
© 2012 Marty Hall

Object-Oriented j
Programming in Java:

More CapabilitiesMore Capabilities
Originals of Slides and Source Code for Examples:

http://courses.coreservlets.com/Course-Materials/java.html

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.2

http://courses.coreservlets.com/Course Materials/java.html

© 2012 Marty Hall

For live Java EE training, please see training courses
at http://courses.coreservlets.com/. at http://courses.coreservlets.com/.

JSF 2.0, PrimeFaces, Servlets, JSP, Ajax (with jQuery), GWT,
Android development, Java 6 and 7 programming,

SOAP-based and RESTful Web Services, Spring, Hibernate/JPA, g
XML, Hadoop, and customized combinations of topics.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP and this tutorial Available at public

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

Servlets and JSP, and this tutorial. Available at public
venues, or customized versions can be held on-site at your

organization. Contact hall@coreservlets.com for details.

Topics in This Section

• Overloading
• Best practices for “real” classes

– Encapsulation and accessor methods
J D– JavaDoc

• Inheritance
• Advanced topics• Advanced topics

– Abstract classes
– InterfacesInterfaces
– CLASSPATH
– Packages
– Visibility modifiers
– JavaDoc options

4

© 2012 Marty Hall

Overloading

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.5

Overview

• Idea
– Classes can have more than one method with the same

name, or more than one constructor.
– The methods (or constructors) have to differ from each– The methods (or constructors) have to differ from each

other by having different number or types of arguments

• Syntaxy
public class MyClass {

public double getRandomNum() { …}; // Range 1-10
public double getRandomNum(double range) { … }public double getRandomNum(double range) { … }

}

• Motivation
– Methods: lets you have similar names for similar ops
– Constructors: let you build instances in different ways

6

Ship Example: Overloading

public class Ship4 { (In Ship4.java)
public double x=0.0, y=0.0, speed=1.0, direction=0.0;
public String name;

public Ship4(double x, double y,
double speed, double direction,
String name) {

this.x = x;
this.y = y;
this.speed = speed;
this.direction = direction;
this.name = name;

}

public Ship4(String name) {
this.name = name;

}

private double degreesToRadians(double degrees) {
return(degrees * Math.PI / 180.0);

}
...7

Overloading (Continued)

...

public void move() {
move(1);

}}

public void move(int steps) {
double angle = degreesToRadians(direction);g g ()
x = x + steps * speed * Math.cos(angle);
y = y + steps * speed * Math.sin(angle);

}

public void printLocation() {
System.out.println(name + " is at ("

+ x + "," + y + ").");
}

}8

Overloading: Testing and
ResultsResults

public class Test4 { (In Test4.java)
public static void main(String[] args) {public static void main(String[] args) {
Ship4 s1 = new Ship4("Ship1");
Ship4 s2 = new Ship4(0.0, 0.0, 2.0, 135.0, "Ship2");
s1.move();
s2.move(3);
s1.printLocation();
s2.printLocation();

}}
}

• Compiling and Running (Eclipse: R-click, Run As…)Compiling and Running (Eclipse: R click, Run As…)
DOS> javac Test4.java
DOS> java Test4

• Output:Output:
Ship1 is at (1.0,0.0).
Ship2 is at (-4.24264...,4.24264...).

9

Overloading: Major Points

• Idea
All t d fi th f ti– Allows you to define more than one function or
constructor with the same name

• Overloaded functions or constructors must differ in the
number or types of their arguments (or both) so that Javanumber or types of their arguments (or both), so that Java
can always tell which one you mean

• Simple examples:
– Here are two square methods that differ only in theHere are two square methods that differ only in the

type of the argument; they would both be permitted inside
the same class definition.

// square(4) is 16
public int square(int x) { return(x*x); }

// sq are("fo r") is "fo r fo r"// square("four") is "four four"
public String square(String s) {
return(s + " " + s);

}10

© 2012 Marty Hall

OOP Design:OOP Design:
Best Practices

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.11

Overview

• Ideas
– Instance variables should always be private

• And hooked to outside world with getBlah and/or setBlah

– From very beginning put in JavaDoc-style comments– From very beginning, put in JavaDoc-style comments

• Syntax
/** Short summary. More detail. Can use HTML. */y
public class MyClass {

private String firstName;
public String getFirstName() { return(firstName); }public String getFirstName() { return(firstName); }
public void setFirstName(String s) { firstName = s; }

}

Moti ation• Motivation
– Limits ripple effect. Makes code more maintainable.

