It would be wonderful if we could write
programs that were guaranteed to work
correctly and never needed to be debugged.
Until that halcyon day, the normal pro-
gramming cycle is going to involve writing
a program, compiling it, executing it, and
then the (somewhat) dreaded scourge of
debugging it. And then repeat until the pro-
gram works as expected.

It is possible to debug programs by in-
serting code that prints values of selected
interesting variables. Indeed, in some situa-
tions, such as debugging kernel drivers, this
may be the preferred method. There are
low-level debuggers that allow you to step
through the executable program, instruc-
tion by instruction, displaying registers and
memory contents in binary.

But it is much easier to use a source-lev-
el debugger which allows you to step
through a program's source, set break-
points, print variable values, and perhaps a
few other functions such as allowing you to
call a function in your program while in the
debugger. The problem is how to coordi-
nate two completely different programs,
the compiler and the debugger, so that the
program can be debugged.

Translating from
Source to Executable

he process of compiling a program

from human-readable form into the bi-
nary form that a processor executes is quite
complex, but it essentially involves succes-
sively recasting the source into simpler and
simpler forms, discarding information at
each step until, eventually, the result is the
sequence of simple operations, registers,

Michael Eager is Principal Consultant at
Eager Consulting (www.eagercon.com),
specializing in development tools for
embedded systems. He was a member
of PLSIG's DWARF standardization com-
mittee and has been Chair of the
DWARF Standards Committee since
1999. Michael can be contacted at

eager@eagercon.com.
© Eager Consulting, 2006, 2007, 2012

Introduction to the

DWARF Debugging Format

Michael J. Eager, Eager Consulting

April, 2012

memory addresses, and binary values
which the processor actually understands.
After all, the processor really doesn't care
whether you used object oriented program-
ming, templates, or smart pointers; it only
understands a very simple set of operations
on a limited number of registers and mem-
ory locations containing binary values.

As a compiler reads and parses the
source of a program, it collects a variety of
information about the program, such as the
line numbers where a variable or function
is declared or used. Semantic analysis ex-
tends this information to fill in details such
as the types of variables and arguments of
functions. Optimizations may move parts of
the program around, combine similar
pieces, expand inline functions, or remove
parts which are unneeded. Finally, code
generation takes this internal representa-
tion of the program and generates the actu-
al machine instructions. Often, there is an-
other pass over the machine code to per-
form what are called "peephole" optimiza-
tions that may further rearrange or modify
the code, for example, to eliminate dupli-
cate instructions.

All-in-all, the compiler's task is to take
the well-crafted and understandable source
code and convert it into efficient but essen-
tially unintelligible machine language. The
better the compiler achieves the goal of cre-
ating tight and fast code, the more likely it
is that the result will be difficult to under-
stand.

During this translation process, the
compiler collects information about the
program which will be useful later when
the program is debugged. There are two
challenges to doing this well. The first is
that in the later parts of this process, it may
be difficult for the compiler to relate the
changes it is making to the program to the
original source code that the programmer
wrote. For example, the peephole optimizer
may remove an instruction because it was
able to switch around the order of a test in
code that was generated by an inline func-
tion in the instantiation of a C++ template.
By the time it gets its metaphorical hands
on the program, the optimizer may have a
difficult time connecting its manipulations

of low-level code to the original source
which generated it.

The second challenge is how to describe
the executable program and its relationship
to the original source with enough detail to
allow a debugger to provide the program-
mer useful information. At the same time,
the description has to be concise enough so
that it does not take up an extreme amount
of space or require significant processor
time to interpret. This is where the DWARF
Debugging Format comes in: it is a compact
representation of the relationship between
the executable program and the source in a
way that is reasonably efficient for a debug-
ger to process.

The Debugging
Process

hen a programmer runs a program

under a debugger, there are some
common operations which he or she may
want to do. The most common of these are
setting a breakpoint to stop the debugger at
a particular point in the source, either by
specifying the line number or a function
name. When this breakpoint is hit, the pro-
grammer usually would like to display the
values of local or global variables, or the ar-
guments to the function. Displaying the
call stack lets the programmer know how
the program arrived at the breakpoint in
cases where there are multiple execution
paths. After reviewing this information, the
programmer can ask the debugger to con-
tinue execution of the program under test.

There are a number of additional opera-
tions that are useful in debugging. For ex-
ample, it may be helpful to be able to step
through a program line by line, either en-
tering or stepping over called functions.
Setting a breakpoint at every instance of a
template or inline function can be impor-
tant for debugging C++ programs. It can
be helpful to stop just before the end of a
function so that the return value can be dis-
played or changed. Sometimes the pro-
grammer may want to bypass execution of
a function, returning a known value instead
of what the function would have (possibly
incorrectly) computed.

http://www.eagercon.com/
mailto:eager@eagercon.com

There are also data related operations
that are useful. For example, displaying
the type of a variable can avoid having to
look up the type in the source files. Dis-
playing the value of a variable in different
formats, or displaying a memory or register
in a specified format is helpful.

There are some operations which might
be called advanced debugging functions:
for example, being able to debug multi-
threaded programs or programs stored in
read-only memory. One might want a de-
bugger (or some other program analysis
tool) to keep track of whether certain sec-
tions of code had been executed or not.
Some debuggers allow the programmer to
call functions in the program being tested.
In the not-so-distant past, debugging pro-
grams that had been optimized would have
been considered an advanced feature.

The task of a debugger is to provide the
programmer with a view of the executing
program in as natural and understandable
fashion as possible, while permitting a wide
range of control over its execution. This
means that the debugger has to essentially
reverse much of the compiler’s carefully
crafted transformations, converting the pro-
gram’s data and state back into the terms
that the programmer originally used in the
program’s source.

The challenge of a debugging data for-
mat, like DWARF, is to make this possible
and even easy.

Debugging Formats

here are several debugging formats:

stabs, COFF, PE-COFF, OMF, IEEE-695,
and two variants' of DWARF, to name some
common ones. I'm not going to describe
these in any detail. The intent here is only
to mention them to place the DWARF De-
bugging Format in context.

The name stabs comes from symbol ta-
ble strings, since the debugging data were
originally saved as strings in Unix’s a.out
object file’s symbol table. Stabs encodes
the information about a program in text
strings. Initially quite simple, stabs has
evolved over time into a quite complex, oc-
casionally cryptic and less-than-consistent
debugging format. Stabs is not standard-
ized nor well documented® Sun Microsys-
tems has made a number of extensions to
stabs. GCC has made other extensions,

! DWARF Version 1 is significantly different from
Versions 2 and later.

