
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

AWT Components:
Simple User Interfaces

3

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/java.html

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Java EE training, please see training courses
at http://courses.coreservlets.com/.

JSF 2, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT,
Android development, Java 6 and 7 programming,

SOAP-based and RESTful Web Services, Spring, Hibernate/JPA,
XML, Hadoop, and customized combinations of topics.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP, and this tutorial. Available at public

venues, or customized versions can be held on-site at your
organization. Contact hall@coreservlets.com for details.

Topics in This Section

• GUI libraries in Java
• Basic AWT windows

– Canvas, Panel, Frame

• Closing frames
• Processing events in GUI controls
• Basic AWT user interface controls

– Button, checkbox, radio button, list box

5

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

GUI Libraries
in Java SE

6

GUI Libraries in Java
Part of Java SE

• AWT (Abstract Window Toolkit)
– The original GUI library in Java

1.02. Native Look and Feel (LAF).
• Covered in this lecture

– Purposes
• Easy building of simple-looking

interfaces
– Often for internal purposes

only. Not seen by end users.
• First step toward learning

Swing

• Swing
– GUI library added to Java starting

in Java 1.1
• Covered in later lectures

– Purposes
• Professional looking GUIs that

follow standard
• GUIs with the same look and

feel on multiple platforms

Extensions
• SWT (Standard Widget Toolkit)

– GUI from the Eclipse foundation.
Native LAF ala AWT.

• See http://www.eclipse.org/swt/
– Purposes

• Higher-performance professional
looking GUIs

• Native LAF
• Interaction with the Eclipse Rich

Client Platform

• Java FX
– GUI library and tools now

standardized separately
• See http://javafx.com/

– Purposes
• XML-based layout
• Mobile platforms
• Rich media: audio, video, etc.

7

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Background

8

Windows and Layout
Management

• Containers
– Most windows are a Container that can hold other

windows or GUI components. Canvas is the major
exception.

• Layout Managers
– Containers have a LayoutManager that automatically

sizes and positions components that are in the window
– You can change the behavior of the layout manager or

disable it completely. Details in next lecture.

• Events
– Windows and components can receive mouse and

keyboard events, just as in previous lecture.

9

Windows and Layout
Management (Continued)

• Drawing in Windows
– To draw into a window, make a subclass with its own
paint method

– Having one window draw into another window is not
usually recommended

• Popup Windows
– Some windows (Frame and Dialog) have their own

title bar and border and can be placed at arbitrary
locations on the screen

– Other windows (Canvas an Panel) are embedded into
existing windows only

10

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Foundational AWT
Window Types

11

Summary

• Canvas
– Purpose:

• Reusable picture or drawing area. Basis for custom component.
– Code

• Allocate Canvas, give it a size, add it to existing window.

• Panel
– Purpose

• To group other components into rectangular regions.
– Code

• Allocate Panel, put other components in it, add to window.

• Frame
– Purpose

• Core popup window. Main window for your application.
– Code

• Allocate Frame, give it a size, add stuff to it, pop it up.

12

Canvas

• Major purposes
– A drawing area
– A custom component that does not need to contain any

other component (e.g., an image button)

• Default layout manager: none
– Canvas is not a Container, so cannot enclose components

• Creating and using
– Allocate it

• Canvas c = new Canvas();

– Give it a size
• c.setSize(width, height);

– Drop it in existing window
• someWindow.add(c);

13

Since Canvas is often the starting point for a component that has
a custom paint method or event handlers, you often do

MySpecializedCanvas c = new MySpecializedCanvas(…).

If this code is in the main window, then “someWindow” is “this” and can be omitted.
I.e, the init method of an applet would add a Canvas to itself just with “add(c);”.