12

Ship Example: OOP Design and
UsageUsage

/** Ship example to demonstrate OOP in Java. */

public class Ship {
private double x=0.0, y=0.0, speed=1.0, direction=0.0;
private String name;p g
…
/** Get current X location. */

public double getX() {
return(x);

}

/** Set current X location. */

public void setX(double x) {public void setX(double x) {
this.x = x;

}
...13

OOP Design: Testing and
ResultsResults

public class ShipTest { (In ShipTest.java)
public static void main(String[] args) {public static void main(String[] args) {
Ship s1 = new Ship("Ship1");
Ship s2 = new Ship(0.0, 0.0, 2.0, 135.0, "Ship2");
s1.move();
s2.move(3);
s1.printLocation();
s2.printLocation();

}}
}

• Compiling and Running (Eclipse: R-click, Run As…)Compiling and Running (Eclipse: R click, Run As…)
javac ShipTest.java
java ShipTest
javadoc *.java

You can also run JavaDoc from within Eclipse by starting at Project menu and choosing
“Generate JavaDoc”. If it asks you where javadoc.exe is located, you can find it in the bin
f ld f J i t ll ti (C \P Fil \J \jdk1 6 0 22\bi)

• Output:
Ship1 is at (1.0,0.0).
Ship2 is at (-4.24264...,4.24264...).14

folder of your Java installation (e.g., C:\Program Files\Java\jdk1.6.0_22\bin)

OOP Design: Testing and Results
(Continued)(Continued)

15

Major Points

• Encapsulation
– Lets you change internal representation and data

structures without users of your class changing their code
– Lets you put constraints on values without users of your– Lets you put constraints on values without users of your

class changing their code
– Lets you perform arbitrary side effects without users of

l h h dyour class changing their code

• Comments and JavaDoc
Comments marked with /** */ will be part of the– Comments marked with /** ... */ will be part of the
online documentation

– Call "javadoc *.java" to build online documentation. j j
– See later slides for details

16

More Details on Getters and
SettersSetters

• Eclipse will automatically build
/ f i i blgetters/setters from instance variables

– R-click anywhere in code
Choose Source Generate Getters and Setters– Choose Source Generate Getters and Setters

– However, if you later click on instance variable and do
Refactor Rename, Eclipse will not automatically
rename the accessor methods

17

More Details on Getters and
SettersSetters

• There need not be both getters and setters
– It is common to have fields that can be set at instantiation,

but never changed again (immutable field). It is even
quite common to have classes containing only immutablequite common to have classes containing only immutable
fields (immutable classes)

public class Ship {public class Ship {
private final String shipName;

bli Shi () { hi N }public Ship(…) { shipName = …; … }

public String getName() { return(shipName); }

// No setName method
}18

More Details on Getters and
SettersSetters

• Getter/setter names need not correspond to
i i blinstance variable names
– Common to do so if there is a simple correspondence, but

this is not requiredthis is not required
• Notice on previous page that instance var was

“shipName”, but methods were “getName” and “setName”

I f t th d ’t h t b di– In fact, there doesn’t even have to be a corresponding
instance variable

public class Customer {
…
public String getFirstName() { getFromDatabase(…); }
public void setFirstName(…) { storeInDatabase(…); }p () { (); }
public double getBonus() { return(Math.random()); }

}
19

© 2012 Marty Hall

Inheritance

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.20

Overview

• Ideas
Y k l h “i h i ” h i i f– You can make a class that “inherits” characteristics of
another class

• The original class is called “parent class”, “super class”, or
“base class” The new class is called “child class”“base class”. The new class is called “child class”,
“subclass”, or “extended class”.

– The child class has access to all non-private methods of
the parent classthe parent class.

• No special syntax need to call inherited methods

• Syntax
– public class ChildClass extends ParentClass { … }

• Motivation
Supports the key OOP idea of code reuse (i e don’t write– Supports the key OOP idea of code reuse (i.e., don t write
the same code twice). Design class hierarchies so that
shared behavior is inherited to all classes that need it.

