
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Layout Managers

3

Arranging Elements in Windows

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/java.html

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Java EE training, please see training courses
at http://courses.coreservlets.com/.

JSF 2, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT,
Android development, Java 6 and 7 programming,

SOAP-based and RESTful Web Services, Spring, Hibernate/JPA,
XML, Hadoop, and customized combinations of topics.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP, and this tutorial. Available at public

venues, or customized versions can be held on-site at your
organization. Contact hall@coreservlets.com for details.

Topics in This Section

• How layout managers simplify interface
design

• Standard layout managers
– FlowLayout, BorderLayout, CardLayout, GridLayout,

GridBagLayout, BoxLayout

• Positioning components manually
• Strategies for using layout managers

effectively

5

Layout Managers

• Assigned to each Container
– Give sizes and positions to components in the window
– Helpful for windows whose size changes or that display

on multiple operating systems

• Relatively easy for simple layouts
– But, it is surprisingly hard to get complex layouts with a

single layout manager

• Controlling complex layouts
– Use nested containers (each with its own layout manager)
– Use invisible components and layout manager options
– Write your own layout manager
– Turn some layout managers off and arrange

some things manually6

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Simple Layout
Managers

7

FlowLayout

• Default layout for Panel, JPanel, and Applet
• Behavior

– Resizes components to their preferred size
– Places components in rows left to right, top to bottom

• Rows are centered by default

• Constructors
– FlowLayout()

• Centers each row and keeps 5 pixels between entries in a row and
between rows

– FlowLayout(int alignment)
• Same 5 pixels spacing, but changes the alignment of the rows
• FlowLayout.LEFT, FlowLayout.RIGHT, FlowLayout.CENTER

– FlowLayout(int alignment, int hGap, int vGap)
• Specify the alignment as well as the horizontal and vertical spacing between

components (in pixels)
8

FlowLayout: Example

public class FlowTest extends Applet {
public void init() {
// setLayout(new FlowLayout()); [Default]
for(int i=1; i<6; i++) {

add(new Button("Button " + i));
}

}
}

9

BorderLayout

• Default for Frame, JFrame, Dialog, JApplet
• Behavior

– Divides the Container into five regions
• Each region is identified by a corresponding
BorderLayout constant
– NORTH, SOUTH, EAST, WEST, and CENTER

– NORTH and SOUTH respect the preferred height of the
component

– EAST and WEST respect the preferred width of the
component

– CENTER is given the remaining space

• Is allowing a maximum of five components
too restrictive? Why not?

10

BorderLayout (Continued)

• Constructors
– BorderLayout()

• Border layout with no gaps between components

– BorderLayout(int hGap, int vGap)
• Border layout with the specified empty pixels between

regions

• Adding Components
– add(component, BorderLayout.REGION)
– Always specify the region in which to add the component

• CENTER is the default, but specify it explicitly to avoid
confusion with other layout managers

11

BorderLayout: Example

public class BorderTest extends Applet {
public void init() {

setLayout(new BorderLayout());
add(new Button("Button 1"), BorderLayout.NORTH);
add(new Button("Button 2"), BorderLayout.SOUTH);
add(new Button("Button 3"), BorderLayout.EAST);
add(new Button("Button 4"), BorderLayout.WEST);
add(new Button("Button 5"), BorderLayout.CENTER);

}
}

12

GridLayout

• Behavior
– Divides window into equal-sized rectangles based upon

the number of rows and columns specified
• Items placed into cells left-to-right, top-to-bottom, based

on the order added to the container

– Ignores the preferred size of the component; each
component is resized to fit into its grid cell

– Too few components results in blank cells
– Too many components results in extra columns

13

GridLayout (Continued)

• Constructors
– GridLayout()

• Creates a single row with one column allocated per
component

– GridLayout(int rows, int cols)
• Divides the window into the specified number of rows and

columns
• Either rows or cols (but not both) can be zero

– GridLayout(int rows, int cols,
int hGap, int vGap)

• Uses the specified gaps between cells

14

GridLayout, Example

public class GridTest extends Applet {
public void init() {

setLayout(new GridLayout(2,3)); // 2 rows, 3 cols
add(new Button("Button One"));
add(new Button("Button Two"));
add(new Button("Button Three"));
add(new Button("Button Four"));
add(new Button("Button Five"));
add(new Button("Button Six"));

}
}

15

CardLayout

• Behavior
– Stacks components on top of each other, displaying the

top one
– Associates a name with each component in window

Panel cardPanel;
CardLayout layout new CardLayout();
cardPanel.setLayout(layout);
...
cardPanel.add("Card 1", component1);
cardPanel.add("Card 2", component2);
...
layout.show(cardPanel, "Card 1");
layout.first(cardPanel);
layout.next(cardPanel);