Canvas Example

import java.awt.*;

/** A Circle component built using a Canvas. */

public class Circle extends Canvas {
private int width, height;

public Circle(Color foreground, int radius) {
setForeground(foreground);
width = 2*radius;
height = 2*radius;
setSize(width, height);

}

public void paint(Graphics g) {
g.fillOval(0, 0, width, height);

}

public void setCenter(int x, int y) {
setLocation(x - width/2, y - height/2);

}
}14

Canvas Example (Continued)

import java.awt.*;
import java.applet.Applet;

public class CircleTest extends Applet {
public void init() {
setBackground(Color.LIGHT_GRAY);
add(new Circle(Color.WHITE, 30));
add(new Circle(Color.GRAY, 40));
add(new Circle(Color.BLACK, 50));

}
}

15

Canvases are Rectangular and
Opaque: Example

public class CircleTest2 extends Applet {
public void init() {

setBackground(Color.LIGHT_GRAY);
setLayout(null); // Turn off layout manager.
Circle circle;
int radius = getSize().width/6;
int deltaX = round(2.0 * (double)radius / Math.sqrt(2.0));
for (int x=radius; x<6*radius; x=x+deltaX) {

circle = new Circle(Color.BLACK, radius);
add(circle);
circle.setCenter(x, x);

}
}

private int round(double num) {
return((int)Math.round(num));

}
}

16

Lightweight Components

• Idea
– Regular AWT windows are native windows behind the

scenes. So, they are rectangular and opaque.
– You can make “lightweight components” – components

that are really pictures, not windows, behind the scenes.
• These don’t have the rectangular/opaque restrictions, but

building them is usually more trouble than it is worth in the
AWT library. The Swing library makes it simple with a
“setOpaque” method.

• Code
– If you really want to do it yourself in AWT, you have to

tell Java how to calculate the minimum and preferred
sizes (see later section on layout managers).

• Even so, it can have tricky interactions if the enclosing
window has a custom paint method. Use Swing instead!

17

Lightweight Components:
Example

public class BetterCircle extends Component {
private Dimension preferredDimension;
private int width, height;

public BetterCircle(Color foreground, int radius) {
setForeground(foreground);
width = 2*radius; height = 2*radius;
preferredDimension = new Dimension(width, height);
setSize(preferredDimension);

}

public void paint(Graphics g) {
g.setColor(getForeground());
g.fillOval(0, 0, width, height);

}

public Dimension getPreferredSize() {
return(preferredDimension);

}
public Dimension getMinimumSize() {
return(preferredDimension);

}
...

}
18

Component Class

• Idea
– Ancestor of all graphical components in Java (even

Swing). So, methods here are shared by all windows and
controls.

• Useful methods
– getBackground/setBackground
– getForeground/setForeground

• Change/lookup the default foreground color
• Color is inherited by the Graphics object of the component

– getFont/setFont
• Returns/sets the current font
• Inherited by the Graphics object of the component

– paint
• Called whenever the user call repaint or when the

component is obscured and reexposed
19

Component Class (Continued)

• Useful methods
– setVisible

• Exposes (true) or hides (false) the component
• Especially useful for frames and dialogs

– setSize/setBounds/setLocation
– getSize/getBounds/getLocation

• Physical aspects (size and position) of the component

– list
• Prints out info on this component and any components it

contains; useful for debugging

– invalidate/validate
• Tell layout manager to redo the layout

– getParent
• Returns enclosing window (or null if there is none)20

Panel

• Major purposes
– To group/organize components
– A custom component that requires embedded components

• Default layout manager: FlowLayout
– Shrinks components to their preferred (minimum) size
– Places them left to right in centered rows

• Creating and using
– Allocate it

• Panel p = new Panel();
– Put stuff into it

• p.add(someButton);
• p.add(someOtherWidget);

– Drop the Panel in an existing window
• someWindow.add(p);

21

Note the lack of an explicit setSize. The size of a Panel is
usually determined by a combination of what the Panel
contains and the layout manager of the window that
contains the Panel.