2 In 1992, the author wrote an extensive docu-
ment describing the stabs generated by Sun Mi-
crosytems' compilers. Unfortunately, it was never
widely distributed.

Introduction to the DWARF Debugging Format

while attempting to reverse engineer the
Sun extensions. Nonetheless, stabs is still
widely used.

COFF stands for Common Object File
Format and originated with Unix System V
Release 3. Rudimentary debugging infor-
mation was defined with the COFF format,
but since COFF includes support for named
sections, a variety of different debugging
formats such as stabs have been used with
COFF. The most significant problem with
COFF is that despite the Common in its
name, it isn’t the same in each architecture
which uses the format. There are many
variations in COFF, including XCOFF (used
on IBM RS/6000), ECOFF (used on MIPS
and Alpha), and Windows PE-COFF. Docu-
mentation of these variants is available to
varying degrees but neither the object mod-
ule format nor the debugging information
is standardized.

PE-COFF is the object module format
used by Microsoft Windows beginning with
Windows 95. It is based on the COFF for-
mat and contains both COFF debugging
data and Microsoft’s own proprietary Code-
View or CV4 debugging data format. Docu-
mentation on the debugging format is both
sketchy and difficult to obtain.

OMF stands for Object Module Format
and is the object file format used in CP/M,
DOS and OS/2 systems, as well as a small
number of embedded systems. OMF de-
fines public name and line number infor-
mation for debuggers and can also contain
Microsoft CV, IBM PM, or AIX format de-
bugging data. OMF only provides the most
rudimentary support for debuggers.

IEEE-695 is a standard object file and
debugging format developed jointly by Mi-
crotec Research and HP in the late 1980’s
for embedded environments. It became an
IEEE standard in 1990. It is a very flexible
specification, intended to be usable with al-
most any machine architecture. The de-
bugging format is block structured, which
corresponds to the organization of the
source better than other formats. Although
it is an IEEE standard, in many ways IEEE-
695 is more like the proprietary formats.
Although the original standard is readily
available from IEEE, Microtec Research
made extensions to support C++ and opti-
mized code which are poorly documented.
The IEEE standard was never revised to in-
corporate the Microtec Research or other
changes. Despite being an IEEE standard,
it's use is limited to a few small processors.

A Brief History of
DWARF

DWARF 1 — Unix SVR4 sdb
and PLSIG

WARF® was developed by Brian Rus-

sell, Ph.D., at Bell Labs in 1988 for use
with the C compiler and sdb debugger in
Unix System V Release 4 (SVR4). The Pro-
gramming Languages Special Interest
Group (PLSIG), part of Unix International
(UD), documented the DWARF generated by
SVR4 as DWARF Version 1 in 1992. Al-
though the original DWARF had several
clear shortcomings, most notably that it
was not very compact, the PLSIG decided to
standardize the SVR4 format with only
minimal modification. It was widely adopt-
ed within the embedded sector where it
continues to be used today, especially for
small processors.

DWARF 2 — PLSIG

he PLSIG continued to develop and

document extensions to DWARF to ad-
dress several issues, the most important of
which was to reduce the size of debugging
data that were generated. There were also
additions to support new languages such as
the up-and-coming C+ + language. DWARF
Version 2 was released as a draft standard
in 1993.

In an example of the domino theory in
action, shortly after PLSIG released the
draft standard, fatal flaws were discovered
in Motorola's 88000 microprocessor. Mo-
torola pulled the plug on the processor,
which in turn resulted in the demise of
Open88, a consortium of companies that
were developing computers using the
88000. Open88 in turn was a supporter of
Unix International, sponsor of PLSIG, which
resulted in Ul being disbanded. When UI
folded, all that remained of the PLSIG was
a mailing list and a variety of ftp sites that
had various versions of the DWARF 2 draft
standard. A final standard was never re-
leased.

Since Unix International had disap-
peared and PLSIG disbanded, several orga-
nizations independently decided to extend
DWARF 1 and 2. Some of these extensions
were specific to a single architecture, but
others might be applicable to any architec-
ture. Unfortunately, the different organiza-
tions didn’t work together on these exten-
sions. Documentation on the extensions is

* The name DWAREF is something of a pun, since
it was developed along with the ELF object file
format. The name is an acronym for “Debugging
With Arbitrary Record Formats”.

Michael J. Eager

generally spotty or difficult to obtain. Or as
a GCC developer might suggest, tongue
firmly in cheek, the extensions were well
documented: all you have to do is read the
compiler source code. DWARF was well on
its way to following COFF and becoming a
collection of divergent implementations
rather than being an industry standard.

DWARF 3 — Free Standards
Group

Despite several on-line discussions
about DWARF on the PLSIG email list
(which survived under X/Open [later Open
Group] sponsorship after UI's demise),
there was little impetus to revise (or even
finalize) the document until the end of
1999. At that time, there was interest in
extending DWARF to have better support
for the HP/Intel IA-64 architecture as well
as better documentation of the ABI used by
C++ programs. These two efforts separat-
ed, and the author took over as Chair for
the revived DWARF Committee.

Following more than 18 months of de-
velopment work and creation of a draft of
the DWARF 3 specification, the standard-
ization effort hit what might be called a soft
patch. The committee (and this author, in
particular) wanted to insure that the
DWARF standard was readily available and
to avoid the possible divergence caused by
multiple sources for the standard. The
DWARF Committee became the DWARF
Workgroup of the Free Standards Group in
2003. Active development and clarification
of the DWARF 3 Standard resumed early in
2005 with the goal to resolve any open is-
sues in the standard. A public review draft
was released to solicit public comments in
October and the final version of the
DWAREF 3 Standard was released in Decem-
ber, 2005.

DWARF 4 — DWARF
Debugging Format Committee

After the Free Standards Group merged
with Open Source Development Labs
(OSDL) in 2007 to form the Linux Founda-
tion, the DWARF Committee returned to in-
dependent status and created its own web
site at dwarfstd.org. Work began on Ver-
sion 4 of the DWARF in 2007. This version
clarified DWARF expressions, added sup-
port for VLIW architectures, improved lan-
guage support, generalized support for
packed data, added a new technique for
compressing the debug data by eliminating
duplicate type descriptions, and added sup-
port for profile-based compiler optimiza-
tions, as well as extensive editing of the
documentation. The DWARF Version 4

Introduction to the DWARF Debugging Format

Standard was released in June, 2010, fol-
lowing a public review.

