

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1994 by Stephen A. Maguire

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the
publisher.

Library of Congress Cataloging-in-Publication Data
Maguire, Stephen A.

Debugging the development process : practical strategies for
staying focused, hitting ship dates, and building solid teams /
Stephen A. Maguire

p. cm.
Includes bibliographical references and index.
ISBN 1-55615-650-2
1. Debugging in computer science. 2. Computer software-

-Development. I. Title.
QA76.9.D43M33 1994
005.1'068-dc20 94-22182

CIP

Printed and bound in the United States of America.

2 3 4 5 6 7 8 9 MLML 9 8 7 6 5

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors
worldwide. For further information about international editions, contact your
local Microsoft Corporation office. Or contact Microsoft Press International
directly at fax (206) 936-7329.

Apple, Mac, Macintosh, and MultiFinder are registered trademarks of Apple Com-
puter, Inc. Alpha AXP and DEC are trademarks of Digital Equipment Corporation.
PC-lint is a trademark of Gimpel Software. HP is a registered trademark of Hewlett-
Packard Company. Comdex is a registered trademark of Interface Group-Nevada, Inc.
CodeView and Microsoft are registered trademarks and Windows and Windows NT
are trademarks of Microsoft Corporation. MIPS is a registered trademark of MIPS
Computer Systems, Inc.

Acquisitions Editor: Mike Halvorson
Project Editor: Erin O'Connor
Technical Editor: Wm. Jeff Carey

To my brother Tim.

PREFACE xi
INTRODUCTION xv
If a software project is to be successful, every team member must understand
the principles, guidelines, and strategies that will result in quality software
shipped on time. This book is for every team member. It's a companion to Writing

Solid Code, which focused on the most serious "bug" in the development
process: too many software bugs. The advice in this book fine-tunes the develop-
ment process, focusing on the techniques and strategies that software teams

can use to become consistently successful. This book contains many anecdotal

examples, most of them drawn from experiences at Microsoft. To make the ex-
amples easier to follow, the introduction provides a brief account of how soft-

ware development projects are organized and how they proceed at Microsoft.

1 LAYING THE GROUNDWORK 1
There are a few principles that all successful software project leads keep
in mind. Among the foremost is the idea that the programmers should
be working only on tasks that either directly or indirectly improve the
product. It's the lead's job to clear the way for the primary work of the
other team members by ruthlessly eliminating work that gets in the way
of improving the product—going overboard on status reports and meet-
ings, for example, or developing features that are not strategic to either
the product or the company. To make it easy to determine which tasks
are strategic and which are wasted effort, leads should create detailed
project goals and priorities. The more detailed the goals and priorities
are, the easier it is to spot wasteful work.

2 THE SYSTEMATIC APPROACH 23

It's amazing how a relatively trivial work habit or process can produce a
major difference in results. Ideally, the habit or process will take little or
no effort to put into practice and its effectiveness won't depend on the
skill levels of the programmers who use it. To elicit the best strategies for

DEBUGGING THE DEVELOPMENT PROCESS

working effectively, leads should pose the problems they're trying to
solve as increasingly refined questions. A lead shouldn't ask, for ex-
ample, "How can we consistently hit our ship dates?" which can result
in a number of undesirable solutions. The lead should instead ask a more
specific, more beneficial question: "How can we consistently hit our
ship dates without hiring more people and without forcing the develop-
ers to work overtime?" Leads should try to incorporate negative feed-
back loops into the strategies they develop. And when they present work
strategies to the rest of the team, they should be sure to remind the team
that even a good strategy or guideline won't necessarily be effective in
every situation.

3 OF STRATEGIC IMPORTANCE 45
Projects can go astray in so many subtle ways that leads must never let
projects coast, assuming that their projects are on course and will run
themselves. To keep a project running smoothly, a lead must constantly
monitor the project, looking ahead and taking care of problems while
they're still small. To keep a project on schedule, a lead should ask this
question each day: "What can I do today that will help keep the project
on track for the next few months?" By asking this question every day
and seriously looking for answers, a lead can foresee all sorts of prob-
lems that might otherwise blindside the project. To prevent wasted
effort, a lead should assess every request in order to identify the real
problem or goal and should be sure that every task fulfills the project's
goals and priorities. Some tasks, such as meeting the marketing team's
request to fill out a feature set, or implementing a free feature that has
popped out of a programmer's design, might not be at all strategic. A
good lead learns to say No.

4 UNBRIDLED ENTHUSIASM : 73

If a lead wants to get a software development team going on a creative
roll, he or she must create a development atmosphere that fosters that
kind of enthusiasm. Unfortunately, as companies grow from small
mom-and-pop shops to corporate mega-shops, the amount of non-
development work that programmers are routinely saddled with rises
dramatically. The lead should work to eliminate unnecessary reports
and meetings and other corporate processes that hinder the develop-

Vlll

CONTENTS

ment effort. The simpler such processes become, the better. If program-
mers are given the opportunity to work unhindered by overblown cor-
porate processes, they have a much better chance of catching a creative
wave and moving the project forward. The critical point is that leads
should always work to address their actual, rather than formal, needs.
Asking for a report or holding a meeting is a common way to gather
information, but if there are other, more effective ways to gather infor-
mation (and there are), why burden programmers with reports and
meetings?

5 SCHEDULING MADNESS : 91

In most companies, the development team needs to maintain a schedule
so that other groups in the company can coordinate their work with the
programming effort. At the very least, the marketing team needs to have
some idea of when they should start advertising the product. But as im-
portant as schedules are for coordinating the work of the various prod-
uct teams, they can have a devastating effect on development if they are
not devised and used wisely. An unattainable schedule can demoralize
the team and ultimately killj productivity. A schedule that is merely too
aggressive can lead to slip hysteria, in which programmers take short-
cuts to meet the schedule in the short term, jeopardizing the product
over the long term. A schedule should be aggressive enough to keep the
project running at a brisk pace, but if it is too aggressive, programmers
will make stupid decisions despite their better judgments. Any pro-
grammer who has decided that he doesn't have time to thoroughly test
his code is guilty of putting the schedule ahead of the product. By using
"milestone scheduling," leads can not only coordinate better with other
teams but also make projects much more exciting and foster creative
rolls in which teams crank out high-quality code at a prodigious rate.

6 CONSTANT, UNCEASING IMPROVEMENT 107
Leads can streamline the development process to a point at which every
team member is focused only on strategic work. But if leads want their
projects to really take off, they have to focus on training so that every
team member is regularly learning a wide variety of broadly useful new
skills. One method for ensuring that team members actively grow is to
align personal growth goals with the two-month project milestones

IX

DEBUGGING THE DEVELOPMENT PROCESS

described in Chapter 5, which could give each team member at least six
important new skills a year. Programmers can and do pick up skills in
the normal course of the job, but their growth is much slower in that pas-
sive approach to learning. By ensuring through work assignments and
overt educational goals that programmers actively learn new skills,
leads help the project and the company and advance the programmers'
careers.

7 IT'S ALL ABOUT ATTITUDE 125

Increasing a team member's skill through active learning is great, but
leads can get the most impressive results when they focus on correcting
harmful attitudes and promoting beneficial ones. The effects of a new
attitude sweep across all work that a programmer will do. That's the
leverage behind good attitudes. Chapter 7 takes a hard look at the com-
mon programmer attitudes that work to the detriment of project success:
bugs are inevitable, I'll fix bugs later, it'll take too much time to do things
right, it's good enough for users, it's better to give the user something
than nothing, we'll do our thing and you do yours, it's just for in-house
use...

8 THAT SINKING FEELING 151

When a project schedule starts to slip, a natural reaction is to hire more
people and force the team to work longer hours. But throwing more pro-
grammers at the project and forcing everybody to work overtime won't
correct the underlying problems that caused the project to slip in the
first place. If a team is working 80-hour weeks to meet a 40-hour sched-
ule, something is seriously wrong. The lead needs to go after causes and
(sometimes) to protect the programmers from assumptions—their own
and upper management's—about the tonic effects of long hours. Hiring
more people or demanding long hours only masks the problems affect-
ing the project. Leads should find and fix the problems, not cover them
over.

EPILOGUE A WORD ON LEADING 171
REFERENCES 175
INDEX 177

This book might make Microsoft sound bad.
At least that's one of the concerns I had about telling so many

Microsoft war stories. I considered softening and smoothing over some
of the stories, or leaving them out altogether, but apart from changing
people's names, I decided to keep this book and its examples grounded
in reality so that it would be as useful and practical as possible. Besides,
I think people realize that Microsoft wouldn't have reached its position
of prominence in the software industry if the company were full of
bozos. It isn't.

Most of the incidents I describe come from my experiences in re-
training Microsoft teams whose projects were already in some sort of
trouble: the projects were long overdue, or the quality of the code was
not up to the company's standards, or the programmers were working
crazy hours and still not making any headway...

While working with these teams, I discovered that they were all
making the same fundamental errors and that they were perpetually
repeating those errors. Not only that, once I'd gotten attuned to the mis-
takes those teams were making, I saw that even teams on successful
projects were making those same fundamental errors—they just made
the mistakes less often or had instituted countermeasures to overcome
the effects of those mistakes.

In every group I worked with, I found that the project leads were
spending nearly all of their time writing code and almost none of their
time thinking about the project. The leads didn't spend time trying to
keep schedules on track, they didn't look for foreseeable problems so
that they could circumvent them, they didn't work to protect other team
members from unnecessary work, they didn't pay particular attention to
training other team members, and they didn't set detailed project goals
or create effective attack plans. The leads were spending too much time
working when they should have been thinking.

XI

DEBUGGING THE DEVELOPMENT PROCESS

In many ways, this state of affairs wasn't really the fault of the
leads. The leads hadn't been trained to be leads. They were program-
mers who woke up one day to find themselves, for one reason or another,
plunked into lead positions. These new leads knew how to program well,
but they didn't know how to run projects well, so they focused on what
they knew best and allowed their projects to run themselves—right into
the ground.

Unfortunately, many programmers don't feel that they need to
know how to lead a project: "I'm not a lead, so why should I worry about
lead issues?" They seem to think that once they become leads they'll
have time then to learn what they need to do in order to run a project
effectively. That's a little late.

I wrote this book's companion, Writing Solid Code, to give program-
mers proven techniques and strategies they could use to immediately
start writing code with far fewer bugs than they currently do. I've writ-
ten Debugging the Development Process to give leads and programmers
the proven techniques and strategies they can use to organize and run
software projects without the turmoil, long hours, and schedule slips
that are so common in our industry.

It is possible to ship high-quality, bug-free software on schedule,
without working long hours—and to have fun doing it. The techniques
and strategies in this book should help you do that.

ACKNOWLEDGMENTS
Many, many people at Microsoft Press worked on this book, and I'm not
sure that they, or people at publishing houses anywhere, get enough
credit for all the effort they put in behind the scenes when they take a
manuscript in hand and deliver it to readers as a book. My thanks first to
Mike Halvorson, who believed in this book when it was a mere idea. My
thanks in particular to Erin O'Connor, my manuscript editor, who was a
joy to work with and who spent nearly a year working with me on the
book. This book is as much hers as it is mine. Jeff Carey's enthusiastic
responses to the chapters kept me encouraged. Deborah Long's good ear
for idiom saved me from myself more times than I care to count, and the
other proofreaders/copyeditors on her team—Alice Smith, Therese McRae,
and Pat Forgette—kept me busy considering the most fitting way to put

Xll

PREFACE

things. Compositor Peggy Herman worked patiently and inventively to ac-
commodate revisions in both the text and the layout. Kim Eggleston
adapted her fine design for Writing Solid Code to serve the purposes of
this book and cleverly adjusted the design as new requirements arose.
My thanks to all of these professionals and to the many others at
Microsoft Press who worked to make this book a reality: Judith Bloch,
Wallis Bolz, Barb Runyan, Jeannie McGivern, Sandi Lage, Shawn Peck,
John Sugg, Geri Younggren, and Dean Holmes.

I would like to mention two educators who over the years have
greatly influenced the way I lead projects. Anthony Robbins conducts
seminars to help CEOs and other executives run their businesses more
effectively. (Robbins is perhaps better known for his personal achieve-
ment seminars, which are also excellent.) Anyone who is familiar with
Robbins's work will see his influence in spots throughout this book.
Michael E. Gerber speaks to business audiences about how to "bring the
dream back to American business" and wrote the book The E-Myth: Why
Most Businesses Don't Work and What to Do About It. Gerber's ideas, book,
and speeches would seem to have nothing do with writing software—
they focus on how to run franchise businesses—but many of Gerber's
insights completely changed the way I view software projects and how
they should be run. My thanks to both of these educators. Information on
their companies appears in the "References" section at the end of this
book.

I was fortunate to have a wonderful team of programmers and
project leads as reviewers of this book. They provided generously from
their experience and insight. They are Microsoft programmers and
project leads who have worked over the years on Microsoft's most stra-
tegic projects. As reviewers they worked to ensure that my advice ade-
quately treated the problems and issues they have encountered on their
projects. I thank Paul W. Davis, Melissa Glerum, Eric Schlegel, and Alex
Tilles. My special thanks to Dave Moore, who gave of his longtime expe-
riences as a programmer, project lead, director of development, and
more recently general manager to help me refine the points in this book.
I would also like to thank Ian Cargill for the several important insights
he provided early in the writing of the book.

Seattle, Washington
June 21,1994

Xlll

INTRODUCTION

Inspiring leaders look at the world in a funny way. The company build-
ing could be burning to the ground, and instead of panicking about the
lost jobs, the inspiring leader takes one look at the flames and breaks out
the hot dogs and marshmallows. When everybody around them is pessi-
mistic, such leaders inspire confidence even though there may be every
reason to be pessimistic. They're an optimistic bunch, tending to inter-
pret events in a positive light. With that perspective, inspiring leaders
tend to view failures not as failures but merely as learning experiences
that will help them surmount the next obstacles that come along. And
because inspiring leaders tend not to experience a sense of failure,
they're willing to try the outlandish ideas that can lead to major break-
throughs. If an outlandish idea flops, the inspiring leader doesn't see the
episode as a failure but merely as more information. Such leadership has
little to do with experience. It's a combination of strong desire, an un-
usual way of looking at the world and its opportunities, and such a clear
vision and the ability to communicate that vision that others are in-
spired to work with the leader to make that vision come true.

Despite the belief that such leaders are born and not made, it is
possible to learn to be an inspiring leader. It isn't easy, though. Usually
the person must change many of his or her fundamental beliefs and atti-
tudes in order to view the world in that peculiar way. You might say that
it calls for a personality makeover—an idea that most people would
think impossible and that many would find repugnant. I think that's
why it's rare for people to become inspiring leaders partway through
their lives. People don't usually change their personalities to that extent.

THE REST OF US
Fortunately, most software project leads aren't starting new companies
or venturing off into uncharted territory. The typical lead is usually em-
barking on the development of version 4.21 of an application or working

xv

DEBUGGING THE DEVELOPMENT PROCESS

on some other project that has a fairly straightforward future everybody
is in basic agreement about. The typical software lead doesn't need to be
a radically inspiring leader capable of getting team members to do out-
landish things. The typical software lead simply needs to be effective,
which is quite learnable and doesn't require anything like a personality
transformation. It just requires learning the habits and strategies that
have been found to work in bringing quality products to market on
schedule—and without working 80-hour weeks.

All effective leads understand that for a project to be successful,
every single member of the team must be in on the strategies that will be
used to ship a quality product on schedule. You don't have to be the lead
in order to make good use of the techniques and strategies I describe.
This book is for every team member, not just the lead. Unless every team
member knows what it takes to get a quality product out the door with-
out working 80-hour weeks, it won't happen.

WRITING SOLID CODE
A lot of steps are involved in the development team's effort to bring a
software product to market—everything from designing the code to
working with the marketing team. In every one of the steps in the devel-
opment process, people make mistakes. There's nothing new in that ob-
servation. I've called this book Debugging the Development Process to get
programmers to think of the development process as they would a cod-
ing algorithm: it's something that can contain bugs that will cause
wasted and misguided effort, and it's something that can be optimized
to function better.

In Writing Solid Code, the companion book to this one, I focused on
what I believe is the most serious "bug" in the development process: that
there are far too many programming bugs. Writing Solid Code described the
techniques and strategies programmers can use to detect existing bugs at
the earliest possible moment and how programmers can prevent those
bugs in the first place.

In Debugging the Development Process, I focus on the techniques and
strategies that programmers can use to get quality products out the door
with a minimum of wasted effort. In the first three chapters, I talk about a
number of basic concepts and strategies that a team should act on if they

xvi

INTRODUCTION

want to release products without working twelve hours a day, seven
days a week. The final five chapters build on the earlier chapters, focus-
ing singly on overblown corporate processes, the ins and outs of sched-
uling, programmer training, attitudes, and long hours.

Writing Solid Code and Debugging the Development Process are com-
panion books. You'll find that the ideas in the two books interact with
one another to a certain extent. When ideas in the two books overlap,
you'll find that Writing Solid Code tends to be more focused on the code
itself. In one instance I excerpt part of a section from Writing Solid Code
in this book because I think that the point it makes is even more critical
to the smooth running of a project than it is to writing bug-free code.

DEVELOPMENT AT MICROSOFT—A SNAPSHOT
Most of the examples in this book are drawn from my experience at
Microsoft. A brief description of how responsibilities are divided among
leads and a sketch of how a typical project proceeds at Microsoft might
put those examples in context for you.

A Microsoft project typically has at least three different types of
leads working directly on the development of the product:

* Project Lead. The project lead is ultimately responsible for the
code. He or she is also responsible for developing and moni-
toring the schedule, keeping the project on track, training the
programmers, conducting program reviews for upper man-

agement, and so on. The project lead is usually one of the
most experienced programmers on the team and will often
write code, but only as a secondary activity.

* Technical Lead. The technical lead is the programmer on the
team who knows the product's code better than anyone else.
The technical lead is responsible for the internal integrity of
the product, seeing that all new features are designed with
the existing code in mind. He or she is also usually respon-
sible for ensuring that all technical documents for the project
are kept up-to-date: file format documents, internal design
documents, and so on. Like the project lead, the technical lead
is usually one of the most experienced programmers on the
project.

xvii

DEBUGGING THE DEVELOPMENT PROCESS

* Program Manager. The program manager is responsible for
coordinating product development with marketing, docu-
mentation, testing, and product support. In short, the pro-
gram manager's job is to see that the product—everything
that goes into the box—gets done, and that it gets done at the
level of quality expected by the company. The program man-
ager usually works with the product support team to coordi-
nate external beta releases of the product and works with end
users to see how the product might be improved. Program
managers are often programmers themselves, but they limit
their programming to using the product's macro language (if
one exists) to write "wizards" and other useful end user mac-
ros. More than anyone else, the program manager is respon-
sible for the "vision" of what the product should be.

The name "program manager" can be misleading be-
cause it implies that the program manager is superior in rank
to the project lead, the test lead, the documentation lead, and
the marketing lead. In fact, the program manager is at the
same level as the other leads. A more appropriate name for
the program manager would be "product lead" since the pro-
gram manager is responsible for ensuring that all the parts of
the product—not just the code—get done on schedule and at
an acceptable level of quality.

On a typical project, the program manager (or managers if the
project is large enough) works up front with the marketing, develop-
ment, and product support teams to come up with a list of improve-
ments for the product. After the list of features has been created, the
program manager writes the product specification, which describes in
detail how each feature will appear to the user—providing, for instance,
a drawing of a new dialog box with a description of how it will work, or
the name of a new macro function with a description of its arguments.
As soon as the product spec has been drafted, it is passed out to all of the
teams involved with the product for a thorough review. Once the final
spec has been nailed down, the teams go to work.

The program manager meanwhile uses mock-ups of features to
conduct usability studies to be sure that all of the new features are as
intuitively easy to use as everybody originally thought they would be. If

XVLU

INTRODUCTION

a feature turns out to be awkward to use, the program manager pro-
poses changes to the spec. The program manager also works on sample
documents for the product disks and on those end user macros I men-
tioned earlier. As features are completed, he or she reviews each to
ensure that it meets all the quality standards for shipping the product—
in particular, that the feature is snappy enough on low-end machines.

Development continues and eventually reaches a point known as
"visual freeze," meaning that all features that will affect the display
have been completed. Once the code reaches the visual freeze point, the
user manuals are finalized with screen shots of the program. Conse-
quently, from that point on, developers have to be careful not to affect
the display in any way so that the screen shots in the manuals won't dif-
fer from what the user sees in the program. The programmers, of course,
would prefer that the screen shots be taken only after all the code is fin-
ished, but the manuals need a long lead time and have to be sent to the
printer well before the code will be finalized. In some cases, in order to
reach visual freeze on all the features in time for the manuals to be ready
•at the release date, the programmers will only partially implement the
features—for instance, displaying a nonfunctional dialog good for
screen shots but not much else. The programmers come back to the fea-
tures and fully implement them later.

Once all of the features have been completed—the "code complete"
stage—the programmers put their effort into fixing all outstanding bugs
in the bug-list and making any necessary performance improvements.
When the code is finally ready to be shipped, the project lead or the tech-
nical lead creates the "golden master disks." The program manager
sends the golden masters off to manufacturing for duplication, and the
software gets stuffed into the boxes with the manuals, the registration
cards, and other goodies. A little bit of shrink-wrap, and the product is
ready for an end user.

I've left out a lot of details, but this brief overview should be
enough to enable you to put the occasional example in this book that
might otherwise be too Microsoft-specific into context.

I should also mention that e-mail is the lifeblood of Microsoft. All
internal business is conducted over e-mail, and, at least in development
circles, you have to have a really good reason to interrupt someone with
a telephone call. Most interaction among developers goes on over e-mail

xix

DEBUGGING THE DEVELOPMENT PROCESS

and in the numerous hall meetings that spring up spontaneously. This
corporate sensitivity to interruptions accounts for Microsoft's policy of
giving everyone a private office with a door. If you're working and you
don't want to be interrupted, you simply close your door.

IT'S HARDER THAN IT SOUNDS
My final concern is that this book might make it sound as if applying all
of its advice will, overnight, transform a less-than-model project. Cer-
tainly you can apply many of its techniques and strategies immediately,
and you will get quick results; but others—some of the training tech-
niques, for instance—take time to produce results. If your team is cur-
rently having trouble, you can't expect to read this book and a week later
have your project turned around. In my experience, turning around a
troubled project takes two to six months, with most of the improvement
coming about in those first two months. From that point on, the im-
provements come more slowly and are less dramatic.

xx

Have you ever stopped to consider what makes one project lead or pro-
grammer more effective than another? Is it one or two profound pieces
of wisdom, or is it a grab bag full of little snippets of knowledge that
when taken together produce this thing we call "mastery"?

I wish the answer were that mastery comes from just one or two pro-
found insights—that would certainly simplify training. The reality is
that mastery is a collection of numerous little bits of knowledge, beliefs,
skills, and habits that beginners have yet to accumulate. Ironically, none,
or at least very few, of these little bits of experience are particularly hard
to come by. But there are a lot of them, and they are often learned ineffi-
ciently, through trial and error.

Trial and error is the time-honored approach to gaining mastery,
but that can be a long, arduous undertaking, even if you dramatically

1

DEBUGGING THE DEVELOPMENT PROCESS I

speed the process through active study. A much faster method of jump-
starting your skills is to take on the beliefs and habits of people who al-
ready excel in your area of interest. They've already learned what you
want to know, so why go through all the trouble yourself when you can
look at their practices, mimic them, and get similar results?

In this first chapter, I will describe what I have found to be the most
important practices that project leads and their team members should
embrace if they want to stay focused and hit their ship dates without
having to work 8*0-hour weeks. These points lay the groundwork for the
following chapters.

FOCUS ON IMPROVING THE PRODUCT
Companies pay programmers to produce useful, high-quality products
in a reasonable time frame. But programmers often get sidetracked into
doing work that has nothing to do with creating a product. They, or their
leads, fail to recognize a basic truth of product development:

Any work that does not result in an improved product is
potentially wasted or misguided effort.

If you don't immediately see why this point is so important, con-
sider two extremes. Which programmer is more likely to produce a use-
ful, high-quality product in a reasonable time frame: the programmer
who regularly attends meetings, writes status reports, and is buried in
e-mail or the programmer who uses all her time to research, design,
implement, and test new features? Is there any question that the first
programmer's schedule will slip whereas the second, much more fo-
cused, programmer not only is likely to finish on schedule but may even
finish early?

I've found that groups regularly get into trouble because program-
mers are doing work they shouldn't be doing. They're spending too much
time preparing for meetings, going to meetings, summarizing meetings,
writing status reports, and answering e-mail. Some programmers initiate
this kind of activity themselves. More often, such distractions are at the
behest of a misguided lead.

2

1 LAYING THE GROUNDWORK

One lead with whom I worked required every team member to
send a weekly e-mail message reporting on the status of his or her work.
The entire team would then meet for an hour or so to rehash what every-
body had been doing and to discuss any external issues that had
cropped up. After the meeting, anybody who had offered new informa-
tion would have to write those thoughts down in another piece of e-mail
and send it off to the lead,

Now, this lead was just trying to be thorough. What he didn't real-
ize was that he was choking his team with a lot of pointless process
work. Was it really necessary to have both status reports and status
meetings? And what about those follow-up reports? Were they really
necessary, or could they have been eliminated in 99 percent of the cases
if the lead had simply taken better notes during meetings?

Obviously, your answers to such questions will depend on your
particular corporate environment, but in the actual case I've just de-
scribed, the only process work that ever turned out to have any value
was the initial status report. I don't remember a single status meeting
that was worth the time it took to attend, and every time the lead asked
for follow-up reports I winced, thinking, "Why? They just told you what
they thought."

I was only an occasional visitor to these regular status meetings, so
I wasn't often affected by the status work. I always wondered, though,
how much other unnecessary process work that group was routinely
saddled with.

In his well-intentioned zeal to be thorough, that group's lead vio-
lated what I consider to be a fundamental guideline for project leads:

The project lead should ruthlessly eliminate any obstacles that
keep the developers from the truly important work: improving
the product.

There's nothing earth-shattering about this observation, yet how many
leads do you know who make it a priority to actively look for and elimi-
nate unnecessary obstacles?

If the lead I've been talking about had been actively trying to elimi-
nate unnecessary work, I'm sure he could have come up with a much

3

DEBUGGING THE DEVELOPMENT PROCESS

simpler and more effective method of determining the state of his
project. Having status reports, status meetings, and follow-up reports
was overkill.

Don't waste the developers' time
on work that does not improve

the product.

RUN INTERFERENCE
In your own groups, if you want to consistently hit your deadlines, you
must protect your development team from unnecessary work. In par-
ticular, any time you find yourself about to delegate work to the entire
team, stop and ask whether you can protect the team by doing the work
yourself. If you have to present a project review to the folks upstairs, for
example, is it really necessary to bring development to a halt and require
that every programmer write a report summarizing what he or she has

Don't Take Me Too Literally...
When I say that developers shouldn't do any work that doesn't improve
the product, don't take that imperative so literally that you keep them
from doing their design and testing work and from getting the training
they need. None of these activities contributes directly to a single line of
code, but they all influence the quality of the products you release. If a
developer thinks through and tosses out three flawed designs, for in-
stance, that's far better for the product than having her implement the
first design she comes up with.

And team interaction might not have much to do with improving
the product, but getting the team together under pleasant circumstances
can do a lot to improve morale and ultimately the quality and efficiency
of the team's work.

1 LAYING THE GROUNDWORK

done? Not in my opinion. As the lead, you should be able to compile
that information without help, and you can then present the information
more effectively since it's coming from one source. Yes, it might cost you
a couple of hours of your own time, but that's better than disrupting the
entire team for a task that does nothing to improve the product.

I often go a step further. If I find that a programmer is getting
bogged down in a task that is necessary but that does not improve the
product, I will take that task from the programmer, if I can, so that he or
she can stay focused. There's no reason—except perhaps for training
purposes—for programmers to answer project e-mail questions if
they're questions the lead can field. Nor should programmers be attend-
ing meetings or writing reports the lead can handle, or better, eliminate
altogether.

I know this advice contradicts what many management courses
and books have to say about delegating work. I'm not saying that those
courses and books are wrong, but you must be smart, that is, selective,
about the tasks you delegate. If you're delegating work just to lighten
your own load, you're probably hindering the development team with
work that does not improve the product. Just because the other team
members can do the work doesn't mean they should do the work.

Have you ever seen a house being moved across town? I don't
mean the contents. I mean the house itself—pulled off its foundation
and shifted to a large flatbed truck trailer. I like to think of projects as
those houses in transit, and of the leads as the people who drive ahead,
arranging to have overhead power lines disconnected and removing
other obstacles that would block progress. These "leads" make it pos-
sible for the house to roll steadily toward its destination, not having to
stop along the way.

While the house is rolling, the leads don't expect the truck drivers
to pull over at every intersection to help the public utility people discon-
nect and reconnect the hanging stoplights. Nor do they ask the drivers to
stop at tollbooths along the way, or to stop for meetings with the public
utility folks who are moving the power lines.

Those "house leads" understand something that many software
leads don't: if you want your project to move forward unimpeded, you

5

DEBUGGING THE DEVELOPMENT PROCESS

must actively search out and eliminate all obstacles to progress. Sure,
the driver could pull over and pay the toll-taker—he is, after all, the one
driving the truck. But doesn't it make more sense for the lead to take care
of that task so that progress can continue unabated? Unfortunately, too
many software leads delegate when they shouldn't, making their devel-
opers do the equivalent of negotiating with the public utility folks and
pulling over to deal with the toll-takers. Their projects get slowed—or
stopped—by every obstacle that comes along.

Shield the development team
from any work that interferes

with progress.

But I Lead Other Leads
I've been assuming that you lead programmers; but if you lead testers,
documentation writers, or some other type of team, your job is only
slightly different from the one I've been talking about. The general idea
is that you should make it possible for the members of your team to stay
focused on their jobs, whether they're programming, testing code, or
writing the manuals.

Even if your team is composed entirely of other leads, you should
determine what their jobs should be and protect them from unnecessary
distractions. Holding status meetings for leads can be just as wasteful as
holding status meetings for programmers, particularly if the leads work
on independent projects and don't need to know the status of other
groups' projects. You may not be pulling those leads from the important
work of directly improving their products, but in such cases you are
pulling them from the important work of clearing obstacles to the im-
provement of their projects.

1 LAYING THE GROUNDWORK

THERE'S ALWAYS A BETTER WAY
As a lead, I'm always asking myself one question, in all phases of
the project:

What am I ultimately trying to accomplish?

I constantly ask this question because it's so easy to get sidetracked on
work that isn't important. If you've ever spent more time formatting a
memo—playing with fonts and styles—than you did writing the memo
in the first place, you know what I mean. In the moment, you get caught
up because the work seems important, but if you step back and get some
perspective, you see that it's the message that's important, not how
artistic you can make it.

We've already seen an example of misdirected effort in the status
meetings and status reports I've talked about. How would you answer
this question:

What am I ultimately trying to accomplish by holding status
meetings and requiringstatus reports?

Isn't the primary goal of gathering project status information to detect,
at the earliest possible moment, whether the project is going astray?
Think about that. Suppose all projects were finished exactly as sched-
uled—no project end date ever slipped, and nobody ever worked over-
time. Would anybody ever gather status information? Of course not.
There'd be no reason to.

If the ultimate purpose of status meetings and status reports is to
determine whether a project's schedule is in danger of slipping, is it re-
ally necessary to pull the development team away from their work to
collect this information? I don't think so. I have never held status meet-
ings, and they are the first bit of pointless process I eliminate whenever I
become the new lead of a group. I simply don't believe it's necessary to
hold status meetings to determine whether a schedule is going to slip—
that is, not if you're also collecting status reports.

So what about those status reports? How important are they? I
think status reports—of some sort—are a necessary evil. A lead does,
after all, need to know when problems occur. But note that while status

7

DEBUGGING THE DEVELOPMENT PROCESS

reports are necessary, they—like status meetings—do not improve the
product in any way. When you believe that a task is necessary but see
that it doesn't improve the product, you should always ask a more spe-
cific form of this general question:

How can I keep the benefits of this task yet remove the drawbacks?

Status reports do serve a valuable purpose, but they take time to write
and can create a negative mind set in the team—at least they can the way
they have been done in many Microsoft groups.

If each week programmers must write a report accounting for the
hours they've worked and explaining why any tasks took more time
than originally estimated, the status report causes unnecessary stress
and engenders in the developers and everybody else the feeling that the

"Status Meeting" Defined
No doubt, what I've been calling a status meeting is going to differ from
one company to the next. When I say "status meeting," I mean those
dreary get-togethers in which each team member describes what he or
she did and didn't do that week. You can spot these meetings easily be-
cause the major point is to talk about what did and didn't get done.

Another type of status meeting is one in which leads from different
teams get together and describe what they did and didn't get done. Al-
though similar to the project status meeting, these meetings are held to
coordinate multi-team projects. The leads don't report every little thing
that happened—they report only those items that affect the other groups
in the project, Did they miss or make a drop date? Are they still on track
for some future date? Is another group now making demands on their
time? The purpose of these meetings is to resolve dependency issues. Any
team that is dependent on another team is in a precarious position as far
as its own schedule is concerned, and it's essential that members know,
at the earliest possible moment, when a team they're relying on is going
to slip a schedule, cut features, or otherwise threaten their own project.

But again, notice that it's the leads who are meeting—not the pro-
grammers, who should be off working on their respective projects.

8

1 LAYING THE GROUNDWORK

project is always slipping. More often than not, a programmer sits down
to write the status report and realizes that she can account for only 27
hours of scheduled work yet knows that she worked seven 12-hour days
that week. And she knows that she wasn't goofing off all that time.

If you've never been in this position, imagine how frustrating it
would be to realize you've slipped your schedule even after you've put
in a seven-day week, not to mention that you have to somehow account
for your time. And suppose that the same scenario repeats itself week
after week. Are you going to jump out of bed each morning, enthusiastic
and ready to start another productive day? Or—more likely—are you
going to be exasperated, frustrated, and depressed? Each week you work
harder, trying to get more work done, yet you continue to slip. . .

I hate such status reports because they force the development team
to focus on all the work they didn 't do instead of putting the emphasis
on what they did do. Rather than feeling enthusiastic because they are
steadily improving the product, the team members are forced to remind
themselves that they're behind schedule, screwing up in some way they
can't immediately see. They know they're working hard, but they can't
seem to keep from slipping.

A team isn't that different from an individual. If a team sees itself
as on a roll, it will tend to keep rolling, but if a team sees itself as con-
stantly slipping, the laws of inertia and self-fulfilling prophecy will
apply there too, and that is ultimately demoralizing.

Don't misunderstand me: something is definitely wrong if a pro-
grammer is working 84-hour weeks but can account for only 27 hours of
scheduled work. Perhaps she's agreeing to interview too many job can-
didates, or attending too many unnecessary meetings, or possibly she's
too concerned about how her e-mail reads, so that she edits and re-edits
replies that aren't really worth spending that kind of time on. You and
she need to address those problems. But even if the programmer is hav-
ing trouble allocating her time, that's no reason to have the status report
regularly slap her in the face. As we'll see later, there are better ways to
handle such problems.

Let's return to the earlier question: how can you keep the benefits
of having status reports yet remove the drawbacks? One answer is to
create a new type of status report, one that takes little or no time to put
together and that also makes doing such a report a positive experience

9

DEBUGGING THE DEVELOPMENT PROCESS

rather than a negative one. I'm sure there are many alternative ways of
achieving these goals, but this is what I ask my teams to do:

* Each time a team member merges a new feature into the mas-
ter sources, he or she is to send a short piece of e-mail an-
nouncing the new functionality to the rest of the team.

* Anytime there's a possibility that a feature will slip, the team
member responsible for that feature is to drop by my office to
discuss the cause and brainstorm a solution.

That's it. A typical status report might look like this:

I just checked in the new search and replace feature.
It stomps on the S&R feature in FaxMangler! Check it out.

- Hubie

Imagine how the team members would feel if they were constantly
sending and receiving such positive e-mail. Quite a bit different than the
hated status reports I talked about earlier would make them feeL Pro-
grammers actually enjoy sending little notes like this one—and nobody
thinks of such a note as a status report.

When a programmer thinks the feature he or she is responsible for
might slip, we talk about the cause and how it can be prevented in the
future. Did we forget to schedule time for an important side item? Was
the schedule too ambitious? Is a bug somewhere else in the product
making this feature difficult to implement or test? Whatever the prob-
lem, we try to find some way to prevent it from recurring in the future.

The point is that I can easily gauge the project status solely on the
basis of these two kinds of feedback. And if I have to, I can easily pass
project status news up the chain of command—the individual program-
mers don't need to participate in that chore at all.

Even better, both types of feedback have secondary benefits. The
first kind reinforces the perception among the team members that the
project is continually improving, and the second creates a learning expe-
rience for the programmer and the lead. We don't just shrug and say,
"Oh well, schedules slip all the time. It's no big deal."

Going overboard in gathering status information is just one
example of how process work tends to expand and get formalized into
grandiose procedures if people forget what they are really trying to
accomplish. They get caught up in the process instead of the product.

10

1 LAYING THE GROUNDWORK

Only when you're clear about what you and your team should be
doing can you fulfill the project's needs with the least amount of effort
and frustration. Review any task assignments that either are unpleasant
or pull programmers from working on the product. Can you eliminate
the unpleasant tasks, or at least find more enjoyable approaches to
accomplishing them? And what about those tasks that don't contribute
to improving the product? Get rid of them too, if you can—at least as far
as the programmers are concerned.

Always determine what you're trying to
accomplish, and then find the most efficient
and pleasurable way to have your team do it.

Bombarded by Success?
You'd think that if you asked team members to send little "check it out"
notes to each other, the entirateam would be bombarded by e-mail mes-
sages announcing their successes. In practice, the number of messages
per day is small. The reason: people don't send these messages to every-
body on the whole project, just to the lead and the four or five other pro-
grammers who are working on their specific part of the project.

