
© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Applets
and Basic Graphics

3

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/java.html

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

For live Java EE training, please see training courses
at http://courses.coreservlets.com/.

JSF 2, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT,
Android development, Java 6 and 7 programming,

SOAP-based and RESTful Web Services, Spring, Hibernate/JPA,
XML, Hadoop, and customized combinations of topics.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP, and this tutorial. Available at public

venues, or customized versions can be held on-site at your
organization. Contact hall@coreservlets.com for details.

Topics in This Section

• Applet restrictions
• Basic applet and HTML template
• The applet life-cycle
• Customizing applets through HTML

parameters
• Methods available for graphical operations
• Loading and drawing images
• Using try/catch blocks
• The value of @Override
• Controlling image loading

5

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Applet Basics

6

Security Restrictions:
Applets Cannot…
• Read from the local (client) disk

– Applets cannot read arbitrary files
– They can, however, instruct the browser to display pages that are

generally accessible on the Web, which might include some local
files

• Write to the local (client) disk
– The browser may choose to cache certain files, including some

loaded by applets, but this choice is not under direct control of the
applet

• Open network connections other than to the
server from which the applet was loaded
– This restriction prevents applets from browsing behind network

firewalls

7

Applets Cannot…

• Link to client-side C code or call programs
installed on the browser machine
– Ordinary Java applications can invoke locally installed programs

(Runtime.exec or ProcessBuilder.start) as well as link to local
C/C++ modules (“native” methods)

– These actions are prohibited in applets because there is no way to
determine whether the operations these local programs perform are
safe

• Discover private information about the user
– Applets should not be able to discover the username of the person

running them or specific system information such as current users,
directory names or listings, system software, and so forth

– However, applets can determine the name of the host they are on;
this information is already reported to the HTTP server that
delivered the applet

8

Applet Template

import java.applet.Applet;
import java.awt.*;

public class AppletTemplate extends Applet {

// Variable declarations.

@Override // I will explain @Override later
public void init() {

// Variable initializations, image loading, etc.
}

@Override // I will explain @Override later
public void paint(Graphics g) {

// Drawing operations.
}

}
9

Browser Caching Problems

• Browsers normally cache applets
– So, when you recompile applet and reload HTML page,

you still see old applet. Very annoying problem!

• Internet Explorer and Firefox solution
– Open Java console (see later slide) and hit “x”

• Eclipse solution
– R-click, Run As Java Applet (calls appletviewer)
– Problem: doesn’t use your HTML file, so you can’t test if

the WIDTH and HEIGHT are correct. Still, convenient.

• Appletviewer solution
– During development, can call “appletviewer file.html” or

“appletviewer http://.../file.html” from DOS window.
10

Applet HTML Template

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>A Template for Loading Applets</TITLE>

</HEAD>
<BODY>
<H1>A Template for Loading Applets</H1>
<P>

<APPLET CODE="AppletTemplate.class" WIDTH=120 HEIGHT=60>
Error! You must use a Java-enabled browser.

</APPLET>

</BODY>
</HTML>

11

Applet Example 1:
Drawing Diagonal Lines

import java.applet.Applet;
import java.awt.*;

/** Draws a line from top-left halfway to bottom-right. */

public class DrawLine extends Applet {
private int width; // Instance var declarations here
private int height;

@Override // I'll explain later what this optional tag does
public void init() { // Initializations here

setBackground(Color.YELLOW);
setForeground(Color.RED);
width = getWidth();
height = getHeight();

}

@Override // I'll explain later what this optional tag does
public void paint(Graphics g) { // Drawing here

g.drawLine(0, 0, width/2, height/2);
}

}
12

Applet Example 1: HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Drawing Diagonal Lines</TITLE>

</HEAD>
<BODY BGCOLOR="BLACK" TEXT="WHITE">
<H1>Drawing Diagonal Lines</H1>
<P>
<APPLET CODE="DrawLine.class" WIDTH=300 HEIGHT=200>
Sorry, this example requires Java.

</APPLET>
<P>
<APPLET CODE="DrawLine.class" WIDTH=500 HEIGHT=400>
Sorry, this example requires Java.