21

Simple Example

• Person
public class Person {

public String getFirstName() { … }
public String getLastName() { … }

}

• Employee• Employee
public class Employee extends Person {

public double getSalary() { … }

public String getEmployeeInfo() {
return(getFirstName() + " " + getLastName() +

" " + tS l ())" earns " + getSalary());
}

}
22

Ship Example: Inheritance

public class Speedboat extends Ship {
private String color = "red";

public Speedboat(String name) {
super(name);
setSpeed(20);

}

public Speedboat(double x, double y,
double speed, double direction,
String name, String color) {

super(x, y, speed, direction, name);
setColor(color);

}

@Override // Optional -- discussed later
public void printLocation() {
System.out.print(getColor().toUpperCase() + " ");y p (g () pp ())
super.printLocation();

}
...

}23

Inheritance Example: Testing

public class SpeedboatTest {
public static void main(String[] args) {public static void main(String[] args) {
Speedboat s1 = new Speedboat("Speedboat1");
Speedboat s2 = new Speedboat(0.0, 0.0, 2.0, 135.0,

"Speedboat2", "blue");p ,)
Ship s3 = new Ship(0.0, 0.0, 2.0, 135.0, "Ship1");
s1.move();
s2.move();
s3.move();
s1.printLocation();
s2.printLocation();
3 i tL ti ()s3.printLocation();

}
}

24

Inheritance Example: Result

• Compiling and running in Eclipse
– Save SpeedBoatTest.java
– R-click, Run As Java Application

Compiling and running manually• Compiling and running manually
DOS> javac SpeedboatTest.java

– The above calls javac on Speedboat.java and Ship.java
automatically

DOS> java SpeedboatTest

O t t• Output
RED Speedboat1 is at (20,0).
BLUE Speedboat2 is at (-1.41421,1.41421).p (,)
Ship1 is at (-1.41421,1.41421).

25

Ship Inheritance Example:
Major PointsMajor Points

• Format for defining subclasses
• Using inherited methods
• Using super(…) for inherited constructors

– Only when the zero-arg constructor is not OK
• The most common case is to omit super and use zero-arg

constructor of parent, but super is used moderately oftenp p y

• Using super.someMethod(…) for inherited
methods
– Only when there is a name conflict

• Used very rarely

26

Inheritance

• Syntax for defining subclasses
public class NewClass extends OldClass {public class NewClass extends OldClass {
...

}

• Nomenclature:
– The old class is called the superclass, base class or parent class
– The new class is called the subclass, derived class or child class

• Effect of inheritance
– Subclasses automatically have all public fields and methods of the

parent class
– You don’t need any special syntax to access the inherited fields and

methods; you use the exact same syntax as with locally definedmethods; you use the exact same syntax as with locally defined
fields or methods.

– You can also add in fields or methods not available in the superclass
• Java doesn’t support multiple inheritanceJava doesn t support multiple inheritance

– A class can only have one direct parent. But grandparent and great-
grandparent (etc.) are legal and common.

27

Inherited constructors and
super()super(...)

• Zero-arg constructor of parent called
Wh i i bj f b l h ill– When you instantiate an object of a subclass, the system will
always call the superclass constructor first
• By default, the zero-argument superclass constructor is called
• If you want to specify that a different parent constructor is called• If you want to specify that a different parent constructor is called,

invoke the parent class constructor with super(args)
• If super(…) is used in a subclass constructor, then super(…) must

be the first statement in the constructor

• Constructor life-cycle
– Each constructor has three phases:

1. Invoke the constructor of the superclassp
• The zero-argument constructor is called automatically. No special syntax

is needed unless you want a different parent constructor.

2. Initialize all instance variables based on their initialization
statementsstatements

3. Execute the body of the constructor

28

Overridden methods and
super methodName()super.methodName(...)

• Idea of overriding
– When a class defines a method using the same name,

return type, and arguments as a method in the superclass,
then the class overrides the method in the superclassthen the class overrides the method in the superclass

– Only non-static methods can be overridden

• Distinguishing between local and inherited g g
methods (rare!)
– If there is a locally defined method and an inherited

method that have the same name and take the samemethod that have the same name and take the same
arguments, you can use the following to refer to the
inherited method

• super.methodName(...)