One of the larger Microsoft teams might have 50 programmers, but
that large team is typically subdivided into much smaller teams, with no
more than 5 or 6 programmers working on any specific piece of the
project. Each of these "feature teams" has a well-defined area of respon-
sibility, a lead, and its own schedule. Programmers on feature teams are
part of the larger team, of course, but on a day-to-day basis, their true
team is the 4 or 5 other programmers with whom they share a common
project goal.

In practice, you could be on a 50-person project yet receive only a
handful of "check it out" notes on any given day—a steady, but not over-
whelming number. Just enough messages to give you a sense of constant
progress.

11

DEBUGGING THE DEVELOPMENT PROCESS

STATE YOUR OBJECTIVES
How many people do you know who woke up one day to find that,
miraculously, they had taken just the right courses to obtain a computer
science degree? How many people do you know who accidentally
packed up their houses and moved to new cities? Pretty silly-sounding.
Clearly, people don't get college degrees or move across the country by
accident. They plan to do those things. At some point they think, "I'm
going to become a computer programmer" or "I'd like to live next door
to Disney World." Then they take action to make those things happen.

Unfortunately, the random approach to goal achievement works all
too well in many other areas of life. You can find a great job by chance,
make a killing in the stock market with a lucky pick, and even, sadly,
ship a software product without a goal more concrete than "We have to
get WordSmasher finished."

In each of these situations, you can achieve the goal, but the ques-
tion is, How much time and energy will you waste getting there? Are
you more likely to get a great job by bouncing from one company to the
next, or would it be more effective to take a day to determine what a
great job would have to be like and then interview only at companies
with jobs that meet your criteria?

One common trait I found among the half-dozen floundering
groups I've worked with was that they all had vague goals. In one case, a
group was providing a user interface library to 20 or so other groups at
Microsoft. Not only was the group swamped with work, but the groups
using the library were complaining about the size and bugginess of the
code.

After the lead and I reviewed the library's task list, I asked the lead
what his goals for the project were.

"To provide a Windows-like user interface library for the MS-DOS
character-based applications," he said.

I asked him what else.
"What do you mean?"
"'Providing a Windows-like user interface library' is a pretty vague

goal," I said. "Do you have more concrete goals than that?"
"Well, the library should be bug-free."
I nodded. "Anything else?"

12

1 LAYING THE GROUNDWORK

He paused a moment and then shrugged. "Not that I can think of."
I then pointed out that a primary goal for any library is to contain

only code that will be useful to all the groups using that library. The lead
thought that point was obvious, but I wasn't so sure as we began to re-
view the list of features he had agreed to implement.

I pointed to an unusual item near the top of the list. "What's this for?"
"The Works group asked for that. It allows them to. . . ." he said.
"Is it useful to any other group?"
"No. Just the Works group."
I pointed to the next item. "What about this feature?"
"That's for the CodeView team."
"And this item here?"
"Word wants that."

As we went down the task list, it became clear that the lead had
agreed to implement every request that came in. He may have known
that a library should contain only code that will be useful to all groups,
but he wasn't using that criterion in his decision-making process.

The lead's goal for the library was simply "to provide a Windows-
like user interface library." What if his goal had been a bit more detailed?

Goal: To provide a Windows-like user interface library that
contains only functionality that is useful to all the groups who
will use the library.

With this slightly more precise goal, the lead would have seen that many
of the requests from individual groups were inappropriate for a shared
library.

After we reviewed the task list, I moved to another problem.
"Many of the groups are complaining that they have trouble linking

whenever you release an updated library. What's causing that problem?"
"Oh, that's easy. They're forgetting to change the names of the

functions in their source code."
I was confused, so I asked him to show me an example. In one case,

he (or another programmer on the team) had fixed a bug in a function,
and while he was at it, had changed the function's name so that it was

13

DEBUGGING THE DEVELOPMENT PROCESS

more consistent with the names of other entry points. In another case, a
programmer had implemented a new function similar to an existing one.
The programmer had then renamed the original function to emphasize
the difference between it and the new function.

The lead didn't understand why the other groups were fussing—
changing a name is simple. He had never stopped to consider that every
time his group changed a name in the library, the 20 or so other groups
that used the library would have to search through all their files, chang-
ing the names at all the call sites. The lead also hadn't realized that link
problems reflected poorly on the library. If the team couldn't do some-
thing as simple as release a library that consistently linked, what, the
other groups and I had to wonder, must their code be like?

If that lead had spent a moment looking at the library from the
other groups' points of view, he would have seen that backward compati-
bility was important. Groups want to be able to take a new library, copy
it to their project, and link. They don't want unexpected errors.

Again, a more concrete set of project goals could have prevented
this link problem:

Goals: To provide a Windows-like user interface library that
contains only functionality that is useful to all the groups who
will use the library and that is backwards compatible with previous
releases. . .

Once I understood the issues affecting the user interface library, the
lead and I worked out a complete set of goals. What's important to note
is that all of the details were apparent, once looked for, and could have
been established in advance. If the lead had bothered to ask the question
"What am I trying to accomplish with this user interface library?" he
could have derived a list of project goals in a matter of minutes.

A more thorough lead would spend several hours or even several
days creating detailed project goals. The goals wouldn't have7to be pro-
found; they would just need to be written down and put in plain sight so
that they could be a constant guide.

By ensuring that all new code would be useful to all groups, the li-
brary lead could have kept the library much smaller, he could have fin-
ished important features more quickly, and his team probably wouldn't

14

1 LAYING THE GROUNDWORK

have had to work 80-hour weeks in a desperate attempt to deliver all the
features he had promised. Think about that: just one refinement of the
goal, and the course of the project could have been dramatically different.

Establish detailed project goals
to prevent wasting time on

inappropriate tasks.

Dependent on Dependencies
One of the easiest ways for your project to spin out of control is to have it
be too dependent on groups you have no control over. Using shared li-
braries is strategically important for a number of well-known reasons.
But as a lead, you must weigh the benefits of leveraging such code
against the drawbacks of not having control over the development ef-
fort. To keep the dependencies issue in mind—and in sight—you should
make this one of the refinements of your project goals:

Minimize the project's dependencies on other groups.

Considering the damage a late library can do to other groups'
schedules, a library lead owes it to his or her "customers" to be up front
about the library's schedule and warn dependent groups the moment a
slip seems likely.

Similarly, a development team relying on shared libraries should
listen to a library lead who says a given request can't be fulfilled by a
given date. By badgering library teams into accepting requests they
don't think they can fulfill on time, pushy leads create not only depen-
dencies for their projects but risky dependencies at that.

These two points are obvious. But having spent years turning
around struggling library groups, I've seen both mistakes far too many
times.

15

DEBUGGING THE DEVELOPMENT PROCESS

MAKE THE EFFORT
Management books often make setting goals sound like some mystical
ideology you must simply have faith in: "We don't know exactly why
setting goals works, but our studies show conclusively that groups who
have concrete, detailed goals consistently outproduce those who don't—
by a wide margin."

I don't know why such management books make the effectiveness
of goal setting sound so surprising—goals simply help you compose a
more vivid picture of what it is you're trying to do. If your goal is merely
to buy a house, you're going to look at a lot more houses before finding
one you like than if your goal is to get a turn-of-the-century, tricolor Vic-
torian with four bedrooms, two bathrooms, and a statue of St. Francis in
the back yard. The more detailed goal makes you more efficient because
it allows you to instantly reject anything that doesn't match the picture
in your head. Specific project goals work because they help you sift
through the daily garbage that gets thrown at a project. They help you
stay focused on the strategic aspects of your project.

Unfortunately, there's nothing in the software development pro-
cess that forces project leads to stop and come up with detailed goals. In
fact, there's plenty of pressure to skip the whole goal-setting process.
Who has time to set goals when a project is out of control from the outset
and already slipping like crazy? And some leads skip goal-setting for an
entirely different reason: nobody else sets goals—why should they?
Leads who don't set goals for either reason cause themselves, and their
team members, a lot of unnecessary frustration.

If you want your group to run smoothly, you must take the time to
develop detailed goals. It's usually not fun, but taking a day or two to
set goals is a small price to pay for having a focused project. No group
should have to work long hours under constant pressure—that's a
symptom of unfocused work.

Don't skip the goal-setting process simply
because you think it would take too much time

or because nobody else sets goals. The extra effort
you exert up front will more than repay you.

16

THE GROUNDWORK

KNOW YOUR CODING PRIORITIES
If you were to ask three different friends to drop by the supermarket to
pick up some asparagus, green beans, and corn, would it surprise you to
find that one friend bought canned vegetables because they were the
cheapest, another bought frozen vegetables because they were easiest to
cook, and the third bought fresh vegetables because they were organi-
cally grown and tasted the best? Can you at least imagine such a thing
happening?

The three friends buy different types of vegetables for the same rea-
son one programmer will emphasize speed in his code, another will em-
phasize small size in hers, and a third will emphasize simplicity—their
choices differ because their priorities are different.

Suppose your product has to be blindingly fast but the program-
mers on your team are writing code with simplicity in mind. It's un-
likely that those programmers are going to use fancy cache-lookups or
other faster yet more complicated algorithms. Suppose that your pri-
mary goal is to create a robust application in the shortest time possible
but the programmers are following their standard policy of writing
highly optimized—and risky—code. Again, their misplaced priorities
are going to thwart your goal.

Project goals and coding priorities are not the same thing. Goals and
priorities do tend to overlap, mainly because the project goals help define
what the coding priorities should be. Here's a good generalization:

* Project goals drive the direction of the project.

* Coding priorities drive the implementation of the code.

Obviously, if your goal is to create the fastest Mandelbrot plotter on the
planet, efficiency is going to be a top coding priority.

Despite the importance of coding priorities, in my experience leads
rarely convey their coding priorities to the programmers. Should the
programmers focus on speed? On size? On safety? Robustness? Portabil-
ity? Maintainability? Every programmer has his or her personal views
about the importance of one coding priority over another and left to his
or her own devices will produce code that reflects those views. It's com-
mon for one programmer, left alone, to consistently write code that's
clean and maintainable while another team member, left alone, focuses

17

DEBUGGING THE DEVELOPMENT PROCESS

on efficiency even if the result is unreadable spaghetti code filled with
obscure micro-optimizations and tons of assembly language.

If you want your team to achieve the project goals as efficiently and
precisely as possible, you must establish and promote coding priorities to
guide the programmers. At the very least, you should establish a ranking
order for these priorities:

* Size

* Speed

* Robustness

* Safety

* Testability

* Maintainability

* Simplicity

* Reusability

* Portability

The only item on this list of priorities that may need some explana-
tion is "safety." If you chose safety as a higher priority than speed, you'd
choose one design over another because you'd think you'd be more
likely to implement the feature without any bugs. Table-driven code, for
example, can be slower than logic-driven code, assuming you're scan-
ning the table and not doing a simple lookup, but table solutions are of-
ten much safer to implement than logic-driven solutions. If you chose
safety as a higher priority than speed in this hypothetical situation,
you'd implement the table solution unless there were overriding concerns.

In addition to ranking coding priorities, you should also establish a
quality bar for each priority. If robustness is a high priority for you, how
robust should the code be? At the very least, the code should never fail
for legal inputs, but what about when the code receives garbage as in-
put? Should the code take extra pains to handle garbage intelligently
(trading both size and speed for robustness), should the code use pro-
gram assertions to check for garbage, or should you let Garbage In, Gar-
bage Out rule? There is no right answer to this question; the answer
depends on what you're doing.

18

THE GROUNDWORK

An operating system should probably accept garbage without
crashing; an application program in which an end user can make mis-
takes entering data most certainly shouldn't crash. But if you're talking
about a function deep in the guts of your program, where the only con-
ceivable way the function could get garbage inputs would be if there
were a bug elsewhere in your code, an assertion failure would be more
appropriate. In such a case, you might still choose to handle the garbage
safely if it didn't cost much extra code.

The point is that you must decide, in advance, what the coding pri-
orities and quality bars will be; otherwise, the team will have to waste
time rewriting misconceived or substandard code.

Establish coding priorities and quality
bars to guide the development team.

Safety vs. Portability
In my own priority lists, I usually make safety a higher priority than
portability—I'd rather have correct code than portable code. This has
led to some confusion because portable code is often seen as the safest
code of all. In fact, the two priorities aren't really linked; it just happens
that portable code is usually quite safe given the constraints that govern
the writing of such code.

When writing C code, programmers commonly write macros that
look and behave as though they were functions. The problem is that
these "macro functions" can cause subtle bugs if they're not written
carefully, and even when they're written carefully, they can cause other
bugs if they aren't "called" carefully. The problem is well known among
experienced C programmers. Macro functions are beneficial but risky.

You can gain the benefits of macro functions without the risks if
you're willing to use the nonstandard inline directive found in some C
compilers. The only cost is that the inline directive is not universally por-
table. Safety over portability. . .

19

DEBUGGING THE DEVELOPMENT PROCESS

Snap Decisions
You've probably heard that most extremely successful people have a
tendency to make on-the-spot decisions. That may seem contrary to
what you'd expect—you'd think that people who make snap decisions
would fall flat on their faces most of the time. But the difference between
these accomplished people and the average person is that they have con-
crete goals and clear priorities. If you hand such people a problem or a
proposal, they instantly measure it against the goals and priorities
etched in their brains, and you get an instant answer. The clarity of their
goals and priorities also accounts for the other well-known trait of such
people: they rarely change their minds once they've made a decision.
Changing their minds would mean betraying what they believe in.

These successful people are not actually making snap decisions—
that idea implies that no thought is involved. It's simply that these
people know their goals and priorities so well that they don't have to
wade through all the possibilities that don't match their criteria. The re-
sult: they spend their time acting on their decisions, not deliberating
over them.

STICK TO THE BASICS
If you look back at the points raised in this chapter, you'll see that they
boil down to a simple formula for software development: figure out
what you're trying to do and how you should do it, and then make sure
that every team member stays focused on the project goals, coding pri-
orities, and quality bars you've come up with. Pretty basic stuff.

Now take a look at the teams in your company. How many have
detailed goals for their projects? In how many do the programmers un-
derstand exactly how they should be writing their code and to what
standards of quality? Then ask yourself, "Are the programming teams
focused fully on improving their products?"

Now look at the project leads in your company. Do they habitually
call meetings to discuss every little thing, or do they reserve meetings
for truly important issues? Do they put obstacles in the programmers'

20

THE GROUNDWORK

paths—asking them to write questionably useful reports, for instance—
or do the leads strive to remove obstacles to development work?

The points in this chapter are basic, but in my experience few
groups focus on these fundamental concepts. And that, I believe, is why
you can't pick up InfoWorld or Mac WEEK without reading about some
project that has slipped another six months or on which the program-
mers are working so hard that they don't even bother to go home
at night.

HIGHLIGHTS

Companies have hired their programmers to focus on creat-
ing high-quality products, but programmers can't do that if
they're constantly pulled away to work on peripheral tasks.
Make sure that every team member is focused on strategic
work, not on housekeeping tasks; look for and ruthlessly
eliminate any work that does not improve the product.

Unfortunately, some housekeeping work is necessary, at least
in larger companies. Ofte way to keep such work to a mini-
mum is to regularly ask the questions "What am I ultimately
trying to accomplish?" and "How can I keep the benefits of
the task yet eliminate the drawbacks?" Fulfill the need, not
some overblown corporate process.

The benefits of establishing specific goals might not be easy to
see, but it's easy to see the chaos that ensues in groups that
don't set such goals. Yes, creating detailed goals can be te-
dious; but that up-front work is much less painful than lead-
ing a project that slips two days every week. Keep that user
interface library project in mind. One small refinement of the
project goals could have prevented that project from turning
into the pressure cooker it was. A second refinement could
have made it fly.

Every team member needs to know the coding priorities. Is
maintainability important? What about portability? Size?
Speed? If you want the code to reflect the goals for the prod-
uct, you must tell programmers what trade-offs to make as

21

*

*

*

DEBUGGING THE DEVELOPMENT PROCESS

they implement features. You must also establish quality bars
so that team members won't waste time writing code that will
have to be rewritten before you ship. The earlier you define
the quality bars, the earlier you'll minimize wasted effort.

22

I've been programming computers for almost two decades, so you might
be surprised to learn that I don't use a word processor when I sit down
to write technical documents or books such as this one. I write every-
thing by hand on a pad of legal paper, and later I transcribe what I've
written into a word processor for editing.

I'm obviously not computer-phobic, and writing the old-fashioned
way with pen and paper certainly isn't easier than using a word proces-
sor. Nevertheless, that's what I do.

I discovered long ago that whenever I sat down to write using a
word processor, I would get so caught up in editing every sentence the
moment I wrote it that after a day's worth of effort I'd have written al-
most nothing. Editing was too easy, much easier than writing the next
paragraph, and I naturally fell into the habit of doing the easy work. I

23

DEBUGGING THE DEVELOPMENT PROCESS

had to do it sometime anyway, right? In reality, I was editing in order to
procrastinate, and it worked all too well.

Once I realized I had been sabotaging my writing effort, I looked
for a process I could use to get the results I needed: being able to write
technical papers much more speedily. I tried to force myself not to edit as
I wrote with the word processor, but I wasn't very successful. I needed
a system in which writing would be easier than editing. That's when I
stopped using a word processor to write my first drafts and went back to
traditional longhand. I now use the word processor only for what it's
especially suited for—editing what I've already written.

My new "writing system" solved my procrastination problem by
getting me to focus on the writing part of writing.

The important point here is that adopting a trivial process or sys-
tem can produce dramatic results. I now write five pages in the time it
used to take me to write five paragraphs. Was this improvement the re-
sult of my becoming a more experienced writer? No. Was it because I
worked harder and longer? Again, no. I became a more productive
writer because I noticed that the tool I was using had drawbacks and I
developed a new system for writing.

As you'll see throughout this chapter, the use of little systems can
achieve amazing results. Once you grasp this concept and learn to apply
it to your software projects, you can truly claim that you're working
smart, not hard, and you can come that much closer to hitting your
deadlines without the long hours and daily stress that seem to afflict so
many software projects today.

BAD COFFEE
A common problem for servers in coffee shops is remembering who's
drinking regular coffee and who's drinking the decaffeinated stuff. A
coffee shop manager with unlimited time and resources might send all
the servers to Kevin Trudeau's Mega Memory seminar, where they'd
learn to vividly imagine a calf with a hide that matches, say, the
customer's paisley tie, so that seeing the tie at refill time would trigger
the thought of the paisley calf—and decaf coffee. Most coffee shop man-
agers take a much simpler approach to the problem, though: they just
tell the servers to give you a different kind of cup if you order decaf. The

24

2 THE SYSTEMATIC APPROACH

server need only look at your cup to know what type of coffee you're
drinking.

A trivial system for solving a common problem.
Now imagine a coffee shop that has a whole collection of such

trivial "systems" that produce better results with little or no extra effort.
Let's look at another example.

There are two coffee shops near my house. They have identical
coffeemakers, they use the same supplier for their beans, and the servers
in both places are college students. But one shop consistently brews
great coffee, whereas coffee at the other shop is sometimes good, some-
times watery, sometimes too thick, and sometimes burned beyond
drinking—you never know what you're going to get when you order
coffee there.

Circumstances at the two shops are identical except for one seem-
ingly insignificant detail: the shop that consistently serves great coffee
has a short horizontal line embossed on the side of each of its coffee pots.
That short line is part of a simple "quality system" that consistently pro-
duces good coffee. When a new employee first comes on duty at this
shop, the manager pulls himr aside and gives him a short lecture:

"Whenever you pour a cup of coffee and the level of coffee drops
below this line," he says, pointing to the mark on the pot, "immediately
start a new pot. Don't go on to do anything else before you start that
new pot."

"What if it's really busy?"
"I don't care if the place is filled with Seattle Seahawks an hour af-

ter they've blown a Super Bowl game. Start that new pot before you give
Mad Dog Mitchell the cup you've just poured."

The manager goes on to explain that by taking 15 seconds to start a
new pot before the old one is empty, the server might make the current
customer wait an extra 15 seconds but that the practice prevents the next
customer from having to wait a full 7 minutes for a new pot to brew be-
cause the current pot ran out.

If you order coffee at the other coffee shop, it's not unusual for the
server to reach for the pot only to find it empty, and you have to begin
that 7-minute wait. Of course, sometimes you don't have to wait the full
7 minutes. To shorten your wait, some servers will watch until just

25

DEBUGGING THE DEVELOPMENT PROCESS

enough coffee for one cup has brewed and pour you that cup. But for
good coffee, you must let the entire pot of water drip through so that the
initial sludge can mix with a full pot of hot water. If you pour a cup too
early in the process, that cup will be so strong it will be undrinkable, and
any other cups you pour from that pot will taste like hot water. That's
one reason the quality of the second shop's coffee fluctuates. Depending
on when your coffee is poured, you'll get sludge, coffee-colored hot wa-
ter, or sometimes even normal coffee. And of course occasionally you'll
get burned coffee—when the pot holds just enough coffee for one cup
and there's not enough liquid to prevent the coffee from burning on the
warmer as the water boils out.

The only difference between the two shops is that in one they make
coffee when their pots get low and in the other they make coffee when
their pots get empty. Their systems are so similar, yet they produce dras-
tically different results, and the results have nothing to do with the skill of
the people involved.

I wouldn't be talking about these coffee shop systems unless they
made a point that related to software development. They do.

If I were to ask you if it mattered when in the software develop-
ment process your team fixed bugs, provided the bugs were fixed before
you shipped the product, what would your answer be? Would you argue
that the team shouldn't focus on bugs until all the features have been
implemented? Would you argue that bugs should be fixed as soon as
they're found? Or would you argue that it doesn't matter, that it takes
the same amount of time to fix a bug no matter when you get around to
doing it?

If you thought that it doesn't matter when you fix bugs, you would
be wrong, just as a coffee shop manager would be wrong if he thought it
didn't matter exactly when his servers made new coffee. Possibly the
worst position a project lead can find herself in is to be so overwhelmed
by bugs that the bugs—not the goals—drive the project. If you want to
stay in control of your project, one of your concrete goals must be to
never have any outstanding bugs. To ignore this goal is to set a destruc-
tive process in motion, one I described in Writing Solid Code. There I
noted that when I first joined the Microsoft Excel group, it was custom-
ary to postpone bug-fixing until the end of the project. I pointed out the

26

2 THE SYSTEMATIC APPROACH

many problems that approach created—the worst being the impossibil-
ity of predicting when the product would be ready. It was just too hard
to estimate the time it would take to fix the bugs that remained at the
end of the project, to say nothing of the new bugs programmers would
introduce as they fixed old ones. And of course fixing one bug inevitably
exposed latent bugs the testing group had been unable to find because
the first bug had obscured them.

Concentrating on features and ignoring bugs enabled the team
to make the product look much more complete than it actually was.
But high-level managers would use the product and wonder why
"feature complete" software had to spend six more months in develop-
ment. The developers frantically debugging the code knew why. Bugs.
Everywhere.

When a series of bug-ridden products ended with the cancellation
of a buggy unannounced application, Microsoft was finally prompted to
do some soul-searching. Here's how I summarized the results of that
self-examination in Writing Solid Code:

* You don't save time by fixing bugs late in the product
cycle. In fact, you lose time because it's often harder to
fix bugs in code you wrote a year ago than in code you
wrote days ago.

* Fixing bugs "as you go" provides damage control be-
cause the earlier you learn of your mistakes, the less
likely you are to repeat those mistakes.

* Bugs are a form of negative feedback that keep fast but
sloppy programmers in check. If you don't allow pro-
grammers to work on new features until they have fixed
all their bugs, you prevent sloppy programmers from
spreading half-implemented features throughout the
product—they're too busy fixing bugs. If you allow pro-
grammers to ignore their bugs, you lose that regulation.

* By keeping the bug count near zero, you have a much
easier time predicting when you'll finish the product.
Instead of trying to guess how long it will take to finish
32 features and 1742 bug-fixes, you just have to guess
how long it will take to finish the 32 features. Even bet-
ter, you're often in a position to drop the unfinished
features and ship what you have.

27

DEBUGGING THE DEVELOPMENT PROCESS

As I said in Writing Solid Code, 1 believe these observations apply to any
software development project, and I'll repeat the advice I ended with there:

If you are not already fixing bugs as you find them, let Microsoft's
negative experience be a lesson to you. You can learn through your
own hard experience, or you can learn from the costly mistakes of
others.

WTien programmers fix their bugs matters a great deal, just as when
servers make new coffee matters a great deal. Requiring programmers to
fix their bugs the moment they're found introduces a small system into

"Unacceptably Slow"
Some groups at Microsoft have broadened the traditional concept of
what constitutes a bug to include any flaw that has to be addressed be-
fore the product is shipped. In these groups, a feature could be consid-
ered buggy simply because it was unacceptably slow. The feature might
function without error, but the fact that it would still require work be-
fore it was ready to ship would be considered a bug.

If they have a policy of fixing bugs as they're found, groups that
define bugs so broadly are forced early on to define what is and is not
"unacceptably slow." In fact, they're forced to define all their quality
bars early on. The result: programmers don't waste time rewriting
unshippable code, at least not more than once or twice, before they learn
what quality levels they're aiming for.

The drawback to this approach is that some programmers might
waste time writing complex, efficient code, say, when straightforward
code would do just fine. But such a tendency could be easily detected
(and corrected) in regular code reviews.

28

Don't fix bugs later; fix them now.

2 THE SYSTEMATIC APPROACH

the development process that protects the product in many ways. In
addition to the benefits I described in Writing Solid Code, the system pro-
duces these good side effects:

* The constant message to programmers is that bugs are serious
and must not be ignored. This point is emphasized right from
the start of the project and receives perpetual reinforcement.

* Programmers become solely responsible for fixing their own
bugs. No longer do the careful programmers have to help fix
the bugs of the sloppy programmers. Instead, the careful pro-
grammers get to implement the features the sloppy program-
mers can't get to because they're stuck fixing bugs in their
earlier features. The effect is that programmers are rewarded
for being careful. Justice!

* If programmers are fixing bugs as they're found, the project
can't possibly have a runaway bug-list. In fact, the bug-list
can never sneak up and threaten your project's timely deliv-
ery. How could it? You're always fighting the monster while
it's little.

* Finally, and perhaps most important, requiring programmers
to fix their bugs as they find them makes it quite apparent if
a particular programmer needs more training—his or her
schedule starts slipping, alerting you to a problem that might
otherwise go unnoticed.

Whether you realize it or not, your development process is filled
with little systems that affect the quality of the product and the course of
the project. That coffee shop manager with the mark on his pot under-
stood the power of developing a system and used that power to his
advantage. You can do the same with your projects, coming up with
little systems that naturally give you the results you want.

Actively use systems that improve
the development process.

29

DEBUGGING THE DEVELOPMENT PROCESS

The E-Mail Trap
Electronic mail is a wonderful tool. I can't imagine working efficiently
without it. Having said that, I have to add that when it isn't handled
wisely, e-mail can destroy your productivity.

I've found that newly hired programmers allow e-mail to con-
stantly interrupt their work. I don't mean that they're sending too much
e-mail; I mean that they're stopping to read every new message as it ar-
rives. New employees don't get much mail that they have to respond to;
most e-mail they receive consists of passive information that's just mak-
ing the rounds. You know, things like the closing price of Microsoft
stock, what Spencer Katt had to say about this or that company that
week, the business news wire releases for the day, and so on. This stuff
trickles in throughout the day.

New employees tend to leave their e-mail readers running and to
stop every 5 minutes to check out the latest "blip." They never get any
work done because their entire day is broken into 5-minute time slices.

To combat this tendency, I routinely tell new hires to respond to
their e-mail in batches: "Read it when you arrive in the morning, when
you return from lunch, and just before you leave for the day." That tiny
system for e-mail reading—governing only when they read their mail—
allows developers to get their work done because the work is no longer
subject to constant interruption.

The developers are reading the same number of messages; that
hasn't changed. They're just reading those messages more efficiently
and doing their other work more efficiently as a consequence.

LEANING ON CRUTCHES?
I've described using such trivial systems to programmers and leads on
many occasions, and every once in a while I'll run into somebody who
thinks systems are a bad idea. Such a person usually maintains that sys-
tems are a crutch: "You're cheating those people out of a learning experi-
ence. The next job they go to, they'll not have learned anything."

30

2 THE SYSTEMATIC APPROACH

As much as I believe in using systems, I do take seriously the con-
cern these people express. As you'll see throughout the book, I believe
you must continually work to improve the skills of each member of your
team. I just don't believe that the project has to be a casualty of that
learning experience.

The beauty of setting up a system is that team members don't have
to immediately grasp the rationales behind the system in order for it to
work. But don't keep the rationales behind your system a secret. I'd urge
you to do just the opposite: fully describe the thinking behind the sys-
tem you set up and what you expect the system to accomplish. In time,
the team members will begin to appreciate the thinking behind the sys-
tem and probably start to add improvements that will make it even more
effective. Encourage your team to understand and improve the systems
you put in place.

Don't use systems in lieu of training.
Use systems and explain why you

expect them to work.

PLEASE PASS THE POPCORN
Well-designed systems for working are valuable because they can nudge
people into doing what's best for the product. A strategy is valuable be-
cause it condenses a body of experience into a simple attack plan that
anybody can immediately understand and act on. A collection of such
strategies can catapult an individual (or a team) to a higher level of pro-
ductivity, quality, or whatever it is that the strategies focus on.

As a lead, you should encourage your team to share the strategies
they've found to be effective in achieving project goals and priorities.
My highest priority for software products is that they always be bug-
free, for instance, but as we all know, achieving that state is much easier
to talk about than to accomplish. Even so, I can look at different pro-
grammers and see that some have much lower bug rates than others.
Why? The programmers with lower bug rates have a better understand-
ing of how to prevent bugs and of how to effectively find any bugs that

31

DEBUGGING THE DEVELOPMENT PROCESS

do creep into their code. They have better strategies for writing bug-free
programs.

To encourage developers to come up with strategies that result in
bug-free code, I have them ask themselves two questions each time they
track down the cause of a bug:

How could I have prevented this bug?

and

How could I have easily (and automatically) detected this bug?

As you can probably imagine, any programmer who habitually
asks these questions begins to spot error-prone coding habits and starts
to weed them out of his or her coding practice. Such a programmer also
begins to discover better strategies for finding bugs. Of course, most
programmers would, in time, develop such strategies anyway, but by
constantly asking those two questions, they more rapidly—and con-
sciously—learn how to prevent and detect bugs. As with anything else,
if you systematically focus on an area, you get better results than you
would if you haphazardly wandered over to it every now and then.
There's no magic here.

As a lead, you can ask yourself similar questions for each problem
you encounter:

How can I avoid this problem in the future?

and

What can I learn from this mistake/experience?

These are critical questions that successful leads habitually ask them-
selves as they actively improve their skills. Some leads forever repeat
the same mistakes because they fail to ask these questions and act on
their findings.

Of course, the quality of the questions you ask will determine
the quality of the strategies you derive from them. Consider these two
questions:

32

2 THE SYSTEMATIC APPROACH

Why do our schedules always slip?

vs.

How can we prevent schedule slipping in the future?

Although the questions are quite similar, would you give the same
answers to both? I doubt it. I doubt it because the first question gets you
to focus on all the reasons your schedules slip: you have too many de-
pendencies on other teams, your tools are lousy, your boss is a bozo and
always gets in your way, and so on. The second question gets you to fo-
cus on what you can do to prevent slipping in the future: reducing your
dependency on other groups, buying better tools, establishing a new
work arrangement with your boss. The questions focus on different
aspects of the problem—one on causes, the other on prevention—so the
quality of the answers for the two is different. The first question elicits
complaints; the second question elicits anattackplan.

Even if the questions you ask yourself have the right focus, they
may not be precise enough to elicit effective strategies. Just as goals gain
power as you increase their detail, questions become more powerful as
you increase their precision. Let's take a look at another question:

How can we consistently hit our ship dates?

Some leads who asked that question might decide to pressure their
teams to work overtime by threatening them. Others might decide to
bribe their teams to work overtime with bonuses or free dinners or by
projecting blockbuster movies at midnight and passing out buckets of
popcorn. (Don't laugh. It has happened.)

But suppose those leads had asked a more precise, and in my opin-
ion more beneficial, question:

How can we consistently hit our ship dates, without having
developers work overtime?

The leads would obviously get a different kind of answer because
threats or midnight movies wouldn't answer the requirements posed by
this more precise question. The leads would have to toss out any "solu-
tion" that called for getting their teams to work overtime. They'd be

33

DEBUGGING THE DEVELOPMENT PROCESS

forced to search for other possibilities. They might decide that to hit
their ship dates without demanding overtime work they'd have to hire
more developers. That's a possibility, but not one that companies usu-
ally like to consider, at least not until all other approaches have been
exhausted. To eliminate that unacceptable solution from consideration,
I'll increase the precision of the question even further:

How can we consistently hit our ship dates, without having
developers work overtime, and without hiring additional people?

The question now eliminates two undesirable solutions, forcing
leads to think more creatively and, not incidentally, to focus more on the
work itself. Maybe a lead would decide that it wasn't so critical, after all,
that his team write all the code in the product: he could hire a short-term
consultant, or the team could use a code library another team might
have offered them just the month before, or they could even buy a fully
documented commercial library, which could cut their development
time dramatically. Maybe they'd decide to cut features that, upon reflec-
tion, they'd see wouldn't really add much value to the product.

The Ideal Question
As we'll see throughout this book, there are numerous ways to increase
productivity without resorting to 80-hour weeks. When you ask ques-
tions to elicit solutions, keep in mind that question from Chapter 1:
What am I ultimately trying to accomplish? No lead is ultimately trying
to get people to work overtime; most are in fact ultimately trying to get
more work done in a shorter period of time.

The simplest technique for zeroing in on the best question to ask is
to envision how you would ideally like your project to run and to tailor
your question so that it reflects that ideal. Wouldn't your ideal project be
one in which you made perfect estimates, you hit every feature mile-
stone, nobody worked overtime, and all concerned thoroughly enjoyed
their work? That's a lot to ask, but if you tailor your questions to reflect
that ideal, you'll come up with the solutions that will bring you closer to
those goals.

34

2 THE SYSTEMATIC APPROACH

The point is that by asking a more precise question, one that takes
into account the results they'd ideally like to see, leads force themselves
to weed out all the less than ideal solutions—the ones they might have
glommed onto simply because they were the first solutions that pre-
sented themselves. Asking increasingly detailed questions stimulates
the thinking process that leads to inventive solutions.

Ask detailed questions that yield
strategies and systems that help to

achieve your ideal project goals.

GOTOS HAVE THEIR PLACE
As you go about creating and promoting strategies, regularly remind the
development team that the strategies are not rules that are meant to be
followed 100 percent of the time. You want to be sure that people are
thinking about what they're doing, not blindly following a set of rules
even when those rules don't make sense.

One coding strategy that many programmers treat as an ironclad
rule is "Don't use goto statements." But experienced programmers gen-
erally agree that there are a few special scenarios—mostly dealing with
complex error-handling—in which using goto statements actually im-
proves the clarity of code. When I see that a programmer has imple-
mented that kind of error-handling code, scrupulously avoiding gotos,
I usually raise the issue with the programmer.

"Did you consider using gotos to improve this code?" I ask.
"What? Of course not! Gotos are evil and create totally unreadable

spaghetti code. Only incompetent programmers use gotos."
"Well, there are a few cases in which using gotos can make sense," I

tell the programmer. "This is one of those cases. Let's compare your code
to an implementation that uses a goto statement." I hand the program-
mer the goto version. "Which implementation is easier to read and
understand?"

"The goto version," the programmer will usually reluctantly admit.
"So which implementation will you use in the future?"

35

DEBUGGING THE DEVELOPMENT PROCESS

"Mine, because it doesn't use any gotos."
"Wait, I thought you just agreed that the goto version was easier to

read and understand."
"It is easier to read and understand, but using gotos can cause the

compiler to generate less than optimal code."
"Let's assume that you're right, that the compiler generates some

less than optimal code in this function. How often would this coding
scenario show up?"

"Not very often, I guess."
"And which is a higher coding priority for the project, code clarity

or a questionable efficiency gain?"
"Code clarity."
"So which version is easier to read and understand and follows our

project priorities?"
At this point there is usually a long pause.
"But gotos are bad," the programmer blurts out in a last, pitiful protest.
I'll be the first to admit that there aren't many places in which us-

ing gotos actually clarifies the code; you can be sure that whenever I'm
reviewing code and I see a goto, alarms start going off. I am not pro-
goto—the presence of a goto usually does indicate a quick and dirty

Show Me Code!
Perhaps the most thorough discussion ever published about the pros
and cons of using gotos can be found in Chapter 16 of Steve McConnell's
Code Complete. In addition to showing those instances in which the judi-
cious use of a goto can actually improve code, McConnell fully delin-
eates the arguments against and for gotos and goes on to show how
often the goto debate is phony. He finishes up with a list of articles that
have exhaustively covered the use of gotos, including Edsger Dijkstra's
original letter to the editor on the subject and Donald Knuth's example-
rich "Structured Programming with go to Statements." As McConnell
points out, "[the goto debate] erupts from time to time in most work-
places, textbooks, and magazines, but you won't hear anything that
wasn't fully explored 20 years ago."

36

2 THE SYSTEMATIC APPROACH

design hacked together while the programmer sat in front of the key-
board with a sugar buzz. But while I'm generally against using gotos,
I'm even more against blindly following rules when they don't make
sense and actually work to the detriment of the product.

That's the major drawback to strategies. If you push them as invio-
lable rules, you risk having team members do stupid things.

I know instructors mean well when they advise programmers not
to use gotos, but I wish they would explain that gotos should be used
rarely, instead of never. Even better, I wish that they'd demonstrate
those few cases in which using gotos actually makes sense—it's not as if
there are dozens of scenarios they'd have to cover. The problem, I think,
is that many instructors were taught that gotos should never be used
and they pass this advice on with ever-growing fervor. The mere pres-
ence of a goto is enough for some instructors (and programmers) to de-
clare the code terrible, just as any form of nudity is enough for some
people to proclaim a film immoral.