</APPLET>
</BODY></HTML>

13

Applet Example 1: Result

14

Applet Example 2

import java.applet.Applet;
import java.awt.*;

/** An applet that draws an image. */

public class JavaJump extends Applet {
private Image jumpingJava; // Instance var declarations here

public void init() { // Initializations here
setBackground(Color.WHITE);
setFont(new Font("SansSerif", Font.BOLD, 18));
jumpingJava = getImage(getCodeBase(),

"images/Jumping-Java.gif");
add(new Label("Great Jumping Java!"));
System.out.println("Yow! I'm jiving with Java.");

}

public void paint(Graphics g) { // Drawing here
g.drawImage(jumpingJava, 0, 50, this);

}
}15

Applet Example 2: Result

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Jumping Java</TITLE>

</HEAD>
<BODY BGCOLOR="BLACK" TEXT="WHITE">
<H1>Jumping Java</H1>
<P>
<APPLET CODE="JavaJump.class"

WIDTH=250
HEIGHT=335>

Sorry, this example requires
Java.

</APPLET>
</BODY></HTML>

16

Debugging Applets:
The Java Console

• Standard output (from System.out.println) is
sent to the Java Console
– IE6 and early releases of IE7: Tools Sun Java Console
– Firefox, IE8, later releases of IE7: R-click on Java icon in

taskbar, then select Console
• In either browser, to have it

open automatically:
go to Control Panel, click on
Java, go to “Advanced”,
choose “Java console”,
and select “Show Console”.

– Note that this is for your
debugging: don’t expect end
user to ever notice this

17

Hitting “x” will clear cached
applets. Very useful during
development.

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Applet Life Cycle
and Methods

18

The Applet Life Cycle

• public void init()
– Called when applet is first loaded into the browser.
– Not called each time the applet is executed

• public void start()
– Called immediately after init initially
– Reinvoked each time user returns to page after having left
– Used to start animation threads

• public void paint(Graphics g)
– Called by the browser after init and start
– Reinvoked whenever the browser redraws the screen

(typically when part of the screen has been obscured and
then reexposed)

– This method is where user-level drawing is placed

19

The Applet Life Cycle
(Continued)

• public void stop()
– Called when the user leaves the page
– Used to stop animation threads

• public void destroy()
– Called when applet is killed by the browser

• Nonstandard behavior in IE
– In some versions of Internet Explorer, unlike in Firefox,

init is called each time the user returns to the same page,
and destroy is called whenever the user leaves the page
containing the applet. I.e., applet is started over each time
(incorrect behavior!).

20

Useful Applet Methods

• getCodeBase, getDocumentBase
– The URL of the:

Applet file - getCodeBase
HTML file - getDocumentBase

• getParameter
– Retrieves the value from the associated HTML PARAM

element

• getWidth, getHeight
– Returns the width/height of the applet

• getGraphics
– Retrieves the current Graphics object for the applet
– The Graphics object does not persist across paint

invocations21

Useful Applet Methods
(Continued)

• showDocument (AppletContext method)

getAppletContext().showDocument(...)

– Asks the browser to retrieve and a display a Web page
– Can direct page to a named FRAME cell

• showStatus
– Displays a string in the status line at the bottom of the

browser

• getCursor, setCursor
– Defines the Cursor for the mouse, for example,
CROSSHAIR_CURSOR, HAND_CURSOR,
WAIT_CURSOR

22

Useful Applet Methods
(Continued)

• getAudioClip, play
– Retrieves an audio file from a remote location and plays it
– Java supports MIDI, .aiff, .wav, etc.

• getBackground, setBackground
– Gets/sets the background color of the applet
– SystemColor class provides access to desktop colors

• getForeground, setForeground
– Gets/sets foreground color of applet (default color of

drawing operations)

23

HTML APPLET Element

<APPLET CODE="..." WIDTH=xxx HEIGHT=xxx ...>
...
</APPLET>

• Required Attributes
– CODE

• Designates the filename of the Java class file to load
• Filename interpreted with respect to directory of current

HTML page (default) unless CODEBASE is supplied

– WIDTH and HEIGHT
• Specifies area the applet will occupy
• Values can be given in pixels or as a percentage of the

browser window (width only). Percentages fail in
appletviewer.

