similar power but 
much less complexity
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GridBagLayout: Basic Steps

• Set the layout, saving a reference to it
GridBagLayout layout = new GridBagLayout();
setLayout(layout);

• Allocate a GridBagConstraints object
GridBagConstraints constraints = 
new GridBagConstraints();

• Set up the GridBagConstraints for 
component 1

constraints.gridx = x1;
constraints.gridy = y1;
constraints.gridwidth = width1;
constraints.gridheight = height1;

• Add component 1 to the window, including 
constraints

add(component1, constraints);

• Repeat the last two steps for each remaining 
component20



GridBagConstraints

• Copied when component added to window
– Thus, can reuse the GridBagConstraints

GridBagConstraints constraints = 
new GridBagConstraints();

constraints.gridx = x1;
constraints.gridy = y1;
constraints.gridwidth = width1;
constraints.gridheight = height1;
add(component1, constraints);
constraints.gridx = x1;
constraints.gridy = y1;
add(component2, constraints);
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GridBagConstraints Fields

• gridx, gridy
– Specifies the top-left corner of the component
– Upper left of grid is located at 

(gridx, gridy)=(0,0)
– Set to GridBagConstraints.RELATIVE to 

auto-increment row/column
GridBagConstraints constraints =

new GridBagConstraints();
constraints.gridx =
GridBagConstraints.RELATIVE;

container.add(new Button("one"),
constraints);

container.add(new Button("two"),
constraints);
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GridBagConstraints Fields
(Continued)
• gridwidth, gridheight

– Specifies the number of columns and rows the 
Component occupies

constraints.gridwidth = 3;
– GridBagConstraints.REMAINDER lets the 

component take up the remainder of the row/column
• weightx, weighty

– Specifies how much the cell will stretch in the x or y 
direction if space is left over

constraints.weightx = 3.0;
– Constraint affects the cell, not the component (use fill)
– Use a value of 0.0 for no expansion in a direction
– Values are relative, not absolute
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GridBagConstraints Fields 
(Continued)
• fill

– Specifies what to do to an element that is smaller than the 
cell size
constraints.fill = GridBagConstraints.VERTICAL;

– The size of row/column is determined by the 
widest/tallest element in it 

– Can be NONE, HORIZONTAL, VERTICAL, or BOTH
• anchor

– If the fill is set to GridBagConstraints.NONE, then 
the anchor field determines where the component is 
placed
constraints.anchor = GridBagConstraints.NORTHEAST;

– Can be NORTH, EAST, SOUTH, WEST, NORTHEAST, 
NORTHWEST, SOUTHEAST, or SOUTHWEST

24



GridBagLayout: Example
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GridBagLayout: Example

public GridBagTest() {
setLayout(new GridBagLayout());
textArea = new JTextArea(12, 40);  // 12 rows, 40 cols
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");
bExit = new JButton("Exit");
GridBagConstraints c = new GridBagConstraints();
// Text Area.
c.gridx      = 0;
c.gridy      = 0;
c.gridwidth  = GridBagConstraints.REMAINDER;
c.gridheight = 1;
c.weightx    = 1.0;
c.weighty    = 1.0;
c.fill       = GridBagConstraints.BOTH;
c.insets     = new Insets(2,2,2,2); //t,l,b,r
add(textArea, c);
...
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GridBagLayout: Example 
(Continued)

// Save As Button.
c.gridx      = 0;
c.gridy      = 1;
c.gridwidth  = 1;
c.gridheight = 1;
c.weightx    = 0.0;
c.weighty    = 0.0;
c.fill       = GridBagConstraints.VERTICAL;
add(bSaveAs,c);

// Filename Input (Textfield).
c.gridx      = 1;
c.gridwidth  = GridBagConstraints.REMAINDER;
c.gridheight = 1;
c.weightx    = 1.0;
c.weighty    = 0.0;
c.fill       = GridBagConstraints.BOTH;
add(fileField,c);
...
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GridBagLayout: Example 
(Continued)

// Exit Button.
c.gridx      = 3;
c.gridwidth  = 1;
c.gridheight = 1;
c.weightx    = 0.0;
c.weighty    = 0.0;
c.fill       = GridBagConstraints.NONE;
add(bExit,c);

// Filler so Column 1 has nonzero width.
Component filler = 
Box.createRigidArea(new Dimension(1,1));

c.gridx      = 1;
c.weightx    = 1.0;
add(filler,c);

...
}

28



GridBagLayout: Result
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Without Box filler at (2,1)With Box filler at (2,1)
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Strategies for Using 
Layout Managers

30



Disabling the Layout Manager

• Behavior
– If the layout is set to null, then components must be 
sized and positioned by hand