There are very few programming strategies that should be en-
forced as rules, and you need to make that clear. Otherwise, you may
end up with developers blindly following a rule in situations in which it
doesn't make sense. This disclaimer certainly applies to all the strategies
in this book.

Don't present strategies as ironclad
rules; present strategies as guidelines

to be followed most of the time.

FEEDBACK LOOPS
Electrical engineers use the concept of positive and negative feedback
loops to describe the characteristics of a particular type of circuit, one in
which the output of the circuit is fed back as an input to that same cir-
cuit. Here's a picture.

37

DEBUGGING THE DEVELOPMENT PROCESS

With the output contributing to its own result, such circuits behave
in one of two ways: the output amplifies itself, so that the stronger it is,
the stronger it gets; or just the opposite occurs, so that the stronger the
output is, the weaker it gets. Feedback loops in which the output ampli-
fies itself are known as positive feedback loops, and those in which the
output weakens itself are known as negative feedback loops. From this
admittedly simplified description of the two types of loops, it might
seem that positive feedback loops are great because they leverage their
own power whereas negative feedback loops are worthless because
every time the output gets stronger, the effect is counteracted. In fact,
negative feedback loops are far more useful than positive loops.

If you've ever been in an auditorium and heard a speaker and a
microphone together cause an ear-shattering screech that could wake
Elvis, you've been the victim of a positive feedback loop. The micro-
phone has picked up and reamplified its own output, driving the ampli-
fier into overload. That's the common problem with positive feedback
loops: they typically overload themselves.

A negative feedback loop would take a high output and use it to
reduce the loop's future output. Imagine welding the brake pedal of
your car to the accelerator: step on the gas a bit, and the brakes go on a
bit to counteract the acceleration; floor the gas, and you floor the brakes
too. The stronger the output, the harder the circuit counteracts it. Such
behavior may sound as useless as going into overload all the time, but
negative feedback loops don't need to completely dominate the output;
they just need to exert enough force to regulate and stabilize the circuit.

I've been talking about electrical circuits, but you'll find feedback
loops in all sorts of systems, whether systems for personal relationships
or for software development. Some of the feedback loops develop with-
out conscious intention, and others are designed, but whatever their

38

2 THE SYSTEMATIC APPROACH

origins, you can achieve greater control over your project by becoming
aware of feedback loops and making deliberate use of them.

Bugs, for example, are a common "output" of writing code.
Wouldn't it be wonderful if you could design a negative feedback loop
into your development process so that whenever the bug count grew,
something would counteract that growth with equal force? We've al-
ready talked about exactly such a feedback loop:

Require that programmers fix their bugs the moment they're
found.

If a programmer's code never has bugs, the requirement that bugs
be fixed the moment they're found will never affect her and she can hap-
pily implement new features. But if a programmer writes code that's
riddled with bugs, the requirement will kick in in full force, pulling that
programmer off the implementation of new features and back to work
on bugs, preventing her from spreading sloppy work throughout the
program. The more bugs the programmer has, the harder the brakes are
applied. The requirement that bugs be fixed immediately implements a
negative feedback loop designed to keep the product bug-free at all
times. And, of course, the practice gives you all those other benefits I
mentioned earlier in the chapter—the relative ease with which recent
bugs can be fixed, the speed with which programmers learn from fresh
mistakes, easier prediction of project completion dates, and so on.

Negative feedback loops can hurt as well as help, though. Do you
remember that lead I talked about in Chapter 1, the one who required his
team members to submit status reports, attend status meetings, and then
write follow-up reports on any insights they had come up with during
the meetings? That lead was trying to get as much good information
from the team as he could. Unfortunately, he'd set up a negative feed-
back loop that thwarted a desirable output. He wanted to hear any ideas
his team members might come up with to solve a problem, but by asking
them to write up those thoughts in reports, he discouraged them from
saying anything. His system made people clam up—the more you
spoke, the longer the report you had to write. Nobody liked writing
those reports, so they learned to keep quiet. Just the opposite of what the
lead was hoping for. Backfire.

39

DEBUGGING THE DEVELOPMENT PROCESS

You must also be careful not to unwittingly set up destructive posi-
tive feedback loops. If you base raises and bonuses on the number of new
lines of code programmers write—and rewriting bad code doesn't
count—don't be surprised if the programmers, over time, develop the

Negative Feedback Is Not Negative Reinforcement
Don't confuse negative feedback with negative reinforcement. I think of
negative reinforcement as scolding, berating, or threatening an em-
ployee—like whipping a horse to get it to do what you want. Or, if an
employee steps out of line, WHACK, giving him or her a solid dose of
negative reinforcement to discourage stepping out of line in the future.

That kind of management style is reprehensible and certainly not
what I'm advocating. Think about the negative feedback requirement that
programmers fix their bugs as they're found. A programmer shouldn't
be anxious about having to fix his bugs as they're reported. The require-
ment might have put him in a position he doesn't like—being stuck on
the same feature for days on end—but that's very different from filling
him with a sense of dread. The goal is to have the right things happen
easily and naturally, without personal distress—not to assert who is
boss or to put the employee in his or her place.

Many years ago at Microsoft, there were a couple of leads who,
when a project was not running smoothly, would round up the develop-
ment team and proceed to tell them that they were the worst program-
mers at Microsoft, that they weren't worthy of calling themselves
Microsoft programmers, and other such nonsense. I'm not sure what
those leads were trying to accomplish, but if their goal was to get the
teams to rally and try harder, they picked a pretty strange way of doing
it. As I'm sure you can imagine, those leads only succeeded in angering
and depressing their development teams. Furthermore, in every case of
which I was aware, the problems with the project were management re-
lated—the projects had no clear focus or were simply too ambitious. The
programmers on those projects weren't any better or worse than other
programmers in the company, and berating them didn't change any-
thing for the better—only for the worse.

40

2 THE SYSTEMATIC APPROACH

habit of sticking with their clunky first-draft code and patching flawed
designs with new code instead of doing badly needed rewrites. You
might intend the bonus to be an incentive for programmers to be more
productive, but the long-term result would probably be a company full of
programmers who are satisfied with slapped-together implementations.

I hope you'll take two points away from this discussion. First,
whenever you design a new system, try to include beneficial negative
feedback loops that help to keep the project on track. Second, consider
the long-term effects of any feedback loops you decide to employ; make
sure there are no feedback loops that can ultimately cripple the effort.

Deliberately use negative
feedback loops in your systems to

achieve desirable side effects.

Beware of feedback loops that create
undesirable side effects.

THE SIMPLER, THE BETTER
Finally, make sure that the systems and strategies you come up with are
easy to understand and follow.

Consider some of the systems I've covered: writing in longhand,
using two kinds of coffee cups, watching a line on a coffee pot, reading
e-mail in batches, fixing bugs the moment you find them. These systems
are trivial, not hulking processes that will bog down the whole operation.

One tendency at workplaces is for simple processes to blossom into
time-consuming busy-work because people get caught up in creating
-processes instead of working on the product. Having programmers ask,
"How could I have prevented this bug?" is simple. Taking that system a
step further and asking every programmer to write a "prevention re-
port" for every bug he or she encounters is altogether different. All of
a sudden the systematic asking of a simple question has turned into a
cumbersome process. Such process growth is as natural as the growth of
brambles, and you must actively keep that growth cut back.

41

DEBUGGING THE DEVELOPMENT PROCESS

Remember, the overall goal is to stay focused on improving the
product, not on fulfilling process requirements. You want to gain the
benefits that systems can provide and jettison the drawbacks. Well-
designed systems and appropriately applied strategies accomplish both
of these goals.

HIGHLIGHTS

Simple work systems can produce dramatic results. Take a
good look at the processes your team members are already
following. Are there problems with those processes? Are they
too time-consuming? Too error-prone? Are they frustrating
and counterproductive in some way? If they are, look for
simple changes you can make to improve those processes.

As you put systems in place, explain the purposes behind
them so that the development team can understand what as-
pect of the product the systems are meant to improve. This
openness will educate team members over time and also en-
able them to intelligently improve the systems and create
new, better ones.

Refine the questions you ask as you look for solutions to prob-
lems. Develop the ability to ask precise questions to increase
the quality of your answers. Unfortunately, it's not enough to
be precise. A precise but wrong question will get you a bad
answer. Be sure the question you ask focuses on what you're
ultimately trying to achieve, on your ideal solution. Don't
ask, "How can we get programmers to work longer hours?"
Ask, "How can programmers get more done in less time?"

The more appealing or effective a strategy is, the more people
on your team will want to treat it as an ironclad rule. Remind
your team that even the best strategies don't apply to every
situation. "Avoid using gotos" is a strategy that can lead pro-
grammers to write more readable code. But you should en-
courage programmers to see that they should set aside even
this strategy when avoiding gotos would make the code less
readable.

42

*

*:

*

*

2 THE SYSTEMATIC APPROACH

Whenever you create a feedback loop, be sure to consider the
side effects and the long-term effects. The best feedback loops
enhance the desirable aspects over time while simultaneously
reducing the negative effects.

43

*

I like to think that my projects are always on course, but in fact they
never are. Sometimes a project is ahead of schedule, sometimes behind,
but always close. The project zigzags along an imaginary line that plots
the ideal course.

Even the best-run projects are never on course. But if you let a
project coast, not knowing how far off course it is, you're going to wake
up one morning to find that you've zigged so much that you can't zag
enough to correct. In that respect, a project is like a rocket aimed at the
moon—a tiny fraction of a degree off, and the rocket will miss the moon
by thousands of miles. If your project is off track, even slightly, it will
steadily get further off track unless you make regular, tiny adjustments
to its course.

45

DEBUGGING THE DEVELOPMENT PROCESS

Effective leaders understand this principle. They take consistent,
daily steps to nudge their projects back onto those imaginary trajecto-
ries. In this chapter, we'll look at simple, effective strategies you can use
to keep your projects on track.

FREEWAY OVERPASSES
I'm convinced that the main reason projects go astray is that the people
running the projects don't spend enough time thinking about how to
keep them running smoothly. They don't anticipate problems and
instead wait until problems show up. By then, it's too late. What could
have taken 30 seconds of extra thought to prevent a month ago is now
going to take hours or days to correct. This is known as "working in
reaction," and many leads seem to do it.

The alternative to simply reacting is to actively look for potential
problems and take little steps to avoid them. Suppose one of those house
movers I talked about in Chapter 1 had hopped into his flatbed truck
and started slowly on his way along the route to the house's new loca-
tion, only to turn a corner and be blocked by a low freeway overpass.
Oops—gotta retrace at least part of the route and have the same over-
head power and phone lines taken down again. Or what if the planned
route looked flat on the map but had hills too steep to pull a house up?
Or what if the route were usually passable but road crews were out that
week resurfacing a stretch of the road? Each of these obstacles could
have been foreseen by the "house lead" if only he had taken the time to
drive the route the day before and then again an hour before starting the
house rolling. Can you conceive of a house lead's not taking that step?
Why then do so many software leads fail to drive ahead and look for ob-
stacles that could easily be avoided, allowing their projects to be stalled
by those obstacles?

Leads don't always look ahead because that's harder to do than not
looking ahead. How many times have you heard a lead faced with an
unexpected obstacle say, "I could have prevented this if I'd spent time
thinking about it earlier"? In my experience, few leads make such an
admission. Rather, leads tend to be not at all surprised that something
unexpected has come up. After all, they think, it happens to everybody,
all the time. It's normal.

46

3 OF STRATEGIC IMPORTANCE

To get out of this mind set, you need to work proactively instead of re-
actively. There are many techniques you can use to train yourself to work
proactively, but they can all be boiled down to a fairly simple practice:.

Regularly stop what you're doing and look ahead, making little
adjustments now to avoid big obstacles later on.

Leads don't have trouble spotting the already big obstacles coming
up—say, having to support Windows NT once the regular Windows ver-
sion is done, or having to find time to create a demonstration-quality
product in time for COMDEX. It's the little obstacles that blindside
people, the ones that blossom into huge obstacles if they aren't foreseen
and handled early, while they are still manageable. That kind of fore-
sight is like stopping for gas before heading to the ski slopes—taking
that simple step could prevent you from having to make a long, snowy
trek because you ran out of gas halfway up the mountain.

The habit I've developed and used successfully for more than a
decade is to spend the first 10 or 15 minutes of each day making a list
of answers to this question:

f;v

What can I do today that would help keep the project on track for
the next few months?

It's a simple question, but if you ask it regularly, it will give you all
the information you'll need to protect your projects from being clob-
bered by problems you could have foreseen. Note that the tasks you'll
list probably won't be complex. In fact, most such tasks are simple and
can be completed in a few minutes. My own list of tasks is usually like
this one:

* Order the MIPS and Alpha processor manuals so that they'll
be here well before Hubie needs them.

* Send e-mail to the Word team reminding them that they must
make additional feature requests by Monday if they'll need
those features in our next library release.

* Send e-mail to the Graphics lead to verify that the Graphics
library we're depending on is still on track for delivery three
weeks from now.

47

DEBUGGING THE DEVELOPMENT PROCESS

None of these tasks would take me much time to do, but they could
save me an enormous amount of time later on. Ordering that MIPS pro-
cessor manual may not seem like a big deal, but if the manual takes three
weeks to arrive, that could cause a three-week slip in the MIPS work.
How long does it take to order a manual? About 10 minutes? You could
spend 10 minutes now and have the manual in time, or spend 10 minutes
and three weeks later on...

Often, by means of such little tasks, you can discover that the
Graphics lead thinks he might slip two weeks, or that the Word group
does have another request but didn't think there was any need to hurry
up to tell you. Without checking (looking ahead), you could get caught
off guard by a slip of the Graphics library schedule, or you could have a
last minute fire when the Word team realizes that the feature they need
hasn't made it into the next release of the library.

In an ideal world the Graphics lead would tell you well in advance
that his project was going to slip, but how many times does that really
happen? In my experience, almost never, because leads don't want to
alarm anybody until it's clear that they are definitely going to slip—
three days before the scheduled drop.

Each day, ask, "What can I do today to
help keep the project on track for the

next few months?"

BAD INTELLIGENCE
During the development of Word for Windows, I was asked to take a
look at an internal code library written by non-Word programmers. The
library was a dialog manager whose purpose was to isolate the operat-
ing system from Microsoft's applications, allowing programmers to
create dialogs without worrying about whether the applications were
going to run on Windows, the Macintosh, or some other system.

I was called in to find out why the library was so slow—the Word
for Windows project lead and program manager were irritated by the
delay between the time a dialog was invoked and the time it was fully

48

3 OF STRATEGIC IMPORTANCE

displayed and ready for user interaction. The programmers working on
the dialog manager had profiled their code and had made numerous
optimizations, but the Word group was still dissatisfied and was making
a ruckus, slowly ruining the library's reputation within the company.
Other teams who were planning to use the library had begun to back off.

When I talked with Word's program manager to better understand
the speed problem and find out what performance would be acceptable
to the Word group, he handed me a list of acceptable display times—
their quality bar. Each dialog had to be fully displayed in the time indi-
cated next to its name. The program manager then demonstrated by
bringing Word up and invoking a dialog with one hand while starting a
stopwatch with the other. "See," he said, showing me the stopwatch.
"This dialog takes too much time." Visually the dialog itself didn't seem
to be that slow to me, so I reached over and invoked the dialog a second
time to get another look. The dialog appeared almost instantly. I pointed
out that the second invocation was well under the acceptable time limit.

"It's always fine the second time," he said. "We're only concerned
about the first time, when the dialog is invoked after a period of inactiv-
ity. That's when the dialogs are too slow."

I understood the problem and went back to my office to look at the
code. What I found was startling. It turned out that, at the time, Word
itself contained an optimization that overrode the normal Windows
code-swapping algorithm. The optimization was kicking out all "unnec-
essary" code segments after a certain period of inactivity, and that
optimization was kicking out every byte of code related to the dialog
manager. A little measuring showed that even if the dialog code were
executed instantaneously, no dialog would pass its speed test; Word
simply took too long to reload those "unnecessary" segments.

So the speed problem that the Word people had been complaining
about wasn't a speed problem at all, but was instead a code-swapping
problem. The Word team thought the dialog manager was much too
slow, yet the dialog team couldn't see where the slowdown was—the
code seemed fast enough in the library's test application, and there was
no reason the dialog manager should have behaved differently when
linked into Word. Of course, the test application didn't override the
Windows swapping algorithm.

49

DEBUGGING THE DEVELOPMENT PROCESS

The Word team had been complaining about the speed problem for
months, and the dialog team had been working long, hard hours to opti-
mize code and algorithms in the library, hoping that each latest round of
improvements would finally be enough to satisfy Word's requirements.
Had anybody stopped to profile Word's handling of the dialog manager

The Debugging Game
Many programmers don't do research during debugging sessions. Some
programmers try to fix a bug by jumping into the code, making a
change, and then rerunning the program to see if the bug went away.
When they see that the bug still exists, they make another change and do
another run. Nope, that didn't work, better try something else. . .

I know that some programmers play the "maybe this is the prob-
lem" game because whenever they get a difficult bug for which none of
their guesses seems to work, they ask me, their lead, what they should
try next. The "next?" question is a dead-giveaway that they're playing
the guessing game instead of actually looking for the cause of the bug.

In my experience, the most efficient way to track down a bug is to
set a breakpoint in the debugger, determine which piece of data is bad,
and then backtrack to the origin of that bad data, even if it means
mucking around in data structures, following pointers, and other such
tedious stuff. There's no question that it's sometimes easier to guess
where a bug is and then fix it with a lucky hit, but it's consistently more
efficient to look at the actual data and backtrack to its corruption.

I'm also skeptical of programmers who find bugs by "looking at
the code." Andrew Koenig's C Traps and Pitfalls is an entire book of C
examples that look perfectly correct but in fact contain subtle bugs. And
Gimpel Software's marketing campaign for their PC-Lint product fea-
tures magazine ads each month that point out obviously correct, yet
buggy, code.

Looking for bugs by looking at the source code is lazy and ineffi-
cient; it shouldn't take a programmer any more time to view the code in
a debugger, watching the data as he or she progressively steps through
each line of source.

50

3 OF STRATEGIC IMPORTANCE

code, he or she would have seen that no amount of code optimization
could have solved the problem the Word team was complaining about.

Granted, it's not always reasonable for a library team to regularly
build and test all of the dozens (or sometimes thousands) of applications
they support. It does make sense for a library team to use an aggres-
sive—and I stress aggressive here—test application specifically designed
to exercise every aspect of the library. But in this case, the Word team had
been complaining loudly for quite some time, and the library team
had found no obvious problems in their test application's use of the
library. Somebody well before me should have built and profiled Word
to see why it was behaving so differently from the test application. A
little bit of research early on could have saved months of misguided
optimization work, and the library probably wouldn't have developed
an undeserved reputation.

As a lead, you should keep a wary eye open for any problem that
persists and make sure that you, or someone, stops to do some focused
research to figure out what's going wrong. The research may be tedious
and time-consuming, but that's better than spending weeks or months
trying to fix the wrong problem.

Don't waste time working on the wrong
problem. Always determine what the real
problem is before you try to make a fix.

OUTRAGEOUS MENUS
One time, the technical lead for the Windows-like user interface library I
talked about in Chapter 1 came to me in a panic. He had just received a
request from an application group for a feature that would take weeks to
implement, yet our delivery schedules were pretty much carved in
stone—we were not in a position to slip, at least not without severe re-
percussions. I asked him what the application group's request was.

"They want a modified form of our drop-down list boxes. They
want to be able to use the list boxes outside dialogs; they want to be able
to display the list boxes without their scroll bars and to be able to dim

51

DEBUGGING THE DEVELOPMENT PROCESS

some of the list box items. They also want to be able to click on a list box
item and have it automatically pop up another list box, but if you move
the mouse back into the original list box, the new list box automatically
disappears."

Whew!
I had to agree: implementing those requests would kill our deliv-

ery schedules. After hearing a full description of the request, though, I
wasn't concerned—anything that unusual didn't belong in a shared
library. My initial thought was to give the application group the code for
the standard list boxes so that they could implement those quirky list
boxes themselves. Still, I was puzzled by their request. What were they
going to use those list boxes for? I assumed it must be for some new-
fangled user interface I'd yet to see. So before saying we wouldn't do it,
I asked the technical lead to find out what the application group was
going to do with those bizarre list boxes. He returned a while later, a
wide grin on his face.

"They want to use the list boxes to simulate hierarchical menus,
like the menus in Windows and on the Macintosh."

Now I knew why the technical lead was grinning: we already had
an add-on library that fully supported hierarchical menus; the other
group was simply unaware of the fact.

I bring this story up because it's common for groups to ask for
something without explaining the reason behind their request. I see this
all the time, even outside work. At a diner I sometimes go to for an early
lunch, people occasionally come in and, seeing that everybody is still
eating breakfast, ask the waitress, "How late are you going to be serving
breakfast?" I've seen dozens of hungry people turn on their heels, mum-
bling, "I really want lunch," and walk out the door before the waitress
can tell them they can order lunch. The lunch menu is available around
the clock.

Why did those people ask about breakfast when what they really
wanted to know was "Can I get lunch?" Their thinking went off on a tan-
gent that seemed to be related to what they wanted, and they asked the
wrong question. It happens all the time. I'm sensitive to the problem of
asking the wrong question, but I still find myself asking my wife, Beth,
when she'll be home from her evening soccer game—when what I really
want to know is what time she'd like to have dinner.

52

3 OF STRATEGIC IMPORTANCE

Asking the wrong question or raising the wrong issue seems to be a
common problem, and if you're aware of this tendency in people, you
can save everybody time and effort by making it a habit to determine
what the other people are actually trying to accomplish. If what they're
trying to achieve isn't clear from their request, be sure to ask them what
they're trying to do before you spend much time working on the
request—or you refuse it.

People often ask for something other than
what they really need. Always determine what

they are trying to accomplish before dealing
with any request.

First Define the Context
A good way to avoid miscommunication in your own requests is to first
define the context of what you're trying to accomplish and then make
your specific request. Suppose the programmer from the application
group who made the list box request had started his e-mail this way:

We need hierarchical menus for the next release of our
product. Since drop-down list boxes are similar to menus,
we think we can simulate hierarchical menus if you can
provide us with a modified form of drop-down list boxes
that allows us to. . .

If we had received that e-mail message, our technical lead
wouldn't have panicked, he wouldn't have had to meet with me to fig-
ure out how to handle the request, and he could have immediately told
the other group about the add-on library's support for hierarchical
menus. Even more important, I wouldn't have almost rejected their
request—in which case they could have spent weeks reimplementing a
library we already had.

By first telling people what you're trying to accomplish, you get
them focused on helping with your ultimate need, not on one possible
solution to that need.

53

DEBUGGING THE DEVELOPMENT PROCESS

JUST SAY NO
Suppose we hadn't bothered to find out why that group needed those
weird list boxes and had simply turned down their request. Do you
think they would have said, "OK, we understand. Thanks anyway"?
Maybe. But plenty of groups would have argued that as custodians of
the user interface library we had a responsibility to maintain the code
and provide new features when they were asked for—that giving them
some source code to adapt just wouldn't do.

Of course, the easiest way to resolve such disagreements is to
knuckle under and agree to do the work, and that's exactly what I've
seen many leads in troubled groups do. These leads would rather defuse
a tense situation than fight for what's best for the product or their team.

Sometimes a group will make a perfectly reasonable request that,
because your schedule is full, you can't meet, and you're put in the posi-
tion of saying No to that group. I know from experience that there are
plenty of leads who, to avoid the confrontation, will agree to fulfill the
request anyway, without having any idea how they'll get the work done
on time. Somehow, they think, they'll pull it off. And, of course, they
rarely do.

What these leads don't realize is that by agreeing to work they
shouldn't do or can't do they are dodging a bit of short-term pain in ex-
change for a lot of long-term pain—and not just for themselves, but for
every single member of their teams. Which do you suppose is more
painful all the way around: showing the lead of a dependent group why
you can't possibly fulfill a request given your current schedule, or prom-
ising to finish the work on a specific date and then missing that date by
six weeks?

Consider the difference. When the lead of the dependent group
makes a request, the date on which that request needs to be fulfilled is
often in the distant future; if you can't fulfill the request, there's plenty
of time for you and the lead of the dependent group to consider alterna-
tives. The only way you can be considered the villain is to reject the
request without even trying to help the other lead work something out.
Compare that approach to caving in and agreeing to deliver some new
functionality, thinking you will somehow get the work done—and

54

3 OF STRATEGIC IMPORTANCE

missing the deadline you agreed to. Not only did your group miss its
deadline, but you've possibly caused all the groups depending on you to
miss their deadlines as well.

Think of it this way: if you were buying a house and needed a loan,
which bank would upset you more, the one whose loan officer turned
you down immediately, or the one whose loan officer agreed to give you
the loan but changed his mind two months later as you were signing the
closing papers?

I'm not saying that you should turn down requests just so that
you'll have a cushy schedule. I'm saying that you should never commit
to a date you know you can't meet. It might be tempting to think that
you'll somehow make the date, but that's usually just wishful thinking.
There are enough slips in dates leads "know" they can make, let alone in
the dates they're unsure of.

It's not easy to fight these little battles up front, but it beats having
the company CEO sitting on your desk several weeks or months later
demanding to know why you waited until Marketing's ads had hit the
magazine stands before you confessed that you couldn't possibly make
the dates you promised. '

Don't Halt the Machinery
Fighting your battles up front puts a critical process in motion—the
search for a true solution. If you were truthful and realistic about what
your team could actually accomplish and said No when you knew you
couldn't meet a date, the search for a workable solution would continue.
Maybe the other group would do the work themselves, or maybe they'd
split the work with you, or maybe they'd ask other groups in your orga-
nization if they had a similar piece of code already written, perhaps bur-
ied in the guts of some application. Who knows?

Saying No may be unpleasant, but it keeps the problem-solving
machinery chugging away until somebody, somehow, can say Yes and
believe in what he or she is saying.

55

DEBUGGING THE DEVELOPMENT PROCESS

Never commit to dates you know you can't
meet. You'll hurt everybody

I failed to Say No
One time, the Word for MS-DOS team asked our user interface library
team to implement a costly add-on feature in time for Word's upcoming
beta release. We were booked solid with work, and I couldn't see any
way to meet their date without slipping our own date and affecting the
more than 20 other groups using the library. I explained to the Word
group that we could—and would—do the work, just not in time for their
deadline. I proposed that, if they definitely needed the feature that
quickly, they implement the add-on themselves, turning it over to us
when it was completed. We would document the feature for other teams,
enhance our test application to cover the feature, and support and con-
tinue to enhance the feature in the future. The Word team was upset.
They felt we should do the work since it was a feature that every other
group would eventually want to use. They were right on that point, but
that didn't change the fact that we couldn't implement the code in time
for their release. We battled over this feature for nearly two months. I
finally got so frustrated with the arguing that I broke down and agreed
to do the feature, figuring that I'd temporarily pull a programmer off
one of the other projects I was leading.

Well, I couldn't find that spare programmer, and the result was
disastrous. We missed Word's deadline by weeks, and they screamed
bloody murder. We missed all of our other commitments too—which we
had been on track for—affecting those 20-odd other teams. More
screaming. What a mess. If I had stuck to my guns and said No as I knew
I should have, everybody would have been a whole lot better off, includ-
ing the Word group.

56

3 OF STRATEGIC IMPORTANCE

THE NEED TO PLEASE
As a lead, you're going to be faced with all sorts of demands. To be effec-
tive, you must learn to say No when it's appropriate. Others may not
like it, and they may think you're wrong, but you have to realize that
you can't always please everybody—there are often just too many con-
flicting requests.

If you're in charge of a shared library, one team may ask you to add
a feature that benefits only their project. If you say No, they'll probably
get upset. If you say Yes to their unique request, another team may com-
plain about the increase in the size of the library. These no-win situations
come up all the time, particularly when you're responsible for code
shared by multiple projects.

Which course of action should you take when you're faced with
conflicting demands? That's where your detailed project goals come in
handy. If one of your goals is to provide functionality that will be useful
to all of the groups using your library, you know to reject a request that
doesn't match that criterion. Sure, you'll get complaints, but it doesn't
take much time to explain your reasons and to point out that if you
implement one unusual request you'll have to implement the special re-
quests made by every other project you're supporting, which will pull
you off features all groups want and bloat the library with features that
most groups don't need.

There seems to be a human need to please everybody, and that need
can get leads into trouble because, in their desire to please everybody,
they can do things that don't make sense for the project.

In my experience, people don't like having their requests rejected,
but if you have solid reasons, they do understand and often appreciate
your not giving them false promises.

Don't let wanting to please everybody
jeopardize your project. Use your goals

to guide your decisions.

57

DEBUGGING THE DEVELOPMENT PROCESS

Not a Librarian?
I've been assuming for the sake of argument that you're leading a library
project, and I know that that's probably not the case. The points
I'm making apply to most projects, though. Instead of having other
leads making demands on your group, you might have a marketing
team making the demands, or the folks who'll use the finished product.
Every project will have some outside demands made upon it—even top
secret projects always seem to have people outside the development
team poking their noses in and making suggestions.

SUPERIOR SUGGESTIONS
You should be especially conscious of not trying to please everybody
when it's your boss who makes suggestions. I'm not talking about resist-
ing authority. I just want to point out that superiors can make bad sug-
gestions just as everybody else can, particularly if they aren't aware of
your goals, your priorities, and the technical challenges you face. If you
want to be an effective lead, you must weigh all suggestions (or de-
mands), no matter where they originate, against the needs of your
project.

If your boss asks you to do something you think is a bad idea, ex-
plain your concerns before you undertake the work. Sometimes your
boss will agree with your concerns and drop the suggestion; other times,
your boss will acknowledge your concerns and go on to ask you to
honor his or her suggestion anyway—in the best case scenario, provid-
ing solid justification. Regardless of the outcome, one or both of you will
probably learn something.

I once reviewed a large piece of code written by an experienced
programmer. I was surprised to find several critical design flaws in the
code, flaws I wouldn't have expected to appear in code from this par-
ticular programmer. I asked the programmer why he had chosen such
a design.

"I just did the implementation. Kirby did the design." Kirby was
his lead at the time.

58

3 OF STRATEGIC IMPORTANCE

"How do you feel about this design?" I was curious.
"It's not the way I would have done it."
"Did you feel that way at the time you did the implementation?"
"Yeah," he shrugged. "But I had just started at Microsoft, Kirby

was the lead, and I figured he was more experienced than I was. I
thought he saw something in the design that I didn't. I didn't want to
rock the boat."

In fact, Kirby was less experienced than the programmer who did
the implementation. Kirby had simply been fortunate in getting a more
experienced programmer on his team.

In another case in point, I was leading the teams responsible for
Microsoft's 680x0 cross development system. Periodically Mort, a man-
ager who had the power to change my development plans, would drop
by my office to chat about the progress of the 680x0 C/C++ compiler.
During every visit, Mort would get around to asking what grew to be the
inevitable question, "How's the FORTRAN work going?"

Now, Mort knew darn well we weren't trying to produce a
FORTRAN compiler, but he had a fondness for FORTRAN and felt
there was a market for a good Macintosh FORTRAN compiler. Besides,
creating a FORTRAN compiler out of the C/C++ work we were doing
wasn't a bad idea—especially if you knew, as Mort did, that Microsoft's
compilers use the common three-stage process described in most
compiler texts:

Front end: Parse the specific language (C / C++, FORTRAN,
Pascal, and so on) into a common intermediate
language.

Optimizer: Perform all compiler optimizations (code
motion, common subexpression elimination,
strength reduction, and so on) on the inter-
mediate language.

Back end: Generate optimized object code from the now-
optimized intermediate language.

It's a bit more complicated than that, but you can see from this stag-
ing that to get a Macintosh compiler we needed only to write a new back
end, one that generated Motorola 680x0 code instead of Intel 80x86 code.

59

DEBUGGING THE DEVELOPMENT PROCESS

In theory, then, once we had finished the 680x0 back end, we
should have had our C/C++ compiler, plus FORTRAN and Pascal
compilers—we just needed to link in the proper front ends. That's in
theory. And that's why Mort was so interested in the possibility of a
FORTRAN product. In reality, though, to build the FORTRAN compiler,
we would have needed to fully implement the back end, and we were
implementing only the 95 percent or so required by the C / C++ compiler.

Whenever Mort asked about the FORTRAN compiler, my answer
was always the same: "We haven't done anything with that compiler." I
would always follow with "But we're not doing anything in the back end
that would prevent us from doing the FORTRAN work at a later date."

Mort may have been right that there was a market for a good
FORTRAN compiler on the Macintosh, but he was ignoring my team's
project priorities. Just because there was a market and it was possible to
create the product was no reason to temporarily halt work on the C / C++
compiler, which even he agreed had a significantly larger market poten-
tial. We wouldn't have had this discussion more than once if Mort hadn't
been personally interested in the FORTRAN compiler. His personal
interest was getting in the way of his business sense.

You must protect your project from outside manipulation, espe-
cially if the request comes from somebody who has clout. Somebody like
Mort might not be right, but you might feel obliged to comply. In my
early years as a lead, I probably would have bowed to Mort's pressure—
I certainly caved in on similar requests. I eventually learned, though,
that no matter where a request originates, you must question it. Does it
improve the product? Is it strategically necessary according to your
goals? Does it draw focus away from more important work? Will it be
unnecessarily expensive or risky to implement? You must feel good
about the answers to these questions, or you shouldn't do the work.

You are responsible for your project.
Don't let ill-considered suggestions from

superiors disrupt your progress.

60

3 OF STRATEGIC IMPORTANCE

THE TRUE COST
Why did Mort think that a Macintosh FORTRAN compiler was worth
considering as a goal for the cross compiler project? Was it because
people wouldn't stop calling Microsoft to ask why we didn't have such
a compiler in our product line? Was it because coding in FORTRAN
just made sense for the Macintosh environment? Of course not. The
only reason the FORTRAN compiler was ever an issue was because
one person who was fond of FORTRAN saw the possibility of getting
a free FORTRAN compiler out of the C/C++ compiler work we were
already doing.

I get excited about free products and features as much as the next
person. There's that warm feeling you get when you realize that because
you were such a brilliant designer, some unexpected functionality pops
out. But free products are almost never strategic for your company, and
free features are almost never strategic for your product. After all, if they
were strategic, they would have been planned for, not serendipitously
discovered.

It's interesting to note that we could also have gotten a Pascal com-
piler out of the C/C++ work by updating the older Pascal front end, but
that idea never came up, even though the Macintosh was for many years
a Pascal-only system—all the manuals and code examples from Apple
Computer were in Pascal, and there were no serious development sys-
tems to compete with Apple's Pascal system. That's all changed now, of
course; C / C++ has become the language of choice for the Macintosh. But
if Microsoft were to ship a Macintosh compiler other than the C/C++
compiler, it would make far more sense, I think, to ship a Pascal, not a
FORTRAN, compiler.

Mort was excited about the FORTRAN compiler because it was
free, not because it was strategic. But how free would that FORTRAN
compiler actually have been? To bring that free compiler to market, we
would have had to

* Finish the remaining 5 percent or so of the back end to the
compiler—a few programmer-months' worth of work.

* Find some way to enable FORTRAN programmers to inter-
act in the Pascal-defined Macintosh operating system, which

61

DEBUGGING THE DEVELOPMENT PROCESS

makes heavy use of Pascal records—something FORTRAN
doesn't directly support. We would also have had to find
some way to allow everything from Macintosh "traps" to
Pascal-style strings in FORTRAN.

* Write manuals and help files to accompany the product.

* Fully test the compiler, linker, debugger, and other tools that
would go in the box.

I'm sure I could think of additional-tasks that would be necessary (say,
training a product support team), but these are the obvious chores that
come to mind. How free does that compiler sound now? Granted, the
technical writers could probably pull the manuals and help files
together fairly quickly if they used the existing 80x86 FORTRAN docu-
ments as a starting point. But there's no shortcut to testing a compiler.
The Macintosh FORTRAN compiler would have required the same full-
blown testing effort that any release of the 80x86 compiler would
undergo.

That FORTRAN compiler was anything but free. Yes, the compiler
was cheap compared to what it would cost starting from scratch. But
"cheap" can still be expensive—just ask anybody who's bought a used
Boeing 747 lately.

Free products and features—like free puppies—simply do not ex-
ist. Anytime you hear, or even think, the word "free," your immediate
reaction should be resistance, not acceptance. Think of free products and
features as you would those cold-call offers in which you're told that
you'll get a free dream vacation in Bermuda for simply dropping by a
showroom to hear about some new downtown luxury condominiums.
In rare instances, such opportunities may be gold bars to be picked up,
but in most cases, they're merely lead weights. If you want to keep your
projects focused and under control, stick to the strategic work and leave
those lead weights alone.

There is no such thing as a free
product or feature.

62

3 OF STRATEGIC IMPORTANCE

THE LAYOFF MACRO
Sometimes it's not a superior who makes questionable requests, but the
marketing team. The scent of a big sale can cause the marketing team to
consider features they'd never ask for in less heady situations. You need
to protect your product from such requests.

When I was working on Microsoft Excel, the marketing team asked
the development team to extend the product's macro language to
include a new LAYOFF macro, which, as you can probably guess, was
supposed to take a list of names and randomly pick people to lay off. A
large corporate client had requested this LAYOFF macro so that they
could lay people off without anybody being able to claim that the selec-
tions were biased. The company would be in a position to simply point
to Excel to prove their innocence.

If you know Excel, you know that it doesn't contain such a LAYOFF
macro. The task fell to me, and I refused to implement the request: I felt
the macro would harm the product. My lead agreed, and for months we
beat off the marketing team's persistent requests for the feature. Market-
ing felt they needed the macro to close the sale.

The feature became a big*joke in the development group. "Let's do
it, and we'll hardwire our names into the code so that we'll never be laid
off! No, better than that, let's hardwire the marketers' names into the
code so that they'll always be laid off!" Of course, none of that ever hap-
pened. In the end, Marketing wrote a simple user-defined macro to ac-
complish the same purpose. With that macro, the corporate client's
request was met without Microsoft's having to build such an odious fea-
ture into the product.