Work on DWARF Version 5 started in
February, 2012. This version is expected
to be completed in 2014.

DWARF Overview*

Most modern programming languages
are block structured: each entity (a

class definition or a function, for example)
is contained within another entity. Each
file in a C program may contain multiple
data definitions, multiple variable defini-
tions, and multiple functions. Within each
C function there may be several data defini-
tions followed by executable statements. A
statement may be a compound statement
that in turn can contain data definitions
and executable statements. This creates lex-
ical scopes, where names are known only
within the scope in which they are defined.
To find the definition of a particular symbol
in a program, you first look in the current
scope, then in successive enclosing scopes
until you find the symbol. There may be
multiple definitions of the same name in
different scopes. Compilers very naturally
represent a program internally as a tree.

DWAREF follows this model in that it is
also block structured. Each descriptive enti-
ty in DWARF (except for the topmost entry
which describes the source file) is con-
tained within a parent entry and may con-
tain children entities. If a node contains
multiple entities, they are all siblings, relat-
ed to each other. The DWARF description
of a program is a tree structure, similar to
the compiler’s internal tree, where each
node can have children or siblings. The
nodes may represent types, variables, or
functions. This is a compact format where
only the information that is needed to de-
scribe an aspect of a program is provided.
The format is extensible in a uniform fash-
ion, so that a debugger can recognize and
ignore an extension, even if it might not
understand its meaning. (This is much bet-
ter than the situation with most other de-
bugging formats where the debugger gets
fatally confused attempting to read unrec-
ognized data.) DWAREF is also designed to
be extensible to describe virtually any pro-
cedural programming language on any ma-
chine architecture, rather than being bound
to only describing one language or one ver-
sion of a language on a limited range of ar-
chitectures.

* In the remainder of this paper, we will be dis-
cussing DWARF Version 2 and later versions.
Unless otherwise noted, all descriptions apply to
DWARF Versions 2 through 4.

While DWARF is most commonly asso-
ciated with the ELF object file format, it is
independent of the object file format. It
can and has been used with other object
file formats. All that is necessary is that the
different data sections that make up the
DWARF data be identifiable in the object
file or executable. DWARF does not dupli-
cate information that is contained in the
object file, such as identifying the processor
architecture or whether the file is written in
big-endian or little-endian format.

Debugging
Information Entry
(DIE)

Tags and Attributes

he basic descriptive entity in DWARF is

the Debugging Information Entry
(DIE). A DIE has a tag, which specifies
what the DIE describes and a list of at-
tributes which fill in details and further de-
scribes the entity. A DIE (except for the top-
most) is contained in or owned by a parent
DIE and may have sibling DIEs or children
DIEs. Attributes may contain a variety of
values: constants (such as a function
name), variables (such as the start address
for a function), or references to another
DIE (such as for the type of a function’s re-
turn value).

Figure 1 shows C's classic hello.c
program with a simplified graphical repre-
sentation of its DWARF description. The
topmost DIE represents the compilation
unit. It has two “children”, the first is the
DIE describing main and the second de-
scribing the base type int which is the type
of the value returned by main. The sub-
program DIE is a child of the compilation
unit DIE, while the base type DIE is refer-
enced by the Type attribute in the subpro-
gram DIE. We also talk about a DIE “own-
ing” or “containing” the children DIEs.

Types of DIEs

DIES can be split into two general types.
Those that describe data including

data types and those that describe functions
and other executable code.

Describing Data and
Types

Most programming languages have so-
phisticated descriptions of data.

There are a number of built-in data types,
pointers, various data structures, and usual-
ly ways of creating new data types. Since
DWAREF is intended to be used with a vari-

Michael J. Eager

http://dwarfstd.org/

hello.c:
: int main()

{

return 0;

}

DIE - Compilation Unit

Dir = /home/dwarf/examples
Name = hello.c

LowPC = 0x0

HighPC = 0x2b

Producer = GCC

v

== DIE - Subprogram =

Name = main
File = hello.c

Line =2

Type = int
LowPC = 0x0
HighPC = 0x2b

External = yes

1
2:
3: printf("Hello World!\n");
4
5

DIE - Base Type

Name = int
ByteSize = 4
Encoding = signed
integer

Figure 1. Graphical representation of DWARF data

ety of languages, it abstracts out the basics
and provides a representation that can be
used for all supported language. The prima-
ry types, built directly on the hardware, are
the base types. Other data types are con-
structed as collections or compositions of
these base types.

Base Types

Every programming language defines
several basic scalar data types. For ex-

ample, both C and Java define int and dou-
ble. While Java provides a complete defini-
tion for these types, C only specifies some
general characteristics, allowing the com-
plier to pick the actual specifications that
best fit the target processor. Some lan-
guages, like Pascal, allow new base types to
be defined, for example, an integer type

which can hold integer values between 0
and 100. Pascal doesn't specify how this
should be implemented. One compiler
might implement this as a single byte, an-
other might use a 16-bit integer, a third
might implement all integer types as 32-bit
values no matter how they are defined.

With DWARF Version 1 and

used, possibly even within the same pro-
gram. Figure 2a shows the DIE which de-
scribes int on a typical 32-bit processor.
The attributes specify the name (int), an
encoding (signed binary integer), and the
size in bytes (4). Figure 2b shows a similar
definition of int on a 16-bit processor. (In
Figure 2, we use the tag and attribute
names defined in the DWARF standard,
rather than the more informal names used
in Figure 1. The names of tags are all pre-
fixed with DW_TAG and the names of at-
tributes are prefixed with DW_AT.)

The base types allow the compiler to
describe almost any mapping between a
programming language scalar type and
how it is actually implemented on the pro-
cessor. Figure 3 describes a 16-bit integer
value that is stored in the upper 16 bits of a
four byte word. In this base type, there is a
bit size attribute that specifies that the val-
ue is 16 bits wide and an offset from the
high-order bit of zero®.