• super.super.methodName is illegal
29

© 2012 Marty Hall

Example: Person Class

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.30

Iterations of Person

• Last lecture: four iterations of Person
– Instance variables
– Methods

Constructors– Constructors
– Constructors with “this” variable

• This lectureThis lecture
– Person class

• Change instance vars to private, add accessor methods
• Add JavaDoc comments

– Employee class
• Make a class based on Person that has all of the a e a c ass based o e so t at as a o t e

information of a Person, plus new data

31

Person Class (Part 1)

/** A class that represents a person's given name
* and family name* and family name.
*/
public class Person {

private String firstName, lastName;

public Person(String firstName,
String lastName) {

this.firstName = firstName;
this.lastName = lastName;;

}

32

Person Class (Part 2)

/** The person's given (first) name *//** The person's given (first) name. */

public String getFirstName() {
return (firstName);

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}}

33

Person Class (Part 3)

/** The person's family name (i.e.,
* last name or surname). last name or surname).
*/

public String getLastName() {
return (lastName);

}

public void setLastName(String lastName) {
this lastName = lastName;this.lastName = lastName;

}

/** The person's given name and family name, printedp g y , p
* in American style, with given name first and
* a space in between.
*/
bli St i tF llN () {public String getFullName() {
return(firstName + " " + lastName);

}
}34

Employee Class (Part 1)

/** Represents people that work at a company. */

public class Employee extends Person {
private int employeeId;
private String companyName;

public Employee(String firstName, String lastName,
int employeeId, String companyName) {

super(firstName lastName);super(firstName, lastName);
this.employeeId = employeeId;
this.companyName = companyName;

}}

35

Employee Class (Part 2)

/** The ID of the employee, with the assumption that
* lower numbers are people that started working at lower numbers are people that started working at
* the company earlier than those with higher ids.
*/
public int getEmployeeId() {

return (employeeId);
}

public void setEmployeeId(int employeeId) {public void setEmployeeId(int employeeId) {
this.employeeId = employeeId;

}

36

Employee Class (Part 3)

/** The name of the company that the person
* works for. works for.
*/

public String getCompanyName() {
return (companyName);

}

public void setCompanyName(String companyName) {
this companyName = companyName;this.companyName = companyName;

}
}

37

© 2012 Marty Hall

Advanced Topics

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.38

Advanced OOP Topics

• Abstract classes
• Interfaces
• Using @Override
• CLASSPATH
• Packages
• Visibility other than public or private
• JavaDoc details

39

Abstract Classes

• Idea
– A class that you cannot directly instantiate (i.e., on which

you cannot use “new”). But you can subclass it and
instantiate the subclasses.instantiate the subclasses.

• Syntax
public abstract class SomeClass {p {

public abstract SomeType method1(…); // No body
public SomeType method2(…) { … } // Not abstract

}}

• Motivation
Guarantees that all subclasses will have certain methods– Guarantees that all subclasses will have certain methods

– Lets you make collections of mixed types
40

Abstract Classes: Problem

• You have
– Circle and Rectangle classes, each with getArea methods

• Goal
G f f f Ci l d R l– Get sum of areas of an array of Circles and Rectangles

• Why does this fail?• Why does this fail?
Object[] shapes =

{ new Circle(…), new Rectangle(…) … };
double sum = 0;
for(Object shape: shapes) {

sum = sum + shape.getArea();
}}

41

Abstract Classes: Solution

• Shape
public abstract class Shape {

public abstract double getArea();

public void printInfo() {
System.out.println(getClass().getSimpleName() +

" has area " + getArea());
}}

}

• Circle (and similar for Rectangle)(g)
public class Circle extends Shape {

public double getArea() { … }
}

42

Interfaces

• Idea
– A model for a class. More or less an abstract class but

without any concrete methods.

• Syntax• Syntax
public interface SomeInterface {

public SomeType method1(…); // No body
public SomeType method2(…); // No body

}
public class SomeClass implements SomeInterface {p p {
// Real definitions of method1 and method 2

}

• Motivation• Motivation
– Like abstract classes, guarantees classes have certain

methods. But classes can implement multiple interfaces.43

Interfaces: Problem

• Sum of areas
– You again want to get sum of areas of mixture of Circles

and Rectangles.
• But this time you do not need Shape “class” to have aBut, this time you do not need Shape class to have a

concrete printInfo method

• Why interface instead of abstract class?
– Classes can directly extend only one class (abstract or

otherwise)
– Classes can implement many interfacesClasses can implement many interfaces

public class Foo extends Bar implements Baz, Boo {
…
}}

44

Interfaces: Solution

• Shape
public interface Shape {

public double getArea();
}

• Circle
public class Circle implements Shape {

public double getArea(…) { … }p g () { }
}

• Rectangle
bli l R t l i l t Sh {public class Rectangle implements Shape {
public double getArea() { … }

}

45

Using @Override

• Parent class
public class Ellipse implements Shape {

public double getArea() { … }
}

If Ellipse does not properly define getArea, code won’t
even compile since then the class does not satisfy the
requirements of the interface.

