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Topics in This Section

• GUI libraries in Java
• Basic AWT windows

– Canvas, Panel, Frame

• Closing frames  
• Processing events in GUI controls 
• Basic AWT user interface controls

– Button, checkbox, radio button, list box
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GUI Libraries in Java
Part of Java SE

• AWT (Abstract Window Toolkit)
– The original GUI library in Java 

1.02. Native Look and Feel (LAF).
• Covered in this lecture

– Purposes
• Easy building of simple-looking 

interfaces
– Often for internal purposes 

only. Not seen by end users.
• First step toward learning 

Swing

• Swing
– GUI library added to Java starting 

in Java 1.1
• Covered in later lectures

– Purposes
• Professional looking GUIs that 

follow standard
• GUIs with the same look and 

feel on multiple platforms

Extensions
• SWT (Standard Widget Toolkit)

– GUI from the Eclipse foundation. 
Native LAF ala AWT.

• See http://www.eclipse.org/swt/
– Purposes

• Higher-performance professional 
looking GUIs 

• Native LAF
• Interaction with the Eclipse Rich 

Client Platform

• Java FX
– GUI library and tools now 

standardized separately
• See http://javafx.com/

– Purposes
• XML-based layout
• Mobile platforms
• Rich media: audio, video, etc.
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Windows and Layout 
Management

• Containers
– Most windows are a Container that can hold other 

windows or GUI components. Canvas is the major 
exception.

• Layout Managers
– Containers have a LayoutManager that automatically 

sizes and positions components that are in the window
– You can change the behavior of the layout manager or 

disable it completely. Details in next lecture.

• Events
– Windows and components can receive mouse and 

keyboard events, just as in previous lecture.
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Windows and Layout 
Management (Continued)

• Drawing in Windows
– To draw into a window, make a subclass with its own 
paint method

– Having one window draw into another window is not 
usually recommended

• Popup Windows
– Some windows (Frame and Dialog) have their own 

title bar and border and can be placed at arbitrary 
locations on the screen

– Other windows (Canvas an Panel) are embedded into 
existing windows only
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Summary

• Canvas
– Purpose: 

• Reusable picture or drawing area. Basis for custom component.
– Code

• Allocate Canvas, give it a size, add it to existing window.

• Panel
– Purpose

• To group other components into rectangular regions.
– Code

• Allocate Panel, put other components in it, add to window.

• Frame
– Purpose

• Core popup window. Main window for your application.
– Code

• Allocate Frame, give it a size, add stuff to it, pop it up.
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Canvas

• Major purposes
– A drawing area
– A custom component that does not need to contain any 

other component (e.g., an image button)

• Default layout manager: none
– Canvas is not a Container, so cannot enclose components

• Creating and using
– Allocate it

• Canvas c = new Canvas();

– Give it a size
• c.setSize(width, height);

– Drop it in existing window
• someWindow.add(c);
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Since Canvas is often the starting point for a component that has 
a custom paint method or event handlers, you often do

MySpecializedCanvas c =  new MySpecializedCanvas(…).

If this code is in the main window, then “someWindow” is “this” and can be omitted. 
I.e, the init method of an applet would add a Canvas to itself just with “add(c);”.

Canvas Example

import java.awt.*;

/** A Circle component built using a Canvas. */

public class Circle extends Canvas {
private int width, height;        

public Circle(Color foreground, int radius) {
setForeground(foreground);
width = 2*radius;
height = 2*radius;
setSize(width, height);

}

public void paint(Graphics g) {
g.fillOval(0, 0, width, height);

}

public void setCenter(int x, int y) {
setLocation(x - width/2, y - height/2);

}
}14



Canvas Example (Continued)

import java.awt.*;
import java.applet.Applet;

public class CircleTest extends Applet {
public void init() {
setBackground(Color.LIGHT_GRAY);
add(new Circle(Color.WHITE, 30));
add(new Circle(Color.GRAY, 40));
add(new Circle(Color.BLACK, 50));