No Panels: Example

import java.applet.Applet;
import java.awt.*;

public class ButtonTest1 extends Applet {
public void init() {
String[] labelPrefixes = { "Start", "Stop", "Pause",

"Resume" };
for (int i=0; i<4; i++) {
add(new Button(labelPrefixes[i] + " Thread1"));

}
for (int i=0; i<4; i++) {
add(new Button(labelPrefixes[i] + " Thread2"));

}
}

}

22

No Panels: Result

23

Panels: Example

import java.applet.Applet;
import java.awt.*;

public class ButtonTest2 extends Applet {
public void init() {
String[] labelPrefixes = { "Start", "Stop", "Pause",

"Resume" };
Panel p1 = new Panel();
for (int i=0; i<4; i++) {
p1.add(new Button(labelPrefixes[i] + " Thread1"));

}
Panel p2 = new Panel();
for (int i=0; i<4; i++) {
p2.add(new Button(labelPrefixes[i] + " Thread2"));

}
add(p1);
add(p2);

}
}

24

Panels: Result

25

Container Class

• Idea
– Ancestor of all window types except Canvas. So, these methods are

common among almost all windows.

• Useful Container methods
– add

• Add a component to the container (in the last position in the
component array)

• If using BorderLayout, you can also specify in which region to
place the component

– remove
• Remove the component from the window (container)

– getComponents
• Returns an array of components in the window
• Used by layout managers

– setLayout
• Changes the layout manager associated with the window26

Frame Class

• Major Purpose
– A stand-alone window with its own title and menu bar,

border, cursor, and icon image
• Can contain other GUI components

• Default layout manager: BorderLayout
– BorderLayout

• Divides the screen into 5 regions: North, South, East,
West, and Center

– To switch to the applet’s layout manager use
• setLayout(new FlowLayout());

• Creating and using – two approaches:
– A fixed-size Frame
– A Frame that stretches to fit what it contains

27

Creating a Fixed-Size Frame

• Approach
Frame frame = new Frame(titleString);
frame.add(somePanel, BorderLayout.CENTER);
frame.add(otherPanel, BorderLayout.NORTH);
...
frame.setSize(width, height);
frame.setVisible(true);

• Note: be sure you pop up the frame last
– Odd behavior results if you add components to a window

that is already visible (unless you call doLayout on the
frame)

28

Creating a Frame that Stretches
to Fit What it Contains

• Approach

Frame frame = new Frame(titleString);
frame.setLocation(left, top);
frame.add(somePanel, BorderLayout.CENTER);
...
frame.pack();
frame.setVisible(true);

• Note
– Again, be sure to pop up the frame after adding the

components

29

Frame Example 1

• Creating the Frame object in main

public class FrameExample1 {
public static void main(String[] args) {
Frame f = new Frame("Frame Example 1");
f.setSize(400, 300);
f.setVisible(true);

}
}

30

Frame Example 2

• Using a Subclass of Frame

public class FrameExample2 extends Frame {
public FrameExample2() {
super("Frame Example 2");
setSize(400, 300);
setVisible(true);

}

public static void main(String[] args) {
new FrameExample2();

}
}

31

The “main” method that instantiates the Frame need not reside in
FrameExample2. The idea is that you make a reusable Frame
class, and then that class can be popped up various different
ways (from main, when the user clicks a button, when certain
events occur in your app, etc.)

A Closeable Frame

• CloseableFrame.java
public class CloseableFrame extends Frame {

public CloseableFrame(String title) {
super(title);
addWindowListener(new ExitListener());

}
}

• ExitListener.java
public class ExitListener extends WindowAdapter {

public void windowClosing(WindowEvent event) {
System.exit(0);

}
}

32

Download these two classes from the source code in the tutorial,
then use CloseableFrame wherever you would have used Frame.

Frame Example 3

• Using a Subclass of CloseableFrame

public class FrameExample3 extends CloseableFrame {
public FrameExample3() {

super("Frame Example 3");
setSize(400, 300);
setVisible(true);

}

public static void main(String[] args) {
new FrameExample3();

}
}

33

Same as previous example, but now the Frame
closes when you click on the x.

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

AWT GUI Controls and
Event Processing

34

AWT GUI Controls

• Characteristics (vs. windows)
– Automatically drawn – you don’t override paint

– Positioned by layout manager
– Use native window-system controls (widgets)

• Controls adopt look and feel of underlying window system

– Higher level events typically used
• For example, for buttons you don’t monitor mouse clicks,

since most OS’s also let you trigger a button by hitting
RETURN when the button has the keyboard focus

35

GUI Event Processing
Strategies

• Decentralized event processing
– Component (e.g., Button) has its own event handler

• Harder to call methods in the main app, so works best
when operations are relatively independent

• Centralized event processing
– Have main app implement listener. Send all events there.