}

• Child class (mistake!)
public class Circle extends Ellipse { This code will compile, but when you call p p {

public double getarea() { … }
}

C t hi i t k t il ti

p , y
getArea at runtime, you will get version from
Ellipse, since there was a typo in this name
(lowercase a).

• Catching mistake at compile time
public class Circle extends Ellipse {

@Override
This tells the compiler “I think that I am
overriding a method from the parent class”. If @Override

public double getarea() { … }
}46

overriding a method from the parent class . If
there is no such method in the parent class,
code won’t compile. If there is such a method
in the parent class, then @Override has no
effect on the code. Recommended but optional.
More on @Override in later sections.

CLASSPATH

• Idea
– The CLASSPATH environment variable defines a list of

directories in which to look for classes
• Default = current directory and system libraries• Default = current directory and system libraries
• Best practice is to not set this when first learning Java!

• Setting the CLASSPATHSetting the CLASSPATH
set CLASSPATH = .;C:\java;D:\cwp\echoserver.jar
setenv CLASSPATH .:~/java:/home/cwp/classes/

– The “.” indicates the current working directory

• Supplying a CLASSPATH
javac –classpath .;D:\cwp WebClient.java
java –classpath .;D:\cwp WebClient

47

Packages

• Idea
– Organize classes in groups.

• Syntax
To put your code in package– To put your code in package

• Make folder called “somePackage” (in Eclipse, R-click on “src”
and do New Package)

• put “package somePackage” at top of fileput package somePackage at top of file

– To use code from another package
• put “import somePackage.*” in file below your package

statementstatement

• Motivation
– You only have to worry about name conflicts within your

kpackage.
• So, team members can work on different parts of project without

worrying about what class names the other teams use.
48

Visibility Modifiers

• public
– This modifier indicates that the variable or method can be

accessed anywhere an instance of the class is accessible
– A class may also be designated public which meansA class may also be designated public, which means

that any other class can use the class definition
– The name of a public class must match the filename, thus

fil h l bli la file can have only one public class

• private
A private variable or method is only accessible from– A private variable or method is only accessible from
methods within the same class

– Declare all instance variables privatep
– Declare methods private if they are not part of class

contract and are just internal implementation helpers
49

Visibility Modifiers (Continued)

• protected
– Protected variables or methods can only be accessed by

methods within the class, within classes in the same
package, and within subclassespackage, and within subclasses

• [default]
– Default visibility indicates that the variable or method can y

be accessed by methods within the class, and within
classes in the same package
A variable or method has default visibility if a modifier is– A variable or method has default visibility if a modifier is
omitted . Rarely used!

• private: very common. Use this as first choice.
bli f th d d t t 2nd h i• public: common for methods and constructors. 2nd choice

• protected: usually for instance vars only. Moderately rare.
• default: very rare. Don’t omit modifier without good reason.50

Visibility Summary

 Modifiers
Data Fields and Methods public protected default privateData Fields and Methods public protected default private

Accessible from same class? yes yes yes yes

Accessible to classes (nonsubclass) yes yes yes no
from the same package?from the same package?

Accessible to subclass from the yes yes yes no
same package?

Accessible to classes (nonsubclass) yes no no no
from different package?

Accessible to subclasses from yes no no noAccessible to subclasses from yes no no no
different package?

Inherited by subclass in the yes yes yes no
same package?

51

Inherited by subclass in different yes yes no no
package?