In my experience, such ridiculous requests are rare. The marketing
folks don't want to hurt the product. Just the opposite—they want the
best product possible. But sometimes they're not too clear about what
"best" means and ask for features you probably shouldn't implement.
There are at least two types of such features: those that fill out feature
sets and those that satisfy one of those product checklists you find in
magazine reviews. Sometimes filling out feature sets or satisfying prod-
uct checklists does improve the product, but just as often adding such
features merely causes bloat and wastes development time.

63

DEBUGGING THE DEVELOPMENT PROCESS

The reason I say that—besides years of observation—is the motiva-
tion behind the requests. Think about it. Suppose the marketing team
comes to you and says, "The Hewlett-Packard HP12c business calcula-
tor has these five functions that we don't yet support in our spreadsheet.
We'd like you to add them to the standard set of functions." Would
fulfilling such a request make for a strategic improvement to the prod-
uct, or is it more likely that the request came about because a marketer
realized, "Hey, we don't support the full set of HP12c features; we'd
better add what we don't have"? Those additional features may actually
be important, but if they are, why weren't they included in an earlier
release? It's possible that those features simply weren't worth the time
and effort. They still may not be.

Strategic Marketing
I don't want to leave you with the impression that you should adopt a
cavalier attitude toward requests made by the marketing team. Every
once in a while, they'll ask for something inappropriate, but usually
they have sound reasons for their requests. At least that's been my
experience.

Sometimes the marketing team will ask for features that aren't stra-
tegic for the product from a functional point of view but that are quite
strategic for sales reasons. Does any application really need to read and
write 23 different file formats, for instance? Of course not; users need
only one file format to store their work in. Support for the other 22 for-
mats is driven primarily by marketing needs. If your application isn't
"file friendly," that can kill sales, if for no other reason than it discour-
ages users from dumping competing products in favor of yours—they'd
lose their preexisting work.

If you're faced with a feature you feel doesn't improve the product,
consider whether the feature would measurably increase sales. That
LAYOFF macro was inappropriate because it would have harmed the
product, not because its only reason for being was to land that large cor-
porate account.

64

3 OF STRATEGIC IMPORTANCE

If marketers are looking at magazine product-feature checklists,
you'll run into the same problem—the requests will be for features that
fill out the chart, not for features that are strategically necessary for the
product. Sometimes the marketing team will see a questionably useful
feature in a competing product and, in a knee-jerk conviction that your
product has to do everything that the competitors' products do, ask for
the feature. Watch out.

Implement features only if they are strategic to
the product. Don't implement features merely

to fill out feature sets or review checklists.

TOTALLY COOL, TECHNICALLY AWESOME
In Chapter 1, I mentioned that the user interface library lead and I
reviewed the task list for the library. One of the items on that list was a
six-week task to implement a feature that would allow third party
vendors to hook little standalone applications into Microsoft's character-
based applications. The idea was to make it possible to implement calcu-
lators, notepads, clock displays, and other types of desk accessories that
Windows and Macintosh users take for granted. I thought the feature
was interesting, but it didn't seem to me to be strategic for any of the 20
or so internal groups using the library.

When I asked the lead which group had asked for the feature, he
told me that nobody had; it was on the task list because the previous lead
had felt that it was important. I then asked if any of the groups had ex-
pressed interest in the feature when they had learned of it. Again, the
lead said he didn't know, and he added that if I was considering cutting
the feature, the previous lead would fight it if he found out.

I figured that if the previous lead felt that strongly about support-
ing desk accessories, there must be groups who really wanted the func-
tionality and that the current lead must simply be unaware of them. So
before cutting the feature, we asked the groups if they'd heard of the fea-
ture and whether they were interested in such support. The responses
we got were all pretty much the same: "Yeah, we heard about that. So
and So tried to convince us that it was important."

65

DEBUGGING THE DEVELOPMENT PROCESS

Most groups didn't want the functionality at all. A few were more
interested than others, but only if we beefed up the feature so that there
was strong communication between the accessory and the application.
They didn't want calculators and clock displays; they wanted the ability
to truly extend the application—for grammar checkers and other tools
that could provide important functionality. Of course, providing a gen-
eral purpose interface to allow such functionality was much more com-
plicated than the original idea. We didn't have the time to implement the
six-week feature, much less something more complex.

Our findings pretty much killed the feature, but before scratching
it off the list, I talked with the previous lead to get his thoughts on the
issue. He was disappointed by my decision to cut the feature, but nothing
more. He couldn't provide any compelling reasons to implement the
code except that it would be an interesting programming challenge and

What About Third Party Vendors?
It's possible that third party vendors would have loved to have seen
support for those little pop-up applications. It's likely that some small
company or enterprising individual would have seized upon that niche
market and created numerous little add-ons for Microsoft's character-
based applications. Nobody got the chance because I cut the feature. But
I didn't cut the feature without first considering how beneficial such
third party support might have been.

Had the add-on capability been much more powerful, as the appli-
cations groups wanted it to be, third party developers could have
created some truly useful add-ons for other users, which in turn could
have increased demand for the character-based products. But calcula-
tors? Notepads? Clocks? Nobody chooses a word processor, a debugger,
or any other application simply because a third party vendor sells a nifty
add-on scientific calculator.

Simply put, the users didn't need the functionality, which meant
that the applications didn't need it. It would have been wasteful for us to
spend six weeks working on pop-up code when we could work on code
that users really did care about.

3 OF STRATEGIC IMPORTANCE

that it would have been cool if people could have used the little pop-
up applications instead of TSRs, MS-DOS's problematic approach to
achieving the same ends.

In effect, what we had was a six-week feature that was not at all
strategic to the success of the user interface library, nor to the successes
of the applications using the library. The task was on the schedule for
only two reasons: it would have been fun to work on, and it would have
been cool for the character-based applications to have desk accessories
just as their Windows and Macintosh counterparts did.

Don't implement features simply
because they are technically challenging

or "cool" or fun or. . .

IS IT BETTER?
Sometimes tasks sneak onto the schedule because they seem truly im-
portant, but in fact they may not be if you consider whether they are
strategic. For example, it has always irritated me that Excel uses a non-
standard clipboard paradigm — the clipboard is not persistent. It's not
that Excel's model is awkward or less useful; it just bugs me that Excel's
clipboard doesn't behave the way clipboards found in every other
Macintosh and'Windows application behave. The saving grace is that
Excel's clipboard implementation is close enough to the standard model
that few people ever notice that it's different.

Now, I believe in following standards, particularly those that con-
cern user interfaces. So you can imagine that if I were the Excel lead, I
might think it important to bring Excel into line and would therefore put
a "standardize the clipboard" task on the schedule. And, in fact, I do
think that's important. However, I do not think that standardizing the
clipboard is strategic in any way. Changing the clipboard's behavior
could also break existing user-defined macros that rely on the current
clipboard behavior.

If I were the Excel lead, I would want to standardize the clipboard,
but I would strike that task from the schedule in an instant. I would feel

67

DEBUGGING THE DEVELOPMENT PROCESS

differently if users were confused or irritated by Excel's clipboard, but
as I said, most people never notice that it's different.

Another type of important work that is rarely strategic is reformat-
ting source files to adopt new coding styles or naming conventions. Sup-
pose a project lead decides that all functions must have function headers
that describe what the functions do and what the parameters mean. That
seems perfectly reasonable. What I question is a lead's taking the next
step—bringing development to a halt so that the entire team can spend
days or weeks retroactively adding header comments to all the
headerless functions written over the years. It's even worse when a lead
halts development to institute a new naming convention. That can be
incredibly costly if the team stops to rename every existing variable and
function name. Such work may be important for maintainability, but it is
rarely strategic. You can tell that the work is nonstrategic because it
doesn't improve the product in any way.

True, you can view such file reformatting as an investment in main-
tainability that will ultimately improve the product, but stopping all de-
velopment is a stiff price to pay. If you ask how you can get the benefits
and eliminate the drawbacks, you can derive alternative approaches to
adding those header comments all at the same time. An approach could
be as simple as asking all programmers to spend half an hour a week
writing headers and to add headers to any functions they touch during
the day as they work on strategic tasks. Sure, it'll take longer before all
the functions have header comments, but such an approach puts the
initial investment more in line with the expected return.

Of course, if you're talking about stopping development to add de-
bug code to the product, that might be another matter; adding debug
code could definitely improve the quality of the product—and rapidly.
The return on investment could be substantial, even in the short term.

Occasionally, I'll run across a Usenet news article in which a pro-
grammer says something like "We're in the process of rewriting all of
our C code using objects in C++, and I can't figure out how C++ does. . ."
When I read such notes, I shudder and hope that those programmers—
actually their leads—aren't killing their products by taking the huge
time hit that such a rewrite must entail.

You could argue that it would be beneficial to rewrite an assembly
language program in a high-level language such as C—the resulting

68

3 OF STRATEGIC IMPORTANCE

productivity gains could outweigh the costs of doing the rewrite, and
the resulting code might be more portable. But I've got to question re-
writing a Pascal program in C, or rewriting a C program using object-
oriented designs in C++. I suspect that many such rewrites are initiated
by leads who get caught up in the hoopla of the latest industry trend.
When C++ first started getting attention, there were programmers at
Microsoft who wanted to recode anything and everything using object-
oriented designs. It didn't matter that the original code worked fine.
These programmers felt that it was absolutely necessary to rewrite the
existing code. Fortunately, calmer minds prevailed, restricting object-
oriented work to new code and to cases in which rewriting a product
would provide strategic benefits.

Don't waste time on questionable improvement
work. Weigh the potential value returned against

the time you would have to invest.

The "Productivity" Cry
The reason I most often heard for rewriting existing C programs in C++
was that the development team would be so much more productive us-
ing object-oriented methodologies. That may be true, but the people
making those claims were ignoring a significant detail: all the time lost
doing the rewrite. Rewriting a C program to use object-oriented designs
in C++ is not a line by line translation, as a Pascal to C translation can be;
it's a total, ground-up rewrite.

If you're leading multiple groups and one of them comes to you
wanting to move from C to C++, ask them whether they're talking about
rewriting the application using object-oriented designs, or whether
they're simply interested in using the more flexible C++ compiler to
compile their existing C code. If they're talking about doing an object-
oriented rewrite, be sure to determine whether the benefits would over-
come the time lost doing the redesign and rewrite.

69

DEBUGGING THE DEVELOPMENT PROCESS

LET NOTHING INTERFERE
By now you should have a pretty strong awareness of the kind of work
you should be focused on: the strategic work as defined by the project
goals. But being focused on strategic work is not enough to prevent
schedule slips. You can deflect "free" features, quash the impulse to go
after "cool" features, and minimize effort on questionable improvement
work. But if you don't learn to say No when you should or if you don't
determine what others truly want, you can find yourself drowning in
work that you shouldn't be doing.

The key to keeping your projects on track is knowing exactly what
you should be doing and then letting nothing interfere with that effort.
Of course, the trick is in knowing exactly what you should be doing.
That's why it's vital that you create detailed project goals.

HIGHLIGHTS

Don't let foreseeable problems surprise you. If you want your
project to run smoothly, take time to look into the future. You
can prevent many catastrophes by taking small actions today
that either eliminate the problems in the future or steer you
clear of them. If you regularly ask the question "What can I do
today to help keep the project on track for the next few
months?" you can determine the actions you need to take.

Before you settle in to solve a problem, be sure you're attack-
ing the right problem. Remember the misguided optimization
work the dialog team was doing? The group complaining
about the speed problem inadvertently misled the people on
the library team. Get to the bottom of the problem before you
try to treat it.

Before spending any significant time on a task, do some re-
search so that you know you'll be filling the real need. That
request for those bizarre list boxes was misleading because
the group really needed hierarchical menus. When you get re-
quests, be sure to find out what it is the askers are trying to
accomplish. It can save you lots of time.

70

*

*

*

3 OF STRATEGIC IMPORTANCE

For a variety of reasons, some leads find it difficult to say No
to demands made on their teams. In the most serious in-
stances, a lead will commit to a ship date knowing the team
can't make it. If you have trouble saying No, consider how
you'd want groups you're depending on to respond to your
own requests. Would you want to know up front that they
couldn't make the date on which you need the feature, or
would you rather they agreed and then missed that date? Be
as responsible to other groups as you would want them to be
to yours.

Whenever you get a feature request, determine whether the
feature is strategic to the product. If the feature isn't strategic,
don't implement it. It doesn't matter that the feature appears
to be "free" or that it's technically exciting or that a competi-
tor has it. Especially watch for features that round out a set—
such features can appear to be strategically necessary because
it feels as though you must include them for completeness. If
you're unsure whether a feature is strategic, consider the mo-
tivation behind the request for it.

71

*

*

After reading the first three chapters of this book, you might have gotten
the impression that I'm one of those leads who likes to keep my team
members' noses to the grindstone. I've certainly put enough emphasis
on staying focused to justify such a suspicion. But my goal is not to ex-
tract the maximum amount of work out of each team member. My goal is
to put out a great product that the development team has an exhilarating
time putting together.

Have you ever worked on a project that sizzled with enthusiasm? If
you haven't, have you at least had single days on which you felt great as
you left the office? Think back to such a day. Was it filled with meetings,
reports, interviews, and e-mail exchanges, or did you spend the day
working uninterrupted, creating great new designs and coding hot new

73

DEBUGGING THE DEVELOPMENT PROCESS

features? We both know the answer. I've never met a programmer who
got excited about having written yet another report or having attended
yet another meeting.

One of my driving goals as a lead is to create an atmosphere in
which the development team can have a blast as they create a product
they're proud of. I do that in part by working hard to ensure that pro-
grammers don't have to write unnecessary reports, or attend unneces-
sary meetings, or fuss with schedules, or do anything else that pulls
them away from creating new and exciting features for the product. In
this chapter, I'll tell you why I think such processes are harmful—as
they're commonly practiced—and how you can replace overblown cor-
porate processes that suck the life out of projects with simpler, more
effective practices.

THE UNREAD REPORT
Right after I got back from a business trip one time, my lead called me
into his office and quizzed me on all the details. When we'd finished
talking, he asked me to write up a detailed trip report describing every-
thing I'd just told him. That seemed like a waste of time to me, so I asked
if the report was really necessary. He assured me that it was, so I spent
the better part of an afternoon writing that report instead of working on
features.

Later that month, my lead asked me a question I had fully an-
swered in the trip report. I could understand his not remembering the
details, but I was puzzled that he hadn't referred to the report for
the answer, so I asked him if he'd read the report. He admitted that he
hadn't—he had filed it as soon as I'd given it to him.

"Why did you have me write that report if you never intended to
read it?" I was irked.

He gave me a surprised look and said, "Everybody has to write trip
reports. It's policy. . ."

Any reason he could have offered for having me write the report
would have been better than that poor rationale. If he'd had me write
the report because studies show that writing something down cements
the knowledge better in your head, I could have understood that. If he'd

74

4 UNBRIDLED ENTHUSIASM

told me he intended to pass the report on to his own lead or to other
teams who could benefit from its contents, I could have understood that
too. But having me write a report when he knew he was going to file it
away unread was absurd. This was an excellent example of somebody's
following a guideline as if it were an ironclad rule, and because of it we
wound up doing something stupid. Any time corporate policy has
somebody writing a report that nobody will read, corporate policy is
wrong—unless the ultimate purpose is to cement the knowledge better in
the writer's head. But if that's the case, do all trips need such cementing?
My lead was following business-as-usual, not ruthlessly eliminating all
obstacles to product improvement.

The Mystery of the End-Cut Pot Roast
One problem with any process you put in place is that over time people
tend to forget the original reason you set up the process, and continue to
observe it even though it may be outdated. Somewhere I read a story
that succinctly illustrates this point:

f;

A young boy once asked his mother why she'd cut the ends off a pot
roast before she put the roast into the oven. "Well," she said, "be-
cause that's what my mother taught me to do." But the question got
her to wondering, so she asked her own mother for the reason
behind lopping off the ends. "To tell you the truth, I don't know,"
answered her mother. "I've always done it because that's what I
saw your grandmother do." A real mystery. So the boy's mother put
the question to her grandmother. Grandma's reply: "Back then, I
had a small roasting pan—roasts wouldn't fit into the pan unless
I cut off the ends."

Like that boy's mother, the lead who had me write a report he
didn't intend to read was following a procedure without understanding
its original purpose. Since having me write a report that he knew no-
body would read was so clearly a questionable practice, he should have
(or I should have) tracked down the idea behind such reports. We might
have discovered that not all business trips call for trip reports, and in
fact I later found out that they don't.

75

DEBUGGING THE DEVELOPMENT PROCESS

Some trip reports are definitely worthwhile, particularly the re-
ports people write as soon as they get back from trade shows such as
COMDEX. Those reports are typically chock-full of observations and
insights about the state of the industry, about what the competition is up
to and how the crowds responded to the competition's booths and dem-
onstrations, and about how those same crowds responded to their own
company's booths and demonstrations. After a show like COMDEX,
trip reports flood e-mail networks. Great stuff.

But not all trip reports provide that kind of value. Just because you
flew to Kokomo, Indiana, to isolate a bug at a site there that you couldn't
reproduce in your office doesn't mean it's worthwhile to write a trip re-
port when you get back. Would you write a trip report if you had walked
down the hall to isolate a problem that showed up only on a tester's
machine? I hope not. Would you write a trip report if you had driven
across town to isolate a problem that affected a local company? At
Microsoft, you wouldn't. You wouldn't even write a trip report if the off-
site location were on the opposite side of the state and it had taken you
four hours to drive there. But if you took a 20-minute puddle-jumper
flight, most managers would ask you to write a trip report. Why? I don't
believe the reason has anything to do with whether the report is actually
needed. The manager has to fill out special paperwork to authorize the
expenditure for the plane ticket. The trip is therefore special, the man-
ager reasons, and requires a report.

When I said that leads should ruthlessly eliminate unnecessary
work, the superfluous trip report was the kind of thing I was talking
about. Just as I don't call meetings unless the value they provide offsets
the interruption they cause, I never ask for a report unless there is a com-
pelling reason for one. I'd much rather have people working on the
product and interacting with other team members than working on a re-
port I don't really need. My view is, any time I'm about to interrupt a
team member's work, I'd better have a darn good reason—to heck with
business-as-usual.

I rarely ask for reports because I don't believe they're worth the
disruption they cause. But when I feel I must have a report, my prefer-
ence is to get an oral report because it takes much less time—5 minutes
of interactive communication vs. 30 minutes—or more—of writing.

76

4 UNBRIDLED ENTHUSIASM

If you ask some people to write a report, their eyes glaze over. If
you drop by three hours later, you're liable to find the person frozen in
front of the word processor, having written only two paragraphs. For
some people, writing a report ranks right up there with speaking to a
full auditorium—it paralyzes them.

Another problem with written reports—if you don't explain ex-
actly what you want—is that people go on at length about stuff you have
no interest in. And many people get bogged down in bad prose because
they think the text has to "sound like" a report. Instead of writing "the
bug showed up only when the floppy drive was empty," such people
think they need to say something like "the error occurred only in those
instances in which the drive mechanism contained no media." It's
harder and takes longer to write in that unnatural style. It's also harder
and takes longer to read that kind of writing. Besides, reports written
that way are about as exciting as the test pattern on your television set.

When I do ask people to write reports, I ask them to keep the reports
as short as possible and to keep the writing informal—to avoid report-
speak. I don't demand that they write reports in this style, but I do encour-
age it. For people who get paralyzed at the prospect of writing a report,
these two requests help make it a less painful, less time-consuming affair.

"Keep it as short as possible?" they'll say. "No problem!"
If a team member wants to expand on a few ideas in a written re-

port, that's all right with me too. Some people prefer writing reports
over presenting them orally, particularly if they're trying to persuade
the reader to act on the contents. A written report can enable both the
writer and me to carefully consider exactly what's reported and the line
of action the reporter thinks we should take. My goal overall, though, is
to get the information I need with the least amount of pain and interrup-
tion to the writer.

Written reports, like meetings, interrupt the writer's work. Don't
ask for them unless they provide real value—enough to offset the cost of
the interruption they cause.

Be sure that every report you ask
for is worth the time it takes for the

writer to prepare it.

77

DEBUGGING THE DEVELOPMENT PROCESS

THE GOOD, THE BAD, AND THE SHELVED
One kind of report I have found to be invaluable when it's done well is
the project postmortem report. I'm talking about the project analysis
some teams write up shortly after a release. A postmortem report
answers the question "What can we learn from the project we just fin-
ished?" What went right (let's keep doing that) and what went wrong
(how can we prevent those problems from recurring in the upcoming
project?)? Postmortem reports are crucial because they force the team
members to actively consider how they can improve the development
process.

I love reading project postmortems because they contain so much
good information. But all too often, I'll read a postmortem report that
contains important insights but is effectively worthless because the
writer hasn't taken the next step: describing exactly what's going to be
done about those insights. In one case, I read a pile of postmortems a
product team had written over the years. Each report started with "We
should have included more debugging code at the start of the project,"
followed shortly by "We also should have fixed bugs up front instead of
allowing them to collect until the end of the project." Both excellent
observations. Unfortunately, the same insights appeared in the postmor-
tems for release after release of that product. Apparently, nobody was
acting on the team's hard-won knowledge.

If you do postmortem reports—and I advise you to—be sure to
include a detailed attack plan that describes how you plan to take care of
each known problem so that it doesn't come up again in the next project
cycle. I'm sure the team whose pile of postmortems I read never in-
cluded more debug code at the start of each project or changed their
bug-fixing habits. Once the postmortem report was written, they stored
it away on some dusty shelf, never to be read again nor acted upon.

Some postmortem reports I've read have contained attack plans,
but the plans were ineffective because they weren't specific enough—
they had no teeth. Suppose a postmortem report contained this problem
and attack plan:

78

4 UNBRIDLED ENTHUSIASM

Problem: external beta sites felt their bug reports fell
on deaf ears, mainly because the bugs they reported would
continue to appear in beta release after beta release of
our Mandelbrot package. These bugs were slipping through
the cracks because we had no systematic approach for
tracking external bug reports. In the future, we must
try to track external bug reports more carefully.

In many cases, that was all the postmortem report would say on the mat-
ter. From the occasional team who took the extra step and developed a
more specific plan of attack, the plan would look like this:

Solution: the Plotting Division needs to implement a
better method for tracking bugs reported by external
beta sites.

From the rare team who developed a detailed attack plan, the plan
would look like this:

Solution: to prevent our losing track of bugs reported
by external beta sites--a problem that affects not
only our Mandelbrot project, but also the Biorhythm and
Morph projects--Hufile Dobson has agreed to review three
well-respected bug-tracking systems (Bug Control, Pro-
grammer's Database, and Fixlt!) and recommend one tool
for division-wide use. Hubie will make his recommendation
within the next two weeks (by June 12). We will use the
system Hubie recommends for our Mandelbrot project as
an initial test case, and we will maintain a list of any
tracking problems we encounter.

Which of the three reports do you suppose would be most likely to
produce change in the development process? The one that states little
more than the problem and an intention to do better, the one with a
simple attack plan, or the one with the detailed attack plan? Is there any
question that the final plan would be the most effective?

The final plan will be the most effective because it tells exactly
what the solution will be, who will be responsible, when the deadline is,
and where the plan will be applied. The plan also provides for evalua-
tion. Who is accountable in the first or second example? It's easy enough
to say, as the second report does, that the Plotting Division should
implement a new bug-tracking system, but who is that? And by when

79

DEBUGGING THE DEVELOPMENT PROCESS

should the Plotting Division implement a new method for tracking ex-
ternal bug reports? On which project will they try it out? Will they report
the results of the trial? Without such details, attack plans are toothless.

The postmortem report should also describe development prac-
tices you found to be worthwhile in the course of the project. The report
might say that once the team began using program assertions and debug
code, hidden bugs began popping out everywhere, even in code thought
to be bug-free. The report might note that the practice of stepping
through code in the debugger the moment'it is written was at first a bit
tedious, but that once programmers got used to the practice the number
of bugs found by testers dropped considerably and without hurting the
schedule. Or the report might observe that having detailed project goals
really helped the team stay focused. These are excellent points. But the
report shouldn't stop there.

For each such observation, the postmortem report should indicate
how the observation will be exploited in the future. It's not enough that
a team discover what works well; they must use that knowledge to its
full advantage. If only some team members were habitually stepping
through their code the moment they wrote it, for instance, the report
might describe the steps that will ensure that all team members will
begin to use that bug-finding technique.

Finally, the postmortem should describe as part of its attack plan
some method for making the findings in the report available to other
teams. This part of the attack plan could be as simple as saying "we will
provide copies of this report to the following leads by such and such a
date." That plan tells what, who, and when.

Researching and writing postmortem reports takes time and adds
yet more process to development—which I oppose on principle—but
the educational benefits of postmortem reports compensate for the time
deficit, with one caveat: you must act on your findings. If postmortem
reports end up on the shelf, never to be read again, they haven't been
worth doing.

By the way, you don't need to wait for the end of a full release cycle
to write a postmortem report. Every time you run into a problem or dis-
cover a better way of doing things, jot your findings down in an ongoing
document and take immediate action to exploit your new knowledge.
Why wait until you've shipped to gain the benefits?

80

4 UNBRIDLED ENTHUSIASM

Use postmortem reports to improve your
development process. To make a report effective,

describe exactly how your team plans to fix
known problems and how it plans to exploit the

effective development practices it has discovered.

MEETINGS TO MISS
In Chapter 1,1 talked about why I think weekly status meetings are un-
necessary if you're already collecting status reports of some kind. But
status meetings are just one form of the recurrent meeting, a kind of
meeting J routinely try to eradicate. By "recurrent meeting" I mean any
regularly scheduled gathering. You arrive at work, week in and week
out, and you think, "It's Tuesday. I'd better not forget that regular three
o'clock meeting."

I rarely hold meetings because they can be so disruptive to the
smooth flow of work, and I particularly dislike recurring meetings be-
cause the motivation for holding such meetings usually isn't clear. Are
you meeting because you need to, or because it's three o'clock Tuesday?
Some people would argue that weekly status meetings are indispens-
able. I've gone without them for years. It's not the meeting that's impor-
tant; it's the information you would get by attending such a meeting. If
you can get (or pass on) the status information more efficiently without
a meeting, why not take that approach? As I said in Chapter 1, my teams'
little "I've just finished. . ." e-mail notes have worked fine for me.

Does it ever make sense to hold meetings? Of course. There are
times when meetings do more good than harm. In particular, meetings
can be valuable when

* one individual must pass information on to a large number of
other people and a meeting is the most efficient way to do that

* people must be able to actively respond to information—to
ask questions or to interact with other attendees

* value will be realized from seeing or experiencing some-
thing—a product demonstration, for instance

81

DEBUGGING THE DEVELOPMENT PROCESS

* a matter too delicate for a memo or an e-mail—a reorganiza-
tion or layoffs, for example—must be discussed

A meeting doesn't need to meet all of these criteria in order to be
worthwhile—any one of them will do, provided there isn't a better alter-
native. In the days of stone tablets and parchment scrolls, it made sense
to hold meetings to pass out information—that was the most efficient
method. You gathered the masses and did the "Hear ye, hear ye" bit. But
today, with photocopiers, electronic mail, and electronic bulletin boards,
you can pass out information with much greater efficiency, and without
interrupting people's work. Of course, you should use common sense. If
you have something important to say, holding a meeting to say it under-
scores the importance and guarantees that everyone will hear the mes-
sage. And if you're a dynamic speaker, you can rally attendees to action.

Before you call any meeting, take a minute to ask these questions:

Will the results of this meeting be important enough to warrant
interrupting the work of the people who will have to attend it?

Is there a less disruptive way I can get the results I'd get from
holding the meeting?

Team Spirit
I've heard some leads say that their weekly status meetings are impor-
tant because the meetings get the entire team into one room where they
can see each other face-to-face. The practice builds team spirit, they say.
I've heard of leads who hold status meetings primarily so that the team
members can get together. The objective is a good one, but in my experi-
ence, the status meeting is just about the worst venue for promoting
team spirit. If your status meetings are like the ones I've described, in
which the focus is on what everybody didn't get done that week, such
status meetings won't really help build team spirit.

If your team members don't tend to meet often in spontaneous hall
gatherings and brainstorming sessions, maybe you do need to create
opportunities for mingling. If that's the goal, go out for group lunches,
or schedule some other positive activity together. Forget using those
punishing status meetings for that purpose.

82

4 UNBRIDLED ENTHUSIASM

When you ask these questions about a prospective design meeting,
you can see that it probably does make sense to interrupt the team's
work, or at least the work of part of the team. The work done at a design
meeting improves the product. It directly influences how the product
will be built. The team may be getting pulled from their individual
tasks, but they're still focused on the product, not on housekeeping.
Design meetings also encourage rapid-fire debate over the trade-offs
among various designs. You can't easily or efficiently brainstorm that
way over e-mail.

I would be suspicious, though, of any design meeting that was
regularly held at three o'clock every Tuesday. Unless you have sched-
uled a series of specific design tasks—design the memory manager this
Tuesday, the file I/O next Tuesday, the internal document structure the
Tuesday after that, and so on—I doubt that a regular design meeting
makes sense. I'd imagine that a recurring design meeting would always
open with the question "Have any new design issues cropped up this
week?" And I'd like to assume that if such issues had cropped up, they
wouldn't have been kept quiet until the next Tuesday. Team members
should bring up new design issues immediately, and if a gathering

Good Meeting Times
If you must have a meeting, at least schedule it so that it doesn't break
up an otherwise large chunk of time. Don't schedule your one-hour
meeting at 10:00 A.M. or 3:00 P.M. so that it chops the morning or the
afternoon into two-hour pieces. Schedule the meeting at the beginning
or the end of the day, or just before or right after lunch. In other words,
schedule your meetings next to standard break times to maximize the
size of uninterrupted time blocks.

Another approach is to schedule all your weekly meetings in one
continuous block—say, on Monday morning or Friday afternoon. Mon-
day morning and Friday afternoon are notoriously the least productive
times of the work week anyway. Put all your meetings into one of those
blocks of time, and keep them out of the better, more productive, parts of
the week.

83

DEBUGGING THE DEVELOPMENT PROCESS

seems necessary to work out problems, you can call an ad hoc meeting.
Reserving a time each week "just in case" there are problems seems to
me to be more disruptive than helpful.

Beware of recurrent meetings. Make sure
they're worth the disruption they cause.

EFFECTIVE MEETINGS
As much as I dislike holding meetings, or attending other people's meet-
ings, I recognize that meetings are sometimes necessary. And as for any
unpleasant task I believe is necessary, I ask the benefits-drawbacks ques-
tion: How can I get the benefits of this meeting without the drawbacks?

The benefits of meetings are the results you get out of those meet-
ings, and the chief drawback is that so many meetings are a waste of
time because there aren't any results—often because the purpose of a
meeting was never clear to the participants. You can hold a far more
effective meeting if you first decide exactly what you want to accom-
plish at the meeting and then come up with a plan to get those results by
meeting's end. It's the old "set your goals and create an attack plan"
scenario.

Once you've decided that a meeting is necessary, be sure to ask this
question before you send out the invitations:

What do I expect to achieve at this meeting, and how can I be sure
to achieve it?

If you ask this question before each meeting, you have a much better
chance of not wasting everybody's time with random presentation and
discussion.

Remember that hypothetical house-moving lead I talked about in
Chapter 3, the one who didn't drive ahead to check out the route before
the house hit the road? The driver ran into overpasses, hills, and road-
work because the lead didn't take the steps beforehand that would have
ensured they could get the results they wanted.

84

4 UNBRIDLED ENTHUSIASM

When you ask yourself what you expect to achieve at a meeting,
you force yourself to look ahead for possible obstacles to what you hope
to achieve and to take steps to avoid them. If you have a clear idea of
what you want to achieve and of what is necessary to achieve it, you can
see that all key decision makers attend and that they bring whatever
you'll need for the results you want. How many meetings have been for
naught simply because a key decision maker couldn't attend, or because
somebody didn't know to bring a vital piece of information?

Still, despite your best efforts, there will be times when you won't
have all the information you need to make a final decision. When that
happens, the meeting coordinator will often say something like
"George, find out if your two-week guesstimate for the Anagram feature
is accurate, and we'll meet again to decide whether to include it in this
release."

Leads who use that approach waste people's time. Everybody met,
yet nothing was decided. If your goal is to get a decision, make sure you
get a decision, even if it's a conditional one. It's far better to end a meeting
with, "Assuming that George's guesstimate for the Anagram feature is
accurate, does everybody agree that this feature is strategic enough to
delay our WordSmasher ship date?"

With that question, you may find that nobody thinks the feature is
strategic enough to jeopardize the ship date. Or maybe that they think
the feature is so important it doesn't matter how it affects the ship date.
But more often than not, you can get a conditional decision: "Let's do it,
provided the Anagram feature won't delay the ship date by more than
two weeks."

Such a decision may not be as concrete as a definite Yea or Nay, but
it's infinitely preferable to postponing the resolution of the issue and
calling yet another meeting. If your goal is to get a decision, get one. If
your goal is to achieve something else, make sure you achieve that.

Before calling any meeting, be sure you
know exactly what you want to achieve
and what you need to achieve it. Then

make sure you do achieve it.

85

DEBUGGING THE DEVELOPMENT PROCESS

A Metric for Meetings
I've hammered on the idea of getting decisions at your meetings because
almost every worthwhile meeting ends with a decision of some kind. If
you hold a meeting that doesn't end in a decision, that meeting has
probably been a waste of time.

Think about a status meeting. Is it held to reach a decision? No, its
purpose is to pass information around. What about a design meeting?
Yes, you're deciding on a design for the product. The meeting may be a
brainstorming session, but the goal is to leave the meeting with a design,
or at least a design approach, that everybody agrees on.

What about an upper management project review meeting? Can it
end with a decision? That depends. I've seen two types. In the first, the
lead describes the course of the project over the last year, touching on
major highlights, and finishes by reviewing the current schedule and
expressing some level of confidence about the projected dates. In the
second type of project review meeting, the lead doesn't dawdle over the
past but instead describes in detail where she is taking the project, why
she has chosen that direction, what her detailed attack plan is, what the
alternative approaches that she rejected were and why she rejected
them, how her plan fits into the long-term direction of the company, and
finally how upper management can help—all she needs is their support.

The first type of review meeting is just dumping information on
upper management, whereas the second type is a presentation to per-
suade upper management to back the lead's plan, to get them to decide to
support her plan. Which type of presentation do you think is better for
the company, getting upper management to focus on the past or getting
them to commit to a course for the future?

Some gatherings, such as pep rallies and the annual company
meeting, don't result in decisions, but those meetings have a different
purpose, and more important, they aren't held each week, or even each
month.

86

4 UNBRIDLED ENTHUSIASM

NO FOLLOW-UP WORK
Another drawback to meetings is that they tend to create follow-up
tasks for the people who attend. Sometimes you can't do without a fol-
low-up task—-you need to have George figure out exactly how long it
would take to implement that Anagram feature in WordSmasher—but a
lot of follow-up work is busywork. Remember the lead who required
team members to send follow-up e-mail repeating what they'd said at
the meeting? Follow-up work is just that much more work that pulls the
development team away from the tasks they were doing before the
meeting started.

Whenever you're wrapping up a meeting, restating the decisions
you've reached and recounting the action items for various attendees, be
sure to consider whether each follow-up action item is essential. I know
several leads who seem to feel that everybody must have picked up at
least one action item by the end of a meeting. Such a lead will circle the
table mentioning what each person is to do—until he hits upon some-
body with no follow-up task. He'll stop for a minute, scratch his head,
and manufacture a task; "George, why don't you..."

If you've fallen into this tendency, try a different approach. As you
circle the table, reevaluate each action item to determine whether it's
really worth spending time on. A typical dialogue might go like this:

"Next is George. You were going to get an estimate for the Ana-
gram feature. Realistically, do you think there's any possibility of doing
that feature without affecting the ship date by more than two weeks?"

"Actually, I've thought of some additional issues in the last 20
minutes," George says. "I now think the feature will take at least three
weeks to implement."

"OK. The Anagram feature isn't important enough to jeopardize
our ship date, so let's postpone the feature until the 3.1 release. Every-
body agree? Good. George, you have no action items. Now, Rebecca, you
were going to..."

I think you'll be surprised at how many follow-up tasks don't seem
nearly as important by the end of the meeting as they did earlier, in the
middle of an intense discussion.

87

DEBUGGING THE DEVELOPMENT PROCESS

Try to eliminate unnecessary
follow-up work.

Wriggling Out Of Work
Doesn't circling the table looking for ways to eliminate work create a.
harmful negative feedback loop, one that encourages people to misin-
form you so that they'll get out of some work? Did George really find
another week's worth of work when he looked again at doing the Ana-
gram feature, or did he fabricate that week's worth of work as a means
of getting the feature killed—and reducing his work load?

In any organization, you're going to find some individuals who
have no qualms about lying to ease their burdens. That's life. But I
believe the vast majority of people are sincere and don't play such
games. You quickly find out who the other few are.

Besides, I doubt that a team would so easily kill a feature (or an
action item) if they felt it was important. That Anagram feature would
not have been dropped if the others at the meeting had felt it was strate-
gic to the current release.

BREAK OUT THE JACKHAMMER
If you want to keep the excitement level in your team high, enable them
to work on the product without constantly being pulled off their work to
write reports, attend meetings, and deal with other processes that won't
help to improve the product. Unfortunately, the corporate tendency is to
call meetings for every little thing and to ask for reports as a knee-jerk
reaction: "I'm busy right now; send me a report."

You might think that a little speed bump in the road would be just a
small obstacle, but imagine how such a bump would affect a race car
going at a high speed—it could break the car apart. The development
team is like that race car, raring to go, and just as they start to pick up

88

4 UNBRIDLED ENTHUSIASM

speed, WHUMP, they hit a speed bump in the form of a meeting, a
report, or some other corporate process. Sometimes it's worse. The lead
who regularly asked for status reports, called status meetings, and re-
quired follow-up reports was a one-man speed-bump builder. WHUMP,
WHUMP, WHUMP...