24

HTML APPLET Element
(Continued)

• Other Attributes
– ALIGN, HSPACE, and VSPACE

• Controls position and border spacing. Exactly the same as
with the IMG element

– ARCHIVE
• Designates JAR file (zip file with .jar extension) containing

all classes and images used by applet
• Save considerable time when downloading multiple class

files

– NAME
• Names the applet for interapplet and JavaScript

communication

– MAYSCRIPT (nonstandard)
• Permits JavaScript to control the applet

25

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Applet Parameters:
Letting the HTML

Author Supply Data

26

Setting Applet Parameters

<H1>Customizable HelloWWW Applet</H1>

<APPLET CODE="HelloWWW2.class" WIDTH=400 HEIGHT=40>
<PARAM NAME="BACKGROUND" VALUE="LIGHT">
Error! You must use a Java-enabled browser.

</APPLET>

<APPLET CODE="HelloWWW2.class" WIDTH=400 HEIGHT=40>
<PARAM NAME="BACKGROUND" VALUE="DARK">
Error! You must use a Java-enabled browser.

</APPLET>

<APPLET CODE="HelloWWW2.class" WIDTH=400 HEIGHT=40>
Error! You must use a Java-enabled browser.

</APPLET>
27

Reading Applet Parameters

• Use getParameter(name) to retrieve the value of
the PARAM element
– If no match, return value is null. Always check for null!

• The name argument is case sensitive
public void init() {
Color background = Color.GRAY;
Color foreground = Color.DARK_GRAY;
String backgroundType = getParameter("BACKGROUND");
if (backgroundType != null) {
if (backgroundType.equalsIgnoreCase("LIGHT")) {
background = Color.WHITE;
foreground = Color.BLACK;

} else if (backgroundType.equalsIgnoreCase("DARK")) {
background = Color.BLACK;
foreground = Color.WHITE;

}
}
...

}
28

Reading Applet Parameters:
Result

29

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Drawing in Applets

30

Basic Approach

• Ideas
– Draw from the paint method (or, later, event handler)
– Use a Graphics (i.e., pen) object to draw

• In paint, you are given Graphics object. In other methods
of Applet subclass, call getGraphics() to obtain it.

– The top-left corner is (0,0). x is to right, y is down.

• Syntax
public void paint(Graphics g) {
g.drawLine(0, 0, 100, 100);

}

• Draws a line from top-left corner of applet, diagonally
down and to the right.

31

Useful Graphics Methods

• drawString(string, left, bottom)
– Draws a string in the current font and color with the

bottom left corner of the string at the specified location
– One of the few methods where the y coordinate refers to

the bottom of shape, not the top. But y values are still
with respect to the top left corner of the applet window

• drawRect(left, top, width, height)
– Draws the outline of a rectangle (1-pixel border) in the

current color

• fillRect(left, top, width, height)
– Draws a solid rectangle in the current color

• drawLine(x1, y1, x2, y2)
– Draws a 1-pixel-thick line from (x1, y1) to (x2, y2)32

Useful Graphics Methods
(Continued)

• drawOval, fillOval
– Draws an outlined and solid oval, where the arguments

describe a rectangle that bounds the oval

• drawPolygon, fillPolygon
– Draws an outlined and solid polygon whose points are

defined by arrays or a Polygon (a class that stores a
series of points)

– By default, polygon is closed; to make an open polygon
use the drawPolyline method

• drawImage
– Draws an image
– Images can be in JPEG or GIF (including animated GIF)

format
33

Drawing Color

• setColor, getColor
– Specifies the foreground color prior to drawing operation
– By default, the graphics object receives the foreground

color of the window
– AWT has 16 predefined colors (Color.RED,
Color.BLUE, etc.) or create your own color:
new Color(r, g, b)

– Changing the color of the Graphics object affects only
the drawing that explicitly uses that Graphics object

• To make permanent changes, call the applet’s
setForeground method.