Other Modifiers

• final
F i bl t b h d ft i t ti ti– For a variable: cannot be changed after instantiation

• Widely used to make “immutable” classes
– For a class: cannot be subclassed
– For a method: cannot be overridden in subclasses

• synchronized
Sets a lock on a section of code or method– Sets a lock on a section of code or method

• Only one thread can access the code at any given time

• volatile
– Guarantees other threads see changes to variable

• transient
– Variables are not stored in serialized objects– Variables are not stored in serialized objects

• native
– Indicates that the method is implement using C or C++52

Comments and JavaDoc

• Java supports 3 types of comments
– // Comment to end of line.
– /* Block comment containing multiple lines.

Nesting of comments in not permitted */Nesting of comments in not permitted. /
– /** A JavaDoc comment placed before class

definition and nonprivate methods.
i ()Text may contain (most) HTML tags,

hyperlinks, and JavaDoc tags. */

• JavaDocJavaDoc
– Used to generate on-line documentation

javadoc Foo.java Bar.java (or *.java)

– JavaDoc Home Page
• http://java.sun.com/javase/6/docs/technotes/tools/windows/javadoc.html

53

Useful JavaDoc Tags

• @author
S ifi th th f th d t– Specifies the author of the document

– Must use javadoc –author ... to generate in output
/** Description of some class ...
**
* @author
* Marty Hall
*/

@version• @version
– Version number of the document
– Must use javadoc –version ... to generate in outputg p

• @param
– Documents a method argument

• @return@return
– Documents the return type of a method

54

Useful JavaDoc Command-line
ArgumentsArguments

• -author
I l d h i f i (i d b d f l)– Includes author information (omitted by default)

• -version
– Includes version number (omitted by default)(y)

• -noindex
– Tells javadoc not to generate a complete index

notree• -notree
– Tells javadoc not to generate the tree.html class hierarchy

• -link, -linkoffline,
– Tells javadoc where to look to resolve links to other packages

-link http://java.sun.com/j2se/1.5.0/docs/api/
-linkoffline http://java.sun.com/j2se/1.5.0/docs/api/

c:\jdk1.5\docs\api

55

JavaDoc: Example

/** Ship example to demonstrate OOP in Java.
*
* @author
* Marty Hall
*/

public class Ship {
private double x=0.0, y=0.0, speed=1.0, direction=0.0;
private String name;

/** Build a ship with specified parameters. */

public Ship(double x, double y, double speed,
double direction, String name) {g

setX(x);
setY(y);
setSpeed(speed);
setDirection(direction);()
setName(name);

}
...

56

JavaDoc: Example

> javadoc -link http://java.sun.com/j2se/1.5.0/docs/api/
-author *.javaauthor .java

57

© 2012 Marty Hall

Wrap-Up

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.58

Java OOP References

• Online
“OOP C ” i i O l J T i l– “OOP Concepts” section in Oracle Java Tutorial

• http://download.oracle.com/javase/tutorial/java/

• Books
– Murach’s Java SE 6 (Murach, Steelman, and Lowe)

• Excellent Java intro for beginners to Java (but not first-
time programmers). Very good OOP section.p g) y g

– Thinking in Java (Bruce Eckel)
• Perhaps not quite as good as Murach’s book in general,

but possibly the best OOP coverage of any Java book.p y g y
– Effective Java, 2nd Edition (Josh Bloch)

• In my opinion, the best Java book ever written. Fantastic
coverage of OOP best practices.

– However, very advanced. Other than the OOP chapter, you won’t
understand much unless you have been doing Java fulltime for at
least a year. Even experts will learn a lot from this book.

59

Summary

• Overloading
Y h l i l h d i h h– You can have multiple methods or constructors with the
same name. They must differ in argument signatures
(number and/or type of arguments).

• Best practices
– Make all instance variables private
– Hook them to the outside with getBlah and/or setBlahHook them to the outside with getBlah and/or setBlah
– Use JavaDoc-style comments from the very beginning

• Inheritance
– public class Subclass extends Superclass { … }

• Non-private methods available with no special syntax
• Use super() on first line of constructor if you need non-() y

default parent constructor (moderately common)
• Use super.method(…) if local method and inherited

method have the same name (rare!)
60

© 2012 Marty Hall

Questions?Questions?

Customized Java EE Training: http://courses.coreservlets.com/
Java 6 or 7, JSF 2.0, PrimeFaces, Servlets, JSP, Ajax, Spring, Hibernate, RESTful Web Services, Android.
Developed and taught by well-known author and developer. At public venues or onsite at your location.61