You may not have control over all the speed bumps that slow your
team, but you certainly have control over many of them. Retire that
truck full of blacktop and break out your jackhammer. Do some real
damage to those bumps.

HIGHLIGHTS

Try to limit the number of reports you ask other team mem-
bers to write. Be sure that every report you ask for will pro-
vide more value to you or the company than would be lost by
interrupting the writer's work.

Postmortem reports are invaluable when you do them cor-
rectly. Unless your postmortem reports explain exactly how
you intend to fix known problems or exploit known improve-
ments, though, the reports probably aren't worth doing.

Before you call a meeting, be sure the results you think you'll
get from that meeting are worth the disruption to the work
of the people who would have to attend. Be particularly wary
of any regular meeting. Regular, standing meetings often
aren't worth the time to walk to them, much less attend.

If you must hold a meeting, minimize the amount of interrup-
tion it will cause. Schedule the meeting so that it won't break
up an otherwise large block of time.

Whenever you call a meeting, be sure you know ahead of time
exactly what you're trying to accomplish, and then make sure
you do accomplish it. Remember also that conditional deci-
sions are better than no decisions.

89

*

*

*

*

*

I explained in Chapter 2 why I believe it's critical that teams fix bugs as
they're found. We didn't follow that practice back when I was working
on the Microsoft Excel project. In fact, we were pressured to ignore bugs
until all scheduled features had been completed. Why? Because if we
had stopped to fix bugs we would have appeared to have slipped the
schedule. It wouldn't have mattered that the ship date would actually
have been pulled in; anything that appeared to cause intermediate slips
was discouraged, and a growing bug-list didn't count as slipping—
you'd slipped only if you hadn't "finished" a feature as scheduled. The
schedule, not the project goals and priorities, not even common sense,
was driving the development process.

91

DEBUGGING THE DEVELOPMENT PROCESS

At that time, Microsoft's Applications division used a type of sched-
ule that seemed reasonable on paper but that in practice demoralized
teams and created a situation in which the strongest motive was to hit
deadlines at the expense of all else—including product quality. Of
course, at the time nobody thought of it that way because the problems
weren't apparent. It took Microsoft several years—a round of product
cycles for its applications—to realize the problems inherent in the sched-
uling system it was using.

Once the problems with the scheduling system became apparent,
the process was tossed out, and a more humane scheduling system was
brought in. Still, that was a costly learning experience for Microsoft, and
I'll describe that experience so that others don't follow the same mis-
taken path. I'll also describe the scheduling process that many groups at
Microsoft have moved to and that I have found to work quite well.

ON A PROJECT LONG, LONG AGO. ..
My primary reason for joining Microsoft back in 1986 was to work on
high-quality Macintosh applications. I was assigned to Microsoft Excel,
then Microsoft's latest entry into the Macintosh market. By any measure,
working on Excel should have been exciting for me. It met all of my
criteria: it was a serious Macintosh application, it was a highly visible
application, and users loved it. Even better, Microsoft wasn't about to go
belly-up, so I knew that the product would have a long life. I could get
the Macintosh experience I wanted and have an influence on one of the
industry's most promising applications.

Working on Excel was exciting at first, but after several months the .
work had become dull and then finally just plain aggravating. The Excel
project should have been a dream project. It didn't make sense that I
should find it so aggravating, but other team members were aggravated
too, and so were programmers I knew who were working on other
Microsoft projects. The problem wasn't the people we worked with, nor
was it the work setting—Microsoft's environment was the best I'd expe-
rienced, hands down, in 10 years of computer industry work, and I
know the aggravated team members and programmers on other
Microsoft projects felt that way too. No, the aggravation was a side

92

5 SCHEDULING MADNESS

effect of the type of project schedules Microsoft had begun using right
around the time I joined up.

In the projects I'd worked on before I joined Microsoft, the team
members had been excited by the work, and the dominant feeling had
been enthusiasm over how much better the product was getting with
each passing day. The Excel project never felt that way. Although we
regularly improved the product, we were bombarded perpetually with
the message that we were slipping. I was slipping, he was slipping,
everybody was slipping, the project was slipping! The focus wasn't on the
quality or even the quantity of our work: it was on the schedule.

In Chapter 1,1 mentioned weekly status reports that had the effect
of regularly slapping the programmers in the face. Those reports were
just one aspect of the demoralizing scheduling process Microsoft was
using back then. Besides writing those weekly status reports, the team
members had to meet each week with the testing and documentation
teams for a general discussion of how we'd slipped that week. We'd
learn that the writers were stopped cold because the programmers had
slipped and that the testers were sitting on their hands because the pro-
grammers had slipped. All?we talked about was slipping.

I think even worse than the status reports and those awful status
meetings was the project task list. Each week the Excel lead would use
the latest round of status reports to update the master task list. Then
he'd distribute the updated master list to each team member. Nothing
wrong with that. But the first item you'd notice on the cover page would
be the chart showing exactly how much each team member had slipped
that week and how much the project as a whole had slipped. The chart
didn't explain that you'd slipped because you'd had to tackle several
unlisted but nevertheless required tasks that hadn't been anticipated
back when the schedule had been created. Upper management would
get these reports, see that you'd slipped yet again, and demand to know
what was going on. Slap! Slap! Slap! It was not pretty in those days.

After the sting had lessened a bit, you'd turn to subsequent pages
of the master task list and see what seemed like thousands of unfinished
items. Worse, the list would be almost identical to the one you'd seen the
week before. Here we were, working our hardest, and almost nothing
seemed to be getting done. It was like that joke, "How do you eat an

93

DEBUGGING THE DEVELOPMENT PROCESS

elephant? . . . A bite at a time." The task list was our elephant, and it
seemed as if we'd never finish eating it.

The focus was so much on the schedule's deadline that no matter
how solid our work was we couldn't feel any sense of accomplishment.
Quite the contrary: we were overwhelmed by the feeling we were so far
behind that even with our best efforts we couldn't make any headway. It
wasn't the nature of the work that was the problem; it was the apparent
hopelessness of the position we were in.

Until that Excel project, I'd never seen how destructive a schedule
can be to morale. What should have been my dream job felt like a night-
mare. We were constantly slipping our schedule, but we weren't goofing
off. The reality was that the project's schedule was hopelessly unrealis-
tic. The schedule made these assumptions, for instance:

* That all tasks—for a two-year project—were known and
listed on the schedule

* That each week each programmer would complete 40 hours'
worth of the tasks listed on the schedule

* That all task estimates were completely accurate

* That all features would be implemented perfectly, without
bugs

The world's most accomplished programming team couldn't have
met a schedule based on those assumptions—unless, that is, they had
regularly worked 80-hour weeks from the outset to compensate for all
the unforeseen tasks, inaccurate estimates, and bugs, to say nothing of
the meetings, reports, interviews, and e-mail that steal hours each week.
The schedule also failed to account for the 10 legal holidays each year
and for each programmer's two-week vacation each year. For a two-year
project, that was analmost-tivo-team-months scheduling error. The sched-
ule was doomed to slip.

Never allow the schedule to drive the
project or to demoralize the team.

94

5 SCHEDULING MADNESS

Just Following Standard Procedure
I want to emphasize that the Excel lead didn't intend to create a demor-
alizing situation. He was following the accepted scheduling process,
and he later even adjusted the 40-hours-per-week assumption to ac-
count for meetings and other regular but unscheduled tasks—some-
thing that some leads on other projects would never do. Nor do I believe
the schedule was intentionally designed to extract 80-hour work weeks
from the programmers, although that was the result and is perhaps
the source of Microsoft's reputation for working people hard. I believe
the schedule was a sincere attempt to accurately predict and track
progress. After all, what makes more sense than using the sum of the
estimates for all known tasks to derive a scheduled "done date"? Of
course, nobody believed the task list was complete or that all the esti-
mates were accurate, but that didn't stop people—particularly upper
management—from treating the derived "done date" as though it were
realistic. In time, most Microsoft groups scrapped these task-list-driven
schedules for a type of schedule that was more successful and that I'll
describe later in the chapter.

PRIMING THE PUMP
You've probably heard at least one lead say, "If you want the team to
work hard, you have to give them an aggressive schedule." I think all
leads believe that to some degree—I certainly do. The question is, how
aggressive is "aggressive"? If aggressive means making the schedule
challenging enough that it drives the project forward at a reasonable
clip, that's fine; but if aggressive means unattainable, such a schedule can
only demoralize the team as slip-hysteria sets in.

A schedule should be aggressive enough to instill a sense of ur-
gency in the programmers, to help them stay more focused on the
important work. Think about your own situation. If you were taking off
for a three-week vacation tomorrow, would you work at the same pace
today that you normally would? My guess is that you'd work much
smarter today than you usually do. You'd probably focus squarely on

95

DEBUGGING THE DEVELOPMENT PROCESS

getting all high-priority items out of the way—no long chats in the halls,
no time spent on unimportant e-mail or news, no unnecessary meetings.
That's the sense of urgency in action—better focus.

At Microsoft, the same sense of urgency develops whenever a final
ship date nears. The lead typically sends out an e-mail message similar
to this one:

We' re nearing our ship date, so we need to be particu-
larly careful about how we use our time. Everybody's time
is valuable now--we' re all working toward this one final
goal. Think twice before calling a meeting. Think twice
before bothering somebody with a question you could
easily look up yourself. If you come across an unexpected
task, don't assume that somebody else is going to take
care of it; they're just as busy as you are. Don't keep
a private to-do list of tasks that you'll get around to
"eventually." There is no "eventually." Tell me about
every pending task so that we can decide whether the task
is critical for this release. If you find yourself with
nothing to do. don't kick back because you think you're
done. Unless the team is done, you're not done. I could
go on, but you're all smart. You ' ve all got brains. You
know if you're wasting time.

Whenever I see a notice like this one (they get passed to other groups
periodically), my question is, shouldn't the team be working that way all
the time?

"Geez, Steve, that sounds pretty awful. I thought you said in the
last chapter that you weren't a 'nose to the grindstone' kind of lead." I'm
not. If you look at the essence of that message, you'll see that it says,
"Don't do business-as-usual. Work smarter-than-usual. Question every
task to prevent wasting time, be careful about wasting other people's
time, and take an active role in moving the product forward." That's
what I've been saying all along. The language in the e-mail is harsh be-
cause the lead wants to convey in one message what I've had the luxury
of spending a few chapters on.

If you felt pressed for time, would you conclude a meeting with
"George, find out about such and such, and we'll meet again to make a
final decision"? I doubt it. When people are pressed for time, they don't
put tasks off—they either kill those tasks or handle them immediately.

96

5 SCHEDULING MADNESS

Do you think a team would crackle with energy if they didn't have
a sense of urgency? Imagine a team with so much time to spare that they
could arrive each morning, put their feet up, and mull over every aspect
of their project. Such contemplation can be rewarding, and the findings
can certainly be valuable, but would the team be filled with energy and
enthusiasm? Would the project be exciting? Somehow I doubt it, just as I
doubt that a slow exchange of ideas can be as exciting as a rapid-fire
brainstorming session. I believe that for a team to get on a creative roll,
you have to pump energy into the process. The sense of urgency—time
pressure—is one source of that energy.

Make sure your schedules are attainable
but aggressive enough to keep team members

focused on steady progress.

HOW MUCH IS TOO MUCH?
Can you pump too much urgency into a situation? Sure. If the schedule
starts to look unattainable, you risk having team members start to make
stupid decisions. I've worked with programmers who felt so swamped
they stopped testing their code. If the code compiled and didn't blow up
the first time they ran it, they moved on. Those programmers knew they
weren't doing quality work, but they felt they had no choice, given the
pressure of the schedule. They crossed their fingers and prayed that the
testing team would catch any bugs that slipped through.

As a lead, you must keep your eye on the decisions people make
under schedule pressure and remind people, when you have to, that hit-
ting the deadline is rarely so critical that they should jeopardize the
product with ill-conceived designs, slapped-together implementations,
or untested code. Missing a deadline will hurt the project once, but bad
designs and implementations will haunt the product forever—unless
someone further down the line decides to use valuable time to rewrite
all the sloppy code.

97

DEBUGGING THE DEVELOPMENT PROCESS

Never allow team members to jeopardize
the product in the attempt to hit what might

be, after all, an arbitrary deadline.

THE WIN-ABLE SCHEDULE
A win-able schedule is one that benefits both the company and the de-
veloper. As I've pointed out, the schedule must be aggressive enough to
get the product out the door but attainable enough to allow the develop-
ers to feel they have time to do what you and they believe is best for the
product. Another essential aspect of a win-able schedule is that it em-
phasize the progress made by the team, creating situations in which the
team can have "wins."

Do you remember that elephantine Excel task list I talked about
earlier in this chapter, the one that stayed the same size from week to
week? For almost two years I would routinely arrive at work each day
and knock a few tasks off that huge list. How much urgency do you
think I felt as I chipped away at features for a deadline two years away?
I can tell you: not much. In fact, the project didn't begin to feel urgent
until practically the last couple of months, when the deadline was in
plain sight.

Maybe you've heard the saying that a goal without a deadline is
just a wish. It's the deadline that pumps energy into the development
effort and gets people to scrap the dreary procedures of business-as-
usual in favor of more effective strategies. We had a deadline for the Ex-
cel project, but that deadline was so far out that it had no power to ignite
the team. We might as well have said, "Someday we'll ship Excel."

Without exception, every exciting project I've worked on has had
deadlines much closer than Excel's two-year release date. It's not that
the projects weren't large and didn't undergo development over a long
period of time—they were and they did—but they were broken up into
smaller subprojects, each with its own deadline, and the deadlines were
spaced roughly two months apart. The result was that each subproject
had an attainable near-term deadline that promoted the sense of urgency
and each contributed to our feeling of progress as we completed it. We
didn't ship every two years. We "shipped" every two months.

98

5 SCHEDULING MADNESS

Thankfully, most Microsoft teams have moved to some form of this
milestone-scheduling since the days when I worked on that Excel
project. But using milestone-scheduling isn't enough. If you were to take

Arbitrary Deadlines
In my experience, most deadlines are arbitrary, either derived from the
list of known tasks or simply handed down from above: "Thou shalt
ship on June 11, or else." If you agree to a deadline, you should try to hit
it, but the fact that you or upper management has set a date doesn't
mean that the date is a priority that overrides quality. The date is too ar-
bitrary. Think about your own project. If you missed the ship date by a
month, what would the long-term impact on the company be? Would
anyone even care six months later? But suppose, instead, that you hit
your deadline and shipped your code with bugs and ill-conceived fea-
tures. Which would affect your product more, a slightly late release date
or an onslaught of bad product reviews?

Unless your code has to be functional by a date that simply can't be
changed—say, the arrival of Halley's Comet after a long 76 years—your
release date is probably not so critical that you must hit it at all costs. If
your not having a piece of equipment ready for a scheduled space
shuttle launch would cost your company millions of dollars, it would
probably be better to cut functionality and focus on getting all the bugs
out of the remaining code than to send all the code aloft and have the
equipment crash the first time the astronauts try to use it.

Of course, this discussion makes it sound as if it takes more time to
do things right. In my experience, it takes less time to do something the
right way. You do spend more time up front as you set goals and priori-
ties, think through designs and implementations, create test suites, and
set quality bars, but you save a lot of time later. Think about it. Which
would be more valuable, writing test suites at the start of the project or
at the very end? It's that simple. When other teams are working 80-hour
weeks, scrambling to whittle down their huge bug-lists, your team can
have almost no bugs and spend the last few weeks of the project cycle
adding ever more thorough checks to the test suites and debug code just
to find that one, last, unknown bug.

99

DEBUGGING THE DEVELOPMENT PROCESS

Excel's two-year task list and merely chop it into two-month chunks,
you wouldn't change anything—you'd still have a two-year schedule,
but now with artificial "ship" dates every two months. It's not the two-
month period alone that creates the wins and fosters enthusiasm. It's the
thrill of finishing an interesting subproject.

"Finishing all top-priority items" may be important, but the top-
priority items don't make up a subproject. They're just a random list of
things that happen to be important. There's no motivating theme behind
such a list.

"Implementing the charting subsystem" is a subproject. All of the
tasks that would be involved would relate to that common theme. You
might use a task list to remind people of the known charting issues
they'd have to handle, but ultimately the theme of the subproject would
drive development. The goal wouldn't be for the team to finish 352
unrelated tasks. The goal would be to do everything necessary to fully
complete—to "ship"—the charting subsystem, regardless of whether
the tasks it would take were on a list somewhere. The subproject would
be in "ship mode" from the outset.

Think of it this way: if you were throwing a dinner party and you
went to the store for groceries, would you search only for the party items
you'd thought to write down on your shopping list, or would you view
that list as the "known items" you need for the party and walk the store
aisles thinking "What else do I need? What have I forgotten? There must
be something I haven't thought of..." Wouldn't you also have a sense of
urgency? That's the difference between trying to fulfill a goal—"Get
everything I need for my party"—and merely checking off items on a list
of unrelated tasks.

Remember that typical e-mail message from the lead as a ship date
nears? The emphasis is on wrapping everything up, especially all loose
ends. When people focus on a task list, the question they ask themselves
is "What's next on my list?" When they focus on a subproject, the
question is usually quite different: "What else needs to get done?" The
focus is on searching out and handling every task related to the sub-
project.

Any milestone without a theme ends up having to be driven by a
task list because, without a theme, you need such a list in order to know
what you're supposed to do.

inn

5 SCHEDULING MADNESS

Break long-term projects into shorter,
well-defined subprojects.

The Wow! Factor
One way to view the difference between improving the product with
unrelated high-priority tasks and completing specific subprojects is to
look at your house as if you were going to remodel it. Which updates
would have more impact: newly painted trim in one room, a new light
fixture in another, a new end table in the living room, and so on, or the
living room completely transformed—new paint, new carpet, new fur-
niture, and new art on the walls? When you release a subproject, you get
the "living room effect." Internal users, beta testers, upper manage-
ment—in fact, everybody who fires up the code—thinks Wow! when
they see what's been done. With the incremental task list approach,
people notice a change here, a change there, but nothing major. That's
not bad, but why settle for low impact when you could get more?

Of course, the only difficulty lies in choosing subprojects that
present enough different aspects of the work that programmers won't be
stumbling over each other, all needing to work on the same source file.
I've never found this to be a difficult problem to solve, though.

Eliciting a Wow! can be a critical catalyst that gets a team going on
a creative roll.

ENHANCING THE Wow! EFFECT
A milestone goal such as "Finish all top-priority items" is just a mish-
mash of probably unrelated items. If the ship date for such a subproject
were threatened, the lead would be able to mask the problem by quietly
reprioritizing the tasks. That might allow the lead to look better, but it
would be a misleading and questionable way to go about things.

A more coherent milestone theme would be "Complete all features
that affect the visual display so that we can finalize screen shots for the

101

DEBUGGING THE DEVELOPMENT PROCESS

user manual." This milestone is better because it has a theme that's easy
to grasp and because it's easy to judge which tasks are appropriate. You
can point to any known task and instantly determine whether it affects
the visual display. Even better, if an unforeseen task crops up midway
through the milestone period, anybody on the team, no matter how
green, can easily determine whether it needs to be tackled or whether it
can be postponed until work on an appropriate subproject begins.

Often you can attack a major project in any of several ways. Use
that latitude to create subprojects-that will result in exciting conclusions,
to get that Wow! effect. When we were working on the Macintosh C/C++
cross development system, I broke the job up into these subprojects:

* Isolate all Intel 80x86-specific code in the compiler to enable
support for other processor types.

* Implement a bare-bones MC680xO code generator in the
compiler.

* Implement MC680xO assembly listing support in all tools.

* Implement MC680xO object file support in all tools.

* Link a single-segment application, and run it.

* Link a multi-segment application, and run it.

* Add code optimizations to the code generator.

*...

I chose these specific milestones and others because each,
according to my estimation, would take between one and two months to
complete, each was easy to understand, and, with the exception of iso-
lating the Intel 80x86 code, each had an exciting conclusion. Don't think
we didn't hoot and holler the first time we had code generation working
or when we first saw the generated code dumped on the screen in proper
assembly language format. We cheered when we linked and ran our first
test application and especially when, after adding some basic optimiza-
tions, we realized that the compiler was already generating code compa-
rable to code from the two leading Macintosh compilers on the market.

It was exciting!

102

5 SCHEDULING MADNESS

Don't Forget the Details
Of course, none of the milestone descriptions was as simple as the one-
liners for the cross development system I listed on the opposite page.
"Link a single-segment application and run it" doesn't provide enough
detail. The actual milestone statement was more specific:

We should be able to copy an arbitrary single-file Macintosh pro-
gram into a build directory, rename the file test.c, and type make.
The program should compile without problems, the object files
should link without problems, and the executable should transfer
automatically to the Macintosh over a cable that connects the
Macintosh with the development machine. Then, on the Macintosh,
we should be able to double-click on the new file and run the code
without problems.

From this more detailed description, you can see that we had to
handle all the loose ends in the compiler project, including support for
the Macintosh-specific C-language extensions such as \p Pascal strings,
Pascal-compatible calling conventions for use in call-back routines,
ROM traps, 4-character 'longs for resource types, and so on. We had to
modify the 80x86 linker to support MC680xO code and to create
Macintosh-formatted executables. We had to write the runtime startup
code, some C library code, and the code to support the transfer mecha-
nism between the PC development machine and the target Macintosh.
There was a lot of stuff to do.

You won't always achieve such aggressive milestone goals. We
didn't for this particular milestone, but we came close. Supporting some
of the Macintosh C-language extensions required changes to the front
end of the compiler, and a different team was in charge of that code. At
the time, they were frantically putting the final touches on their own re-
lease and didn't have time enough to do that work, much less ours, nor
did they want us mucking around in their code. We got those changes
after their release. You take what you can get.

103

DEBUGGING THE DEVELOPMENT PROCESS

I could have organized the project so that all high-priority work
was done first, followed by secondary work, and so on, but the sub-
projects would have been quite different, and they almost certainly
wouldn't have been accompanied by the Wow! effect.

To keep the subprojects challenging (and realistic), we didn't use a
simple "hello world" test application. That would hardly have exercised
the compiler, the linker, and the other tools. We used a. small but fully
functional public domain Macintosh program. Because we used a real
application, we not only saw that the compiler was truly viable but were
also forced to handle numerous final-detail issues that a simpler pro-
gram wouldn't have raised. In task list scheduling, handling such
details would have been relegated to the end of the whole project, but
the thought of seeing the real-life Macintosh application run spurred the
team on, and what could have been boring final-detail work later turned
into work we wanted to do—and quickly.

Granted, it can be quite disturbing to upper management if he or
she doesn't understand that you're using this thematic method of sched-
uling. It will seem as though you're throwing darts to choose which
tasks to do rather than picking the highest-priority tasks.

To foster creative rolls, make sure
that each subproject results in an

exciting conclusion.

THE BEST-CASE DATE
People often forget that the purpose of the schedule is to estimate a
completion date given the tasks known at the time. Such a date is not a
commitment in the sense that you must hit it at all costs; rather, the date
is a good-faith estimate of when the known tasks could be done, with
the understanding that there are usually plenty of unknown tasks. In
short, the schedule predicts a best-case ship date, not the ship date. That
may not be what upper management wants to hear, but it's reality. Using
milestone scheduling instead of task-list-driven scheduling helps to
bring the best-case date in line with a realistic ship date, but milestone
scheduling isn't perfect either.

5 SCHEDULING MADNESS

As a lead, you must protect your product by emphasizing to your
team that product quality is more important than hitting an arbitrary
deadline. Remember the lesson from this chapter:

The surest way to mismanage a project and jeopardize the product
is to put so much emphasis on the schedule that it demoralizes
the team and drives them to make stupid decisions despite their

better judgments.

1 certainly believe that you should try to hit every deadline you
commit to, but keep that "best-case date" idea in mind. That way, if you
find yourself about to make a bad decision just to hit that best-case date,
maybe you'll stop yourself before any serious damage can be done.

HIGHLIGHTS

The schedule can have a devastating effect on a project if it
creates slip-hysteria and causes team members to make bad
trade-offs in order to hit arbitrary deadlines. If you create a
schedule that has unattainable goals—in hopes of extracting
as much overtime as you can get out of each developer—
you're creating a situation that will demoralize the team.
Once the team members feel they're in a hopeless position,
you're going to get anything but optimum work from them,
and once the project is finished—maybe sooner—they're go-
ing to look elsewhere for work.

By using project milestones instead of task lists to schedule,
you can shift the focus to completing subprojects, which cre-
ates "wins" for the team and emphasizes progress. If you
space the milestones at roughly two-month intervals, you can
create a sense of urgency that will help people stay focused,
particularly if the milestones have strong, exciting themes.
Try to create milestone subproject goals that result in the
team's thinking "Wow! Look at what we've accomplished!"
As they reach successive milestones, the team will have a
growing sense that their work is important and that they're

105

*

*

DEBUGGING THE DEVELOPMENT PROCESS

doing something valuable for the product's users. That sense
of contribution and the sense of value created can have a re-
markable influence, making a team pull together to put out a
great product—and have a blast doing it.

106

During this year's Winter Olympic Games, I was struck by one aspect of
the figure skating events. The television footage of earlier gold medal
performances seemed to suggest that 25 years ago you could win a gold
medal with a few layback and sit spins, a couple of double toe loops, and
a clean, graceful program. Today such a simple performance, however
pleasing to watch, wouldn't win a hometown skating championship.
Nowadays you must do at least three triple jumps, several combination
jumps, a host of spins, and lots of fancy footwork. On top of that, your
program must have style, or the scores for artistic impression will look
more like grade point averages than the 5.8s and 5.9s you need to win
the gold.

At one point in the TV coverage, the commentator mentioned that
Katarina Witt planned to skate the same program with which she had

107

DEBUGGING THE DEVELOPMENT PROCESS

won the gold medal six years earlier at the Calgary Olympics. He added
that it was unlikely Ms. Witt would place near the top even if she gave a
clean performance—the very best programs only six years ago simply
weren't demanding enough for competition today.

Think about that. Are skaters today actually better than the skaters
of a quarter century ago? Of course, but not because Homo sapiens has
evolved to a higher state of athletic capability. Some of the improve-
ments in today's performances, I'm sure, are a result of better skates and
ice arenas. But the dominant reason for the improvement is that each
year skaters raise their standards as they try to dethrone the latest
national or world champion. Skaters 25 years ago could have included
all those triple and combination jumps in their routines, but they didn't
need to, so they didn't stretch themselves to master those feats.

In the book Peopleware, Tom DeMarco and Timothy Lister describe
a similar difference in standards of performance among programmers
who work for different companies. DeMarco and Lister conducted
"coding wars" in which they gave a programming task to two program-
mers from every company participating in one of the contests. They
found that the results differed remarkably from one programmer to the
next, at times by as much as 11 to 1 in performance. That disparity is
probably not too surprising. The surprising news is that programmers
from the same company tended to produce similar results. If one did
poorly, so would the other. Likewise, if one did well, both did well, even
though the two programmers were working independently. DeMarco
and Lister point out that the work environments at the companies could
account for some of the difference in performance among the compa-
nies, but I believe the major reason for the 11 to 1 variance is that the
acceptable skill level for the "average programmer" varies from one
company to the next.

When was the last time you heard a lead say to a programmer, "I'm
disappointed in you. You're doing just what you're expected to do"?
Whether a company is aware of the phenomenon or not, its program-
mers have an average skill level, and once a programmer reaches that
average level, the pressure to continue learning eases up even though
the programmer might still be capable of dramatic improvement. The
programmers are like those ice skaters 25 years ago—good enough. And

108

6 CONSTANT, UNCEASING IMPROVEMENT

leads tend not to spend time training people who are already doing their
job at an acceptable level. They work with people who haven't yet
reached that level.

Having a team of programmers who do what is expected is not
good enough. An effective lead perpetually raises the standards, as
coaches for Olympic-class skaters must do. As you raise the program-
ming standards of your team, you'll ultimately raise the standards—the
average—of your whole company.

FIVE-YEAR TENDERFEET
Occasionally I'll run across a programmer who after five or more years
still works on the same project he or she was first assigned to. No prob-
lem with that, but in many cases I find that the programmer is not only
on the same project but also doing the same job. If the programmer was
assigned to the Microsoft Excel project to work on Macintosh-specific
features, for instance, that's what he'll still be doing—as the specialist in
that area. If the programmer was assigned to the compiler's code
optimizer project, years later she'll still be working on that isolated
chunk of code—again, as the specialist.

From a project standpoint, creating long-term specialists for spe-
cific parts of your product is a good idea, but creating specialists can
backfire if you don't educate them wisely. You'll cripple those program-
mers and ultimately hurt your project and your company if you don't
see to it that your specialists continue to learn new skills.

Suppose that Wilbur, a newly hired programmer, spends his first
year becoming your file converter specialist and then spends the next
four years writing filters to read and write the file formats of competing
products. There's no question that such work is important, but Wilbur
will have gained a year's worth of real experience and then tapered off,
learning little else for the next four years. Wilbur would claim that he
has five years of programming experience, but that would be mislead-
ing—he would in fact have one year's experience five times over.

If Wilbur had spent the last four of those five years working on
other areas of the application, he'd have a much wider range of skills. If
he had been moved around to work on different aspects of a mainstream

109

DEBUGGING THE DEVELOPMENT PROCESS

Windows or Macintosh application, for instance, he would have had an
opportunity to develop all of this additional know-how:

* How to create and manipulate the user interface libraries—
the menu manager, the dialog manager, the window man-
ager—and all of the user interface gadgets you'd create with
those libraries.

* How to hook into the help library to provide context-sensitive
help for any new dialogs or other user interface extensions he
incorporates into the application.

* How to use the graphics library to draw shapes, plot bit
maps, do off-screen drawing, handle color palettes, and so on,
for display devices with various characteristics.

* How to send output to printers, achieving the highest quality
for each device, and how to make use of special features
unique to each device, such as the ability of PostScript print-
ers to print watermarks and hairlines.

* How to handle international issues such as double-byte
characters, country-specific time and date formats, text orien-
tation, and so on.

* How to handle the issues related to running an application in
a networked environment.

* How to share data with other applications, whether the task is
as simple as putting the data on the system clipboard or as
complex as using the Windows Dynamic Data Exchange
library or the Object Linking and Embedding library.

* How to write code that will work on all the popular microcom-
puter operating systems—MS-DOS, Windows, Windows NT,
OS/2, and the Macintosh.

*

You get the idea. These skills are easily within the grasp of any pro-
grammer who works on a Windows or Macintosh application for five
years—provided that every new task contains an as-yet-unlearned
element that forces a programmer to learn and grow.

110

6 CONSTANT, UNCEASING IMPROVEMENT

Compare the two skill sets. If you were to start a new team, which
Wilbur would you want more, the five-year file converter specialist or
the Wilbur with one year's experience in writing file converters plus
four more years' experience with the varied skills in the list? Remember,
both Wilburs have worked for five years...

A lead's natural tendency when assigning tasks would be to give
all the file converter work to Wilbur because he's the specialist in that
area. It's not until the Wilburs of the world threaten to leave their projects
for more interesting work that leads switch mental gears and start throw-
ing new and different tasks their way.

But "if the specialists aren't doing the tasks they're expert in,
wouldn't they be working more slowly on tasks they know less about?"
Or to put it another way, "Don't you lose time by not putting the most
experienced programmer on each task?"

If you view the project in terms of its specific tasks, the answer
must be Yes, each task is being done more slowly than it could be done
by a specialist. However, that little setback is more than compensated
for when you look at the project as a whole. If you're constantly training
team members so that they're proficient in all areas of your project, you
build a much stronger team, one in which most team members can
handle any unexpected problem. If a killer bug shows up, you don't
need to rely on your specialist to fix it—anybody can fix it. If you need to
implement a new feature in an existing body of code, any of many team
members can efficiently do the work, not just one. Team members also
know more about common subsystems, so you reduce duplicate code
and improve product-wide design. The entire team has versatile skill sets.

Your team may be losing little bits of time during development as
they learn new skills and gain experience, but for each minute they lose
learning a new skill, they save multiple minutes in the future as they use
that skill again and again. Constant training is an investment, one that
offers tremendous leverage and tremendous rewards.

Don't allow programmers to stagnate.
Constantly expose each team member

to new areas of the project.

ill

DEBUGGING THE DEVELOPMENT PROCESS

REUSABLE SKILLS
At Microsoft, when a novice programmer moves onto a project, he or she
is typically given introductory work such as tracking down bugs and in-
corporating small changes here and there. Then gradually, as the pro-
grammer learns more about the program, the tasks become increasingly
more difficult, until the programmer is implementing full-blown mega-
features. This gradualist approach makes sense because you can't very
well have novices making major changes to code they know nothing
about. My only disagreement with this approach is that the tasks are
assigned according to their difficulty rather than according to the
breadth of skills they could teach the programmer. As you assign tasks
to programmers, keep the skills-teaching idea in mind. Don't assign suc-
cessive tasks solely on the basis of difficulty; make sure that each task
will teach a new skill as well, even if that means moving a novice pro-
grammer more quickly to difficult features. Even better, assign tasks at
first that teach skills of benefit not only to your project but to the whole
company.

In a spreadsheet program, for instance, tasks might range from
implementing a new dialog of some sort to working on the recalculation
engine. The skills a programmer would learn from these two tasks fall at
two extremes: one skill has nothing to do with spreadsheets specifically,
and the other historically has little use outside spreadsheet program-
ming. Putting a programmer on the recalculation engine would be educa-
tional and would provide a valuable service to the project, but the skill
wouldn't be as transferable as knowing how to implement a dialog would
be. Learning how to create and manipulate dialogs could be useful in
every project the company might undertake.

Creating a better "average programmer" means raising the stan-
dard throughout the company, not just on your project. You could assign
programmers a random variety of tasks and ensure that team members
would constantly learn, but you can do better than that. Analyze each
task from the standpoint of the skills it calls upon, and assign it to the
programmer who most needs to learn those skills. An experienced pro-
grammer should already know how to create dialogs, manipulate
windows, change font sizes, and so on. She is ready to develop less glo-
bally useful—more specialized—skills such as the ability to add new

112

6 CONSTANT, UNCEASING IMPROVEMENT

macro functions to the spreadsheet's macro language. At some point,
she'll know the program so well that in order to continue learning she'll
have to move to extremely project-specific work such as implementing
an even smarter recalculation engine.

A novice team member should be assigned a few tasks in which he
must learn to create dialogs, followed by a few tasks that force him to
manipulate windows, and so on. Deliberately assign tasks that cumula-
tively require all the general skills. That way, if the division should be
reorganized and the programmer should find himself on another
project, the skills he's learned will still be useful.

This is another example of a small system that produces greater re-
sults. Which specific work you assign to a novice programmer may not
make much difference in the progress of your own project, but by first
exposing a new programmer to a wide range of general skills that he or
she can bring to any project, you make the programmer more valuable to
the company.

When training programmers, focus first
on skills that are useful to the entire company
and second on skills specific to your project.

GIVE EXPERTS THE BOOT
If you constantly expose a team member to new tasks that call for new
skills, he or she will eventually reach a point at which your project no
longer offers room to grow. You could let the programmer's growth stall
while your project benefited from his or her expertise, but for the benefit
of the company, you should kick such an expert off your team. If you al-
low programmers to stagnate, you hurt the overall skill level of the com-
pany. You have a duty to the programmers and to the company to find
the programmers positions in which they can grow.

Am I joking? No.
The tendency is to jealously hold onto the team's best program-

mers even if they aren't learning anything new. Why would you want to
kick your best programmer off the team? That would be insane. . .

113

DEBUGGING THE DEVELOPMENT PROCESS

In Chapter 3,1 talked about a dialog manager library that the Word
for Windows group had been complaining about. Although I wasn't the
lead of the dialog manager team then, I did eventually wind up in that
position. And there came a point at which the main programmer on the
team had reached a plateau: he wasn't learning anything new within the
constraints of that project. Besides, he was tired of working on the same
old code. He needed to stretch his skills.

When I asked whether he knew of any interesting openings on other
projects, he described a position in Microsoft's new user interface lab in
which he would be able to design and implement experimental user in-
terface ideas. In many ways, it seemed like a dream job for the program-
mer, so I talked to the lab's director to verify that the job was a good
opportunity for this programmer to learn new skills. The position looked
great. In less than a week, the dialog team's best programmer was gone,
leaving a gaping hole.

In these situations, you can either panic or get excited. I get excited
because I believe that gaping holes attract team members who are ready
to grow and fill them. Somebody always rises to the occasion, experienc-
ing tremendous growth as he or she fills the gap. The dialog team's gap
proved to be no different. Another member jumped headlong into the
opening.

Occasionally I'd bump into the lab director and ask how the project
was going. "Beyond my wildest dreams," he'd say. "We're accomplish-
ing more than I ever imagined or hoped for." He had been expecting to
get an entry-level programmer, but he'd gotten a far more experienced
programmer, and his group was barreling along.

The dialog manager group with its new lead programmer was bar-
reling along too. The new lead had just needed the room to grow, room
that had been taken up by the expert programmer.

You might think that kicking your best programmer off the team
would do irreparable harm to your project. It rarely works out that way.
In this case, the dialog team experienced a short-term loss, but the com-
pany saw a huge long-term gain. Instead of a slow-moving user inter-
face project and two programmers who had stopped growing, the
company got a fast-moving user interface project and two programmers
who were undergoing rapid growth. That outcome shouldn't be too
surprising. As long as its people are growing, so is the company.

114

6 CONSTANT, UNCEASING IMPROVEMENT

Don't jealously hold onto your best program-
mers if they've stopped growing. For the good
of the programmers, their replacements, and
the company, transfer stalled programmers to

new projects where growth can continue.

The Cross-Pollination Theory—Dismissed
Occasionally I'll run across the idea that companies should periodically
shuffle programmers around so that they can transfer ideas from one
project to another. It's the cross-pollination theory.

