DEBUGGING
THE
DEVELOPMENT
PROCESS

Practical

fur Staying
Focused,
Hitting Ship
Dates, and
Building
Salbd Teams

STEVE MAGUIRE

Author of Writing Solid Code

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1994 by Stephen A. Maguire

All rights reserved. No part of the contents of this book may be reproduced or
tratr)lls_rslnqitted in any form or by any means without the written permission of the
publisher.

Library of Congress Cataloging-in-Publication Data
Maguire, Stephen A.

Debugging the development process : practical strategies for
staying focused, hitting ship dates, and building solid teams /
Stephen A. Maguire

p. cm.

Includes bibliographical references and index.

ISBN 1-55615-650-2

1. Debugging in computer science. 2. Computer software-

-Development. I. Title.
QA76.9.D43M33 1994
005.1'068-dc20 A-22182

CIP
Printed and bound in the United States of America
23456789 MLML 98765

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

A CIP catalogue record for thisbook is available from the British Library.

Microsoft Pressbooks are available through booksdllers and distributors
worldwide. For further information about international editions, contact your
local Microsoft Corporation office. Or contact Microsoft Press| nternational
directly at fax (206) 936-7329.

Apple, Mac, Macintosh, and MultiFinder are registered trademarks of Apple Com-
puter, Inc. AlphaAXP and DEC aretrademarksof Digital Equipment Corporation.
PC-lintisatrademark of Gimpel Software. HPisaregistered trademark of Hewlett-
Packard Company. Comdex isaregistered trademark of Interface Group-Nevada, Inc.
CodeView and Microsoft areregistered trademarks and Windows and WindowsNT
aretrademarksof Microsoft Corporation. MIPSisaregistered trademark of MIPS
Computer Systems,Inc.

AcquisitionsEditor: MikeHalvorson
Project Editor: Erin O'Connor
Technical Editor: Wm. Jeff Carey

Tomybrother Tim.

CONTENTS

PREFACE Xi
INTRODUCTION XV

Ifa software project is to be successful, every team member must understand
the principles, guidelines, and strategies that will result in quality software
shipped on time. Thishook isfor every team member. It's a companion to Writing
Solid Code, which focused on the most serious "bug" in the development
process: too many software bugs. The advice in this book fine-tunes the devel op-
ment process, focusing on the techniques and strategies that software teams
can use to become consistently successful. This book contains many anecdotal
examples, most of them drawn from experiences at Microsoft. To make the ex-
amples easier tofollow, the introduction provides a brief account of how soft-
ware devel opment projects are organized and how they proceed at Microsoft.

1 LAYING THE GROUNDWORK 1

There are afew principles that al successful software project leads keep
in mind. Among the foremost is the idea that the programmers should
be working only on tasks that either directly or indirectly improve the
product. It'sthelead'sjob to clear theway for the primary work of the
other team members by ruthlessly eliminating work that gets in the way
of improving the product—going overboard on status reports and meet-
ings, for example, or developing features that are not strategic to either
the product or the company. To make it easy to determine which tasks
are strategic and which are wasted effort, leads should create detailed
project goals and priorities. The more detailed the goals and priorities
are, theeasier it isto spot wasteful work.

2 THE SYSTEMATIC APPROACH 23

It'samazing how arelatively trivial work habit or process can producea
major differencein results. Idedlly, the habit or process will take little or
no effort to put into practice and its effectiveness won't depend on the
skill levels of the programmerswho useit. To dicit the best strategies for

DEBUGGING THE DEVELOPMENT PROCESS

working effectively, leads should pose the problems they're trying to
solve as increasingly refined questions. A lead shouldn't ask, for ex-
ample, "How canwe consgently hit our ship dates?' which can result
in anumber of undesirable solutions. The lead should instead ask amore
specific, more beneficia question: "How can we consistently hit our
ship dates without hiring more people and without forcing the develop-
ers to work overtime?' Leads should try to incorporate negative feed-
back loopsinto the strategies they develop. And when they present work
strategies to the rest of the team, they should be sure to remind the team
that even a good strategy or guideline won't necessarily be effective in
every situation.