}
}
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Canvases are Rectangular and 
Opaque: Example

public class CircleTest2 extends Applet {
public void init() {

setBackground(Color.LIGHT_GRAY);
setLayout(null); // Turn off layout manager.
Circle circle;
int radius = getSize().width/6;
int deltaX = round(2.0 * (double)radius / Math.sqrt(2.0));
for (int x=radius; x<6*radius; x=x+deltaX) {

circle = new Circle(Color.BLACK, radius);
add(circle);
circle.setCenter(x, x);

}
}

private int round(double num) {
return((int)Math.round(num));

}
}
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Lightweight Components

• Idea
– Regular AWT windows are native windows behind the 

scenes. So, they are rectangular and opaque.
– You can make “lightweight components” – components 

that are really pictures, not windows, behind the scenes.
• These don’t have the rectangular/opaque restrictions, but 

building them is usually more trouble than it is worth in the 
AWT library. The Swing library makes it simple with a 
“setOpaque” method.

• Code
– If you really want to do it yourself in AWT, you have to 

tell Java how to calculate the minimum and preferred 
sizes (see later section on layout managers).

• Even so, it can have tricky interactions if the enclosing 
window has a custom paint method. Use Swing instead!
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Lightweight Components: 
Example

public class BetterCircle extends Component {
private Dimension preferredDimension;
private int width, height;

public BetterCircle(Color foreground, int radius) {
setForeground(foreground);
width = 2*radius; height = 2*radius;
preferredDimension = new Dimension(width, height);
setSize(preferredDimension);

}

public void paint(Graphics g) {  
g.setColor(getForeground()); 
g.fillOval(0, 0, width, height); 

}   

public Dimension getPreferredSize() {
return(preferredDimension);

}
public Dimension getMinimumSize() {
return(preferredDimension);

}
...

}
18



Component Class

• Idea
– Ancestor of all graphical components in Java (even 

Swing). So, methods here are shared by all windows and 
controls.

• Useful methods
– getBackground/setBackground
– getForeground/setForeground

• Change/lookup the default foreground color 
• Color is inherited by the Graphics object of the component

– getFont/setFont
• Returns/sets the current font
• Inherited by the Graphics object of the component

– paint
• Called whenever the user call repaint or when the 

component is obscured and reexposed
19

Component Class (Continued)

• Useful methods
– setVisible

• Exposes (true) or hides (false) the component 
• Especially useful for frames and dialogs

– setSize/setBounds/setLocation
– getSize/getBounds/getLocation

• Physical aspects (size and position) of the component

– list
• Prints out info on this component and any components it 

contains; useful for debugging

– invalidate/validate
• Tell layout manager to redo the layout

– getParent
• Returns enclosing window (or null if there is none)20



Panel

• Major purposes
– To group/organize components
– A custom component that requires embedded components

• Default layout manager: FlowLayout
– Shrinks components to their preferred (minimum) size
– Places them left to right in centered rows

• Creating and using
– Allocate it

• Panel p = new Panel();
– Put stuff into it

• p.add(someButton);
• p.add(someOtherWidget);

– Drop the Panel in an existing window
• someWindow.add(p);

21

Note the lack of an explicit setSize. The size of a Panel is 
usually determined by a combination of what the Panel 
contains and the layout manager of the window that 
contains the Panel.

No Panels: Example

import java.applet.Applet;
import java.awt.*;

public class ButtonTest1 extends Applet {
public void init() {
String[] labelPrefixes = { "Start", "Stop", "Pause", 

"Resume" };
for (int i=0; i<4; i++) {
add(new Button(labelPrefixes[i] + " Thread1"));

}
for (int i=0; i<4; i++) {
add(new Button(labelPrefixes[i] + " Thread2"));

}
}

}

22



No Panels: Result
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Panels: Example

import java.applet.Applet;
import java.awt.*;

public class ButtonTest2 extends Applet {
public void init() {
String[] labelPrefixes = { "Start", "Stop", "Pause", 

"Resume" };
Panel p1 = new Panel();
for (int i=0; i<4; i++) {
p1.add(new Button(labelPrefixes[i] + " Thread1"));

}
Panel p2 = new Panel();
for (int i=0; i<4; i++) {
p2.add(new Button(labelPrefixes[i] + " Thread2"));

}
add(p1);
add(p2);

}
}

24



Panels: Result
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Container Class

• Idea
– Ancestor of all window types except Canvas. So, these methods are 

common among almost all windows.