The cross-pollination theory appeals to me because its purpose is
to improve development processes within the company, but in my expe-
rience the cross-pollination practice falls short of its goal, and for a
simple reason: it ignores human nature. Advocates of the theory assume
that programmers who move to brand-new groups will teach the new
groups the special knowledge they bring with them. But how many
people feel comfortable doing that in a new environment? And even if a
programmer would feel comfortable as an evangelist, how many groups
would appreciate some newcomer's telling them what they should do?
A new lead might feel fine propounding fresh ideas hours or days into
the project, but nonleads? It might be years, if ever, before a programmer
would feel comfortable enough to push his or her ideas beyond a narrow
work focus.

Advocates of the cross-pollination theory assume that new people
bring new knowledge into the group. In fact, that's backwards from
what actually happens: new people don't bring their knowledge into the
new group as much as they get knowledge from the new group. New
people find themselves immersed in different, and possibly better, ways
of doing things. And they learn. The primary benefit is to the person do-
ing the moving. If that person can continue to grow on his or her current
project, why cause disruption? Let the people who are stagnating move
to other teams and learn more. Don't shuffle people around to other
teams expecting them to spread the word. They usually won't.

115

DEBUGGING THE DEVELOPMENT PROCESS

THE NEW YEAR' s SYNDROME
Not all skills can be attained in the course of doing well-chosen project
tasks. A skill such as learning to lead projects must be deliberately pur-
sued as a goal in itself. The person must decide to be a good lead and
then take steps to make it happen. It's proactive learning, as opposed to
learning as a side effect of working on a task.

If you want your team members to make great leaps as well as take
incremental daily steps to improvement, you must see that they actively
pursue the greater goals.

The traditional approach to establishing such goals is to list them
as personal skill objectives on the annual performance review. We all
know what happens to those goals: except for a few self-motivated and
driven individuals, people forget them before the week is over. Then
along comes the next review, and their leads are dismayed to see that
none of the personal growth goals have been fulfilled. I think we've all
seen this happen—it's the New Year's Resolution Syndrome, only the
date is different.

Such goals fall by the wayside because there are no attack plans for
achieving them or because, if there are such plans, the plans have no
teeth—just as those postmortem plans I spoke of in Chapter 4 had
no teeth. Listing a goal on a review form with no provision for how it
will be achieved is like saying "I'm going to be rich" but never deciding
exactly how you're going to make that happen. To achieve the goal,
you need a concrete plan, a realistic deadline, and a constant focus on
the goal.

One way to ensure that each team member makes a handful of
growth leaps each year is to align the personal growth goals with the
two-month project milestones. One goal per milestone. That practice en-
ables team members to make six leaps a year—more if there are multiple
goals per milestone.

Improvement goals don't need to be all-encompassing. They can be
as simple as reading one good technical or business book each milestone
or developing a good habit such as stepping through all new code in the
debugger to proactively look for bugs. Sometimes the growth goal can
be to correct a bad work habit such as writing code on the fly at the
keyboard—the design-as-you-go approach to programming.

116

6 CONSTANT, UNCEASING IMPROVEMENT

Read Any Good Books Lately?
I read constantly to gain new knowledge and insights. Why spend years
of learning by trial and error when I can pick up a good book and in a
few days achieve insights that took someone else decades to formulate?
What a deal. If team members read just six insightful books a year, imag-
ine how that could influence their work. I particularly like books that
transform insights into strategies you can immediately carry out. That's
why I wrote both Writing Solid Code and this book as strategy books. But
mine are hardly the first. The Elements of Programming Style, by Brian
Kernighan and P. J. Plauger, was first published in 1974 and is still valu-
able today. Writing Efficient Programs, by Jon Bentley, is another excellent
strategy book, as is Andrew Koenig's C Traps & Pitfalls for C and C++
programmers.

In addition to these strategy books, there are dozens of other excel-
lent—and practical—books on software development, from Gerald
Weinberg's classic The Psychology of Computer Programming to the much
more recent Code Complete, by Steve McConnell, which includes a full
chapter on "Where to Go for More Information," with brief descriptions
of dozens of the industry's best books, articles, and organizations.

But don't limit yourself to books and articles that talk strictly about
software development. Mark McCormack's What They Don't Teach You at
Harvard Business School, for instance, may focus on project management
at IMG, his sports marketing firm, and Michael Gerber's The E-Myth
may focus on how to build franchise operations, but books like these
provide a wealth of information you can apply immediately to software
development. And don't make the mistake of thinking that such books
are suitable only for project leads. The greenest member of the team can
benefit from such books.

117

To ensure their personal interest in achieving such goals, I encour-
age team members to choose the skills they want to pursue, and I merely
verify that each goal is worth going after:

* The skill or knowledge would benefit the programmer, the
project, and the company. Learning LISP could be useful to an
individual, but for a company such as Microsoft, it would be
as useful as scuba gear to a swordfish.

DEBUGGING THE DEVELOPMENT PROCESS

* The goal is achievable within a reasonable time frame such as
the two-month milestone interval. Anybody can read a good
technical book in two months. It's much harder to become a
C++ expert in that short a time.

* The goal has measurable results. A goal such as "becoming a
better programmer" is hard to measure, whereas a goal such
as "developing the habit of stepping through all new code in
the debugger to catch bugs" is easy to measure: the program-
mer either has or hasn't developed the habit.

* Ideally, the skill or knowledge will have immediate useful-
ness to the project. A programmer might acquire a worth-
while skill, but if he has no immediate use for the new skill,
he's likely to lose or forget what he's learned.

Such a list keeps the focus on skills that are useful to the individual, to
his or her project, and to the company—in sum, it focuses on the kinds of
skills a programmer needs in order to be considered for promotion. If
the programmer can't think of a skill to focus on, choose one yourself:
"What additional skills would this programmer need for me to feel com-
fortable about promoting him or her?"

Make sure each team member learns
one new significant skill at least

every two months.

Train Your Replacement
Programmers don't usually choose to pursue management skills unless
they have reason to believe they're going to need those skills. Find the
people who have an interest in becoming team leads, and help them
acquire the skills they'll need to lead teams in the future. And remember,
unless you plan to lead your current team forever, you need to train
somebody to replace you. If you don't, you might find yourself in a
tough spot, wanting to lead an exciting new project and unable to make
the move because nobody is capable of taking over your current job.

118

6 CONSTANT, UNCEASING IMPROVEMENT

IN THE MOMENT
A particularly good approach to identifying skills for your team mem-
bers to develop is to set a growth goal the moment you see a problem or
an opportunity. When I spot programmers debugging ineffectively, I
show them a better way and get them to commit to mastering the new
practice over the next few weeks. When a programmer remarks that she
wants to learn techniques for writing fast code, I hand her a copy of Jon
Bentley's Writing Efficient Programs and secure her commitment to read-
ing it—and later discussing it. If I turn up an error-prone coding practice
as I review some new code, I stop and describe my concern to the pro-
grammer and get him to commit to weeding the practice out of his
programming style.

I'm big on setting improvement goals in the moment. Such goals
have impact because they contain a strong emotional element. Which do
you think would influence a programmer more: showing him code he
wrote a year ago and asking him to weed out a risky coding practice or
showing him a piece of code he wrote yesterday and asking him to weed
out the practice? ,

I once trained a lead who would search me out every time he had
a problem. He'd say, "The WordSmasher group doesn't have time to
implement their Anagram feature, and they want to know if we can help
out. What should we do?" The lead came to me so often that I eventually
concluded he wasn't doing his own thinking. When I explained my feel-
ings to him, he replied that he always thought through the possible solu-
tions but didn't want to make a mistake. That was why he was asking
me what to do. I pointed out that his approach made him seem too de-
pendent and that we needed to work on the problem.

I understood the lead's need for confirmation, so I told him to feel
free to talk to me about problems as they arose, on one condition: instead
of dumping the problem in my lap, he was to

* Explain the problem to me.

* Describe any solutions he could come up with, including the
pros and cons of each one.

* Suggest a course of action and tell me why he chose that
course.

119

DEBUGGING THE DEVELOPMENT PROCESS

Once the lead began following this practice, my perception of him
changed immediately and radically. On 9 out of 10 occasions, all I had to
do was say, "Yes! Do it." to a fully considered plan of action. The few
times I thought a different course of action made sense, I explained my
rationale to him, we talked it over, and he got new insights. Sometimes I
got the new insights. We'd go with his original suggestion if my solution
was merely different and not demonstrably better.

This improvement took almost no new effort on either his part or
mine, but the shift in his effectiveness was dramatic. We went from a
relationship in which I felt as if I were making all his decisions to one
in which I was acknowledging his own good decisions. My attitude
changed from "this guy is too dependent and doesn't think things
through" to "this guy is thoughtful and makes good decisions." His atti-
tude changed too, from being afraid to make decisions to knowing that
most of his decisions were solid. It didn't take too many weeks for our
"What should I do?" meetings to all but disappear. He consulted me
only for truly puzzling problems for which he couldn't come up with
any good solution.

What caused this dramatic change? Was it a major revamping of
this person's skills? No, it was a simple change in communication
style provoked by my realization that he had become too dependent. A
minor change, a major improvement.

Take immediate corrective action
the moment you realize that an

area needs improvement.

AFTER-THE-FACT MANAGEMENT
Note that I gave that lead on-the-spot feedback and a goal he could act
on immediately. I didn't wait for the annual review. I don't believe the
annual review is a good tool for planning personal improvement or
achievement goals. In my experience such a delayed response to prob-
lems isn't effective—at least not unless the annual review also contains
detailed attack plans for the goals. Another problem with using the

120

6 CONSTANT, UNCEASING IMPROVEMENT

annual review for improvement goals is that few leads are able to effec-
tively evaluate anyone's growth over such a long period of time.

We've all heard stories about the review in which the manager
brings up a problem with the programmer's performance that has never
been mentioned before to justify giving the programmer a review rating
lower than the programmer expected. In shock, the programmer stam-
mers, "Can you give me an example of what you're talking about?" The
manager stumbles a bit and comes up with something, that, yes, the pro-
grammer did do, or failed to do, but which sounds absurdly out of pro-
portion in the context of the programmer's performance for the whole
review period. "You've given me a low rating because of that?" Of
course, it sounds ridiculous to the manager too, so she scrambles to
come up with another example of the problem but usually can't because
so much time has passed.

Then, of course, once the programmer leaves the meeting and has
time to think about the review a bit, his or her reaction is anger. "Why
didn't she tell me something was wrong, rather than waiting a year?
How could I have fixed something I didn't even know was wrong?"

I've lost track of the number of times I've heard people say that
about their managers.

What if professional football teams worked that way? What if
coaches waited until the end of the season to tell players what they're
doing wrong?

"Mad Dog, I'm putting you on the bench next season."
"Huh? What? I thought I played great," says Mad Dog, confused.
"You played well, but at each snap of the ball, you hesitated before

running into position."
"I did?"
"Yes, you did, and that prevented you from catching as many

passes as you could have. I'm putting you on the bench until something
changes. Of course, this means that your yearly salary will drop from
$5.2 million to $18,274. But don't worry, you'll still have your benefits-
free soft drinks and hot dogs at the concession stand, and discounted
souvenirs."

Mad Dog, particularly mad now: "If you spotted this, why didn't
you tell me earlier? I could have done something about it."

"Hey, I'm telling you now, at our end-of-the-season contract
review."

121

DEBUGGING THE DEVELOPMENT PROCESS

Sounds pretty silly, doesn't it? But how does it differ from the way
many leads make use of the annual review?

Remember the lead I felt was too dependent and was not thinking
things through? The common approach at most companies would be to
wait until the end of the review period and note the problem on the re-
view document:

Relies too much on other people to make his decisions;
doesn't take the time to think problems through.

Then, of course, after the confused exchange at the review meeting,
the attack plan to fix the problem would be something like this:

I won't rely on other people to make my decisions for me;
I'll think my problems through.

That attack plan won't be effective because it is too vague. The plan
doesn't describe what the person is to do, how he is to do it, or how to
measure the results—the plan has no teeth. In all likelihood, the problem
will still exist a year later, at the next review.

Personnel reviews, as I've seen them done, are almost totally
worthless as a tool to promote employee growth. Don't bother with the
new goals part of the review. Actively promote improvement by seizing
the moment and aligning growth goals with your project milestones.
Use the formal review to document employee growth during the review
period—that's what upper management really needs to see anyway.
Listing areas in which people could improve doesn't really tell upper
management much. Documenting the important skills that people have
actually mastered and how they applied those skills demonstrates con-
stant growth and gives upper management something tangible with
which to justify raises, bonuses, and promotions.

Don't use the annual personnel review to set
achievement goals. Use the review to document

the personal growth goals achieved during
the review period.

122

6 CONSTANT, UNCEASING IMPROVEMENT

THOROUGHLY KNOWLEDGEABLE
Most of the interviews I conducted at Microsoft were with college stu-
dents about to graduate, but occasionally I interviewed a working
programmer who wanted to join Microsoft. At first I was surprised to
find that the experienced programmers who came from small, upstart
companies seemed, in general, more skilled than the experienced
programmers from the big-name software houses, even though the pro-
grammers had been working for comparable numbers of years. I believe
that what I've been talking about in this chapter accounts for the differ-
ence. The programmers working for the upstart companies had to be
knowledgeable in dozens of areas, hot expert in one. Their companies
didn't have the luxury of staffing 30-person teams in which each indi-
vidual could focus on one primary area. Out of necessity, those pro-
grammers were forced to learn more skills.

As a lead—even in a big outfit that can afford specialists—you
must create the pressure to learn new skills. It doesn't matter whether
you teach team members personally or whether they get their training
through books and technical seminars. As long as your teams continue
to experience constant, unceasing improvement, the "average program-
mer" in your company will continue to get better—like those Olympic-
class skaters—and that can only be good for your project, for your
company, and ultimately for your customers.

HIGHLIGHTS

Never allow a team member to stagnate by limiting him or
her to work on one specific part of your project. Once pro-
grammers have mastered an area, move them to a new area
where they can continue to improve their skills.

Skills vary in usefulness from those that can be applied to any
project to those that can be applied to only one specific type
of project. When you train your team members, maximize
their value to the company by first training them in the most
widely useful skills and save the project-specific skills
for last.

123

*

*

DEBUGGING THE DEVELOPMENT PROCESS

* It's tempting to hold onto your top programmers, but if they
aren't learning anything new on your project, you're stalling
their growth and holding the company's average skill level
down. When a top programmer leaves the team for a new
position, not only does he or she start growing again, but so
does his or her replacement. A double benefit.

* To ensure that the skills of the team members are expanding
on a regular basis, see that every team member is always
working on at least one major improvement goal. The easiest
approach is to align growth goals with the two-month mile-
stones, enabling at least six skill leaps a year—which is six
more per year than many programmers currently experience.
If Wilbur, the file converter specialist, had read just 6 high-
quality technical books a year, after his first five years of
programming he'd have read 30 such books. How do you
suppose that would have influenced his work? Or what if
Wilbur had mixed the reading of 15 good books with the
mastery of 15 valuable skills over that first five years?

* The best growth goals emerge from a strong, immediate need.
If you find a team member working inefficiently or repeating
the same type of mistake, seize the opportunity to create a
specific improvement goal that the team member can act on
immediately. Because such on-the-spot goals lend themselves
to immediate action for a definite purpose, the programmer is
likely to give them more attention than he would give to ab-
stract goals devised for an annual review.

124

In Chapter 6,1 emphasized how important it is that you work with team
members to improve their skills and knowledge. Exposing team members
to new kinds of tasks promotes incremental learning, and getting the pro-
grammers to read books and develop new coding habits makes for even
more impressive results. But the most profound improvements come
about when a team adopts new attitudes about how to develop products.

BUGGY ATTITUDES
As I said in Chapter 1, the job of the professional programmer is to write
useful, bug-free code in a reasonable time frame. A key point in that idea
is that the code be "bug-free." Unfortunately, writing bug-free code is
hard. If it weren't, everybody would write bug-free code.

125

DEBUGGING THE DEVELOPMENT PROCESS

One pervasive attitude in programming shops is that bugs are
inevitable and there's not much you can do about them except to fix
them when they show up. While common, that attitude is completely
wrongheaded. Programmers can make great strides toward writing
bug-free code, but it requires extra effort, effort that programmers won't
willingly make until they internalize the attitude that writing bug-free
code is critical to product development.

One simple—and obvious—technique I use to catch an entire class
of bugs is to turn on the compiler's optional warnings, the ones that
display an error message for correct, yet probably buggy, code. For
example, many C compilers have an optional warning to catch this
common mistake:

if (ch = tab_char) /* Note single = sign. */

The code above is perfectly correct C code, yet it contains a bug that
the compiler can detect. The tab character is being assigned to ch when
what the programmer intended was to compare the tab character to ch:

if (ch == tab_char) /* Note double = sign. */

Enabling just one commonly supported compiler warning would
allow the compiler to flag all such erroneous assignment bugs, yet I've
worked with many programmers who absolutely refuse to use that
option. The programmers feel that the warning interferes with writing
code because the compiler gives them a warning even when they inten-
tionally make an assignment in an if statement, forcing them to rewrite
their code. Instead of writing

if (ch = readkeyboardO)
process character typed by the user

which would generate a warning, they would have to make a slight
change, having to write either

ch = readkeyboardO:
if (ch != nul_char)

process character typed by the user

126

7 IT'S ALL ABOUT ATTITUDE

or the more terse

if «ch = readkeyboarcK)) != nul_char) ,
process character typed by the user

Neither of the two work-arounds would generate any additional
object code because both simply make the test against the nul character
explicit instead of implicit. And to most C programmers, either of the
work-arounds is as clear as the original code—possibly more so if a pro-
grammer is reading the code quickly.

But some programmers are adamant. They refuse to use optional
compiler warnings. "I should be able to write code any way I want,"
they say. "The compiler should never issue a warning for perfectly legal
code." Given the intensity with which some programmers talk about
this issue, you'd think I was suggesting that they give up their desktop
PCs and go back to using punch cards.

This issue points up a difference in programmer attitudes toward
bugs. Since I habitually use the compiler work-arounds, I never get
warnings unless I've actually created a bug by mistake—and I want to
know when I've made such a mistake. To me, being able to find bugs
easily is far more important than what I view as an inconsequential style
change. Programmers who refuse to enable any compiler warnings, it
seems to me, are more concerned with personal expression than with de-
tecting bugs. If those programmers aren't willing to make such minor
changes, what are the odds of their making more critical changes?
Would they adopt the team-wide or company-wide naming or coding
style? Would they agree to give up favorite but error-prone coding
tricks? Would they even entertain the idea of stepping through all their
new code in a debugger to detect implementation bugs at the earliest
possible moment?

Yes, writing bug-free code takes effort, effort that programmers
won't make unless their attitude is that bugs are simply unacceptable.

On my own projects, I review every reported bug, keeping an eye
out for bugs that should have been caught by someone's using the
project's unit tests or stepping through the code with the debugger. Any
programmer who allows such bugs to get into the master sources needs
more training—he or she is failing to meet the quality bar.

127

DEBUGGING THE DEVELOPMENT PROCESS

Novice programmers tend to give up far too early because they
have the basic attitude that their code probably doesn't contain bugs:

I'm done because the code compiles without error and appears to
run correctly.

Novice programmers have that attitude because they haven't yet been
caught over and over again by overflow and underflow bugs, signed
and unsigned data type bugs, general type conversion bugs, precedence
bugs, subtle logic bugs, and all the other bugs that go unnoticed when
novices read code in the editor and that show up only for special cases
when they run their code—cases they haven't yet learned to test for.

Fix Bugs Early
The primary reason I push hard for programmers to step through their
code the moment they write it and to run their unit tests is that it takes so
much less time than letting even a single bug slip by and find its way
into the product's master sources.

The moment a bug makes it into the master sources, it not only
hurts the product but costs everyone huge amounts of time. The pro-
grammer on her end has to stop working on features and track down the
bug, apply a fix, test the change (we hope), and report the bug as fixed.
Back to Testing. Since a bug was found, the testers must retest the entire
feature to ensure that the fix works and that the fix hasn't broken any-
thing else. Then they must write a regression test for the bug. If the re-
gression test can't be automated, a tester must manually verify that the
bug has not returned in every future testing release.

Compare all that effort expended on a single bug to the effort it
would take for the programmer to step through the code and run the
unit test before ever merging the feature into the master sources. If the
programmer finds the bug before sending the feature to Testing, none of
that protracted effort I just outlined is necessary. That's why I say that
it's so much cheaper for programmers to find their bugs before the test-
ing team ever sees the code.

128

7 IT'S ALL ABOUT ATTITUDE

Experienced programmers who consistently have low bug rates
have learned that they're more likely to find Bigfoot slurping ice cream
at the local Baskin-Robbins than they are to write bug-free code. Unlike
the novices, such experienced programmers assume that their code
probably does contain bugs:

Until I find all the unknown bugs in this code, I'm not done.

It might seem that with such an attitude, programmers could go
overboard in testing their code, but I've yet to see that happen. Anybody
who is smart enough to write programs realizes when he or she is wast-
ing time on redundant tests. Somebody smart enough to write programs
doesn't always realize, though, when he or she isn't testing thoroughly
enough. It's hard to know that you've forgotten to test a unique
scenario or two.

Be sure programmers understand that
writing bug-free code is so difficult that
they can't afford not to use every means

to ditect and prevent bugs.

RESISTING EFFORT
One question I regularly ask as I review both designs and implementa-
tions is "How error-prone is this design or implementation?" I look for
weaknesses and try to judge how risky the code would be to modify.
When I find a weakness, I take steps to overcome it, by either changing
the design to get rid of the weakness or introducing debug code into the
program to monitor the implementation for trouble.

I once reviewed a new feature that had been implemented using a
large table of numbers. I like table-driven implementations, as a rule,
because they're usually concise and less prone to errors, but they do
have a weakness in that the data in the table could be wrong. I pointed
this weakness out to the programmer who had implemented the code
for the feature and asked him to add some debug code to validate the

129

DEBUGGING THE DEVELOPMENT PROCESS

table during program initialization. Without thinking, the programmer
blurted, "Writing that code will take too much time!"

Klaxons blared. Red lights flashed. Flares went skyward.
Those alarms went off because that programmer committed what

I consider to be a fundamental error in intelligent decision making: he
didn't ask himself whether my request made sense. Instead, he pounced
on how much extra time he thought writing the debug code would take.

That programmer's first response should have been "Does the re-
quest make sense?" His second response should have been "Does it
fulfill the project goals and coding priorities?" The question whether the
task would take too much time or effort should have come third in the
order of evaluation.

After the programmer had calmed down, I explained my objec-
tions to his decision-making strategy and asked him to start evaluating
requests according to the order of questions I've described:

* Does adding the debug code make sense?

* If so, does adding the debug code fulfill the goals and coding
priorities of the project?

* Finally, is adding the debug code important enough to justify
the time that will have to be spent doing it?

After we stepped through this evaluation process, the programmer—
still reluctant—agreed to implement the debug code.

Thirty minutes later he came into my office, having added the de-
bug code to the program, and showed me three potential problems in the
table that the debug code had flagged. Two of the problems were obvious
bugs—once they had been pointed out. The third problem was confusing:
neither he nor I could see the bug the debug code was reporting. We
thought at first that the debug code itself might have a bug, causing an
invalid report. But if the debug code was buggy, that bug wasn't obvious
to us either. We pondered the suspected bug for nearly 10 minutes before
we finally realized that the data in the table was indeed wrong. That bug
was hard to spot even though the debug code pointed right at the errone-
ous table entry. Imagine how hard the bug would have been to spot
without the debug code to lead us to it.

That programmer learned two valuable lessons that day. First, that
it's still worthwhile to add debug support to code you already think is

130

7 IT'S ALL ABOUT ATTITUDE

bug-free. And second, that the first reaction to any proposal should
never be "That will take too much time" or its disguised sibling, "That's
too hard (and would therefore require too much time)."

Watch out for and correct the "it's too much
work" reaction. Train programmers to first

consider whether the task makes sense
and whether it matches up with the project

goals and priorities.

CAN'TTITUDE
I've worked with many programmers—and project leads—who hardly
ever hit upon new ideas or employ new development strategies because
they shut down their thought processes before they ever get started.
Have you ever been at a meeting in which some poor soul proposed a
new idea only to be bludgeoned by the others with all the reasons the
idea couldn't possibly wo*k, with how impossible it would be to get up-
per management to agree, or simply with the bald "You can't do that! It's
never been done before!"

This "can't attitude"—can'ttitude—is so destructive to creativity
and problem solving that I try to discourage it whenever I run across it.
I have a rule—and in this case it is a rule—that nobody on my teams is
allowed to say that something can't be done. They can say it would be
"hard" or that it would "take tons of time," but they can't say "can't."
My reason:

When somebody says that something can't be done, he or she is
usually wrong.

I learned long ago to disregard most claims that you can't do such
and such. More often than not, the person who says that hasn't given
one iota of thought—at least not lately—to whether you really can't. Yes,
of course, you can come up with hundreds of hypothetical, and absurd,
situations in which something can't be done—getting all 2704 known
bugs fixed by noon tomorrow, for instance. But usually when people

131

DEBUGGING THE DEVELOPMENT PROCESS

make suggestions that get shot down with can'ts, the suggestions aren't
absurd; if they were, the people wouldn't have proposed them.

Whenever you hear somebody say that something can't be done,
ask yourself whether that person seems to have given any real thought
to the question. If you know the person has, consider whether his or her
evaluation is dated. Things change, especially in our industry. Maybe
what couldn't have been accomplished last year can be accomplished
fairly handily now—particularly if the proposal revolves around a size
or speed trade-off. There was a time, after all, when people maintained,
"You can't do a graphical user interface. It would take tons of memory
and be unbearably slow." That was once true. Now it's not.

Sometimes it's a political or administrative matter that meets with
the can't resistance. Microsoft leads will tell you that you can't give
back-to-back promotions or a raise bigger than the biggest allowed, but
I've done both of those things in exceptional circumstances. Was it easy?
Definitely not. I had to go out of my way to prove that what I was asking
for was in the best interest of the company. I was successful because
what I asked for made sense, despite corporate policy. Those accom-
plishments weren't impossible to achieve, just hard.

Many times people latch onto the "can't be done" attitude simply
because whatever you're talking about is outside their experience.

In 1988, when we were nearing completion of Microsoft Excel 1.5
for the Macintosh, upper management was already talking about the 2.0
release. The plan was that the Macintosh team would continue to port
features from the Windows version of Excel, implementing look-alike
features when the Windows Excel code couldn't merely be swiped and
reworked to fit. Having spent two years doing just such work, I wasn't
thrilled with the idea. I felt there were too many problems with that ap-
proach. Despite their external similarities, there were numerous differ-
ences between Excel for Windows and Excel for the Macintosh because
they were, in fact, two different bodies of code. I also felt that Excel for
the Macintosh would never be on a par with its Windows sibling. The
Windows product was already considerably more powerful than the
Macintosh product, and their team was larger than ours—a recipe for
ever-widening feature disparity and incompatibility.

There was also a serious problem with the Macintosh implementa-
tion. Because of a design decision that had a pervasive influence on the

132

7 IT'S ALL ABOUT ATTITUDE

code, the Macintosh application couldn't use more than 1 MB of RAM.
Even worse, the code had to reside in the first I MB of RAM. Users were
complaining loudly—why couldn't Excel use the other 7 MB of RAM in
their systems? Outrageous!

Programmers at Apple Computer discovered Excel's predilection
for low memory addresses as they were developing MultiFinder, their
then-new multitasking operating system. The Apple programmers had
designed MultiFinder to load applications from the top of memory
down, but they discovered that Excel wouldn't work unless it was
loaded at the very bottom of memory. Around their shop, Excel became
known as "the application afraid of heights." To get Excel and
MultiFinder to work together, Apple's programmers included special
code in MultiFinder to look for and accommodate Excel, uniquely load-
ing it into low memory. And they asked Microsoft to work on Excel's
acrophobia, a phobia that had already been "cured" in the Windows ver-
sion of the product. In fact, the Windows Excel team had done a line-by-
line rewrite of the product and fixed numerous problems, with the
result that their code far surpassed the Macintosh code in quality and
maintainability.

When I looked at the 2.0 development plan to rip out Macintosh
Excel's guts to fix the 1-MB problem and to port as many Windows Excel
features as possible, I saw that the Macintosh team members would be
spending all their time duplicating work that the Windows team had
long ago completed. And we'd still end up with a somewhat incompat-
ible and far less powerful product than theirs. That seemed like a big
waste of time to me.

Why not instead, I thought, expend half as much energy to create a
multi-platform version of Excel from the existing Windows sources? I'd
spent years writing multi-platform code before joining Microsoft, so I
knew what the challenges were in writing such code, and I couldn't see
any reason why the Windows Excel code couldn't be modified to sup-
port the Macintosh. If we took that approach, I reasoned, the Macintosh
product—being built from the same code—would be just as powerful as
the Windows product and fully compatible. The 1-MB memory restriction
would disappear, and instead of having to invest in the full develop-
ment effort that would otherwise be required, Microsoft would be able

133

DEBUGGING THE DEVELOPMENT PROCESS

to create future Macintosh releases at a fraction of the previous develop-
ment cost.

When I talked to upper management about scrapping the 2.0 devel-
opment plan in favor of creating a multi-platform version of Excel, they
asked me to take a week to review the Excel for Windows sources and
write an attack plan proposal for the work.

A week later, after I had released the attack plan to upper manage-
ment and both Excel teams, I was taken aback by all the objections to
what I proposed. Even though the attack plan was straightforward,
people focused on all the problems they felt couldn't be overcome. I
was surrounded by can'ttitude.

"Maguire is dreaming," said one programmer. "Windows and the
Macintosh are just too different," said another. A third said, "Assuming
we could create a multi-platform product, it would ruin Excel. The code
would be too slow and too fat and wouldn't take advantage of the
unique features of each platform." Still another said, "We don't have the
time now. We should wait until after the next release"—as if there would
be time then. One person even threatened to quit the company if we
chose to take on the amount of work he thought it would take.

I had been expecting the plan to be wholeheartedly embraced. I got
an education that day. I learned that fear of the unknown can affect even
the best and most self-assured development teams.

A few days later, the Excel teams met with upper management,
there was a vote—the only vote I ever saw at Microsoft—and the plan
was shot down. There would be no multi-platform product, and work
on Macintosh Excel 2.0 would go ahead as planned.

I was still reeling from the decision when we got word that Bill
Gates, Microsoft's CEO, had read the proposed attack plan and thought
that the multi-platform approach made sense. The work was on.

The team went on to do the multi-platform work in just eight
months. And the application never fell prey to all those early concerns
people had expressed. It's true that a few operations were a bit slower in
the multi-platform version of Excel than in the original Macintosh ver-
sion, but the slowdown was the result of lifting the 1-MB restriction, not
of the multi-platform work. The product's speed would have been af-
fected by the lifting of the restriction either way.

134

7 IT'S ALL ABOUT ATTITUDE

The Excel programmers were rightly proud of their accomplish-
ment, and many went on to help other Microsoft project teams implement
multi-platform code.

Don't let can'ttitude discourage
innovation.

Don't Bring Me Problems! Bring Me Solutions!

The problem with can'ttitude—if there's enough of it—is that people
stop speaking up when they see an opportunity for innovation, or
worse, when they see a problem that needs to be fixed. Sadly, some
project leads go out of their way to shut down people who would other-
wise raise valid concerns. Have you ever been at a meeting in which
somebody raised a problem and the lead barked back, "Don't bring up
any problem you don't know how to solve—it wastes our time"?

Unfortunately, that approach leads team members to clam up until
they can think of solutions for the problems they've noticed. A program-
mer could spot a serious problem affecting development but, not know-
ing how to solve the problem, might never bring it up for fear of getting
a crushing and humiliating response.

Leads who insist that team members can't bring up any problems
they don't know how to solve should instead realize that all problems
need to be raised regardless of whether there is a known solution. Would
you want a worker at a nuclear plant to clam up because she didn't
know what to do about the green goo she found leaking from a critical
part of the reactor? Of course not. She might not know how to handle the
goo, but somebody else on the reactor team probably would know or
would certainly be motivated to find a solution quickly.

Why should development teams be run any differently? Even if the
person who brings up the problem doesn't have a solution, somebody
else on the team might be able to come up with one. Problems that aren't
brought up are problems that don't get solved.

135

DEBUGGING THE DEVELOPMENT PROCESS

IT'S GOOD ENOUGH FOR USERS
Occasionally I'll run into a programmer who thinks he or she is unique
in requiring things from a product that mere users don't need.

One time I asked a programmer to demonstrate an important fea-
ture he had just completed. He launched the application and began
showing me how the feature worked. The feature looked sharp, except
that it seemed sluggish.

"Are you running the debug version of the code?" I asked, thinking
that debug code must be responsible for the poky response.

"No, this is the ship version." He went on demonstrating.
"Have you thought about how to speed things up?"
"What do you mean?"
"I mean, don't you think the code is a bit slow?"
"Well, I wouldn't like it, but it'll be OK for the users."
I was shocked. "What makes you so different from the users? Espe-

cially in this case, when the users are other programmers just like you?"
1 have never understood why some programmers think that users—

whether they're other programmers or gourmet pasta shop owners—are
any less concerned about speed and other aspects of quality than the
programmer who wrote the code.

I'd argue that end users are more particular about speed and other
aspects of quality since they actually use the features, whereas the pro-
grammers who write the code often don't. Do you think the program-
mers working on Microsoft's FORTRAN compiler use FORTRAN when
they write code? Do the programmers who worked on Word's Mail
Merge feature ever use that capability? What about Excel's macro lan-
guage? Dozens of programmers have extended the macro language
over the years, but how many have ever written their own user-defined
macros? I'm not saying that all of these programmers are guilty of the
gross disregard for the user expressed by that earlier programmer. That
simply isn't so. My point is that programmers routinely implement code
that they themselves never have occasion to use. Think about your own
project. Do the programmers on your team actually use the code they
write?

When programmers don't use the code they write, it's easy for
them to distance themselves from the end user. This distancing may

136

7 IT'S ALL ABOUT ATTITUDE

account for the occasional programmer who thinks that end users are
bozos who aren't concerned about speed and other aspects of software
quality—at least not to the same degree that the programmer himself
would be.

To keep the end user in mind, programmers should measure their
work against this reminder—you might want to put it on a large banner
you hang over the entrance to your building:

The end user is at least as concerned about speed and other aspects
of software quality as the programmer who implements the code.

We all know that some users don't care much about the quality of
the programs they use, as long as they aren't prevented from getting

Usability
When Microsoft first began conducting usability studies in the late 1980s
to figure out how to make their products easier to use, their researchers
found that 6 to 8 out of 10 users couldn't understand the user interface
and get to most of the features. When they heard about those findings, the
first question some programmers asked was "Where did we find eight
dumb users?" They didn't consider the possibility that it might be the
user interface that was dumb.

If the programmers on your team consciously or unconsciously be-
lieve that the users are unintelligent, you had better correct that atti-
tude—and fast. Consider two teams, one on which the programmers
believe that users are probably intelligent, discerning consumers and
another on which the programmers assume that users are essentially
dumb. Which team is more likely to take users' complaints seriously and
act on them to improve the software? Which team is more likely to ask
users for their opinions about new features that would improve the prod-
uct? Which of the two teams is going to consistently put out a product
that fits the users' needs? On the other hand, which team is more likely to
ignore users' complaints and instead waste time on features that the users
don't need or want? The basic attitude the team adopts toward the users
can make a great difference in the quality of the product.

137

DEBUGGING THE DEVELOPMENT PROCESS

their jobs done. But if you want to ship great products, you can't target
those unfussy people. You must target the users who do care whether a
program is slow or quirky or contains bugs that can make it crash.

Don't let programmers believe that
users don't care as much about software

quality as programmers do.

BEWARE THE SUBSTANDARD FEATURE
I used to have the attitude that it was better to give the user a painfully
slow feature, or an overly restrictive one, than to cut the feature and give
the user nothing at all. "At least the user will have something between
now and when we ship the more polished version in the next release,"
I'd reason. Eventually it dawned on me that users weren't aware of the
choice I'd made—giving them something, even of substandard quality,
over giving them nothing at all. Users, I realized, open the box, run the
program, and see only that they've gotten another poorly implemented
feature. "Why does it always take them two releases to get things right?"
they wonder.

I've seen this reaction often enough now that rather than trying to
give the user something, I cut any feature that doesn't meet the quality
bar. Users rarely miss what they've never had, but if you give them a fea^
ture they feel is unpolished or frustrating to use, they're liable to think
less of the whole program. If you give them several such features, they
might start looking at your competitor's product.

It pains me to say this, but if a feature doesn't meet your quality
bar, consider cutting it, even if it seems as if it could be a useful feature.
Wait until the next release, and do it right. If the feature is so strategic
that you feel you must ship it, it's also probably worth slipping your
ship date to do it right.

Don't ship substandard features.
Postpone them until you can implement

them properly.

138

7 IT'S ALL ABOUT ATTITUDE

THE SENSITIVE PROGRAMMER
In Chapter 1,1 described a situation in which a lead for a Windows-like
user interface library had never bothered to view the library as one of
the library's "customers" would. The lead had never considered the
possibility that a library that wasn't backwards compatible would be
frustrating to its users. I've seen this lack of appreciation for the users'
perspective so many times that it's worth talking about.

When the Windows Excel team was rewriting parts of the applica-
tion so that it would work on the Macintosh, one programmer was
implementing keyboard-driven menus, a capability many business
users were asking for that the Macintosh operating system didn't offer.
Macintosh users were required to use the mouse. Since there was
no Macintosh standard for keyboard-driven menus to follow, the pro-
grammer implemented Windows-style keyboard-driven menus to mini-
mize the user interface differences between the Windows and Macintosh
versions of the product. When the programmer finished the feature, he
called me into his office to demonstrate his new creation. The menus
looked just as they did in Windows. I was impressed.

"Wow!" I said as I played with the menus. When the excitement
wore off, I turned to the programmer: "How do I disable the Windows
interface?"