The DWAREF base types allow a number
of different encodings to be described, in-
cluding address, character, fixed point,
floating point, and packed decimal, in addi-
tion to binary integers. There is still a little
ambiguity remaining: for example, the ac-
tual encoding for a floating point number is
not specified; this is determined by the en-
coding that the hardware actually supports.
In a processor which supports both 32-bit
and 64-bit floating point values following
the IEEE-754 standard, the encodings rep-
resented by “float” are different depending
on the size of the value.

other debugging formats, the
compiler and debugger are sup-
posed to share a common under-
standing about whether an int is
16, 32, or even 64 bits. This be-
comes awkward when the same
hardware can support different
size integers or when different
compilers make different imple-
mentation decisions for the same

Figure 3. 16-bit word type stored in the top 16-

DW_TAG_base_type
DW_AT name = word
DW_AT byte _size = 4
DW_AT bit size = 16
DW_AT bit offset = 0
DW_AT encoding = signed

bits of a 32-bit word.

target processor. These assump-
tions, often undocu-

DW_TAG_base_type
DW_AT name = int
DW_AT byte size = 4
DW_AT encoding =

signed

Figure 2a. int base type on 32-bit processor.

mented, make it difficult to have
compatibility between different
compilers or debuggers, or even
between different versions of the
same tools.

DWARF base types provide

the lowest level mapping be-

DW_TAG_base_ type
DW_AT name = int
DW_AT byte size = 2
DW_AT encoding =

signed

Figure 2b. int base type on 16-bit processor

tween the simple data types and
how they are implemented on
the target machine's hardware.
This makes the definition of int
explicit for both Java and C and
allows different definitions to be

Introduction to the DWARF Debugging Format

Type Composition

named variable is described by a DIE

which has a variety of attributes, one
of which is a reference to a type definition.
Figure 4 describes an integer variable
named x. (For the moment we will ignore
the other information that is usually con-
tained in a DIE describing a variable.)

The base type for int describes it as a
signed binary integer occupying four bytes.

® This is a real-life example taken from an imple-
mentation of Pascal that passed 16-bit integers in
the top half of a word on the stack.

Michael J. Eager

The DW_TAG variable DIE for x gives its
name and a type attribute, which refers to
the base type DIE. For clarity, the DIEs are
labeled sequentially in the this and follow-
ing examples; in the actual DWARF data, a
reference to a DIE is the offset from the
start of the compilation unit where the DIE
can be found. References can be to previ-
ously defined DIEs, as in Figure 4, or to
DIEs which are defined later. Once we
have created a base type DIE for int, any
variable in the same compilation can refer-
ence the same DIES.

DWAREF uses the base types to construct
other data type definitions by composition.
A new type is created as a modification of
another type. For example, Figure 5 shows
a pointer to an int on our typical 32-bit ma-
chine. This DIE defines a pointer type, spec-
ifies that its size is four bytes, and in turn
references the int base type. Other DIEs de-

stored in column major order (as in Fortan)
or in row major order (as in C or C++). The
index for the array is represented by a sub-
range type that gives the lower and upper
bounds of each dimension. This allows
DWARF to describe both C style arrays,
which always have zero as the lowest in-
dex, as well as arrays in Pascal or Ada,
which can have any value for the low and
high bounds.

Structures, Classes,
Unions, and
Interfaces

Most languages allow the programmer
to group data together into structures
(called struct in C and C++, class in C++,
and record in Pascal). Each of the compo-
nents of the structure generally has a

unique name and may have a

<1>: DW_TAG_base_type
DW_AT name = int
DW_AT byte size = 4

DW_AT encoding =

signed

different type, and each occupies
its own space. C and C++ have
the union and Pascal has the
variant record that are similar to
a structure except that

vate, or protected. These are described with
the accessibility attribute.

C and C++ allow bit fields as class
members that are not simple variables.
These are described with bit offset from the
start of the class instance to the left-most
bit of the bit field and bit size that says how
many bits the member occupies.

Variables

‘ zariables are generally pretty simple.
They have a name which represents a

chunk of memory (or register) that can
contain some kind of a value. The kind of
values that the variable can contain, as well
as restrictions on how it can be modified
(e.g., whether it is const) are described by
the type of the variable.

What distinguishes a variable is where
its value is stored and its scope. The scope
of a variable defines where the variable
known within the program and is, to some
degree, determined by where the variable is
declared. In C, variables declared within a

the component occupy

<2>: DW_TAG_variable
DW_AT name = X the same memory lo-
DW_AT_type = <1> cations. The Java in-
terface has a subset of
Figure 4. DWARF description of “int x”. the properties of a C+
+ class, since it may
only have abstract
methods and constant
<1>: DW_TAG variable data members.
DW_AT_ name = px
DW_AT_type = <2> Although each lan-
<2> DW TAG ointer t e guage has lts own ter-
0 A—Tp byto s_izyep= . minology (G++ calls
DW AT type = <3> the components of a
- T class members while
<3>: DW_TAG base type Pascal calls them
DW_AT name = int fields) the underlying
DW_AT byte size = 4 organization can be
DW_AT_encoding = signed described in DWARF.

Figure 5. DWARF description of “int *px”.

True to its heritage,
DWAREF uses the C/C+

<1>: DW_TAG variable
DW_AT name =

DW_AT type =

argv
<2>
<2>: DW_TAG_pointer_type

DW_AT byte size = 4

DW_AT type = <3>
<3>: DW_TAG_pointer_type

DW_AT byte size = 4

DW_AT type = <4>
<4>: DW_TAG_const_type

DW_AT type = <5>
<5>: DW_TAG_base_type

DW_AT name = char

DW_AT byte size = 1

DW_AT encoding = unsigned

Figure 6. DWARF description of
“const char **argv’.

scribe the const or volatile attributes, C++
reference type, or C restrict types. These
type DIEs can be chained together to de-
scribe more complex data types, such as
“const char **argv” which is described
in Figure 6.

Array

rray types are described by a DIE
which defines whether the data is

¢ Some compilers define a common set of type
definitions at the start of every compilation unit.
Others only generate the definitions for the types
which are actually referenced in the program.
Either is valid.

Introduction to the DWARF Debugging Format

+/Java terminology
and has DIEs which de-
scribe struct, union, class, and interface.
We'll describe the class DIE here, but the
others have essentially the same organiza-
tion.

The DIE for a class is the parent of the
DIEs which describe each of the class's
members. Each class has a name and possi-
bly other attributes. If the size of an in-
stance is known at compile time, then it
will have a byte size attribute. Each of these
descriptions looks very much like the de-
scription of a simple variable, although
there may be some additional attributes.
For example, C++ allows the programmer
to specify whether a member is public, pri-

function or block have function or block
scope. Those declared outside a function
have either global or file scope. This allows
different variables with the same name to
be defined in different files without con-
flicting. It also allows different functions or
compilations to reference the same vari-
able. DWARF documents where the vari-
able is declared in the source file with a
(file, line, column) triplet.