• Positioning components
• component.setSize(width, height)
• component.setLocation(left, top)

– or
• component.setBounds(left, top, 

width, height)
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No Layout Manager: Example

setLayout(null);
Button b1 = new Button("Button 1");
Button b2 = new Button("Button 2");
...
b1.setBounds(0, 0, 150, 50);
b2.setBounds(150, 0, 75, 50);
...
add(b1);
add(b2);
...
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Using Layout Managers 
Effectively

• Use nested containers
– Rather than struggling to fit your design in a single 

layout, try dividing the design into sections
– Let each section be a panel with its own layout manager

• Turn off the layout manager for some
containers

• Adjust the empty space around components
– Change the space allocated by the layout manager
– Override insets in the Container
– Use a Canvas or a Box as an invisible spacer
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Nested Containers: Example
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Nested Containers: Example

public NestedLayout() {

setLayout(new BorderLayout(2,2));

textArea = new JTextArea(12,40);  // 12 rows, 40 cols
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");
bExit = new JButton("Exit");

add(textArea,BorderLayout.CENTER);

// Set up buttons and textfield in bottom panel.
JPanel bottomPanel = new JPanel();
bottomPanel.setLayout(new GridLayout(2,1));
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Nested Containers, Example

JPanel subPanel1 = new JPanel();
JPanel subPanel2 = new JPanel();
subPanel1.setLayout(new BorderLayout());
subPanel2.setLayout

(new FlowLayout(FlowLayout.RIGHT,2,2));

subPanel1.add(bSaveAs,BorderLayout.WEST);
subPanel1.add(fileField,BorderLayout.CENTER);
subPanel2.add(bOk);
subPanel2.add(bExit);

bottomPanel.add(subPanel1);
bottomPanel.add(subPanel2);

add(bottomPanel,BorderLayout.SOUTH);
}
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Nested Containers: Result
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Turning Off Layout Manager for 
Some Containers: Example

• Suppose that you wanted to arrange a column of 
buttons (on the left) that take exactly 40% of the width 
of the container
setLayout(null);
int width1 = getSize().width*4/10;,
int height = getSize().height;
Panel buttonPanel = new Panel();
buttonPanel.setBounds(0, 0, width1, height);
buttonPanel.setLayout(new GridLayout(6, 1));
buttonPanel.add(new Label("Buttons", Label.CENTER));
buttonPanel.add(new Button("Button One"));
...
buttonPanel.add(new Button("Button Five"));
add(buttonPanel);
Panel everythingElse = new Panel();
int width2 = getSize().width - width1,
everythingElse.setBounds(width1+1, 0, width2, height);
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Turning Off Layout Manager for 
Some Containers: Result
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Adjusting Space Around 
Components

• Change the space allocated by the layout 
manager
– Most LayoutManagers accept a horizontal spacing 

(hGap) and vertical spacing (vGap) argument 
– For GridBagLayout, change the insets

• Use a Canvas or a Box as an invisible 
spacer
– For AWT layouts, use a Canvas that does not draw or 

handle mouse events as an “empty” component for 
spacing.

– For Swing layouts, add a Box as an invisible spacer to 
improve positioning of components

40
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Wrap-Up
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Drag-and-Drop 
Swing GUI Builders

• Free
– Matisse (“NetBeans GUI Builder”) built into NetBeans

• Also available in MyEclipse. Not in regular Eclipse.

– WindowBuilder Pro
• Originally a commercial product, then bought and released for free by 

Google. For Eclipse.
– http://code.google.com/javadevtools/download-wbpro.html

• Commercial
– JFormDesigner

• jformdesigner.com

– Jvider
• jvider.com

– SpeedJG
• wsoftware.de

– Jigloo
• http://www.cloudgarden.com

/jigloo/
42



Other Layout Managers

• BoxLayout
– Lets you put components in horizontal or vertical rows 

and control the sizes and gaps. Simple, but useful.

• GroupLayout
– Groups components into hierarchies, then positions each 

group. Mostly designed for use by GUI builders.

• SpringLayout
– Alternative to GridBagLayout that lets you give complex 

constraints for each component. Almost exclusively 
designed for use by GUI builders.

• Details and visual summaries
– http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
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Summary

• Default layout managers
– Applet and Panel: FlowLayout 
– Frame and Dialog: BorderLayout

• Preferred sizes
– FlowLayout: honors all
– BorderLayout: 

• North/South honors preferred height  
• East/West honors preferred width

– GridLayout: ignores preferred sizes
• GridBagLayout 

– The most complicated but most flexible manager
• Design strategy

– Use nested containers, each with relatively simple layout
44
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Questions?
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