"Why would you want to do that?" he said, puzzled. "The feature
doesn't interfere with the Macintosh mouse-driven interface. There's no
reason to disable the interface."

I was surprised by the programmer's response because, at the
time, you couldn't pick up a Macintosh-oriented magazine that wasn't
full of hatred for Windows. Macintosh users were upset that the indus-
try was raving about Windows, which they considered a third-rate
product, and that their beloved Macintosh was viewed as a whimsical
toy. Windows was the archvillain to Macintosh users everywhere.

"If Excel ships with Windows-style menus as the default," I said,
"it'll alienate Macintosh users. Excel will get killed in reviews if it has
'Windows' written all over it."

The programmer was reluctant to change his code—he'd been
thinking he was done and was eager to move on to the next feature. We
called over some other team members to talk about the interface. The

139

DEBUGGING THE DEVELOPMENT PROCESS

consensus was unanimous: Excel for the Macintosh not only had to look
like a Macintosh product right out of the box but had to bleed Apple's
six colors as well. The programmer went back to work.

A while later the programmer emerged from his office, offering to
demonstrate his new version of the feature. I was surprised to see that
he hadn't merely added an on/off switch for Windows-style menus. He
had implemented a smart feature in which the menus were drawn in
standard Macintosh format by default but were redrawn as Windows-
style menus the moment the user hit the lead-in key for keyboard-driven
menus. The menus remained in Windows mode until they were dis-
missed; then reverted to Macintosh-style menus. Even better, the pro-
grammer responsible for implementing the new Macintosh dialogs
carried the feature into that code as well. When you invoked a dialog
using the mouse, you got a standard Macintosh dialog; when you in-
voked a dialog by means of a Windows-style menu, the dialog came up
with the Windows-style interface. The best of both worlds.

Be sure that programmers always view
the product as an end user would.

Programmers must be sensitive to the
end user's perceptions.

THE WHOLE PRODUCT AND NOTHING BUT
For the longest time, Microsoft's Languages division—the division re-
sponsible for compilers, debuggers, linkers, and so on—viewed the
tools as separate, autonomous products. That made sense from a devel-
opment viewpoint, but it didn't make sense from an end user viewpoint.
Programmers who bought a Microsoft development system didn't care
whether the compiler and debugger development teams were different.
From their viewpoint, Microsoft C/C++, the debugger, and the linker
were parts of the same product. Pretty easy to understand.

Unfortunately, that wasn't the predominant attitude toward the
tools in the Languages division. Programmers, both external and inter-
nal, were asking for improved debugging features, but the debugging

140

7 IT'S ALL ABOUT ATTITUDE

team didn't have enough people to fill the requests. Meanwhile, the com-
piler team was merrily working on code optimizations that few people
were asking for. The mindset was "We've got to keep improving the com-
piler." It should have been "We've got to improve the overall product."

For years, Microsoft's linker was clunky, slow, and tedious to use
while competing products had fast linkers. Every programmer in the
company knew that Microsoft's linker crawled, but very little was done
to improve it. The one programmer assigned to the linker did his best to
improve the tool, but he had other duties and didn't have time to make
major speed improvements to the linker. Besides, the view in the Lan-
guages division seemed to be, it was the compiler that was important—
the linker was just a support tool. Users didn't see it that way, though,
because they didn't distinguish between the compiler and the linker. To
users, they were part of the same product.

At least one Microsoft team dumped the company's own linker
and used a competitor's linker. And in the Applications division, a pro-
grammer finally got so frustrated with the linker that he hacked to-
gether a quick and dirty incremental linker for the Applications teams to
use. The Languages group eventually discovered the Applications incre-
mental linker, cleaned it up a bit, and began shipping that linker with
retail releases of the compiler.

Eventually, after a few rounds of management change, the Lan-
guages group caught on and began improving the development system,
not just the compiler. The result was Visual C++, a product that review-
ers hailed as a refreshing, long-needed change to Microsoft's develop-
ment system.

The product is everything that
goes into the box.

DOUBLE MEANS TROUBLE
As the Excel programmer was writing his keyboard-driven menu code,
a Word programmer not more than ten doors away was implementing
the same feature in Word for the Macintosh. Although I pointed out this

141

DEBUGGING THE DEVELOPMENT PROCESS

duplicate effort to the Excel programmer and mentioned it to the man-
ager in charge of both Excel and Word, nothing happened. The two pro-
grammers continued to implement the code in parallel. When the
products eventually shipped, both sported keyboard-driven menus, but
the user interfaces were totally different. I saw that as a lost opportunity
to make the Excel and Word interfaces work identically, to save half the
development effort, and to create a menu library that Microsoft's other
Macintosh teams could have popped into their products. The attitude
wasn't so much "not invented here" as it was indifference. Nobody
seemed to be concerned that programmers were duplicating effort and
creating unnecessary differences between products.

I take the other approach to development effort: if I can reuse code
that has already been written and debugged, I'll grab it in an instant.
Similarly, I always write code assuming that some other team is going to
borrow it in the future. No, I don't write all my code so that it's portable,
nor do I spend extra time just in case the code might be reused. But if I'm
faced with the choice between two equally good designs, I always
choose the design that can be more easily shared.

In Excel's initial release, one of the programmers implemented a
feature never seen in a Macintosh application before: a "print preview"
feature that enabled the user to view pages on the screen formatted as
they'd actually be printed. The design for the print preview feature was
-straightforward. The "page viewer" would take a "picture" of a page
and then display it. If the user wanted to preview a full document, an-
other piece of code simply called the viewer to display pictures of suc-
cessive pages.

The feature was such a hit with users that the Macintosh Word
team added a print preview feature to their application, one with a
much nicer and more useful page viewer. The Word implementation
made Excel's look rough and unpolished. I was assigned the task of add-
ing many of Word's bells and whistles to the Excel version.

My first thought was to scrap the Excel print preview code and
transplant Word's implementation into Excel. Not only would trans-
planting take less time than implementing all the new code, I thought,
but transplanting the code would make the two applications look and
behave identically. When I explained to the Word programmer what I
intended to do, he told me that his implementation of the print preview

142

7 IT'S ALL ABOUT ATTITUDE

feature was inextricably tied to Word. He could have written the code to
be more shareable, he said, but it had never occurred to him that we
might want the code for the Excel project. After all, Excel already had a
print preview feature. Sadly, I couldn't use his polished page viewer.

In the end, I enhanced Excel's existing print preview code, but the
Word feature was still much nicer. Even more disappointing, because
Excel's code was shareable, its version of print preview was the version
that spread to Microsoft's other applications.

As I've said, one of the best ways to implement a solid new feature
is to grab it from a team that has already done the work of writing and
debugging the code. Most programmers appreciate this point. But most
programmers, it seems, fail to recognize that they can't grab code unless
they and other programmers write their own code so that it can be
grabbed.

To increase the value of their code to the company, programmers
should develop the attitude that all of their code is likely to be reused.
With that objective in mind, they should reduce the code's dependence
on the host application. It's a problem not unlike writing code to avoid
explicit references to global d|tta: sometimes it's necessary, but often by
using a slightly different design you can eliminate the explicit depen-
dence with little or no extra effort.

Programmers should ask,

Could this code be useful to other (even future) applications?

If the answer is Yes, the code is a candidate for reuse. Both the keyboard-
driven menus and the print preview feature could have been coded in an
application-independent way. Reusability just wasn't considered a pri-
ority. Too bad. It could have increased the quality of both Word and Ex-
cel, with half the effort.

143

Give some priority to writing easily
shared code. Programmers can't share

each other's code unless they're writing
it so that it can be shared.

DEBUGGING THE DEVELOPMENT PROCESS

LEVERAGE YOUR LEVERAGE ABILITY
If your team or company is to become successful, you have to ensure
that people understand the power of leverage, how a little well-placed
effort can yield a much greater return. Every team member should keep
this fundamental principle in mind:

You can extract extra value from every task you do by either using
existing leverage or creating new leverage.

The one example of this principle that all programmers know
about is reusing existing code or creating reusable code. But there are
many ways to use or create leverage.

In Chapter 6, I described how you could make employees more
valuable to the company by first teaching them skills they could use not
just on your project, but on any project. That's creating leverage. As far
as your project is concerned, the order in which you teach worthwhile
skills doesn't matter. The order in which you teach skills is unimportant
until a programmer moves to a new group. Then either the programmer
must start at square one because the skills he or she has learned so far
are worthless to the new group, or the programmer can leverage the
skills learned on the previous project because those skills are more glo-
bally useful.

As I've said, you can create leverage out of almost any task—you
just need to look for it and then exploit it. For example, during one of the
feature reviews for the user interface library, the technical lead handed
me his list of proposed library extensions. The functionality looked
good—it reflected what the other teams were asking for.

"This looks good," I told him. "But some of these interfaces seem to
differ from the way Windows does the same thing. Have you cross-
checked the functionality with the Windows reference manuals?"

The lead blew up. "Steve, this library isn't Windows. Who cares how
Windows does it as long as we provide the functionality in an intelligent
way? It seems like a waste to keep pulling out the Windows manuals."

He had a good point. I realized then that I had never explained to
him why I felt it was important to model Windows.

"Just so I'm sure I understand," I said, "you're saying that it
doesn't matter what our interfaces look like as long as they do their job

144

7 IT'S ALL ABOUT ATTITUDE

well. They could mirror Windows interfaces or be totally different. The
choice is arbitrary."

"Yeah," he nodded.
"Let me ask you a question. Since Word for MS-DOS uses our li-

brary, could a Windows programmer mistake Word's source code for a
Windows application if he or she didn't examine it closely?"

"Yeah, but it's not Windows code."
"Bear with me," I said. "More than 20 projects use our library. Do

you think the programmers working on those projects will stay on those
teams forever?"

"No. They'll probably switch to Windows projects."
"I think so too. So tell me, when those programmers switch to Win-

dows projects, how easily will they pick up Windows programming?"
"Pretty easily since our library is like a subset of Windows." You

could see the realization sweep across his face even as he said that.
"You mean, we're teaching them Windows programming?"
"And what does it cost the company?"
He thought a moment.
"Practically nothing, I guess—just my having to occasionally look

up some functions in die Windows reference manuals."
"Right. And here's something else to think about: How will this

Windows experience help you in the future? Will you be on this project
forever, or will you also eventually move to a Windows project?"

It might seem that you couldn't get leverage out of something as
simple as what you name your functions, but you can.

People don't often create new leverage because it calls for looking
into the future and making the grand leap of faith, believing that if you
create the leverage now, it will actually be used in the future. Will the le-
verage be used? Maybe not. But the business environment changes so
quickly that, to be healthy, a company should create opportunities that
can be exploited at a moment's notice. One truth I've seen proven over
and over again is this:

If you create leverage and make others aware of it, they will

someday exploit that leverage.

When I started the Macintosh cross development project, both the
Applications division and the Languages division viewed the work as an

145

DEBUGGING THE DEVELOPMENT PROCESS

in-house-only development system. My goal was to create a develop-
ment system as an extension of the commercial 80x86 product so that the
in-house Macintosh development system could continually inherit all
improvements made to the commercial product. That's an obvious case
of creating and using leverage, but I pushed for more. I believed that
other, non-Microsoft, programmers who were writing applications for
Windows would cross-compile those applications for the Macintosh if
they had a good—and familiar—cross development system at their dis-
posal. Most people thought I was crazy, but so what? I knew that if we
assumed that the cross development system would never be a product,
we'd make decisions inappropriate for a product. I also knew that if we
wrote the code assuming that it would someday be a product, we'd
make decisions that reflected that attitude.

In design meetings I would often point out that, yes, a particular
design was workable for an in-house solution but that we'd have to rip it
out and start over if Microsoft ever chose to ship the code as a product.

"But we're never going to ship this as a product," I'd hear.
"Well, not if we make that assumption," I'd say. "Let's just take a

moment to see if there's an equally good design that would work for
both the in-house and product solutions."

In most cases, not only did we come up with dual-purpose solu-
tions, but often the designs were better and took less time to implement.
The extra up-front thinking forced us to come up with more designs to
consider. In a few cases, the only dual-purpose solution we could find
looked as if it would take more time to implement than the in-house so-
lution. In such a case, we chose the in-house design that would require
the least additional rewriting if Microsoft ever chose to turn the cross
development system into a product.

Whenever upper management asked about the state of the project,
I would tell them what they wanted to know and always tell them again
of our policy of not doing anything that would prevent the company
from shipping the code. Upper management's only concern—one I
shared—was that we not spend time doing product work that might
never be used.

Nobody ever believed that the code would ship as a product, but
one day Microsoft announced its "Windows Everywhere" campaign. All
of a sudden it had become strategic for Microsoft to provide Windows

146

7 IT'S ALL ABOUT ATTITUDE

solutions for non-80x86 platforms. The Macintosh cross development
system was declared a product, given higher priority, and assigned
more programmers.

LEVERAGING ATTITUDES
I've been talking about adopting the attitude that you'll exploit leverage
whenever and wherever you see the possibility. That idea pervades this
chapter even more than I've suggested. Instilling beneficial attitudes in
your team is the ultimate use of leverage. With one small change in atti-
tude you can get a tremendous return for the effort, more return than on
any other training investment I'm aware of.

Constant, incremental improvement is great, and that alone is of-
ten enough to keep you fthead of your competitors, but if you want your
teams to pull ahead, you must help them to develop beneficial attitudes
that drive them to carry on, without supervision. That lead who was irri-
tated because I asked him to refer to the Windows reference manuals
never referred to the manuals himself until I explained the thinking be-
hind my request. Once he understood my motivation—trying to create
leverage—I never again had to pester him to check the Windows manu-
als. He became self-motivated.

HIGHLIGHTS

Novice programmers must understand how difficult writing
bug-free code is. If they have that understanding, they won't
so readily assume that their code is bug-free. More experi-
enced programmers must understand that even though writ-
ing bug-free code is difficult, it doesn't mean they should give
up trying to write such code; it means that they must spend
more time testing their code up front, before the code ever

147

Extract the most value possible from
every task you do, by either exploiting

existing leverage or creating new leverage.

*

DEBUGGING THE DEVELOPMENT PROCESS

reaches the testing group. And because it's so difficult to
write bug-free code, and so costly when bugs make it into the
master sources, all programmers must use every tool at their
disposal to detect and prevent bugs, even if that means ad-
justing their coding styles to weed out error-prone language
idioms.

Watch for the "it's too much work" and "it's too hard" reflex
reactions. When you hear somebody object that a task will
take too much time or that it will be too hard, ask yourself if
the individual first considered whether the task was impor-
tant and whether it matched the project goals and priorities.
If it seems to you that he or she was merely responding reflex-
ively, try to refocus the person on the merits of doing the task
so he or she can evaluate the idea freshly and fairly.

A common tendency is for people to think negatively when
they're faced with something they haven't tried before. In one
form or another, they latch onto the idea that the task is some-
how impossible. Try to shake up this habitual response and in-
stead help instill in team members the belief that most tasks
can be done if only people would take some time to think about
them. It's amazing how often you can respond to a "can't"
judgment with the question "I realize it can't be done, but if it
could be done, how would you do it?" and hear people rattle
off exactly how they would do the thing they just said was im-
possible. The word "could" takes them out of reaction mode
and puts them into thinking mode, right where they should be.

The attitude that the user is neither demanding nor discern-
ing is a detrimental one. Whenever you hear team members
expressing such views, remind them that users—who by defi-
nition actually use the product—are at least as concerned
about speed and the other aspects of software quality as the
programmers who write the code.

Teach programmers to view the product as an end user would.
Programmers must recognize that end users view everything
that goes into the box as a single product. Users don't care how

148

*

*

*

*

7 Zr's ALL ABOUT ATTITUDE

the individual pieces got into the box, they don't care if the
product was built by 27 different teams, they don't care what
language the code was written in—they don't care about any
of that stuff. These points of information may be important to
the company, and to the development teams, but users see
only that the product is one item produced by one company.
Programmers (and leads) may not work on every piece of the
product, but they should be concerned when any piece
doesn't meet the quality standards set for the product. When
enough people express concern about a substandard piece,
that piece will get fixed.

Leverage is the most powerful tool at your disposal for add-
ing value to your team, your project, your company, and even
the industry. Take advantage of the principle of leverage by
using it whenever you can. Strive to create new leverage in
every task you undertake, whether it's writing code that
could be shared, training team members in a way that makes
them more valuable to the company as a whole and not just
valuable for your-own team, or taking a seemingly arbitrary
decision like what you name a function and turning it into
a way to prepare programmers for a future project. Think
"leverage" in everything you do.

149

*

When projects start slipping, the first two actions leads often take are the
easy, obvious ones: hire more people, and force the team to work longer
hours. These may seem like reasonable responses, but in fact they're
probably the worst approaches leads can take to turning around a
troubled project.

Imagine a sixteenth century merchant galleon crossing the Atlantic
Ocean from the Old World to the New World. When the galleon is far out
in the ocean, the first mate notices that the ship is taking on water and
alerts the captain. The captain orders members of the crew to bail water,
but despite their efforts, the water continues to rise. The captain orders
more crew members to bail water—to no avail. Soon the captain has the
entire crew bailing water in shifts, but the water continues to rise. . .

151

DEBUGGING THE DEVELOPMENT PROCESS

Realizing that he has no more sailors to call on, and with the ship
continuing to take on water, the captain orders all crew members to bail
ever longer hours, their days and nights becoming nothing but bailing
water, collapsing from exhaustion, waking up, and going back to bail-
ing. It works. The sailors are not only able to prevent the water from
rising, but they're able to make headway, bailing water out faster than
it's coming in. The captain is happy. Through his brilliant management
of human resources, he has prevented the ship from sinking.

At least for the first week.
Soon the crew members get bone weary and bail less water than

they did when they worked in shifts and were well rested. The ship
again starts taking on more water than they can bail out. The first mate
tries to convince the captain that he must allow the crew members to rest
if he wants them to be effective. But because the ship is sinking the cap-
tain rejects all talk of giving the crew a break. "We're sinking. The crew
must work long hours," the captain shouts. "We—are—sinking!"

The water continues to rise and the ship eventually sinks, taking
everybody with her.

Could there have been a better approach to saving that ship than
putting all the crew members on the bailing task and then forcing them to
work long, hard hours? If you were on a ship that was taking on water,
what would you do? I can tell you what I'd do: I'd search for the leaks.
Wouldn't you?

This is such an obvious point, but why then do so many leads run
their projects as if they were sinking ships? When a project starts to slip,
many a lead will first throw more people onto the job. If the project con-
tinues to slip and the lead can't get more people, he or she will demand
that the developers put in longer hours. Just as that ship captain did.
The project can be waist-deep in water, but the lead won't stop to look
for and fix the leaks. Fortunately for their companies, most project teams
can bail water slightly faster than it comes in, and they end up shipping
their products, but often not without an enormous amount of misplaced
effort.

In Chapter 1,1 described a user interface library team that had been
working 80-hour weeks for more than a year, with no end in sight. Water
was gushing in on that project, but nobody stopped to look for

152

8 THAT SINKING FEELING

The team was fully staffed, and they were working 12-hour days, seven
days a week. What more could they do? But as I pointed out in Chapter 1,
that team was spending most of its time on work they shouldn't have
been doing. They were ignoring what should have been their primary
goal: to provide a library that contains only functionality that is useful to all
groups who will use the library. That was a leak.

In Chapter 3,1 talked about a dialog manager team that was work-
ing hard to speed up their library for the Word for Windows team.
Despite all their hard work, they kept falling short of the quality bar for
speed that the Word team had set. Word's swapping hack that kicked out
all "unnecessary" code segments was kicking out every byte of the
library code, so that physically reloading the code, to say nothing of
executing the code, took more time than Word's quality bar allowed. But
nobody was looking at load issues. The dialog manager team members
were focused on optimizing the code to make it run faster.

And in Chapter 5, I described the Excel team's working 80-hour
weeks to meet an unrealistic and demoralizing schedule.

In all of those cases, the need to work long hours should have been
a red flag, a clear indication that something, somewhere, was seriously
wrong. Unfortunately, many leads take the two obvious steps when
projects start to slip their schedules—hiring more people and demand-
ing longer hours—instead of looking for the causes of the schedule slips.

HAVE A LIFE
As I've said, for several years at Microsoft, my job was to take flounder-
ing projects and make them functional again. In every case, the team
members had been working long hours, seven days a week, in a desper-
ate attempt to catch a ship date that was moving ever further away.
Team morale was usually low, and often programmers had come to de-
test their jobs.

On my first day as the new lead, my initial actions were always to
put a stop to the long hours and start looking for the causes of the slip-
ping schedule. I would walk down the halls in the early evening and
kick people out. "Get outta here. Go have a life."

Programmers would, protest: "I can't leave—I'm behind on this
feature."

153

DEBUGGING THE DEVELOPMENT PROCESS

"That's OK," I'd say. "The entire team has been working insane
hours for nearly a year, and all that effort hasn't kept the project from
regularly slipping. Working long hours won't bring this project under
control. There's something fundamentally wrong here, something we
need to find and fix, and continuing to work long hours is not going to
help us find the problem. Go home. Get some rest. We'll look for the
problem first thing tomorrow."

At first the team members would think I was joking. The message
they had been getting—in some cases for more than a year—was work
harder, longer hours, and I was telling them to go home while the sun
was still out. They thought I was nuts. If the project was slipping so badly
now, they thought, what would it look like if they stopped working those
long hours?

But over the next few weeks, I'd hit the project with all the strate-
gies I've described in the first seven chapters of this book. I'd put a stop
to unnecessary reports and meetings and all other unnecessary inter-
ruptions. I'd toss out the existing task-list-driven schedule and replace
it with a win-able schedule made up of subproject milestones of the type
I've described in Chapter 5, cutting all nonstrategic features in the pro-
cess. I'd promote the attitudes I've presented in Chapter 7, such as the
attitude that it's crucial that the team fix bugs the moment they're
found. I'd make sure that the project goals were clear and that the pro-
grammers understood that one of my goals as a lead was to help create
large blocks of time during the day for them to work uninterrupted. I'd
do all of the things I've encouraged you to do. A hard month or two later,
the team would hit their first milestone, as planned, but they'd do it
without working 80-hour weeks. They'd have their first win. In the fol-
lowing months, hitting those subproject milestones would get progres-
sively easier as new work skills became habits.

If your project is slipping, something
is wrong. Don't ignore the causes

and demand long hours of the team
members. Find and fix the problems.

154

8 THAT SINKING FEELING

THE COMMITMENT MYTH
Some teams work long hours, not to meet an ever slipping schedule, but
because an upper-level manager demands that they work 80-hour
weeks, believing that development teams must work long hours to get
products out the door. When such a manager sees a team working 40-
hour weeks, his or her immediate interpretation is that the team is not
committed to the company. If you point out that the team hits all its drop
dates, the upper-level manager will counter with the statement that the
team must be padding its schedules with gobs of free time. That same
manager will hold up a team whose members work 80-hour weeks as an
example for other teams to follow. "This team shows commitment!" If
the team isn't hitting its deadlines, well, that's just because the project's
schedule is unattainable, just as a schedule should be if you want pro-
grammers to work as hard as possible.

Obviously, I disagree with that point of view. If I held that view, I
would have to conclude that the user interface library project, the dialog
manager project, and the Excel project were model projects to be emu-
lated. And I'd have to conclude that any team who had concrete goals
and objectives, who focused on strategic features, who constantly in-
vested in training, and who as a consequence always hit their drop dates
while working efficient 40-hour weeks was a team who were screwing up.

It sounds silly when I put it that way, but that's effectively what
that manager is saying when he sees a team working only 40-hour weeks
and demands that the lead force the team members to put in more hours:
"This is not a company of clock-watchers. You tell your team they're ex-
pected to put in more hours. I want to see some commitment!"

What nonsense. Managers like that praise the teams who work in-
efficiently and think the worst of the teams who work well. Compare
such a manager with a manager who looks at a 40-hour-per-week team
and is grateful that at least one project is running smoothly. That man-
ager asks the team what they're doing to achieve such success and
works to get other teams to duplicate that success.

Why such opposite reactions to the same event? In a word, attitudes.
The two upper-level managers respond differently because their

primary attitudes about projects that run smoothly are polar opposites:
one manager assumes that teams who work only 40-hour weeks and

155

DEBUGGING THE DEVELOPMENT PROCESS

who consistently meet their schedules are doing something wrong; the
other type of manager assumes those teams are doing something right.
Either manager could be mistaken in the case of a particular project, but
what good does it do to start out assuming the worst of a team?

Just as some leads ask first for long hours instead of looking for
the real problem and then solving it, some upper-level managers have
glommed onto that same uninventive approach, believing that long
hours are good for the project and the corporate culture. Such managers
forget that the business purpose of a development team is to contribute
value to the company. A team can contribute value in numerous ways:
reducing their cost-of-goods and thereby increasing the profit per box
shipped, writing shareable code that saves development time, and so
on. A manager who demands long hours focuses on one obvious way it
might seem that programmers can add value to the company: giving the
company all of their waking—and some of their sleeping—time.

It might seem logical that having the programmers work all of
those hours would enable them to finish the product sooner. Unfortu-
nately, it doesn't work that way, not in software development. If the
company made widgets and managers demanded that workers run the
widget-making machines for three extra hours every day, the company
would get three hours' worth more of widgets—added value. There's a
direct correlation between the number of hours worked and the amount
of product produced, a correlation that in my experience doesn't exist in
software development.

If upper management pressures programmers to put in 12-hour
days, working, say, from 10 o'clock in the morning to 10 o'clock at night,

Don't Blame the Programmers
I've been picking on the user interface library and dialog manager
projects, but the problems with those projects and with the Excel project
were not the programmers. In all of these cases, the programmers were
working hard, trying to do their best in a frustrating situation. It's easy
to make the mistake of blaming the programmers when a project is slip-
ping and not running smoothly, but if the entire team is in trouble, that
indicates a management problem.

156

8 THAT SINKING FEELING

the programmers might leave the office three hours later than they
would otherwise; but consider what actually goes on during those three
extra hours.

Take those twelve hours, and subtract one hour for lunch and an-
other hour for dinner since 10 o'clock is rather late to work without stop-
ping to eat. Factor in the natural tendency of programmers who regularly
work 12-hour days to fit other activities into their work schedules, such
as taking an hour each day to jog in the park or work out at the health
club. That leaves nine of the twelve hours for actual work. And since
programmers who work 12-hour days don't feel they have time outside
work, they wind up taking care of other personal business at the office.
I've seen programmers working through their stacks of unpaid bills,
writing checks and licking envelopes. I've seen programmers practicing
their piano skills on keyboards they keep in their offices. I've seen pro-
grammers playing in the halls with other team members, everything
from group juggling to "hall golf."

People who work 12-hour days rarely put in more than the stan-
dard eight work hours they'd put in if they worked a normal 9-hour day,
such as the traditional 8 to 5 workday. A programmer who works 12-
hour days might actually get some work done between 8 o'clock and 10
o'clock at night, making it appear to some managers that long hours do
result in added productivity, but those two hours actually just make up
for dinner and some of the other personal time the programmer spent
earlier in the day.

Sometimes a programmer will actually get more than eight hours
of work done when he or she stays late—mainly when driven, being
kept awake by thoughts of an elusive bug or a feature that's almost fin-
ished. The desire to find a resolution keeps the programmer focused on
the problem. But in such a case, the programmer will tend to stay late
even without pressure from upper management.

As a lead, one of your jobs is to protect the team members from
those upper-level managers who think that forcing team members to
work long hours is going to be productive. It won't be easy, but you've
got to stand firm and fight such demands, explaining to those upper-
level managers why their demands will only hurt the project. When
upper-level management demands long hours of teams, it's a lose-lose

157

DEBUGGING THE DEVELOPMENT PROCESS

situation for the lead: you have to either fight management or hurt the
team. Personally, I'd rather fight upper-level management than force
team members to do something I'm fundamentally opposed to, but
thankfully, I haven't had to fight many of those battles. Most of the
upper-level managers I've worked for at Microsoft and elsewhere have
understood that demanding long hours of the team was a misguided
and inefficient approach to increasing productivity.

Beware of the misguided belief that
long hours result in greater productivity.

If anything, long hours only hurt
productivity.

But Successful People WorkTheir Guts Out
You've probably run across the argument that because extremely suc-
cessful people, as a group, worked a punishing schedule every day
before they "made it," it's clearly necessary to work long hours if you
want to succeed.

If you dig deeper, you'll find that extremely successful people
didn't become successful because they worked long hours. They became
successful because they had an intense inner desire to accomplish some-
thing they had envisioned. They worked tenaciously toward their goals
because of that inner drive, and it was their constant focus that made
them successful. These successful people worked long hours because
every fiber of their being drove them to work toward their goals; they
didn't work all those hours because somebody else forced them to.
There are countless examples of people who put enormous efforts into
their businesses or other endeavors and who still did not succeed. Long
hours is not the key ingredient. The key ingredients of success are a
crystal-clear goal, a realistic attack plan to achieve that goal, and consis-
tent, daily action to reach that goal.

158

8 THAT SINKING FEELING

WEEKEND WARRIORS
You can probably get those demanding managers to see that forcing the
team to work long days won't increase productivity, that it's better to
enable the development team to work more efficiently. But those upper-
level managers may turn your argument against you: "You say your
team can work efficiently without working long days. Fine. But I want
them in here on the weekends. You can't tell me that having them work
weekends won't increase productivity." In most cases, they would be
right, at least for a while, particularly if the team already works efficient
40-hour weeks and has plenty of personal time in the evenings.

But those upper-level managers need to realize that if they demand
that teams work weekends, they may create an adversarial relationship
between the teams and management. The people on the development
teams know that weekends properly belong to them, not to the com-
pany, and the more weekends they're forced to work, the more likely
they're going to resent being taken advantage of. If programmers start
leaving the team, or worse, the company, to work for less exploitative
management, the company loses because those programmers will have
to be replaced by new programmers who naturally will know less about
the project and might be less experienced overall. The resulting loss of
productivity might be great enough to cancel the gains made during all
those weekends. And imagine the loss to a team—and this has been
known to happen—when a fourth of its members leave the week after
their product is released. Does that bother those short-sighted manag-
ers? No way: "Good. We've weeded out the wimps and the whiners."

One argument I've heard is that competition is so fierce in the soft-
ware industry that if a company is to stay competitive, the development
teams have to work long hours and weekends. Have to is another one of
those expressions you should become sensitized to. Saying that develop-
ers have to work weekends to beat the competition is just another way of
saying "We can't beat the competition unless programmers work week-
ends." Oh? The team isn't smart enough to find other ways to release a
product earlier? I hope this book brings home the point that there are
numerous ways to get the job done with much less effort than most teams
are expending.

159

DEBUGGING THE DEVELOPMENT PROCESS

Weekends belong to the team members,
not to the company. Teams don't

need to work weekends in order to
beat the competition.

THE INITIATION PROCESS
Some people insist that teams must work long hours for an altogether
different reason than getting more work done: the practice is vital to
team-building, they say. They say that working long hours is an initia-
tion, akin to boot camp, that wears programmers down and ultimately
makes them feel that they've earned the right to be part of the team.

Let's assume that the point is true, that some sort of rigorous initia-
tion is beneficial to team-building. Is working long hours really the best
rigorous initiation?

In a field such as programming, where the ability to think is critical,
why put a premium on working long hours? If there's to be an initiation,
shouldn't it be one that forces programmers to exercise their brains,
to think hard? When new programmers start out, they need to learn to
think hard about their designs, to think hard about how to implement
their designs cleanly, and to think hard about how to thoroughly and in-
telligently test their implementations. Anew programmer needs to learn
that when her code has a bug, she must never guess where it is and try to
fix it with a lucky change—she must stop and think whether she has sys-
tematically tracked the bug all the way to its source. She must learn to
think about the bugs she finds to determine whether there are related
bugs that haven't shown up yet. She must learn to think about how a
bug could have been more easily detected and how it could have been
prevented in the first place. She needs to learn right at the outset that
she is expected to read to keep abreast of the industry and to actively
increase her skill levels.

These practices are tough to learn and follow through on. Really
tough, because they can't be done mindlessly. Yet they must be mastered
at some point. Make mastering these practices the initiation—not work-
ing long hours, which has nothing to do with programming well.

160

8 THAT SINKING FEELING

Stress the importance of thinking hard,
not working hard.

I'll Lose My Bonus!
When I went down the halls kicking programmers out of their offices
with "Go have a life," some programmers would protest: "But what
about bonuses? If I don't work long hours, I won't get a big bonus at re-
view time."

I would explain that I never base bonuses on how much overtime a
programmer works, that in fact I view the need to work overtime as an
indication of problems that need to be fixed, not as something to reward
a programmer for.

"If you want large bonuses," I'd tell the programmer, "look for
methods that will help bring our products to market more quickly and
with higher quality. Point out areas in which we're duplicating effort, or
where we could leverage code written by another team. If you've got an
idea for a new type of testing tool that would automatically detect certain
kinds of bugs that we have trouble spotting right now, bring it up. If you
know of a commercial tool that will do the same thing, that's even better.
If you think of a user interface feature that would be more intuitive to use,
great—particularly if the idea would work across the product line."

"And if you want to get large raises," I'd continue, "increase your
personal value to the company by actively learning new skills and de-
veloping good work habits—things that will make you work more
effectively. If you want to really shine, develop the habit of constantly
earning bonuses—look constantly for new ways to bring our products to
market more quickly and with higher quality. That habit will earn you
large bonuses and large raises."

I want programmers to work better, not longer.

161

DEBUGGING THE DEVELOPMENT PROCESS

TURNING THE PROJECT AROUND
If your team is currently working long hours and you decide to put a halt
to that backbreaking effort in order to focus on finding the causes of prob-
lems and fixing them, you'd better brace yourself. When you first start
kicking people out, nobody will get any work done. That can be frighten-
ing, but it is an essential part of the turn-around process. Just as people
don't naturally have study skills, they don't naturally have skills for
working efficiently in a 40-hour week. Such skills must be developed, or
relearned. Be prepared to do some immediate training.

When I find a programmer who is having trouble getting his work
done in a 40-hour week—and I don't believe it's because the schedule is
too ambitious—I ask him to make a list of how he spent his time that day,
or the previous day, to get a snapshot of how he uses his time. The pro-
grammer would typically create a list similar to this one:

* Conducted an interview and wrote feedback for Human
Resources

* Chatted with a programmer on the CodeView team for
30 minutes

* Read the daily drop of the comp.lang.c and comp.lang.c++
news groups

* Read PC Week

* Took a two-hour lunch break to eat and run errands

* Reviewed a draft section of the user's manual

* Attended another team's status meeting to report on the
progress of a feature they want

* Played air hockey in the game room for 30 minutes

* Read 27 e-mail messages and responded to 15 of them

That's how he would have spent his first seven or eight hours at the
office, without having written any code. Am I joking? No. In my experi-
ence this is a typical list of activities for a programmer who is used to
working 12-hour days.

Of course the programmer wasn't reading PC Week every day, but
throughout the week he was reading something every day—the company

162

8 THAT SINKING FEELING

newsletter and his subscriptions to InfoWorld, Microsoft Systems Journal,
PC Magazine, Windows Sources, and Software Development. E-mail would
be a constant interruption. He would conduct one or two interviews a
week, read those comp.lang news group drops daily, and regularly take
two-hour lunches to run errands.

Flextime, or Do Time?
Microsoft, like many high-tech companies, has a "flextime" policy. You
can work any hours you want as long as you get your job done. That's
why I would find programmers who had no qualms about playing air
hockey for 30 minutes or taking two-hour lunches. You can get fired at
stricter companies for taking such liberties, but not at Microsoft—as
long as you get your job done.

Flextime can be wonderful. If you have a dentist appointment, you
just go. You don't need special clearance from your manager. If your
daughter is in a school play, you go. If you happen to be a baseball fan,
afternoon home games aren't a problem; you hop in your car and go.
Flextime can dramatically improve the quality of life for employees be-
cause it allows them to design their work schedules around the needs of
their personal lives.

But there is a dark side to flextime, one that the Human Resources
folks don't tell you about as they itemize the reasons you should join the
company. By definition, flextime means that there are no set working
hours, so the primary way to gauge whether a programmer is working is
to see whether he or she is knocking out features as scheduled. If you
think this through a bit further, you can see that if a programmer starts
slipping, the implication will be that he or she is not working enough.
Nobody comes right out and says that, of course, but there's no question
that you're expected to stay until you've finished. It doesn't matter that
you've already put in a full day.

If you see that one of the programmers needs to work long days to
do his or her job, that's an indication of a problem. Maybe the program-
mer chronically abuses flextime, using it to mask a pattern of procrasti-
nation throughout the day, or maybe the long hours indicate something
more serious. Don't ignore the problem.

163

DEBUGGING THE DEVELOPMENT PROCESS

For a programmer working 12-hour days, such a schedule makes
sense. When else is he going to run errands or read all those magazines?
If not during "work hours," when? This is the point missed by those
upper-level managers intent on having programmers work long hours.
They badger the programmers into working long hours, and the pro-
grammers inevitably rearrange their lives to accommodate the longer
work schedule.

Once I had the programmer's typical workday down in black and
white, I would start asking questions.

"Now that you're leaving at a reasonable hour and not at 10 o'clock
at night, do you still need to take two-hour lunches to run errands, or
can you handle errands after work? Do you read e-mail in batches a few
times a day, or do you let e-mail constantly interrupt you? If keeping
regular hours meant you had to read your news groups and magazines
at home, would you be willing to make that trade-off? Do these talks
you're having with people on other teams concern project-related issues
that I should be handling instead of you?..."

I'd work with the programmer to create a schedule that would
allow him to get his work done during the day and leave at a reasonable
time. It's not difficult to work with a programmer to create a win-able
daily schedule. It just takes action on the lead's part.

Train the development team to work
effectively during a normal workday. Don't
allow them to work long hours, which serves

only to mask time-wasting activity.