• Useful Container methods
– add

• Add a component to the container (in the last position in the 
component array)

• If using BorderLayout, you can also specify in which region to 
place the component

– remove
• Remove the component from the window (container)

– getComponents
• Returns an array of components in the window
• Used by layout managers

– setLayout
• Changes the layout manager associated with the window26



Frame Class

• Major Purpose
– A stand-alone window with its own title and menu bar, 

border, cursor, and icon image
• Can contain other GUI components

• Default layout manager: BorderLayout
– BorderLayout

• Divides the screen into 5 regions: North, South, East, 
West, and Center 

– To switch to the applet’s layout manager use
• setLayout(new FlowLayout());

• Creating and using – two approaches:
– A fixed-size Frame
– A Frame that stretches to fit what it contains

27

Creating a Fixed-Size Frame

• Approach
Frame frame = new Frame(titleString);
frame.add(somePanel, BorderLayout.CENTER);
frame.add(otherPanel, BorderLayout.NORTH);
...
frame.setSize(width, height);
frame.setVisible(true);

• Note: be sure you pop up the frame last
– Odd behavior results if you add components to a window 

that is already visible (unless you call doLayout on the 
frame)

28



Creating a Frame that Stretches 
to Fit What it Contains

• Approach

Frame frame = new Frame(titleString);
frame.setLocation(left, top);
frame.add(somePanel, BorderLayout.CENTER);
...
frame.pack();
frame.setVisible(true);

• Note
– Again, be sure to pop up the frame after adding the 

components

29

Frame Example 1

• Creating the Frame object in main

public class FrameExample1 {
public static void main(String[] args) {
Frame f = new Frame("Frame Example 1");
f.setSize(400, 300);
f.setVisible(true);

}
}

30



Frame Example 2

• Using a Subclass of Frame

public class FrameExample2 extends Frame { 
public FrameExample2() {
super("Frame Example 2");
setSize(400, 300);
setVisible(true);

}

public static void main(String[] args) {
new FrameExample2();

}
}

31

The “main” method that instantiates the Frame need not reside in 
FrameExample2. The idea is that you make a reusable Frame 
class, and then that class can be popped up various different 
ways (from main, when the user clicks a button, when certain 
events occur in your app, etc.)

A Closeable Frame

• CloseableFrame.java
public class CloseableFrame extends Frame {

public CloseableFrame(String title) {
super(title);
addWindowListener(new ExitListener());

}
}

• ExitListener.java
public class ExitListener extends WindowAdapter {

public void windowClosing(WindowEvent event) {
System.exit(0);

}
}

32

Download these two classes from the source code in the tutorial, 
then use CloseableFrame wherever you would have used Frame.



Frame Example 3

• Using a Subclass of CloseableFrame

public class FrameExample3 extends CloseableFrame {
public FrameExample3() {

super("Frame Example 3");
setSize(400, 300);
setVisible(true);

}

public static void main(String[] args) {
new FrameExample3();

}
}

33

Same as previous example, but now the Frame 
closes when you click on the x.
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AWT GUI Controls

• Characteristics (vs. windows)
– Automatically drawn – you don’t override paint

– Positioned by layout manager
– Use native window-system controls (widgets) 

• Controls adopt look and feel of underlying window system

– Higher level events typically used
• For example, for buttons you don’t monitor mouse clicks, 

since most OS’s also let you trigger a button by hitting 
RETURN when the button has the keyboard focus 

35

GUI Event Processing 
Strategies

• Decentralized event processing
– Component (e.g., Button) has its own event handler

• Harder to call methods in the main app, so works best 
when operations are relatively independent

• Centralized event processing
– Have main app implement listener. Send all events  there.