DWAREF splits variables into three cate-
gories: constants, formal parameters, and
variables. A constant is used with languages
that have true named constants as part of
the language, such as Ada parameters. (C

Michael J. Eager

does not have constants as part of the lan-
guage. Declaring a variable const just says
that you cannot modify the variable with-
out using an explicit cast.) A formal param-
eter represents values passed to a function.
We'll come back to that a bit later.

Some languages, like C or C++ (but not
Pascal), allow a variable to be declared
without defining it. This implies that there
should be a real definition of the variable
somewhere else, hopefully somewhere that
the compiler or debugger can find. A DIE
describing a variable declaration provides a
description of the variable without actually
telling the debugger where it is.

Most variables have a location attribute
that describes where the variable is stored.
In the simplest of cases, a variable is stored

adding a fixed offset to a frame pointer. In
other cases, the variable may be stored in a
register. Other variables may require some-
what more complicated computations to lo-
cate the data. A variable that is a member
of a G++ class may require more complex
computations to determine the location of
the base class within a derived class.

Location Expressions

WAREF provides a very general scheme

to describe how to locate the data rep-
resented by a variable. A DWARF location
expression contains a sequence of opera-
tions which tell a debugger how to locate
the data. Figure 7 shows DIEs for three
variables named a, b, and c. Variable a has
a fixed location in memory, variable b is in
register 0, and variable c is at

fig7.c:
1l: int a;
2: void foo()
¢ A
4: register int b;
: int c;
6: }
<1l>: DW_TAG_subprogram

DW_AT name = foo
DW_TAG variable
DW_AT name = b
DW_AT type = <4>
DW_AT location =
DW_TAG_variable
DW_AT name = C
DW_AT type <4>
DW_AT location =
(DW_OP_fbreg: -12)
DW_TAG_base_type
DW_AT name = int
DW_AT byte size = 4
DW_AT encoding = signed
DW_TAG_variable
DW_AT name = a
DW_AT type = <4>
DW_AT external = 1
DW_AT location =

<2>:

<3>:

<4>:

<5>:

a, b, and c.

(DW_OP_reg0)

(DW_OP_addr: 0)

Figure 7. DWARF description of variables

offset —12 within the current
function's stack frame. Although
a was declared first, the DIE to
describe it is generated later, af-
ter all functions. The actual lo-
cation of a will be filled in by
the linker.

The DWAREF location expres-
sion can contain a sequence of
operators and values that are
evaluated by a simple stack ma-
chine. This can be an arbitrarily
complex computation, with a
wide range of arithmetic opera-
tions, tests and branches within
the expression, calls to evaluate
other location expressions, and
accesses to the processor's mem-
ory or registers. There are even
operations used to describe data
which is split up and stored in
different locations, such as a
structure where some data are
stored in memory and some are
stored in registers.

Although this great flexibili-
ty is seldom used in practice,

in memory and has a fixed address’. But
many variables, such as those declared
within a C function, are dynamically allo-
cated and locating them requires some
(usually simple) computation. For example,
a local variable may be allocated on the
stack, and locating it may be as simple as

7 Well, maybe not a fixed address, but one that is
a fixed offset from where the executable is load-
ed. The loader relocates references to addresses
within an executable so that at run-time the loca-
tion attribute contains the actual memory ad-
dress. In an object file, the location attribute is
the offset, along with an appropriate relocation
table entry.

Introduction to the DWARF Debugging Format

the location expression should
allow the location of a variable's
data to be described no matter how com-
plex the language definition or how clever
the compiler's optimizations.

Describing
Executable Code

Functions and Subprograms

WAREF treats functions that return val-
ues and subroutines that do not as
variations of the same thing. Drifting slight-
ly away from its roots in C terminology,
DWARF describes both with a subprogram

DIE. This DIE has a name, a source location
triplet, and an attribute which indicates
whether the subprogram is external, that is,
visible outside the current compilation.

A subprogram DIE has attributes that
give the low and high memory addresses
that the subprogram occupies, if it is con-
tiguous, or a list of memory ranges if the
function does not occupy a contiguous set
of memory addresses. The low PC address
is assumed to be the entry point for the
routine unless another one is explicitly
specified.

The value that a function returns is giv-
en by the type attribute. Subroutines that
do not return values (like C void functions)
do not have this attribute. DWARF doesn't
describe the calling conventions for a func-
tion; that is defined in the Application Bina-
ry Interface (ABI) for the particular archi-
tecture. There may be attributes that help a
debugger to locate the subprogram's data
or to find the current subprogram's caller.
The return address attribute is a location ex-
pression that specifies where the address of
the caller is stored. The frame base attribute
is a location expression that computes the
address of the stack frame for the function.
These are useful since some of the most
common optimizations that a compiler
might do are to eliminate instructions that
explicitly save the return address or frame
pointer.

The subprogram DIE owns DIEs that de-
scribe the subprogram. The parameters that
may be passed to a function are represent-
ed by variable DIEs which have the variable
parameter attribute. If the parameter is op-
tional or has a default value, these are rep-
resented by attributes. The DIEs for the pa-
rameters are in the same order as the argu-
ment list for the function, but there may be
additional DIEs interspersed, for example,
to define types used by the parameters.

A function may define variables that
may be local or global. The DIEs for these
variables follow the parameter DIEs. Many
languages allow nesting of lexical blocks.
These are represented by lexical block DIEs
which in turn, may own variable DIEs or
nested lexical block DIEs.

Here is a somewhat longer example.
Figure 8a shows the source for
strndup.c, a function in gcc that dupli-
cates a string. Figure 8b lists the DWARF
generated for this file. As in previous exam-
ples, the source line information and the lo-
cation attributes are not shown.

In Figure 8b, DIE <2> shows the defi-
nition of size_ t which is a typdef of un-
signed int. This allows a debugger to

Michael J. Eager

display the type of formal argument n as a
size_ t, while displaying its value as an
unsigned integer. DIE <5> describes the
function strndup. This has a pointer to its
sibling, DIE <10>; all of the following
DIEs are children of the Subprogram DIE.
The function returns a pointer to char, de-
scribed in DIE <10>. DIE <5> also de-
scribes the subroutine as external and pro-
totyped and gives the low and high PC val-
ues for the routine. The formal parameters
and local variables of the routine are de-
scribed in DIEs <6> to <9>.

Compilation Unit

ost interesting programs consists of

more than a single file. Each source
file that makes up a program is compiled
independently and then linked together
with system libraries to make up the pro-
gram. DWARF calls each separately com-
piled source file a compilation unit.