3 OF STRATEGIC IMPORTANCE 45

Projects can go astray in so many subtle ways that leads must never let
projects coast, assuming that their projects are on course and will run
themselves. To keep aproject running smoothly, alead must constantly
monitor the project, looking ahead and taking care of problems while
they're ill small. To keep a project on schedule, alead should ask this
guestion each day: "What can | do today that will help keep the project
on track for the next few months?' By asking this question every day
and seriously looking for answers, a lead can foresee al sorts of prob-
lems that might otherwise blindside the project. To prevent wasted
effort, a lead should assess every request in order to identify the redl
problem or goal and should be sure that every task fulfills the project's
goals and priorities. Some tasks, such as meeting the marketing team's
request to fill out afeature set, or implementing a free feature that has
popped out of a programmer's design, might not be at all strategic. A
good lead learns to say No.

4 UNBRIDLED ENTHUSIASM : 73

If alead wants to get a software development team going on a cregtive
roll, he or she must create a devel opment atmosphere that fosters that
kind of enthusiasm. Unfortunately, as companies grow from small
mom-and-pop shops to corporate mega-shops, the amount of non-
development work that programmers are routinely saddled with rises
dramatically. The lead should work to eliminate unnecessary reports
and meetings and other corporate processes that hinder the develop-

Vil

CONTENTS

ment effort. The Ssmpler such processes become, the better. If program-
mers are given the opportunity to work unhindered by overblown cor-
porate processes, they have amuch better chance of catching a cregative
wave and moving the project forward. The critica point is that leads
should always work to address their actual, rather than formal, needs.
Asking for a report or holding a meeting is a common way to gather
information, but if there are other, more effective ways to gather infor-
mation (and there are), why burden programmers with reports and
meetings?

5 SCHEDULING MADNESS : 91

In most companies, the devel opment team needs to maintain a schedule
so that other groups in the company can coordinate their work with the
programming effort. At thevery least, the marketing team needsto have
some idea of when they should start advertising the product. But asim-
portant as schedules are for coordinating the work of the various prod-
uct teams, they can have adevastating effect on development if they are
not devised and used wisdy. An unattainable schedule can demoralize
the team and ultimately killj productivity. A schedulethat is merely too
aggressive can lead to dip hydteria, in which programmers take short-
cuts to meet the schedule in the short term, jeopardizing the product
over the long term. A schedule should be aggressive enough to keep the
project running at abrisk pace, but if it is too aggressive, programmers
will make stupid decisons despite their better judgments. Any pro-
grammer who has decided that he doesn't have time to thoroughly test
his codeis guilty of putting the schedul e ahead of the product. By using
"milestone scheduling,” leads can not only coordinate better with other
teams but also make projects much more exciting and foster creative
rolls in which teams crank out high-quality code at a prodigious rate.

6 CONSTANT, UNCEASING IMPROVEMENT 107

L eads can streamlinethe devel opment processto apoint at which every
team member isfocused only onstrategicwork. But if leadswant their
projectsto really take off, they haveto focus ontraining so that every
teammemberisregularlylearningawidevariety of broadly useful new
skills. One method for ensuring that team members actively grow isto
align personal growth goas with the two-month project milestones

DEBUGGING THE DEVELOPMENT PROCESS

described in Chapter 5, which could give each team member at least Six
important new skills a year. Programmers can and do pick up skillsin
the normal course of thejob, but their growth is much dower in that pas-
sive approach to learning. By ensuring through work assignments and
overt educational goals that programmers actively learn new Kills,
leads help the project and the company and advance the programmers
careers.

7 IT'SALL ABOUT ATTITUDE 125

Increasing a team member's skill through active learning is great, but
leads can get the most impressive results when they focus on correcting
harmful attitudes and promoting beneficial ones. The effects of a new
attitude sweep across al work that a programmer will do. That's the
leverage behind good attitudes. Chapter 7 takes a hard look at the com-
mon programmer attitudesthat work to the detriment of project success.
bugsareinevitable, I'll fix bugslater, it'll taketoo much timeto do things
right, it's good enough for users, it's better to give the user something
than nothing, we'll do our thing and you do yours, it'sjust for in-house
use...

8 THAT SINKING FEELING 151

When a project schedule starts to dip, anatural reaction isto hire more
people and forcetheteam to work longer hours. But throwing more pro-
grammers at the project and forcing everybody to work overtimewon't
correct the underlying problems that caused the project to dip in the
first place. If ateam isworking 80-hour weeks to meet a40-hour sched-
ule, something is seriously wrong. The lead needsto go after causes and
(sometimes) to protect the programmers from assumptions—their own
and upper management's—about the tonic effects of long hours. Hiring
more people or demanding long hours only masks the problems affect-
ing the project. Leads should find and fix the problems, not cover them
over.

EPILOGUE A WORD ON LEADING 171
REFERENCES 15
INDEX 17

PREFACE

Thisbook might make Microsoft sound bad.