• Easier for handler to call methods from the main app
• But, if you have multiple buttons, you will need if/then/else 

in the event-handler method

• Semi-centralized event processing
– Use inner class for event handling

• Better than interface if you have many different buttons

36



Decentralized Event Processing:
Example

import java.awt.*;

public class ActionExample1 extends CloseableFrame {
public ActionExample1() {

super("Handling Events in Component");
setLayout(new FlowLayout());
setFont(new Font("Serif", Font.BOLD, 18));
add(new SetSizeButton(300, 200));
add(new SetSizeButton(400, 300));
add(new SetSizeButton(500, 400));
setSize(400, 300);
setVisible(true);

}

public static void main(String[] args) {
new ActionExample1();

}
}

37
Very closely analogous to the first approach from the event-
handling lecture (separate classes for event handlers).

Decentralized Event Processing:
Example (Continued)
import java.awt.*;
import java.awt.event.*;

public class SetSizeButton extends Button 
implements ActionListener {

private int width, height;

public SetSizeButton(int width, int height) {
super("Resize to " + width + "x" + height);
this.width = width;
this.height = height; 
addActionListener(this);

}

public void actionPerformed(ActionEvent event) {
Container parent = getParent();
parent.setSize(width, height);
parent.invalidate();
parent.validate();

}38



Decentralized Event Processing:
Result

39

Centralized Event Processing: 
Example

import java.awt.*;
import java.awt.event.*;

public class ActionExample2 extends CloseableFrame
implements ActionListener {

private Button button1, button2, button3;

public ActionExample2() {
super("Handling Events in Other Object");
setLayout(new FlowLayout());
setFont(new Font("Serif", Font.BOLD, 18));
button1 = new Button("Resize to 300x200");
button1.addActionListener(this);
add(button1);
// Add button2 and button3 in the same way…
...
setSize(400, 300);
setVisible(true);

}
40



Centralized Event Processing:
Example (Continued)
public void actionPerformed(ActionEvent event) {
if (event.getSource() == button1) {
updateLayout(300, 200);

} else if (event.getSource() == button2) {
updateLayout(400, 300);

} else if (event.getSource() == button3) {
updateLayout(500, 400);

}
}

private void updateLayout(int width, int height) {
setSize(width, height);
invalidate();
validate();

}

public static void main(String[] args) {
new ActionExample2();

}
}

41
Very closely analogous to the second approach from the 
event-handling lecture (main class implements interface).

Semi-Centralized Event 
Processing: Example

import java.awt.*;
import java.awt.event.*;

public class ActionExample3 extends CloseableFrame {
private Button button1, button2, button3;

public ActionExample3() {
super("Handling Events in Other Object");
setLayout(new FlowLayout());
setFont(new Font("Serif", Font.BOLD, 18));
button1 = new Button("Resize to 300x200");
button1.addActionListener(new ResizeHandler(300, 200));
add(button1);
// Add button2 and button3 in the same way…
...
setSize(400, 300);
setVisible(true);

}
42



Semi-Centralized Event 
Processing: Example (Cont)
private void updateLayout(int width, int height) {
setSize(width, height);
invalidate();
validate();

}

private class ResizeHandler implements ActionListener {
private int width, height;

public ResizeHandler(int width, int height) {
this.width= width;
this.height = height;

}

public void actionPerformed(ActionEvent event) {
updateLayout(width, height);

}
}

public static void main(String[] args) {
new ActionExample3();

}
}

43
Very closely analogous to the third approach from the event-
handling lecture (inner classes for event handlers).
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Buttons

• Constructors
– Button()

Button(String buttonLabel)
• The button size (preferred size) is based on the height and 

width of the label in the current font, plus some extra 
space determined by the OS

• Useful Methods
– getLabel/setLabel

• Retrieves or sets the current label
• If the button is already displayed, setting the label does not 

automatically reorganize its Container
– The containing window should be invalidated and validated to force 

a fresh layout
someButton.setLabel("A New Label");
someButton.getParent().invalidate();
someButton.getParent().validate();

45

Buttons (Continued)

• Event processing methods
– addActionListener/removeActionListener

• Add/remove an ActionListener that processes 
ActionEvents in actionPerformed

– processActionEvent
• Low-level event handling

• General methods inherited from component
– getForeground/setForeground
– getBackground/setBackground
– getFont/setFont

46



Button: Example

public class Buttons extends Applet {
private Button button1, button2, button3;
public void init() {

button1 = new Button("Button One");
button2 = new Button("Button Two");
button3 = new Button("Button Three");
add(button1);
add(button2);
add(button3);

}
}

47

Handling Button Events

• Attach an ActionListener to the Button and 
handle the event in actionPerformed

public class MyActionListener
implements ActionListener {

public void actionPerformed(ActionEvent event) {
...