34

Graphics Font

• setFont, getFont
– Specifies the font to be used for drawing text
– Determine the size of a character through
FontMetrics (in Java 2 use LineMetrics)

– Setting the font for the Graphics object does not
persist to subsequent invocations of paint

– Set the font of the window (I.e., call the applet’s
setFont method) for permanent changes to the font

– Standard Java font names: Serif (e.g., Times New
Roman), SansSerif (e.g., Arial), Monospaced
(e.g., Courier New), Dialog, and DialogInput

35

Graphic Drawing Modes

• setXORMode
– Specifies a color to XOR with the color of underlying

pixel before drawing the new pixel
– Drawing something twice in a row will restore the

original condition

• setPaintMode
– Set drawing mode back to normal (versus XOR)
– Subsequent drawing will use the normal foreground color
– Remember that the Graphics object is reset to the default

each time. So, no need to call g.setPaintMode() in paint
unless you do non-XOR drawing after your XOR drawing

36

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Loading and
Drawing Images

37

Drawing Images

• Register the Image (from init)
myImage = getImage(getCodeBase(), "file");
myImage = getImage(url);

– You should declare the image as an instance variable so
that paint can access it later

• private Image myImage;
– Loading is done in a separate thread
– If URL is absolute, then try/catch block is required

• Draw the image (from paint)
g.drawImage(myImage, x, y, window);
g.drawImage(myImage, x, y, w, h, window);

– May draw partial image or nothing at all
– Use the applet (this) for the window argument

38

Loading Applet Image from
Relative URL

import java.applet.Applet;
import java.awt.*;

/** An applet that loads an image from a relative URL. */

public class JavaMan1 extends Applet {
private Image javaMan;

public void init() {
javaMan = getImage(getCodeBase(),

"images/Java-Man.gif");
}

public void paint(Graphics g) {
g.drawImage(javaMan, 0, 0, this);

}
}

39

Image Loading Result

40

Loading Applet Image from
Absolute URL

import java.applet.Applet;
import java.awt.*;
import java.net.*;
...

private Image javaMan;

public void init() {
try {

URL imageFile =
new URL("http://www.corewebprogramming.com" +

"/images/Java-Man.gif");
javaMan = getImage(imageFile);

} catch(MalformedURLException mue) {
showStatus("Bogus image URL.");
System.out.println("Bogus URL");

}
}

41

In real life, it is not useful to load images from absolute URLs in applets. That is because the browser security rules mandate that the applet can only connect
back to the machine it was loaded from. But, since we are covering image loading anyhow, it is worth mentioning this because you use this approach when
loading images in regular desktop applications (not browser-based applets). Besides, this gives me an excuse to cover try/catch blocks now.

Aside: Exceptions and
try/catch Blocks

• In Java, the error-handling system is based on
exceptions
– Exceptions handled in a try/catch block
– When an exception occurs, process flow is immediately transferred

to the catch block
– Most exceptions must be handled (unlike C++). If API says method

or constructor throws exception, code won't compile unless you use
try/catch or say the method throws exception

• Basic Form
try {

statement1;
statement2;
...

} catch(SomeExceptionClass someVar) {
handleTheException(someVar);

}42

Details: try/catch Blocks

• One catch
try {
statement1;
statement2;
...

} catch(Eclass var) {
doBlah(var);

}
• If no matching catch,

exception is thrown from
method. If method has
no "throws" clause, then
error

• Multiple catches
try {
statement1;
statement2;
...

} catch(Eclass1 var1) {
...

} catch(Eclass2 var2) {
...

} catch(Eclass3 var3) {
...

}

• First matching catch fires,
so exceptions should be
ordered from most specific
to most general

– Due to inheritance, more
than one match possible

43

• finally
try {
statement1;
statement2;
...

} catch(E1 var1) {
...

} catch(E2 var2) {
...

} catch(E3 var3) {
...

} finally {
...