16

CardLayout, Example

17

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

GridBagLayout

18

GridBagLayout

• Behavior
– Divides the window into grids, without requiring the

components to be the same size
• About three times more flexible than the other standard

layout managers, but nine times harder to use

– Each component managed by a grid bag layout is
associated with an instance of GridBagConstraints

• The GridBagConstraints specifies:
– How the component is laid out in the display area

– In which cell the component starts and ends

– How the component stretches when extra room is available

– Alignment in cells

– Java 5 introduced SpringLayout, with similar power but
much less complexity

19

GridBagLayout: Basic Steps

• Set the layout, saving a reference to it
GridBagLayout layout = new GridBagLayout();
setLayout(layout);

• Allocate a GridBagConstraints object
GridBagConstraints constraints =
new GridBagConstraints();

• Set up the GridBagConstraints for
component 1

constraints.gridx = x1;
constraints.gridy = y1;
constraints.gridwidth = width1;
constraints.gridheight = height1;

• Add component 1 to the window, including
constraints

add(component1, constraints);

• Repeat the last two steps for each remaining
component20

GridBagConstraints

• Copied when component added to window
– Thus, can reuse the GridBagConstraints

GridBagConstraints constraints =
new GridBagConstraints();

constraints.gridx = x1;
constraints.gridy = y1;
constraints.gridwidth = width1;
constraints.gridheight = height1;
add(component1, constraints);
constraints.gridx = x1;
constraints.gridy = y1;
add(component2, constraints);

21

GridBagConstraints Fields

• gridx, gridy
– Specifies the top-left corner of the component
– Upper left of grid is located at

(gridx, gridy)=(0,0)
– Set to GridBagConstraints.RELATIVE to

auto-increment row/column
GridBagConstraints constraints =

new GridBagConstraints();
constraints.gridx =
GridBagConstraints.RELATIVE;

container.add(new Button("one"),
constraints);

container.add(new Button("two"),
constraints);

22

GridBagConstraints Fields
(Continued)
• gridwidth, gridheight

– Specifies the number of columns and rows the
Component occupies

constraints.gridwidth = 3;
– GridBagConstraints.REMAINDER lets the

component take up the remainder of the row/column
• weightx, weighty

– Specifies how much the cell will stretch in the x or y
direction if space is left over

constraints.weightx = 3.0;
– Constraint affects the cell, not the component (use fill)
– Use a value of 0.0 for no expansion in a direction
– Values are relative, not absolute

23

GridBagConstraints Fields
(Continued)
• fill

– Specifies what to do to an element that is smaller than the
cell size
constraints.fill = GridBagConstraints.VERTICAL;

– The size of row/column is determined by the
widest/tallest element in it

– Can be NONE, HORIZONTAL, VERTICAL, or BOTH
• anchor

– If the fill is set to GridBagConstraints.NONE, then
the anchor field determines where the component is
placed
constraints.anchor = GridBagConstraints.NORTHEAST;

– Can be NORTH, EAST, SOUTH, WEST, NORTHEAST,
NORTHWEST, SOUTHEAST, or SOUTHWEST

24

GridBagLayout: Example

25

GridBagLayout: Example

public GridBagTest() {
setLayout(new GridBagLayout());
textArea = new JTextArea(12, 40); // 12 rows, 40 cols
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");
bExit = new JButton("Exit");
GridBagConstraints c = new GridBagConstraints();
// Text Area.
c.gridx = 0;
c.gridy = 0;
c.gridwidth = GridBagConstraints.REMAINDER;
c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 1.0;
c.fill = GridBagConstraints.BOTH;
c.insets = new Insets(2,2,2,2); //t,l,b,r
add(textArea, c);
...

26

GridBagLayout: Example
(Continued)

// Save As Button.
c.gridx = 0;
c.gridy = 1;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.VERTICAL;
add(bSaveAs,c);

// Filename Input (Textfield).
c.gridx = 1;
c.gridwidth = GridBagConstraints.REMAINDER;
c.gridheight = 1;
c.weightx = 1.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.BOTH;
add(fileField,c);
...

27

GridBagLayout: Example
(Continued)

// Exit Button.
c.gridx = 3;
c.gridwidth = 1;
c.gridheight = 1;
c.weightx = 0.0;
c.weighty = 0.0;
c.fill = GridBagConstraints.NONE;
add(bExit,c);

// Filler so Column 1 has nonzero width.
Component filler =
Box.createRigidArea(new Dimension(1,1));

c.gridx = 1;
c.weightx = 1.0;
add(filler,c);

...
}

28

GridBagLayout: Result

29

Without Box filler at (2,1)With Box filler at (2,1)

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Strategies for Using
Layout Managers

30

Disabling the Layout Manager

• Behavior
– If the layout is set to null, then components must be
sized and positioned by hand

• Positioning components
• component.setSize(width, height)
• component.setLocation(left, top)

– or
• component.setBounds(left, top,

width, height)

31

No Layout Manager: Example

setLayout(null);
Button b1 = new Button("Button 1");
Button b2 = new Button("Button 2");
...
b1.setBounds(0, 0, 150, 50);
b2.setBounds(150, 0, 75, 50);
...
add(b1);
add(b2);
...