The DWARF data for each compilation
unit starts with a Compilation Unit DIE.
This DIE contains general information
about the compilation, including the direc-

tory and name of the

strndup.c:

1: #include "ansidecl.h"

source file, the pro-
gramming language
used, a string which

2: #include <stddef.h>

3: identifies the produc-

4: extern size_t strlen (const char*); er of the DWARF

5: extern PTR malloc (size t); data, and offsets into

6: extern PTR memcpy (PTR, const PTR, size_t); the DWARF data sec-

7 tions to help locate

8: char * .

9: strndup (const char *s, size t n) the hn? nunﬁxﬂ and
10: ¢ - macro information.
11: char *result; .
12: size_t len = strlen (s); .Ifthe mnnpﬂauon
13: unit 1S contiguous
14: if (n < len) (i.e., it is loaded into
15: len = n; memory in one piece)
16: then there are values
17: L"esult = (char *) malloc (len + 1); for the low and high
18: if (!result)

19: return 0; memory addresses for
20: the unit. This makes it
21: result[len] = '\0'; easier for a debugger
22: return (char *) memcpy (result, s, len); to identﬁy which
23: 1} _ compilation unit cre-
Figure 8a. Source for strndup.c. ated the code at a
<1>: DW_TAG base_type <7>: DW_TAG_formal parameter
DW_AT name = int DW_AT name = n
DW_AT byte size = 4 DW_AT type = <2>
DW_AT encoding = signed DW_AT location =
<2>: DW_TAG_typedef (DW_OP_fbreg: 4)
DW_AT name = size t <8>: DW_TAG variable
DW_AT type = <3> DW_AT name = result
<3>: DW_TAG_base_type DW_AT type = <10>
DW_AT name = unsigned int DW_AT location =
DW_AT byte size = 4 (DW_OP_fbreg: -28)
DW_AT encoding = unsigned <9>: DW_TAG variable
<4>: DW_TAG_base_type DW_AT name = len
DW_AT name = long int DW_AT type = <2>
DW_AT byte size = 4 DW_AT location =
DW_AT_encoding = signed (DW_OP_fbreg: -24)
<5>: DW_TAG_subprogram <10>: DW_TAG_pointer_type
DW_AT sibling = <10> DW_AT byte size = 4
DW_AT external = 1 DW_AT type = <11>
DW_AT name = strndup <1l1>: DW_TAG_base type
DW_AT prototyped = 1 DW_AT name = char
DW_AT type = <10> DW_AT byte size =1
DW_AT low pc = 0 DW_AT encoding =
DW_AT high pc = 0x7b signed char
<6>: DW_TAG_formal parameter <12>: DW_TAG_pointer_type
DW_AT name = s DW_AT byte size = 4
DW_AT type = <12> DW_AT_ type = <13>
DW_AT location = <13>: DW_TAG_const_type
(DW_OP_fbreg: 0) DW_AT type = <11>
Figure 8b. DWARF description for strndup.c.

Introduction to the DWARF Debugging Format

particular memory address. If the compila-
tion unit is not contiguous, then a list of the
memory addresses that the code occupies is
provided by the compiler and linker.

The Compilation Unit DIE is the parent
of all of the DIEs that describe the compila-
tion unit. Generally, the first DIEs will de-
scribe data types, followed by global data,
then the functions that make up the source
file. The DIEs for variables and functions
are in the same order in which they appear
in the source file.

Data encoding

Conceptually, the DWARF data that de-
scribes a program is a tree. Each DIE
may have a sibling and maybe several chil-
dren DIEs. Each of the DIEs has a type
(called its TAG) and a number of attributes.
Each attributes is represented by a attribute
type and a value. Unfortunately, this is not
a very dense encoding. Without compres-
sion, the DWARF data is unwieldy.

DWAREF offers several ways to reduce
the size of the data which needs to be saved
with the object file. The first is to "flatten"
the tree by saving it in prefix order. Each
type of DIE is defined to either have chil-
dren or not. If the DIE cannot have chil-
dren, the next DIE is its sibling. If the DIE
can have children, then the next DIE is its
first child. The remaining children are rep-
resented as the siblings of this first child.
This way, links to the sibling or child DIEs
can be eliminated. If the compiler writer
thinks that it might be useful to be able to
jump from one DIE to its sibling without
stepping through each of its children DIEs
(for example, to jump to the next function
in a compilation) then a sibling attribute
can be added to the DIE.

A second scheme to compress the data
is to use abbreviations. Although DWARF
allows great flexibility in which DIEs and
attributes it may generate, most compilers
only generate a limited set of DIEs, all of
which have the same set of attributes. In-
stead of storing the value of the TAG and
the attribute-value pairs, only an index into
a table of abbreviations is stored, followed
by the attribute codes. Each abbreviation
gives the TAG value, a flag indicating
whether the DIE has children, and a list of
attributes with the type of value it expects.
Figure 9 shows the abbreviation for the for-
mal parameter DIE used in Figure 8b. DIE
<6> in Figure 8 is actually encoded as
shown®. This is a significant reduction in
the amount of data that needs to be saved
at some expense in added complexity.

8The encoded entry also includes the file and line
values which are not shown in Fig. 8b.

Michael J. Eager

Abbrev 5:
DW_AT_name

DW_AT type

DW_TAG_formal parameter

DW_AT decl file
DW_AT decl line

DW_AT location

[no children]
DW_FORM string
DW_FORM datal
DW_FORM datal
DW_FORM_ref4
DW_FORM blockl

abbreviation 5

99,97

s
file 1

line 41

05 7300 01 29 0000010c 9100 00
Figure 9. Abbreviation entrv and encoded form.

type DIE offset

location (fbreg + 0)
| — terminating NUL

Less commonly used are features of
DWAREF Version 3 and 4 which allow refer-
ences from one compilation unit to the
DWARF data stored in another compilation
unit or in a shared library. Many compilers
generate the same abbreviation table and
base types for every compilation, indepen-
dent of whether the compilation actually
uses all of the abbreviations or types. These
can be saved in a shared library and refer-
enced by each compilation unit, rather than
being duplicated in each.

Other DWARF Data

Line Number Table

he DWAREF line table contains the map-

ping between memory addresses that
contain the executable code of a program
and the source lines that correspond to
these addresses. In the simplest form, this
can be looked at as a matrix with one col-
umn containing the memory addresses and
another column containing the source
triplet (file, line, and column) for that ad-
dress. If you want to set a breakpoint at a
particular line, the table gives you the
memory address to store the breakpoint in-
struction. Conversely, if your program has a
fault (say, using a bad pointer) at some lo-
cation in memory, you can look for the
source line that is closest to the memory
address.