• Easier for handler to call methods from the main app
• But, if you have multiple buttons, you will need if/then/else

in the event-handler method

• Semi-centralized event processing
– Use inner class for event handling

• Better than interface if you have many different buttons

36

Decentralized Event Processing:
Example

import java.awt.*;

public class ActionExample1 extends CloseableFrame {
public ActionExample1() {

super("Handling Events in Component");
setLayout(new FlowLayout());
setFont(new Font("Serif", Font.BOLD, 18));
add(new SetSizeButton(300, 200));
add(new SetSizeButton(400, 300));
add(new SetSizeButton(500, 400));
setSize(400, 300);
setVisible(true);

}

public static void main(String[] args) {
new ActionExample1();

}
}

37
Very closely analogous to the first approach from the event-
handling lecture (separate classes for event handlers).

Decentralized Event Processing:
Example (Continued)
import java.awt.*;
import java.awt.event.*;

public class SetSizeButton extends Button
implements ActionListener {

private int width, height;

public SetSizeButton(int width, int height) {
super("Resize to " + width + "x" + height);
this.width = width;
this.height = height;
addActionListener(this);

}

public void actionPerformed(ActionEvent event) {
Container parent = getParent();
parent.setSize(width, height);
parent.invalidate();
parent.validate();

}38

Decentralized Event Processing:
Result

39

Centralized Event Processing:
Example

import java.awt.*;
import java.awt.event.*;

public class ActionExample2 extends CloseableFrame
implements ActionListener {

private Button button1, button2, button3;

public ActionExample2() {
super("Handling Events in Other Object");
setLayout(new FlowLayout());
setFont(new Font("Serif", Font.BOLD, 18));
button1 = new Button("Resize to 300x200");
button1.addActionListener(this);
add(button1);
// Add button2 and button3 in the same way…
...
setSize(400, 300);
setVisible(true);

}
40

Centralized Event Processing:
Example (Continued)
public void actionPerformed(ActionEvent event) {
if (event.getSource() == button1) {
updateLayout(300, 200);

} else if (event.getSource() == button2) {
updateLayout(400, 300);

} else if (event.getSource() == button3) {
updateLayout(500, 400);

}
}

private void updateLayout(int width, int height) {
setSize(width, height);
invalidate();
validate();

}

public static void main(String[] args) {
new ActionExample2();

}
}

41
Very closely analogous to the second approach from the
event-handling lecture (main class implements interface).

Semi-Centralized Event
Processing: Example

import java.awt.*;
import java.awt.event.*;

public class ActionExample3 extends CloseableFrame {
private Button button1, button2, button3;

public ActionExample3() {
super("Handling Events in Other Object");
setLayout(new FlowLayout());
setFont(new Font("Serif", Font.BOLD, 18));
button1 = new Button("Resize to 300x200");
button1.addActionListener(new ResizeHandler(300, 200));
add(button1);
// Add button2 and button3 in the same way…
...
setSize(400, 300);
setVisible(true);

}
42

Semi-Centralized Event
Processing: Example (Cont)
private void updateLayout(int width, int height) {
setSize(width, height);
invalidate();
validate();

}

private class ResizeHandler implements ActionListener {
private int width, height;

public ResizeHandler(int width, int height) {
this.width= width;
this.height = height;

}

public void actionPerformed(ActionEvent event) {
updateLayout(width, height);

}
}

public static void main(String[] args) {
new ActionExample3();

}
}

43
Very closely analogous to the third approach from the event-
handling lecture (inner classes for event handlers).

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Basic AWT GUI
Controls

44

Buttons

• Constructors
– Button()

Button(String buttonLabel)
• The button size (preferred size) is based on the height and

width of the label in the current font, plus some extra
space determined by the OS

• Useful Methods
– getLabel/setLabel

• Retrieves or sets the current label
• If the button is already displayed, setting the label does not

automatically reorganize its Container
– The containing window should be invalidated and validated to force

a fresh layout
someButton.setLabel("A New Label");
someButton.getParent().invalidate();
someButton.getParent().validate();