32

Using Layout Managers
Effectively

• Use nested containers
– Rather than struggling to fit your design in a single

layout, try dividing the design into sections
– Let each section be a panel with its own layout manager

• Turn off the layout manager for some
containers

• Adjust the empty space around components
– Change the space allocated by the layout manager
– Override insets in the Container
– Use a Canvas or a Box as an invisible spacer

33

Nested Containers: Example

34

Nested Containers: Example

public NestedLayout() {

setLayout(new BorderLayout(2,2));

textArea = new JTextArea(12,40); // 12 rows, 40 cols
bSaveAs = new JButton("Save As");
fileField = new JTextField("C:\\Document.txt");
bOk = new JButton("OK");
bExit = new JButton("Exit");

add(textArea,BorderLayout.CENTER);

// Set up buttons and textfield in bottom panel.
JPanel bottomPanel = new JPanel();
bottomPanel.setLayout(new GridLayout(2,1));

35

Nested Containers, Example

JPanel subPanel1 = new JPanel();
JPanel subPanel2 = new JPanel();
subPanel1.setLayout(new BorderLayout());
subPanel2.setLayout

(new FlowLayout(FlowLayout.RIGHT,2,2));

subPanel1.add(bSaveAs,BorderLayout.WEST);
subPanel1.add(fileField,BorderLayout.CENTER);
subPanel2.add(bOk);
subPanel2.add(bExit);

bottomPanel.add(subPanel1);
bottomPanel.add(subPanel2);

add(bottomPanel,BorderLayout.SOUTH);
}

36

Nested Containers: Result

37

Turning Off Layout Manager for
Some Containers: Example

• Suppose that you wanted to arrange a column of
buttons (on the left) that take exactly 40% of the width
of the container
setLayout(null);
int width1 = getSize().width*4/10;,
int height = getSize().height;
Panel buttonPanel = new Panel();
buttonPanel.setBounds(0, 0, width1, height);
buttonPanel.setLayout(new GridLayout(6, 1));
buttonPanel.add(new Label("Buttons", Label.CENTER));
buttonPanel.add(new Button("Button One"));
...
buttonPanel.add(new Button("Button Five"));
add(buttonPanel);
Panel everythingElse = new Panel();
int width2 = getSize().width - width1,
everythingElse.setBounds(width1+1, 0, width2, height);

38

Turning Off Layout Manager for
Some Containers: Result

39

Adjusting Space Around
Components

• Change the space allocated by the layout
manager
– Most LayoutManagers accept a horizontal spacing

(hGap) and vertical spacing (vGap) argument
– For GridBagLayout, change the insets

• Use a Canvas or a Box as an invisible
spacer
– For AWT layouts, use a Canvas that does not draw or

handle mouse events as an “empty” component for
spacing.

– For Swing layouts, add a Box as an invisible spacer to
improve positioning of components

40

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

41

Drag-and-Drop
Swing GUI Builders

• Free
– Matisse (“NetBeans GUI Builder”) built into NetBeans

• Also available in MyEclipse. Not in regular Eclipse.

– WindowBuilder Pro
• Originally a commercial product, then bought and released for free by

Google. For Eclipse.
– http://code.google.com/javadevtools/download-wbpro.html

• Commercial
– JFormDesigner

• jformdesigner.com

– Jvider
• jvider.com

– SpeedJG
• wsoftware.de

– Jigloo
• http://www.cloudgarden.com

/jigloo/
42

Other Layout Managers

• BoxLayout
– Lets you put components in horizontal or vertical rows

and control the sizes and gaps. Simple, but useful.

• GroupLayout
– Groups components into hierarchies, then positions each

group. Mostly designed for use by GUI builders.

• SpringLayout
– Alternative to GridBagLayout that lets you give complex

constraints for each component. Almost exclusively
designed for use by GUI builders.

• Details and visual summaries
– http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

43

Summary

• Default layout managers
– Applet and Panel: FlowLayout
– Frame and Dialog: BorderLayout

• Preferred sizes
– FlowLayout: honors all
– BorderLayout:

• North/South honors preferred height
• East/West honors preferred width

– GridLayout: ignores preferred sizes
• GridBagLayout

– The most complicated but most flexible manager
• Design strategy

– Use nested containers, each with relatively simple layout
44

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

45

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