DWARF has extended this with added
columns to convey additional information
about a program. As a compiler optimizes
the program, it may move instructions
around or remove them. The code for a giv-
en source statement may not be stored as a
sequence of machine instructions, but may
be scattered and interleaved with the in-
structions for other nearby source state-
ments. It may be useful to identify the end
of the code which represents the prolog of
a function or the beginning of the epilog, so
that the debugger can stop after all of the

Introduction to the DWARF Debugging Format

arguments to a function have been loaded
or before the function returns. Some pro-
cessors can execute more than one instruc-
tion set, so there is another column that in-
dicates which

ment, the end of the function prolog, or the
start of the function epilog. A set of special
opcodes combine the most common opera-
tions (incrementing the memory address
and either incrementing or decrementing
the source line number) into a single op-
code.

Finally, if a row of the line number ta-
ble has the same source triplet as the previ-
ous row, then no instructions are generated
for this row in the line number program.
Figure 10 lists the line number program for
strndup.c. Notice that only the machine
addresses that represent the beginning in-
struction of a statement are stored. The
compiler did not identify the basic blocks in
this code, the end of the prolog or the start
of the epilog to the function. This table is
encoded in just 31 bytes in the line number
program.

set is stored at

the specified

machine loca-

tion. Address File Line Col StmtBlock End Prolog Epilog ISA
As you

might imag- 0x0 0 42 0 vyes no no no no 0

ine, if this ta- 0x9 0 44 0 yes no no no no 0

ble were Ox1a 0 4 0 vyes no no no no 0

stored with 0x24 0 46 0 yes no no no no 0

one row for 0x2c 0 47 0 yes no no no no 0

each machine 0x32 0 49 0 yes no no no no 0

instruction, it 0x41 0 50 0 yes no no no no 0

would be 0x47 0 51 0 vyes no no no no 0

huge. DWARF 0x50 0 53 0 vyes no no no no 0

compresses 0x59 0 54 0 vyes no no no no 0

this data by 0x6a 0 54 0 vyes no no no no 0

encoding it as 0x73 0 55 0 vyes no no no no 0

0x7b 0 56 0 yes no yes no no 0

sequence of .

. . File 0: strndup.c

instructions o

called a line File 1: stddef.h

number ro-

gram’. T}I:ese Figure 10. Line Number Table for strndup.c.

instructions

are interpret-
ed by a simple finite state machine to recre-
ate the complete line number table.

The finite state machine is initialized
with a set of default values. Each row in the
line number table is generated by executing
one or more of the opcodes of the line
number program. The opcodes are general-
ly quite simple: for example, add a value to
either the machine address or to the line
number, set the column number, or set a
flag which indicates that the memory ad-
dress represents the start of an source state-

° Calling this a line number program is some-
thing of a misnomer. The program describes
much more than just line numbers, such as in-
struction set, beginning of basic blocks, end of
function prolog, etc.

Macro Information

Most debuggers have a very difficult
time displaying and debugging code
which has macros. The user sees the origi-
nal source file, with the macros, while the
code corresponds to whatever the macros
generated.

DWAREF includes the description of the
macros defined in the program. This is
quite rudimentary information, but can be
used by a debugger to display the values
for a macro or possibly translate the macro
into the corresponding source language.

Call Frame Information

I i:very processor has a certain way of
calling functions and passing argu-

Michael J. Eager

ments, usually defined in the ABIL In the
simplest case, this is the same for each
function and the debugger knows exactly
how to find the argument values and the
return address for the function.

For some processors, there may be dif-
ferent calling sequences depending on how
the function is written, for example, if there
are more than a certain number of argu-
ments. There may be different calling se-
quences depending on operating systems.
Compilers will try to optimize the calling
sequence to make code both smaller and
faster. One common optimization is having
a simple function which doesn't call any
others (a leaf function) use its caller stack
frame instead of creating its own. Another
optimization may be to eliminate a register
which points to the current call frame.
Some registers may be preserved across the
call while others are not. While it may be
possible for the debugger to puzzle out all
the possible permutations in calling se-
quence or optimizations, it is both tedious
and error-prone. A small change in the op-
timizations and the debugger may no
longer be able to walk the stack to the call-
ing function.

The DWARF Call Frame Information
(CFI) provides the debugger with enough
information about how a function is called
so that it can locate each of the arguments
to the function, locate the current call
frame, and locate the call frame for the
calling function. This information is used by
the debugger to "unwind the stack," locat-
ing the previous function, the location
where the function was called, and the val-
ues passed.

Like the line number table, the CFI is
encoded as a sequence of instructions that
are interpreted to generate a table. There is
one row in this table for each address that
contains code. The first column contains
the machine address while the subsequent
columns contain the values of the machine
registers when the instruction at that ad-
dress is executed. Like the line number ta-
ble, if this table were actually created it
would be huge. Luckily, very little changes
between two machine instructions, so the
CFI encoding is quite compact.

Variable length data

Integer values are used throughout
DWARF to represent everything from off-
sets into data sections to sizes of arrays or
structures. In most cases, it isn't possible to
place a bound on the size of these values.
In a classic data structure each of these val-
ues would be represented using the default
integer size. Since most values can be rep-

Introduction to the DWARF Debugging Format

resented in only a few bits, this means that
the data consists mostly of zeros™.

DWAREF defines a variable length inte-
ger, called Little Endian Base 128 (LEB128
or more commonly ULEB for unsigned val-
ues and SLEB for signed values), which
compresses these integer values. Since the
low-order bits contain the data and high-or-
der bits consist of all zeros or ones, LEB val-
ues chop off the low-order seven bits of the
value. If the remaining bits are all zero or
one (sign-extension bits), this is the encod-
ed value. Otherwise, set the high-order bit
to one, output this byte, and go on to the
next seven low-order bits.

Shrinking DWARF data

The encoding schemes used by DWARF
significantly reduce the size of the debug-
ging information compared to an unencod-
ed format like DWARF Version 1. Unfortu-
nately, with many programs the amount of
debugging data generated by the compiler
can become quite large, frequently much
larger than the executable code and data.

DWARF offers ways to further reduce
the size of the debugging data. Most strings
in the DWARF debugging data are actually
references into a separate .debug_str
section. Duplicate strings can be eliminat-
ed when generating this section. Potential-
ly, a linker can merge the .debug str
sections from several compilations into a
single, smaller string section.