45

Buttons (Continued)

• Event processing methods
– addActionListener/removeActionListener

• Add/remove an ActionListener that processes
ActionEvents in actionPerformed

– processActionEvent
• Low-level event handling

• General methods inherited from component
– getForeground/setForeground
– getBackground/setBackground
– getFont/setFont

46

Button: Example

public class Buttons extends Applet {
private Button button1, button2, button3;
public void init() {

button1 = new Button("Button One");
button2 = new Button("Button Two");
button3 = new Button("Button Three");
add(button1);
add(button2);
add(button3);

}
}

47

Handling Button Events

• Attach an ActionListener to the Button and
handle the event in actionPerformed

public class MyActionListener
implements ActionListener {

public void actionPerformed(ActionEvent event) {
...

}
}

public class SomeClassThatUsesButtons {
...
MyActionListener listener = new MyActionListener(...);
Button b1 = new Button("...");
b1.addActionListener(listener);
...

}
48

Checkboxes

• Constructors
– These three constructors apply to checkboxes that operate

independently of each other (i.e., not radio buttons)
– Checkbox()

• Creates an initially unchecked checkbox with no label

– Checkbox(String checkboxLabel)
• Creates a checkbox (initially unchecked) with the specified

label; see setState for changing it

– Checkbox(String checkboxLabel, boolean state)
• Creates a checkbox with the specified label

– The initial state is determined by the boolean value provided

– A value of true means it is checked

49

Checkbox, Example

public class Checkboxes extends CloseableFrame {
public Checkboxes() {
super("Checkboxes");
setFont(new Font("SansSerif", Font.BOLD, 18));
setLayout(new GridLayout(0, 2));
Checkbox box;
for(int i=0; i<12; i++) {
box = new Checkbox("Checkbox " + i);
if (i%2 == 0) {
box.setState(true);

}
add(box);

}
pack();
setVisible(true);

}
}

50

Other Checkbox Methods

• getState/setState
– Retrieves or sets the state of the checkbox: checked (true)

or unchecked (false)
• getLabel/setLabel

– Retrieves or sets the label of the checkbox
– After changing the label invalidate and validate the

window to force a new layout
someCheckbox.setLabel("A New Label");
someCheckbox.getParent().invalidate();
someCheckbox.getParent().validate();

• addItemListener/removeItemListener
– Add or remove an ItemListener to process
ItemEvents in itemStateChanged

• processItemEvent(ItemEvent event)
– Low-level event handling

51

Handling Checkbox Events

• Attach an ItemListener
– Add it with addItemListener and process the ItemEvent in

itemStateChanged
public void itemStateChanged(ItemEvent event) {
...

}
• The ItemEvent class has a getItem method which returns

the item just selected or deselected
• The return value of getItem is an Object so you should

cast it to a String before using it

• Ignore the event
– With checkboxes, it is relatively common to ignore the

select/deselect event when it occurs
– Instead, you look up the state (checked/unchecked) of the

checkbox later using the getState method of Checkbox
when you are ready to take some other sort of action

52

Checkbox Groups
(Radio Buttons)

• CheckboxGroup Constructors
– CheckboxGroup()

• Creates a non-graphical object used as a “tag” to group
checkboxes logically together

• Checkboxes with the same tag will look and act like radio
buttons

• Only one checkbox associated with a particular tag can be
selected at any given time

• Checkbox Constructors
– Checkbox(String label, CheckboxGroup group,

boolean state)
• Creates a radio button associated with the specified group,

with the given label and initial state
• If you specify an initial state of true for more than one

Checkbox in a group, the last one will be shown selected

53

CheckboxGroup: Example

import java.applet.Applet;
import java.awt.*;

public class CheckboxGroups extends Applet {
public void init() {
setLayout(new GridLayout(4, 2));
setBackground(Color.LIGHT_GRAY);
setFont(new Font("Serif", Font.BOLD, 16));
add(new Label("Flavor", Label.CENTER));
add(new Label("Toppings", Label.CENTER));
CheckboxGroup flavorGroup = new CheckboxGroup();
add(new Checkbox("Vanilla", flavorGroup, true));
add(new Checkbox("Colored Sprinkles"));
add(new Checkbox("Chocolate", flavorGroup, false));
add(new Checkbox("Cashews"));
add(new Checkbox("Strawberry", flavorGroup, false));
add(new Checkbox("Kiwi"));