}
}

public class SomeClassThatUsesButtons {
...
MyActionListener listener = new MyActionListener(...);
Button b1 = new Button("...");
b1.addActionListener(listener);
...

}
48



Checkboxes

• Constructors
– These three constructors apply to checkboxes that operate 

independently of each other (i.e., not radio buttons)
– Checkbox()

• Creates an initially unchecked checkbox with no label 

– Checkbox(String checkboxLabel)
• Creates a checkbox (initially unchecked) with the specified 

label; see setState for changing it

– Checkbox(String checkboxLabel, boolean state) 
• Creates a checkbox with the specified label 

– The initial state is determined by the boolean value provided 

– A value of true means it is checked

49

Checkbox, Example

public class Checkboxes extends CloseableFrame {
public Checkboxes() {
super("Checkboxes");
setFont(new Font("SansSerif", Font.BOLD, 18));
setLayout(new GridLayout(0, 2));
Checkbox box;
for(int i=0; i<12; i++) {
box = new Checkbox("Checkbox " + i);
if (i%2 == 0) {
box.setState(true);

}
add(box);

}
pack();
setVisible(true);

}
} 

50



Other Checkbox Methods

• getState/setState
– Retrieves or sets the state of the checkbox: checked (true) 

or unchecked (false)
• getLabel/setLabel

– Retrieves or sets the label of the checkbox
– After changing the label invalidate and validate the 

window to force a new layout
someCheckbox.setLabel("A New Label");
someCheckbox.getParent().invalidate();
someCheckbox.getParent().validate();

• addItemListener/removeItemListener
– Add or remove an ItemListener to process 
ItemEvents in itemStateChanged

• processItemEvent(ItemEvent event)
– Low-level event handling

51

Handling Checkbox Events

• Attach an ItemListener
– Add it with addItemListener and process the ItemEvent in 

itemStateChanged
public void itemStateChanged(ItemEvent event) { 
... 

}
• The ItemEvent class has a getItem method which returns 

the item just selected or deselected
• The return value of getItem is an Object so you should 

cast it to a String before using it 

• Ignore the event 
– With checkboxes, it is relatively common to ignore the 

select/deselect event when it occurs
– Instead, you look up the state (checked/unchecked) of the 

checkbox later using the getState method of Checkbox 
when you are ready to take some other sort of action

52



Checkbox Groups 
(Radio Buttons)

• CheckboxGroup Constructors
– CheckboxGroup()

• Creates a non-graphical object used as a “tag” to group 
checkboxes logically together

• Checkboxes with the same tag will look and act like radio 
buttons

• Only one checkbox associated with a particular tag can be 
selected at any given time

• Checkbox Constructors
– Checkbox(String label, CheckboxGroup group,

boolean state)
• Creates a radio button associated with the specified group, 

with the given label and initial state
• If you specify an initial state of true for more than one 

Checkbox in a group, the last one will be shown selected

53

CheckboxGroup: Example

import java.applet.Applet;
import java.awt.*;

public class CheckboxGroups extends Applet {
public void init() {
setLayout(new GridLayout(4, 2));
setBackground(Color.LIGHT_GRAY);
setFont(new Font("Serif", Font.BOLD, 16));
add(new Label("Flavor", Label.CENTER));
add(new Label("Toppings", Label.CENTER));
CheckboxGroup flavorGroup = new CheckboxGroup();
add(new Checkbox("Vanilla", flavorGroup, true));
add(new Checkbox("Colored Sprinkles"));
add(new Checkbox("Chocolate", flavorGroup, false));
add(new Checkbox("Cashews"));
add(new Checkbox("Strawberry", flavorGroup, false));
add(new Checkbox("Kiwi"));