Many programs contain declarations
which are duplicated in each compilation
unit. For example, debugging data describ-
ing many (perhaps thousands) declarations
of C++ template functions may be repeated
in each compilation. These repeated de-
scriptions can be saved in separate compila-
tion units in uniquely named sections. The
linker can use COMDAT (common data)
techniques to eliminate the duplicate sec-
tions.

Many programs reference a large num-
ber of include files which contain many
type definitions, resulting in DWARF data
which contains thousands of DIEs for these
types. A compiler can reduce the size of
this data by only generating DWARF for the
types which are actually used in the compi-
lation. With DWARF Version 4, type defini-
tions can be saved into a separate
.debug_types section. The compilation
unit contains a DIE which references this
separate type unit and a unique 64-bit sig-
nature for these types. A linker can recog-

1% An example of this may be seen in the reloca-
tion directory in an object file, where file offset
and relocation values are represented by inte-
gers. Most values are have leading zeros.

nize compilations which define the same
type units and eliminate the duplicates.

ELF sections

hile DWAREF is defined in a way that

allows it to be used with any object
file format, it's most often used with ELF.
Each of the different kinds of DWARF data
are stored in their own section. The names
of these sections all start with ". debug_".
For improved efficiency, most references to
DWARF data use an offset from the start of
the data for the current compilation. This
avoids the need to relocate the debugging
data, which speeds up program loading and
debugging.

The ELF sections and their contents are

. debug_abbr ev Abbreviations used in the

. debug_i nf o section

. debug_aranges A mapping between
memory address and
compilation

. debug_frame Call Frame Information

. debug_info The core DWARF data
containing DIEs

. debug_li ne Line Number Program

. debug_I oc Location descriptions

. debug_maci nfo Macro descriptions

. debug_pubnanmes A lookup table for global

objects and functions
. debug_pubt ypes A lookup table for global
types
Address ranges
referenced by DIEs

. debug_r anges

.debug_str String table used by

.debug_info

. debug_types Type descriptions

Summary

So there you have it — DWAREF in a nut-
shell. Well, not quite a nutshell. The ba-
sic concepts for the DWARF debug informa-
tion are straight-forward. A program is de-
scribed as a tree with nodes representing
the various functions, data and types in the
source in a compact language- and ma-
chine-independent fashion. The line table
provides the mapping between the exe-
cutable instructions and the source that
generated them. The CFI describes how to
unwind the stack.

Michael J. Eager

There is quite a bit of subtlety in
DWARF as well, given that it needs to ex-
press the many different nuances for a wide
range of programming languages and dif-
ferent machine architectures. Future direc-
tions for DWARF are to improve the de-
scription of optimized code so that debug-

The complete DWARF Version 4 Stan-
dard is available for download without
charge at the DWARF website (dwarfst-
d.orq). There is also a mailing list for
questions and discussion about DWAREF.
Instructions on registering for the mailing
list are also on the website.

Acknowledgements

I want to thank Chris Quenelle of Sun
Microsystems and Ron Brender, formerly of
HP, for their comments and advice about a
previous version of this paper. Thanks also
to Susan Heimlich for her many editorial

gers can better navigate the code which ad- comments.
vanced compiler optimizations generate.

Generating DWARF with GCC

be displayed using objump with the —h option.

$ gcc —g —c strndup.c
$ objdump —h strndup.o

strndup.o: file format elf32-i386
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 0000007b 00000000 00000000 00000034 2*%*2
CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
1 .data 00000000 00000000 00000000 000000b0 2**2
CONTENTS, ALLOC, LOAD, DATA
2 .bss 00000000 00000000 00000000 000000b0 2**2
ALLOC

3 .debug_abbrev 00000073 00000000 00000000 000000b0 2**0
CONTENTS, READONLY, DEBUGGING

4 .debug_info 00000118 00000000 00000000 00000123 2**0
CONTENTS, RELOC, READONLY, DEBUGGING

5 .debug _line 00000080 00000000 00000000 0000023b 2**0
CONTENTS, RELOC, READONLY, DEBUGGING

6 .debug_frame 00000034 00000000 00000000 000002bc 2%*%*2
CONTENTS, RELOC, READONLY, DEBUGGING

7 .debug_loc 0000002c 00000000 00000000 000002f0 2**0
CONTENTS, READONLY, DEBUGGING

8 .debug_pubnames 0000001e 00000000 00000000 0000031c 2+**0
CONTENTS, RELOC, READONLY, DEBUGGING

9 .debug_aranges 00000020 00000000 00000000 0000033a 2*+*0
CONTENTS, RELOC, READONLY, DEBUGGING

10 .comment 0000002a 00000000 00000000 0000035a 2**0
CONTENTS, READONLY

11 .note.GNU-stack 00000000 00000000 00000000 00000384 2**0
CONTENTS, READONLY

It’s very simple to generate DWARF with gcc. Simply specify the —g option to generate debugging information. The ELF sections can

Printing DWARF using Readelf

Readelf can display and decode the DWARF data in an object or executable file. The options are

-w — display all DWARF sections
-w[liaprmfFso] — display specific sections

1 — line table

i — debug info

a — abbreviation table

s} — public names

r — ranges

m — macro table

f — debug frame (encoded)

F — debug frame (decoded)

s — string table

o — location lists

and then browse the file with less or an editor such as vi.

The DWAREF listing for all but the smallest programs is quite voluminous, so it would be a good idea to direct readelf’s output to a file

Introduction to the DWARF Debugging Format 10

Michael J. Eager

http://dwarfstd.org/
http://dwarfstd.org/

Introduction to the DWARF Debugging Format 11 Michael J. Eager

	Generating DWARF with GCC
	Printing DWARF using Readelf
	Introduction to the
DWARF Debugging Format
	Translating from Source to Executable
	The Debugging Process
	Debugging Formats
	A Brief History of DWARF
	DWARF 1 ─ Unix SVR4 sdb and PLSIG
	DWARF 2 ─ PLSIG
	DWARF 3 ─ Free Standards Group
	DWARF 4 ─ DWARF Debugging Format Committee

	DWARF Overview4
	Debugging Information Entry (DIE)
	Tags and Attributes
	Types of DIEs

	Describing Data and Types
	Base Types
	Type Composition

	Array
	Structures, Classes, Unions, and Interfaces
	Variables
	Location Expressions
	Describing Executable Code
	Functions and Subprograms
	Compilation Unit
	Data encoding

	Other DWARF Data
	Line Number Table
	Macro Information
	Call Frame Information
	Variable length data
	Shrinking DWARF data
	ELF sections

	Summary
	Acknowledgements