At least that's one of the concerns | had about telling so many
Microsoft war stories. | condgdered softening and smoothing over some
of the stories, or leaving them out atogether, but apart from changing
people's names, | decided to keep this book and its examples grounded
inreality so that it would be asuseful and practical aspossible. Besides,
| think peoplerealize that Microsoft wouldn't have reached its position
of prominence in the software industry if the company were full of
bozos. Itisn't.

Most of theincidents | describe come from my experiencesin re-
training Microsoft teams whose projects were aready in some sort of
trouble: the projects were long overdue, or the quality of the code was
not up to the company's standards, or the programmers were working
crazy hours and Hill not making any headway ...

While working with these teams, | discovered that they were all
making the same fundamental errors and that they were perpetualy
repeating those errors. Not only that, once I'd gotten attuned to the mis-
takes those teams were making, | saw that even teams on successful
projects were making those same fundamental errors—they just made
the mistakes less often or had instituted countermeasures to overcome
the effectsof those mistakes.

In every group | worked with, | found that the project leads were
spending nearly al of their time writing code and almost none of their
time thinking about the project. The leads didn't spend time trying to
keep schedules on track, they didn't ook for foreseeable problems so
that they could circumvent them, they didn't work to protect other team
members from unnecessary work, they didn't pay particular attention to
training other team members, and they didn't set detailed project goals
or create effective attack plans. Theleadswere spending too muchtime
wor king when they should have been thinking.

Xl

DEBUGGING THE DEVELOPMENT PROCESS

In many ways, this state of affairs wasn't really the fault of the
leads. The leads hadn't been trained to be leads. They were program-
mers who woke up one day to find themsdlves, for one reason or another,
plunked into lead positions. These new leads knew how to program well,
but they didn't know how to run projects well, so they focused on what
they knew best and allowed their projects to run themselves—right into
the ground.

Unfortunately, many programmers don't feel that they need to
know how to lead aproject: "I'm not alead, so why should | worry about
lead issues?' They seem to think that once they become leads they'll
have time then to learn what they need to do in order to run a project
effectively. That'salittlelate.

| wrotethisbook'scompanion, Writing Solid Code, to give program-
mers proven techniques and strategies they could use to immediately
start writing code with far fewer bugs than they currently do. I've writ-
ten Debugging the Development Process to give leads and programmers
the proven techniques and strategies they can use to organize and run
software projects without the turmoil, long hours, and schedule dips
that are so common in our industry.

It is possible to ship high-quality, bug-free software on schedule,
without working long hours—and to have fun doing it. The techniques
and strategies in this book should help you do that.

ACKNOWLEDGMENTS

Many, many people at Microsoft Press worked on thisbook, and I'm not
sure that they, or people at publishing houses anywhere, get enough
credit for dl the effort they put in behind the scenes when they take a
manuscript inhand and deliver it to readers as abook. My thanksfirst to
Mike Halvorson, who believed in thisbook when it was amereidea. My
thanksin particular to Erin O'Connor, my manuscript editor, who was a
joy to work with and who spent nearly a year working with me on the
book. This book is as much hers as it is mine. Jeff Carey's enthusiastic
responsesto the chapters kept meencouraged. Deborah Long'sgood ear
for idiom saved me from myself more times than | care to count, and the
other proofreaders/copyeditorsonherteam—AliceSmith, ThereseM cRae,
and Pat Forgette—kept me busy considering the most fitting way to put

Xl

PREFACE

things. Compositor Peggy Herman worked patiently and inventively to ac-
commodate revisons in both the text and the layout. Kim Eggleston
adapted her fine design for Writing Solid Code to serve the purposes of
this book and cleverly adjusted the design as new requirements arose.
My thanks to dl of these professionas and to the many others at
Microsoft Press who worked to make this book a reality: Judith Bloch,
Walis Bolz, Barb Runyan, Jeannie McGivern, Sandi Lage, Shawn Peck,
John Sugg, Geri Y ounggren, and Dean Holmes.