}

• finally always executed. In
most cases, just put code
after try/catch blocks, and
it will always run. But
finally is needed for
nested blocks

Java 7 introduced a new kind of try/catch block where you
declare a variable of type AutoCloseable in the try. The object
is automatically closed at the end, whether or not there are any
exceptions. Example:

public static String readFirstLineFromFile(String path)
throws IOException {

try (BufferedReader in =
new BufferedReader(new FileReader(path))) {

return(in.readLine());
}

}

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Advanced Topics

44

Using @Override: Quick Intro

• Problem
public class MyApplet extends Applet

public void Paint(Graphics g) { doSomethingCool(); }
}

• Result: no error message, but nothing cool is drawn

• Solution
public class MyApplet extends Applet

@Override
public void Paint(Graphics g) { doSomethingCool(); }

}
• Result: won’t compile, since there is no “Paint” method in the

parent class that takes Graphics as an argument. Once you
change it to “paint”, it compiles normally.

– The source code on the Web site uses @Override consistently
45

Controlling Image Loading

• Use prepareImage to start loading image

prepareImage(image, window)
prepareImage(image, width, height, window)

– Starts loading image immediately (on separate thread),
instead of when needed by drawImage

– Particularly useful if the images will not be drawn until
the user initiates some action such as clicking on a button
or choosing a menu option

– Since the applet thread immediately continues execution
after the call to prepareImage, the image may not be
completely loaded before paint is reached

46

Controlling Image Loading,
Case I: No prepareImage

• Image is not loaded over network until after
Display Image is pressed. 30.4 seconds.

47

Controlling Image Loading,
Case 2: With prepareImage

• Image loaded over network immediately.
0.05 seconds after pressing button.

48

Controlling Image Loading:
MediaTracker

• Registering images with a MediaTracker to
control image loading
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(image1, 0);
tracker.addImage(image2, 1);
try {

tracker.waitForAll();
} catch(InterruptedException ie) {}
if (tracker.isErrorAny()) {

System.out.println("Error while loading image");
}

– Applet thread will block until all images are loaded
– Each image is loaded in parallel on a separate thread

49

Useful MediaTracker Methods

• addImage
– Register a normal or scaled image with a given ID

• checkAll, checkID
– Checks whether all or a particular registered image is

done loading
• isErrorAny, isErrorID

– Indicates if any or a particular image encountered an error
while loading

• waitForAll, waitForID
– Start loading all images or a particular image
– Method does not return (blocks) until image is loaded

• See TrackerUtil in book for simplified
usage of MediaTracker

50

Loading Images,
Case I: No MediaTracker

• Image size is wrong, since the image won’t be
done loading, and –1 will be returned

public void init() {
image = getImage(getDocumentBase(), imageName);

imageWidth = image.getWidth(this);
imageHeight = image.getHeight(this);

}

public void paint(Graphics g) {
g.drawImage(image, 0, 0, this);
g.drawRect(0, 0, imageWidth, imageHeight);

}

51

Loading Images,
Case 2: With MediaTracker

• Image is loaded before determining size
public void init() {

image = getImage(getDocumentBase(), imageName);
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(image, 0);
try {

tracker.waitForAll();
} catch(InterruptedException ie) {}
...
imageWidth = image.getWidth(this);
imageHeight = image.getHeight(this);

}

public void paint(Graphics g) {
g.drawImage(image, 0, 0, this);
g.drawRect(0, 0, imageWidth, imageHeight);

}
52

Loading Images:
Results

53

Case 1 Case 2

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Wrap-Up

54

Summary

• Applet operations are restricted
– Applet cannot read/write local files, call local programs,

or connect to any host other than the one from which it
was loaded

• The init method
– Called only when applet loaded, not each time executed
– This is where you use getParameter to read PARAM data

• The paint method
– Called each time applet is displayed
– Coordinates in drawing operations are wrt top-left corner

• Drawing images
– getImage(getCodeBase(), "imageFile") to “load” image
– g.drawImage(image, x, y, this) to draw image

55

© 2012 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Java, JSF 2, PrimeFaces, Servlets, JSP, Ajax, jQuery, Spring, Hibernate, RESTful Web Services, Hadoop, Android.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

Questions?

56

JSF 2, PrimeFaces, Java 7, Ajax, jQuery, Hadoop, RESTful Web Services, Android, Spring, Hibernate, Servlets, JSP, GWT, and other Java EE training.