}
}

54

CheckboxGroup: Result

55

By tagging Checkboxes with a CheckboxGroup, the Checkboxes
in the group function as radio buttons

Other Methods for Radio
Buttons

• CheckboxGroup
– getSelectedCheckbox

• Returns the radio button (Checkbox) that is currently
selected or null if none is selected

• Checkbox
– In addition to the general methods described in

Checkboxes, Checkbox has the following two methods
specific to CheckboxGroup’s:

– getCheckboxGroup/setCheckboxGroup
• Determines or registers the group associated with the

radio button

• Note: Event-handling is the same as with Checkboxes

56

List Boxes

• Constructors
– List(int rows, boolean multiSelectable)

• Creates a listbox with the specified number of visible rows (not
items)

• Depending on the number of item in the list (addItem or add), a
scrollbar is automatically created

• The second argument determines if the List is multiselectable
• The preferred width is set to a platform-dependent value, and is

typically not directly related to the width of the widest entry
– List()

• Creates a single-selectable list box with a platform-dependent
number of rows and a platform-dependent width

– List(int rows)
• Creates a single-selectable list box with the specified number of

rows and a platform-dependent width

57

List Boxes: Example

import java.awt.*;

public class Lists extends CloseableFrame {
public Lists() {
super("Lists");
setLayout(new FlowLayout());
setBackground(Color.LIGHT_GRAY);
setFont(new Font("SansSerif", Font.BOLD, 18));
List list1 = new List(3, false);
list1.add("Vanilla");
list1.add("Chocolate");
list1.add("Strawberry");
add(list1);
List list2 = new List(3, true);
list2.add("Colored Sprinkles");
list2.add("Cashews");
list2.add("Kiwi");
add(list2);
pack();
setVisible(true);

}}58

List Boxes: Result

59

A list can be single-selectable or multi-selectable

Other List Methods

• add
– Add an item at the end or specified position in the list box
– All items at that index or later get moved down

• isMultipleMode
– Determines if the list is multiple selectable (true) or single

selectable (false)
• remove/removeAll

– Remove an item or all items from the list
• getSelectedIndex

– For a single-selectable list, this returns the index of the selected item
– Returns –1 if nothing is selected or if the list permits multiple

selections
• getSelectedIndexes

– Returns an array of the indexes of all selected items
• Works for single- or multi-selectable lists
• If no items are selected, a zero-length (but non-null) array is

returned60

Other List Methods (Continued)

• getSelectedItem
– For a single-selectable list, this returns the label of the selected item
– Returns null if nothing is selected or if the list permits multiple

selections

• getSelectedItems
– Returns an array of all selected items
– Works for single- or multi-selectable lists

• If no items are selected, a zero-length (but non-null) array is
returned

• select
– Programmatically selects the item in the list
– If the list does not permit multiple selections, then the previously

selected item, if any, is also deselected

61

Handling List Events

• addItemListener/removeItemListener
– ItemEvents are generated whenever an item is selected or

deselected (single-click)
– Handle ItemEvents in itemStateChanged

• addActionListener/removeActionListener
– ActionEvents are generated whenever an item is double-

clicked or RETURN (ENTER) is pressed while selected
– Handle ActionEvents in actionPerformed

62

Other GUI Controls

• Choice Lists (Combo Boxes)

• Textfields

63

Other GUI Controls (Continued)

• Text Areas

• Labels

64

Summary

• Native components behind the scenes
– So, all windows and graphical components are rectangular and

opaque, and take look-and-feel of underlying OS.
• Windows

– Canvas: drawing area or custom component
– Panel: grouping other components
– Frame: popup window

• GUI Controls
– Button: handle events with ActionListener
– Checkbox, radio button: handle events with ItemListener
– List box: handle single click with ItemListener,

double click with ActionListener
– To quickly determine the event handlers for a component,

simply look at the online API
• addXxxListener methods are at the top

65

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

66

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