}
}

54



CheckboxGroup: Result

55

By tagging Checkboxes with a CheckboxGroup, the Checkboxes 
in the group function as radio buttons

Other Methods for Radio 
Buttons

• CheckboxGroup
– getSelectedCheckbox

• Returns the radio button (Checkbox) that is currently 
selected or null if none is selected 

• Checkbox
– In addition to the general methods described in 

Checkboxes, Checkbox has the following two methods 
specific to CheckboxGroup’s:

– getCheckboxGroup/setCheckboxGroup
• Determines or registers the group associated with the 

radio button

• Note:  Event-handling is the same as with Checkboxes
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List Boxes

• Constructors
– List(int rows, boolean multiSelectable)

• Creates a listbox with the specified number of visible rows (not 
items)

• Depending on the number of item in the list (addItem or add), a 
scrollbar is automatically created

• The second argument determines if the List is multiselectable
• The preferred width is set to a platform-dependent value, and is 

typically not directly related to the width of the widest entry
– List()

• Creates a single-selectable list box with a platform-dependent 
number of rows and a platform-dependent width

– List(int rows) 
• Creates a single-selectable list box with the specified number of 

rows and a platform-dependent width

57

List Boxes: Example

import java.awt.*;

public class Lists extends CloseableFrame {
public Lists() {
super("Lists");
setLayout(new FlowLayout());
setBackground(Color.LIGHT_GRAY);
setFont(new Font("SansSerif", Font.BOLD, 18));
List list1 = new List(3, false);
list1.add("Vanilla");
list1.add("Chocolate");
list1.add("Strawberry");
add(list1);
List list2 = new List(3, true);
list2.add("Colored Sprinkles");
list2.add("Cashews");
list2.add("Kiwi");
add(list2);
pack();
setVisible(true);

}}58



List Boxes: Result
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A list can be single-selectable or multi-selectable

Other List Methods

• add
– Add an item at the end or specified position in the list box 
– All items at that index or later get moved down 

• isMultipleMode
– Determines if the list is multiple selectable (true) or single

selectable (false)
• remove/removeAll

– Remove an item or all items from the list
• getSelectedIndex

– For a single-selectable list, this returns the index of the selected item 
– Returns –1 if nothing is selected or if the list permits multiple 

selections
• getSelectedIndexes

– Returns an array of the indexes of all selected items
• Works for single- or multi-selectable lists
• If no items are selected, a zero-length (but non-null) array is 

returned60



Other List Methods (Continued)

• getSelectedItem
– For a single-selectable list, this returns the label of the selected item
– Returns null if nothing is selected or if the list permits multiple 

selections 

• getSelectedItems
– Returns an array of all selected items 
– Works for single- or multi-selectable lists 

• If no items are selected, a zero-length (but non-null) array is 
returned

• select
– Programmatically selects the item in the list
– If the list does not permit multiple selections, then the previously 

selected item, if any, is also deselected
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Handling List Events

• addItemListener/removeItemListener
– ItemEvents are generated whenever an item is selected or 

deselected (single-click)
– Handle ItemEvents in itemStateChanged

• addActionListener/removeActionListener
– ActionEvents are generated whenever an item is double-

clicked or RETURN (ENTER) is pressed while selected
– Handle ActionEvents in actionPerformed

62



Other GUI Controls

• Choice Lists (Combo Boxes)

• Textfields

63

Other GUI Controls (Continued)

• Text Areas

• Labels

64



Summary

• Native components behind the scenes
– So, all windows and graphical components are rectangular and 

opaque, and take look-and-feel of underlying OS.
• Windows

– Canvas: drawing area or custom component
– Panel: grouping other components
– Frame: popup window

• GUI Controls
– Button: handle events with ActionListener
– Checkbox, radio button: handle events with ItemListener
– List box: handle single click with ItemListener,

double click with ActionListener
– To quickly determine the event handlers for a component, 

simply look at the online API
• addXxxListener methods are at the top
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