I CAN'T WORK DURING THE DAY
Programmers themselves regularly complain that they can't get any
work done during the day, and a look at that programmer's work list in

the previous section supports that contention. Many of the tasks on that
work list seem to be legitimate business items. Programmers have to
conduct interviews, read and respond to e-mail, review draft sections of
user manuals, and so on.

164

8 THAT SINKING FEELING

The problem with such necessary business tasks is that they con-
stantly interrupt the primary job: improving the product. Just as reading
each e-mail message the moment it arrives chops the workday into little,
unproductive time chunks, so too does the regular stream of necessary
business if team members don't have a plan for tackling such tasks effi-
ciently. If they're handling each task the moment it lands on their desks,
they'll have a difficult time getting work on the product done.

I've heard a lot of management advice recommending that you fin-
ish every task the moment it shows up. Either handle it immediately, or
decide that you're never going to handle it and dismiss it forever. I agree
with that advice because it prevents procrastination and helps people to
stay on top of things, but I want to qualify the point. If programmers
were to blindly follow that advice, interrupting their design and coding
work to handle every distraction as it arrived, they wouldn't get much
done on their product unless they worked late into the night, when there
are usually far fewer interruptions.

The key idea in the advice is to "handle the task the moment it
shows up." You might not think that programmers have any control
over when tasks show up, but they do. Consider the e-mail example. If
programmers respond to their e-mail at set times, only two or three
times a day, they turn those random interruptions into predictable daily
tasks. Then they can either respond to their messages (handling them
immediately) or delete them (never to be considered again).

Programmers can apply the same principle to the other daily inter-
ruptions by turning them into predictable tasks that no longer disrupt
their work. They just have to create a schedule describing how they'll
work during the day—a plan that gives priority to improving the prod-
uct, not handling interruptions. Take my daily schedule, for example,
one which looks like the schedule shown on the next page.

I dedicate the time before lunch, when I'm freshest, to working
solely on the product or the project, depending on whether I'm working
primarily as a programmer or as a lead. I rarely answer my phone during
those hours, and I certainly don't turn on my e-mail reader because read-
ing and responding to e-mail is perhaps the most disruptive activity of
the environments I work in. I try to get three or four solid hours of unin-
terrupted work completed before I do anything else. I don't read and re-
spond to e-mail for the first time until I get back from lunch.

165

DEBUGGING THE DEVELOPMENT PROCESS

After I handle the post-lunch e-mail task, I have a second block of
time devoted solely to working on the product or the project. If other
tasks crop up during the day, I don't look at or think about them—they
go right into my pile of tasks to tackle at the end of the day, where I have
time scheduled to do them. When I finally get to those tasks, I handle
them immediately or never. If for some reason I can't finish a task that
day, I don't look at it again until the scheduled time the following day.

The point is that, with such a schedule, e-mail and other common
interruptions don't distract me from my primary work. I take care of
those tasks, but during the time I have planned for them, not when they
happen to roll in. My schedule turns unpredictable interruptions into
predictable tasks, and it puts those tasks lower in my list of priorities
than working on the product—just where they should be.

Unfortunately, too many programmers unknowingly have their
priorities reversed: they give e-mail and unforeseen tasks higher
priority than improving the product, so at the end of the day, they
haven't even begun to work on designs or write code. Instead, they have
answered e-mail messages that didn't really need responses or tackled
tasks that could have been spread over several days. What choice do
they have, then, but to work long hours? If they didn't, they'd never get
any product work done.

166

8 THAT SINKING FEELING

If you truly believe the project schedule is attainable and yet the
programmers find they must work long hours to meet that schedule,
you still have problems to find and solve. You should check these pos-
sible sources of the trouble:

* Programmers are allowing unpredictable interruptions to
disrupt their work on the product instead of turning those
unpredictable interruptions into predictable tasks.

* Programmers are giving interruptions higher priority than
the primary task.

The schedule I've laid out works well for me, but I'm sure that for
others it would be too restrictive or too something for their tastes. I'm
sure that for some people the idea of not reading e-mail until after they
get back from lunch seems impractical: "I can't do that." If reading and
responding to e-mail is an integral part of their primary task, I'd agree
with them. But if their primary task is working on the product, I'd urge
them to try working for a few hours each day before first turning on their
e-mail reader. At the very least, I'd urge them to consider reconfiguring
their mailers to call their hosts less frequently and to turn off the notifica-
tion beep that sounds when new mail arrives. In any case, the members of
the development team should have daily schedules that help keep them
focused on their primary work.

Work with programmers to create daily sched-
ules that turn unpredictable interruptions into

predictable tasks. The schedules should give their
primary tasks priority over all other work.

"Working Solely on the Product" Defined
When I say "working solely on the product," I don't mean that program-
mers should lock themselves in their offices and barricade the doors,
doing nothing but designing and writing code. Spontaneous discussions
in the hall, brainstorming sessions, and code reviews are also part of
working solely on the product.

167

DEBUGGING THE DEVELOPMENT PROCESS

CONSUMED BY EXCITEMENT
There are a few cases in which working long hours over the short term
makes sense—working the weekend right before a drop to put all the
finishing touches on the code, for example, or working hard the week
before a COMDEX show to create a killer demonstration. But I stress
short term. Long hours produce increased productivity for only the first
week or two, when the sense of urgency is strongest. If you ask a team to
work months of 80-hour weeks, they will work hard initially, but once
the sense of urgency wears off, they'll fall into the pattern I described
earlier—taking two-hour lunches to run errands, having long chats in
the hall, and so on.

The exception to this tendency is when people are so excited about
their project that you can't get them to leave. Such projects are truly
wonderful because you eat, breathe, and sleep programming. I hope
that everybody experiences such a project at least once, but I do have
one reservation about such projects.

Early in my career, I spent nearly five years working on a handful
of projects that were so exciting that I did little but write code, eat, and
sleep. So did the other members of the development team. We didn't
know what a social life was. We lived to code, often working until 2 or 3
o'clock in the morning, only to return six or seven hours later to start
another day. And we loved it. We had that burning desire to see the
product finished as we envisioned it.

After working on those projects, I worked on several more exhila-
rating projects, but I didn't program to the exclusion of all else. I worked
a traditional 8-hour day, which gave me the opportunity to pursue an
active social life after work—going to parties, taking 40-mile bike rides
with friends, going to the theater, learning to ski, meeting new and inter-
esting people...

What an eye-opener. If somebody had told me as I worked on those
earlier projects to the exclusion of all else that I was missing out on an
important part of life—a personal life—I would have laughed at them,
just as people using 8-MHz IBM PC machines often laugh at people who
suggest they should upgrade to the latest machines, which are 100 times
faster. "I'm happy now. Why should I change?" But once the user's ma-
chine breaks and she buys a new one, her attitude undergoes a dramatic

168

8 THAT SINKING FEELING

transformation: "I can't believe I waited so long to upgrade. To think
that I was actually satisfied with that old clunker!"

Like such computer users, I had no idea what I was missing out on,
not having had an active social life for so long. Those projects were so
exciting that I never felt the need for a social life; my life was complete as
it was. But once I'd worked on exhilarating projects during which I also
pursued an active social life, I learned how important it is to have a bal-
anced life. And that has been the driving force behind my desire to do
absolutely the best I can in a regular 8-hour day, so. that I can balance
that work with my personal life, getting the best of both worlds.

As exciting as it was when I was working on those all-consuming
projects, I wish that somebody had pulled me aside back then to explain
that there was more to life than work. I might not have listened, but I
still wish that somebody had tried. So even though programmers on my
teams are sometimes so thrilled with their work that they want to work
long hours, I urge them, "Go home. Have a life."

HIGHLIGHTS

The need to work long hours is a clear indication that some-
thing is wrong in the development process, whether it's be-
cause the team is doing nonstrategic work or because the
team is being bullied by a misguided manager. No matter
what the reason for the need to work long hours, leads must
not ignore the problem and continue to let the team work late
into the night over the long term. Leads must tackle that prob-
lem and make it possible for team members to work effec-
tively in the scheduled 40-hour week.

I often hear upper-level managers and project leads praise
team members for working long hours. "Your commitment to
the company is admirable. Excellent job!" That's exactly the
wrong message that managers and leads should be sending.
People should be praised for working well, not for the num-
ber of hours they're in the building. Managers and leads must
never confuse "productivity" with "time at the office." One
person might work far fewer hours and produce more than
somebody who works twice as long.

169

*

*

DEBUGGING THE DEVELOPMENT PROCESS

You can minimize meetings, reports, and other corporate pro-
cesses, but unless you also focus on the wasted effort unique
to each individual, you'll be missing a significant part of the
problems you need to work on. Make it a priority to help each
team member design large blocks of uninterrupted time into
his or her daily work schedule.

If you care about your team members, don't allow them to
spend all their waking hours at work. Make sure they work a
solid 8-hour day, and then kick them out. Taking that stand at
your organization may seem sacrilegious, but if you believe,
as I do, that people work better if they have an enjoyable per-
sonal life, take that stand.

There's nothing sacred about the 40-hour work week. It's a
U.S. tradition, so software projects tend to be scheduled on
the assumption that each programmer will work a 40-hour
week—five 8-hour workdays. If it takes a lot more than 40
hours per week per programmer to meet one of those sched-
ules, something is wrong. The schedule might be unrealistic,
or the programmers might need more training. Either way,
there is a problem that needs to be fixed—not masked by hav-
ing the programmers work long hours to compensate for the
problem.

170

*

*

*

Occasionally I'll come across the idea that as the lead for a project, you
cannot and never will be a part of the team, that you will always be a
step removed, and that there is nothing you can do about it. In my expe-
rience, that isn't true. I've been a part of dozens of teams—as both lead
and programmer—and without exception the teams that jelled were
those in which the lead was just another person on the team, one who
happened to have some nonprogramming responsibilities. There was
never the feeling that the lead was superior.

To someone who didn't know much about American football, the
quarterback might seem to be in a superior position with respect to the
other players. After all, the quarterback calls each play, the quarterback
is the focal team member who has control of the ball, and after a victory
it's the quarterback who usually gets carried off the field by the other
team members.

171

DEBUGGING THE DEVELOPMENT PROCESS

The quarterback might appear to be superior in rank to the other
players, but we know better. The quarterback is just another team mem-
ber who happens to have unique responsibilities. An effective project
lead is no different. He or she understands that a focal team member is
not superior to other team members:

The lead is just another team member, who, like every other team
member, has his or her own set of unique responsibilities.

Effective leads understand that team members play different roles
on the team. Some team members are responsible for the data entry part
of the project, others for the print engine, still others for foreign file con-
verters and the user interface design. Leads may implement features
along with everybody else, but in addition to that work, they have the
responsibility for setting project goals and priorities, keeping depen-
dent groups such as Testing and Marketing informed of progress, creat-
ing an environment in which the team members can work effectively,
and ensuring that team members are learning new skills as a way of
adding value to the company. A lead can do all those tasks without
adopting the attitude that he or she is superior.

If a lead has the attitude that he or she is superior, a whole array of
harmful behaviors follows. Here's what happens in extreme cases:

* The lead blames the team for failures but gladly takes the
credit for successes.

* The lead doesn't care about the people on the team. They're
just workers. Who cares if they work 80-hour weeks? The
lead is concerned only that the team might make him look bad
by missing a scheduled date.

* The lead expects team members to jump at every command
and never question her authority. "I said 'do it,' so do it" is the
motto.

* Anxious not to appear inferior in any way, the lead attacks
any team member who threatens his authority or who ap-
pears to be more skilled or knowledgeable than the lead in
any area.

* Because she must always be right, the lead never admits it
when she is wrong.

172

EPILOGUE

* The lead shuts down anybody who suggests improvements to
the development process or otherwise rocks the boat.

* The lead acts as if he is indispensable.

Granted, not all leads who think of themselves as superior behave
so tyrannically, but even in mild cases the air of superiority still comes
through. Do team members work/or the lead or with the lead? The very
language the lead uses reveals the underlying attitude.

A lead who views herself as a team member works better because
she spends little or no time fighting to keep the other team members in
their place—why should she? By choosing to adopt the attitude that
she's not superior, she relieves herself of having to attack perceived
threats to her authority. When such a lead discovers a superstar on the
team she's just inherited, she doesn't raise her guard and start the terri-
torial one-upmanship battle so common in people who must feel supe-
rior. Such a lead is more likely to be thankful and to work together with
the superstar for the benefit of the project.

Your own attitude as a lead can influence everything you do. If you
and a team member disagree over a performance review, how do you
react? Do you stand firm because you feel you need to be "right," or do
you discuss the problem to see if there's another valid interpretation of
events? If you and the team member still disagreed, would you amend
the review to describe both positions so that others who read the review
later could make their own evaluations?

Look again at the bulleted list that characterizes the behaviors of
the leads who insist on regarding themselves as superior. Would a lead
who viewed herself as just another team member exhibit those kinds of
behavior? Which type of lead would you be more willing to work with,
one who behaves in a superior way or one who treats you with more
respect? Be the kind of lead you would want to work with.

Leads should see themselves
as members of their teams, not

as superior to them.

173

MJ

These books are explicitly referenced in the text.

Bentley, Jon. Writing Efficient Programs. Englewood Cliffs, N. J.: Prentice
Hall, 1982.

DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and
Teams. New York: Dorset House, 1987.

Gerber, Michael E. The E-Myth: Why Most Small Businesses Don't Work
and What To Do About It. New York: Harper Business, 1986.

Kernighan, Brian W., and P. J. Plauger. The Elements of Programming
Style. 2d ed. New York: McGraw-Hill, 1978.

Koenig, Andrew. C Traps and Pitfalls. Reading, Mass.: Addison-Wesley,
1989.

Maguire, Steve. Writing Solid Code. Redmond, Wash.: Microsoft Press,
. 1993.

McConnell, Steve. Code Complete. Redmond, Wash.: Microsoft Press,
1993.

McCormack, Mark H. What They Don't Teach You at Harvard Business
School. New York: Bantam Books, 1984.

Weinberg, Gerald M. The Psychology of Computer Program m / , H . Nt-w
York: Van Nostrand Reinhold, 1971.

These educators are mentioned in the preface:

Anthony Robbins
Robbins Research International, Inc.
9191 Towne Centre Drive, Suite 600
San Diego, CA 92122
Phone: (800) 445-8183
FAX: (619) 535-0861

175

DEBUGGING THE DEVELOPMENT PROCESS

Michael E. Gerber
Gerber Business Development Corporation
1135 N. McDowell Blvd.
Petaluma, CA 94954
Phone: (707) 778-2900

176

A
annual reviews, 120-22
applications. See also Microsoft Excel

priorities for, 18-19
and shared code, 141-43

arbitrary deadlines, 99
assignment bugs, 126-27
attack plans

including in postmortem reports,
78-81

need for detail, 79-80
questions that elicit, 33 ?

attitudes
about bugs, 125-29
about lead, 171-73
leveraging, 144-49
negative, changing, 131-35
resistant, 129-31
toward users, 136-40
toward working long hours, 155-61,

168-70

B
backward compatibility, 14
bad coffee (example), 24-26
Bentley, Jon, 117,119
bonuses, basis for, 161
books, recommended, 117
bugs

attitudes toward, 125-29

bugs, continued
fixing early, 128
goal of bug-free code, 125-29
as negative feedback loop, 27,39
and quality definition, 28
questions to ask, 31-32
researching problems, 50
when to fix, 26-29

C code, rewriting in C++, 68-69
C compiler, 59-62,102-4
"can'titude," 131-35
clipboard, Microsoft Excel, 67-68
code

bug-free, 125-29
goto statements in, 35—37
line counts, 40-41
master, 127-28
multi-platform, 133-35
portability, 17,18,19
priorities for, 17-19
reformatting source files, 68-69
reusable, 141-43
shared, 141-43
variations among programmers, 108

Code Complete, 36,117
coding wars, 108
coffee quality (example), 24-26
compatibility, backward, 14

177

DEBUGGING THE DEVELOPMENT PROCESS

compilers
cross development project, 59-62,

102-4
and linker quality, 140-41
turning on warnings, 126,127

"cool" features, 65-67
cross development system

becomes product, 145-47
and FORTRAN compiler, 59-62
subprojects in development, 102—4

cross-pollination theory, 115
crutches, systems as, 30
C Traps and Pitfalls, 50,117

D
deadlines. See also schedules; ship dates

arbitrary, 99
near-term, 98-101
and subprojects, 98-104,105

debug code, adding, 129,130-31
debugging

attitudes toward, 125-29
questions to ask, 31-32
research during, 50
when to do, 26-29

decision making
and meetings, 85,86
and priorities, 20,130,131
and snap decisions, 20

delegation, 4-5
DeMarco, Tom, 108
dependency issues

controlling, 15

and saying No, 54-55
and status meetings, 8

design meetings, 83-84
desk accessories, adding, 65-67

development process at Microsoft,
xvii-xx

development teams. See programmers;
project leads

dialog manager project, 48-51,114,153
Dijkstra, Edsger, 36

E
editing vs. writing, 23-24
The Elements of Programming Style, 117
e-mail

answering, 5
at Microsoft, xx
as problem, 2,3,30,163,164
for status reporting, 10
when to read, 30,165,166

The E-Myth, 117
end-cut pot roast rule, 75
end users

attitude toward, 136-40
considering, 139-40

Excel. See Microsoft Excel

features. See products
feature teams, 11
feedback loops, 37-41
figure skating, 107-8
fixing bugs

attitudes toward, 125-29
questions to ask, 31-32
research while, 50
when to do, 26-29

flextime, 163
focus

importance of, 2-4

178

INDEX

focus, continued
and need for status reports, 7-10
removing obstacles to, 4—6

follow-up work, 3, 87-88
FORTRAN compiler, 59-62
"free" features and products, 61-62
function headers, adding, 68

Gates, Bill, 134
Gerber, Michael, 117
Gimpel Software, 50
goal setting

and bug-fixing, 26-29
and coding priorities, 17-19
and deadlines, 99
and debug code, 130—31
and decision making, 20,130,131
importance of, 16
in the moment, 119-20
and need to say No, 57
personal, 116-20
specificity of, 12-15
and subprojects, 98-104

goto statements, 35-37
guidelines vs. rules, 35-37,75

H
headers, adding, 68
housekeeping. See process work
house moving (example), 5,46

I

improvement goals, 116-20
inline directive, 19

K
Kernighan, Brian, 117
keyboard-driven menus

and end users, 139-40
and shared code, 141-42

Knuth, Donald, 36
Koenig, Andrew, 117

L
LAYOFF macro, 63
leads, types of, xvii-xviii. See also project

leads, program managers
leverage

creating, 144-45
use of, 145-46

libraries. See user interface library
project

linker, need for improvement, 141
Lister, Timothy, 108
little systems, 24,25, 28,29, 30
long hours

attitudes toward, 155-61
and personal life, 168-170
and time management, 162-67

M
Macintosh projects. See Microsoft

projects
macros, 19, 63,64
maintainability, 68
marketing teams, requests from, 58,

63-65
master source code, 127-28
master task lists. See task lists
mastery, 1-2

179

DEBUGGING THE DEVELOPMENT PROCESS

McConnell, Steve, 36,117
McCormack, Mark, 117
meetings

and action items, 87-88
benefits vs. drawbacks, 84-85
and decision making, 85,86
design, 83-84
and follow-up tasks, 87-88
good times for, 83
and negative feedback loops, 88
project review, 4-5,86
questions to ask before calling, 82,84
recurrent, 81-84
status, 81
worthwhile, 81-82

Microsoft Excel
clipboard paradigm, 67-68
and LAYOFF macro, 63,64
multi-platform version, 132-35
schedule for, 91-95,153
Windows vs. Macintosh versions,

132-35,139-40
Microsoft projects. See also names of

products
and Applications division, 141,145
compiler cross development, 59-62,

102-4,146-47
dialog manager, 48-51,114,153
Excel for the Macintosh, 92-95,

132-35,139-40,142-43
and Languages division, 140-41,145
Macintosh keyboard-driven menus,

139-40,141-42
Macintosh print preview feature,

142-43
multi-platform, 133-35
and shared code, 141-43

Microsoft projects, continued
user interface library, 12-15,51-53,56,

65-67,152-53
Windows vs. Macintosh, 132,133-34,

139-40
Word for MS-DOS, 56
Word for Windows, 48-51

Microsoft Windows vs. Macintosh, 132,
133-34,139-40

milestones
and personal growth goals, 116-18
scheduling by, 98-104

multi-platform code, 133-35

N-O
naming conventions, 68
near-term deadlines, 98-101
negative feedback loops

and bug-fixing, 27,39
defined, 38
destructive, 39
and follow-up work, 88
vs. negative reinforcement, 40

No, saying, 54-56
object-oriented methodologies, 68-69
operating systems, priorities for, 18
optional compiler warnings, 126,127
oral reports, 76

Pascal compiler, 60, 61,62,103
pay raises, basis for, 161
PC-Lint, 50
Peopleware, 108

180

INDEX

personal growth goals
aligning with project milestones,

116-18
documenting in annual reviews,

120-22
setting in the moment, 119-20

personal life, 153,168-69,170
personal schedules, 162-67
planning, 12-15. See also attack plans
Plauger, P. J., 117
portability, as coding priority, 17,18,19
positive feedback loops, 38, 40-41
postmortem reports

acting on, 80-81
attack plans in, 78-81
importance of, 78
when to write, 80

pot roast rule, 75
print preview feature, 142-43
priorities

for coding, 17-19
and decision making, 20,130,131
and subprojects, 100-101

proactivity, 46-47
problems. See also questions

anticipating, 46-48
bringing up, 135
defining correctly, 48-51
e-mail as, 2, 3, 30,163,164
and use of time, 162-64

process work, 3-4, 7-10, 88-89
products. See also Microsoft projects

focus on improving, 2-4
"free," 61-62
inclusive definition, 141
requests to add features, 63-65
substandard features, 138

program managers, xviii, xix

programmers
attitudes toward bugs, 125-29
"average" skill level, 108-9,112
and bug-fixing, 27, 28-29, 31-32
effectiveness of, 1-2
vs. end users, 136-38
on feature teams, 11
as long-term specialists, 109
need for focus, 2-4
personal schedules, 162-67
protecting, 4-6
questions to ask, 32
reassigning, 113-15
and skill-building, 108-13
and task decisions, 130,131
training, for promotion, 116-18
from upstart companies, 123
use of time, 162-67
working long hours, 151-70

project goals
and bug-fixing, 26-29
and coding priorities, 17-19
and debug code, 130-31
and decision making, 20,130,131
and need to say No, 57
setting, 12-15
specificity of, 12-15
and subprojects, 98-104

project leads
anticipating problems, 46-48
asking questions, 32-35
and delegation, 4-5
effectiveness of, 1-2
vs. leaders, xv-xvi
need for focus, 3-4
of other leads, 6
proactivity of, 46-48
as protectors, 4-6

181

DEBUGGING THE DEVELOPMENT PROCESS

project leads, continued
status meetings for, 8
as team members, 171-73
training for, 116-18

project review meetings, 4-5,86
projects. See Microsoft projects; project

goals
project task list. See task lists
The Psychology of Computer Programming,

117

Q
quality bars, 18,19, 28, 49,138
questions. See also problems; requests

defining context, 53
level of precision, 32-35
wrong vs. right, 51-53

R
raises, basis for, 161
recurrent meetings, 81-84
reports

follow-up, 3
oral, 76
postmortem, 78-81
problems with, 77
status, 3
trip, 74-76

requests. See also questions
for added product features, 63-65
defining context, 53
from superiors, 58-60
when to say No, 54

research, as problem-solving strategy,
50,51

reusable code, 141-43

robustness, as coding priority, 17,18
rules vs. guidelines, 35-37, 75

safety, as coding priority, 17,18,19
saying No, 54-56
schedules

aggressive vs. unattainable, 95-97
and arbitrary deadlines, 99
and bug-fixing, 27,28, 29
and goal setting, 99
and long working hours, 151-70
and Microsoft Excel project, 91-95,

153
and milestones, 98-104
personal, 162-67
questions to ask, 33-34
and sense of urgency, 95-97
and status reports, 7-10
and subprojects, 98-104
undue focus on, 93-95
unrealistic, 94,95,97

scheduling meetings, 82
sense of urgency, 95-97
shared library, as goal, 13, 57
sharing code, 141-43
ship dates. See also deadlines

best case, 104,105
questions to ask, 33-34

680x0 cross development system
becomes product, 145-47
and FORTRAN compiler, 59-62
subprojects in development, 102-4

size, as coding priority, 17,18
skill-building, 1-2, 31,108-13

by asking questions, 32-35
leveraging, 144-45

182

INDEX

skill-building, continued
for promotion, 116-18
and versatility, 111

snap decisions, 20
solutions, 135
speed, as coding priority, 17,18
speed bumps, 88-89
status meetings, 3, 7, 8
status reports

benefits vs. drawbacks, 8-10
as necessary evil, 7-10
need for, 3
negativity of, 8-9
positive, 9-10

strategies. See goal setting; systems,
work

subprojects, 98-104
substandard features, 138
superiors, as team members, 171-73
systems, work, 24, 25, 28, 29, 30

task lists
breaking up, 98-104
for Microsoft Excel project, 93-95
and subprojects, 98-104

team leads. See project leads
team spirit, 82
technical leads, xvii
third party vendors, 65-67
time

efficient use of, 162-67
and scheduling meetings, 83
and sense of urgency, 95-97

training. See skill-building
trial and error, 1-2
trip reports, 74-76

trivial processes, 24, 25, 28,29, 30

u
urgency, sense of, 95-97
usability studies, 137
user interface library project

responding to requests, 51-53, 56,
65-67

schedule problems, 152-53
setting goals for, 12-15

users
attitude toward, 136-40
consideration of, 139-40

V
Visual C++, 141
visual freeze point, xix

w
weekends, working, 159-60
Weinberg, Gerald, 117
What They Don't Teach You at Harvard

Business School, 117
Windows Everywhere, 146
Windows vs. Macintosh, 132,133-34,

139-40
Winter Olympics, 107
Word for MS-DOS, 56
Word for Windows, 48-51
working hours, 151-70
work systems, 24, 25, 28, 29, 30
Wow! factor, 101-4
Writing Efficient Programs, 117,119
Writing Solid Code, xii, xvi-xvii, 27-29,117

writing vs. editing, 23-24

183

ABOUT THE AUTHOR

Steve Maguire graduated from the University of Arizona with a degree
in electrical and computer engineering, but he has always gravitated
toward work in computer software. Steve has programmed profession-
ally for the past 19 years in both Japan and the United States. In the late
1970s Steve regularly contributed developer tools, applications utili-
ties, and the occasional video game to the Processor Technology and
NorthStar users' groups. Steve has been responsible for numerous
projects since then, including valFOETH in 1982, an award-winning
FORTH development system that enabled Atari programmers to write
high-quality graphics applications and video games.

In 1986 Steve joined Microsoft Corporation for the opportunity to
work on high-end Macintosh applications. Steve worked on Microsoft
Excel and led the development of Microsoft's Intel-hosted MC680xO
Macintosh cross development system. He was the driving force behind
Microsoft's switch to a cross-platform shared code strategy in its appli-
cations development and is perhaps best known in the company for his
efforts to increase the utility and quality of shared code libraries. As a
veteran software design engineer and project lead, Steve spent several
of his years at Microsoft working with troubled projects—enabling
teams to work effectively and, not incidentally, to enjoy their work.

Debugging the Development Process is the second of several books
Steve is writing to give programmers practical guidelines for develop-
ing professional, high-quality software. His first book, the critically
acclaimed Writing Solid Code (Microsoft Press, 1993), focuses on strate-
gies that programmers can use to write bug-free programs. It won a pres-
tigious Software Development Jolt Productivity Award and awards from
the Society for Technical Communication in 1994.

Steve lives in Seattle, Washington, with his wife, Beth, and their
Airedale terrier, Abby. He can be reached at stephenm@stormdev.com or
microsoft!storm!stephenm.

The manuscript for this book was prepared
using Microsoft Word 5.0 for the Macintosh
and submitted to Microsoft Press in electronic
form. Galleys were prepared using Microsoft
Word 2.0 for Windows. Pages were composed
by Microsoft Press using Aldus PageMaker
5.0 for Windows, with text and display type
in Palatino. Composed pages were delivered
to the printer as electronic prepress files.

Cover Designer
Rebecca Johnson

Interior Graphic Designer
Kim Eggleston

Principal Compositor/Illustrator
Peggy Herman

Principal Proofreader/Copy Editor
Deborah Long

Indexer
Julie Kawabata

STEVE MAGUIRFS WRITING SOLID CODE, the companion volume
to Debugging the Development Process, covers techniques, and strategies that pro-
grammers can use immediately to reduce their bug rates and write bug-free code.

Steve Maguire maintains that the most critical requirement for writing
bug-free code is to become attuned to what causes bugs. All of the techniques
and strategies Maguire presents in Writing Solid Code are the result of program-
mers asking themselves two questions over and over, year after year, every time
they find a bug in their code:

* How could I have automatically detected this bug?

* How could I have prevented this bug?

The easy answer to both questions would be "better testing," but that's not
automatic, nor is it really preventive. Maguire says that answers like "better
testing" are so general they have no muscle—they're effectively worthless. He
insists that good answers to the two questions result in the specific techniques
that will eliminate the kind of bug you've just found.

Writing Solid Code is devoted to the techniques and strategies that have
been found to reduce or completely eliminate entire classes of bugs. Some of the
book's points smack right up against common coding practices, but all have
been effective in reducing the number of bugs in code. The book also covers
techniques that programmers can use to automatically detect bugs—techniques
other than using test applications. By building "debug code" directly into their
programs, code that monitors a program
from the inside, programmers can auto-
matically detect numerous types of other-
wise hard-to-find bugs. Writing Solid Code
covers the most effective ways to write
such debug code.

The book is written in the same
format and style as Debugging the Devel-
opment Process. Its examples are written
in the C programming language, but its
good advice is generally applicable—
regardless of whether you're using C,
FORTRAN, or some other programming
language. The next few pages contain an
excerpt from Writing Solid Code's Chap-
ter 5, "Candy-Machine Interfaces."

HERE'S WHAT THE CRITICS HAVE SAID about the bestselling
Writing Solid Code, winner of a 1994 Software Development Jolt Productivity
Award and of awards from the Society for Technical Communication.

Maguire's writing style is fluid and clear, and the content is
intended to provoke both thought and action (namely changes
in your bad habits).

—Ray Valdes, Dr. Dobb's Journal

This unique volume gathers a wealth of coding wisdom
developed over the years inside Microsoft. These aren't coding
techniques so much as coding and testing philosophies—
mindsets that help Microsoft's programmers produce better
code with fewer bugs in less time than their competitors.

—Jeff Duntemann, PC Techniques

Writing Solid Code is superbly written and offers a variety of
sound practical coding guidelines at a level suitable for the
professional C coder. The author's experience, coupled with
an obvious enthusiasm for the subject, has resulted in a book
which is both informative and easy to read... You'll find
historical notes about the development of programs such as
[Microsoft] Excel and Word... You do not, incidentally, need to
be an MSDOS, Windows, or Apple Mac programmer to appreci-
ate the wisdom in this book or to follow the code... An
excellent book and one of those relatively rare offerings
that all C programmers would do well to read.

—Paul Overaa, Computing

If you are serious about developing C code, read this book.
Consider it carefully. Reject it if you will, but I think you
would be foolish to do so. This is easily my 'Book of the Year.'

—CVu

- EXCERPT FROM WRITING SOLID CODE

One of the perks that Microsoft gives its employees is free soft drinks, fla-
vored seltzer water, milk (chocolate too!), and those little cartons of fruit
juices. As much as you want. But, darn it, if you want candy, you have to
pay for that yourself. Occasionally, I would get the munchies and stroll
down to a vending machine. I'd plunk in my quarters, press 4 and then 5 on
the selection keypad, and watch in horror as the machine spit out jalapeno-
flavored bubble gum instead of the Grandma's Peanut Butter Cookie I
thought I'd asked for. Of course, the machine was right and I was wrong—
number 45 was the gum. A quick look at the little sign by the cookie would
always verify my mistake: No. 21, 450.

87

WRITING SOLID CODE

That candy machine always infuriated me because if the engineers
had spent an extra 30 seconds thinking about their design, they could have
saved me, and I'm sure countless others, from getting something they
didn't want. If one of the engineers had thought, "Hmm. People are going
to be thinking '45<C' as they deposit their money—I'll bet some of them are
going to turn to the keypad and mistakenly enter the price instead of the
selection number. To prevent that from happening, we should use an alpha-
betic keypad instead of a numeric one."

The machine wouldn't have cost any more to make, and the improve-
ment wouldn't have changed the design in any appreciable way, but every
time I turned to the keypad to punch in 45tf, I would find I couldn't and so
be reminded to punch in the letter code. The interface design would have
led people to do the right thing.

When you design function interfaces, you face similar problems. Un-
fortunately, programmers aren't often trained to think about how other
programmers will use their functions, but as with the candy machine, a
trivial difference in design can either cause bugs or prevent them. If s not
enough that your functions be bug-free; they must also be safe to use.

getchar GETS AN int, OF COURSE
Many of the standard C library functions, and thousands of functions pat-
terned after them, have candy-machine interfaces that can trip you up.
Think about the getchar function, for instance. The interface for getchar is
risky for several reasons, but the most severe problem is that its design en-
courages programmers to write buggy code. Look at what Brian Kernighan
and Dennis Ritchie have to say about it in The C Programming Language:

Consider the code

char c;

c = getchar();
if (c == EOF)

On a machine which does not do sign extension, c is always positive
because it is a ch a r, yet EO F is negative. As a result, the test always fails.
To avoid this, we have been careful to use int instead of cha r for any
variable which holds a value returned by getcha r.

88

CANDY-MACHINE INTERFACES 89

With a name such as getchar if s natural to define c to be a character,
and that's why programmers get caught by this bug. But really, is there any
reason getchar should be so hazardous? It's not doing anything complex; it's
simply trying to read a character from a device and returning a possible
error condition.

The code below shows another problem common in many function
interfaces:

/* strdup -- allocate a duplicate of a string. */

char *strdup(char *str)

char *strNew;

strNew = (char *}maTloc(strlenCstr)+l):
strcpy(strNew, str);

return (strNew);
}

This code will work fine until you run out of memory and malloc fails,
returning NULL instead of a pointer to memory. Who knows what strcpy
will do when the destination pointer, strNew, is NULL, but whether strcpy
crashes or quietly trashes memory, the result won't be what the program-
mer intended.

Programmers have trouble using getchar and malloc because they can
write code that appears to work correctly even though if s flawed. If s not
until weeks or months later that the code crashes unexpectedly because, as
in the sinking of the Titanic, a precise series of improbable events takes place
and leads to disaster. Neither getchar nor malloc leads programmers to write
correct code; both lead programmers to ignore the error condition.

The problem with getchar and malloc is that their return values are im-
precise. Sometimes they return the valid data that you expect, but other
times they return magic error values.

If getchar didn't return the funny EOF value, declaringc to be a charac-
ter would be correct and programmers wouldn't run into the bug that
Kernighan and Ritchie talk about. Similarly, if malloc didn't return NULL as
though it were a pointer to memory, programmers wouldn't forget to
handle the error condition. The problem with these functions is not that
they return errors, but that they bury those errors in normal return values
where if s easy for programmers to overlook them.

90 WRITING SOLID CODE

What if you redesigned getchar so that it returned both outputs sepa-
rately? It could return TRUE or FALSE depending upon whether it success-
fully read a new character, and the character itself could be returned in a
variable that you pass by reference:

f l a g fGe tCha r (cha r *pch); /* prototype */

With the interface above, it would be natural to write

char ch;

if (fGetChar(&ch))
ch has the next character;

else
hit EOF, ch is garbage;

The problem with char vs. int goes away, and it's unlikely that any
programmer, no matter how green, would accidentally forget to test the er-
ror return value. Compare the return values for getchar and fGetChar. Do
you see that getchar emphasizes the character being returned, whereas
fGetChar emphasizes die error condition? Where do you think the emphasis
should be if your goal is to write bug-free code?

True, you do lose the flexibility to write code such as

putchar(getcharO);

but how often are you certain that getchar won't fail? In almost all cases, the
code above would be wrong.

Some programmers might think, "Sure, fGetChar may be a safer inter-
face, but you waste code because you have to pass an extra argument when
you call it. And what if a programmer passes ch instead of &ch? After all,
forgetting the & is an age-old source of bugs when programmers use the
scan/function."

Good questions.
Whether the compiler will generate better or worse code is actually

compiler dependent, but granted, most compilers will generate slightly
more code at each call. Still, the minor difference in code size is probably not
worth worrying about when you consider that the cost of disk and memory
storage is plummeting while program complexity and associated bug rates
are climbing. This gap will only get larger in the future.

CANDY-MACHINE INTERFACES 91

The second concern—passing a character to fGetChar instead of a
pointer to a character—shouldn't worry you if you're using function proto-
types as suggested in Chapter 1. If you pass/GetChar anything but a pointer
to a character, the compiler will automatically generate an error and show
you your mistake.

The reality is that combining mutually exclusive outputs into a single
return value is a carryover from assembly language, where you have a lim-
ited number of machine registers to manipulate and pass data. In that envi-
ronment, using a single register to return two mutually exclusive values is
not only efficient but often necessary. Coding in C is another matter—even
though C lets you "get close to the machine," that doesn't mean you should
write high-level assembly language.

When you design your function interfaces, choose designs that lead
programmers to write correct code the first time. Don't use confusing dual-
purpose return values—each output should represent exactly one data
type. Make it hard to ignore important details by making them explicit in
the design.

Make it hard to ignore error conditions.
Don't bury error codes in return values.

Writing Solid Code
Microsoft's Techniques for Developing Bug-Free C Programs
Steve Maguire

Foreword by Dave Moore
Director of Development, Microsoft Corporation

Microsoft Press books are available wherever quality computer books are sold. Or call 1-800-MSPRESS for ordering information.
Outside the U.S., write to International Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399

288 pages, softcover
$24.95 ($32,95 Canada)
ISBN 1-55615-551-4