I would like to mention two educators who over the years have
greatly influenced the way | leed projects. Anthony Robbins conducts
seminars to help CEOs and other executives run their businesses more
effectively. (Robbins is perhaps better known for his personal achieve-
ment seminars, which are also excellent.) Anyone who is familiar with
Robbinss work will see his influence in spots throughout this book.
Michad E. Gerber speaks to business audiences about how to "bring the
dream back to Americanbusiness' and wrotethebook The E-Myth: Why
Most Businesses Don't Work and What to Do About It. Gerber's ideas, book,
and speeches would seem to have nothing do with writing software—
they focus on how to run franchise businesses—but many of Gerber's
insghts completely changed the way | view software projects and how
they should be run. My thanksto both of these educators. Information on
their companies appears in the "References’ section at the end of this
book.

| was fortunate to have a wonderful team of programmers and
project leads as reviewers of this book. They provided generoudy from
their experience and insight. They are Microsoft programmers and
project leads who have worked over the years on Microsoft's most stra-
tegic projects. As reviewers they worked to ensure that my advice ade-
quately treated the problems and issues they have encountered on their
projects. | thank Paul W. Davis, Mdissa Glerum, Eric Schlegd, and Alex
Tilles. My specia thanksto Dave Moore, who gave of hislongtime expe-
riences as a programmer, project lead, director of development, and
more recently general manager to help merefine the pointsin thisbook.
| would aso like to thank lan Cargill for the several important insights
he provided early in the writing of the book.

Seattle, Washington
June 21,1994

Xin

INTRODUCTION

Inspiring leaders ook at theworld in afunny way. The company build-
ing could be burning to the ground, and instead of panicking about the
lost jobs, theinspiring leader takes one look at the flamesand breaks out
the hot dogs and marshmallows. When everybody around them is pessi-
mistic, such leaders inspire confidence even though there may be every
reason to be pessmigtic. They're an optimistic bunch, tending to inter-
pret events in a pogtive light. With that perspective, ingpiring leaders
tend to view failures not as failures but merely as learning experiences
that will help them surmount the next obstacles that come dong. And
because inspiring leaders tend not to experience a sense of failure,
they're willing to try the outlandish ideas that can lead to major break-
throughs. If an outlandish ideaflops, the inspiring leader doesn't see the
episode as afailure but merely as moreinformation. Such leadership has
little to do with experience. It's a combination of strong desire, an un-
usual way of looking at the world and its opportunities, and such aclear
vison and the ability to communicate that vison that others are in-
spired to work with the leader to make that vision come true.

Despite the belief that such leaders are born and not made, it is
possible to learn to be an inspiring leader. It isn't easy, though. Usually
the person must change many of his or her fundamental beliefs and atti-
tudesin order to view theworld inthat peculiar way. Y ou might say that
it cdls for a persondity makeover—an idea that most people would
think impossible and that many would find repugnant. | think that's
why it's rare for people to become inspiring leaders partway through
their lives. People don't usually change their personalitiesto that extent.

THE REST OF US

Fortunately, most software project leads aren't starting new companies
or venturing off into uncharted territory. Thetypical lead isusually em-
barking onthedevel opment of version4.21 of anapplication or working

XV

DEBUGGING THE DEVELOPMENT PROCESS

onsome other project that hasafairly straightforward futureeverybody
isin basic agreement about. Thetypical software lead doesn't need to be
aradically inspiring leader capable of getting team members to do out-
landish things. The typical software lead ssimply needs to be effective,
which is quite learnable and doesn't require anything like a personality
transformation. It just requires learning the habits and strategies that
have been found to work in bringing quality products to market on
schedule—and without working 80-hour weeks.

All effective leads understand that for a project to be successful,
every single member of the team must bein on the strategies that will be
used to ship aquality product on schedule. Y ou don't have to be the lead
in order to make good use of the techniques and strategies | describe.
Thisbook isfor every team member, not just the lead. Unlessevery team
member knows what it takes to get a quality product out the door with-
out working 80-hour weeks, it won't happen.

WRITING OLID CODE

A lot of steps are involved in the development team's effort to bring a
software product to market—everything from designing the code to
working with the marketing team. In every one of the stepsin the devel-
opment process, people make mistakes. There's nothing new in that ob-
servation. I've called thisbook Debugging the Devel opment Processto get
programmers to think of the development process as they would a cod-
ing algorithm: it's something that can contain bugs that will cause
wasted and misguided effort, and it's something that can be optimized
tofunctionbetter.

In Writing Solid Code, the companion book to this one, | focused on
what | believe is the most serious "bug" in the development process. that
there are far too many programming bugs. Writing Solid Code described the
techniques and strategies programmers can use to detect existing bugs at
the earliest possible moment and how programmers can prevent those
bugsin the first place.

In Debugging the Development Process, | focus on the techniques and
strategiesthat programmers can use to get quality products out the door
withaminimumof wasted effort. Inthefirstthreechapters, | talk about a
number of basic concepts and strategiesthat ateam should act onif they

XVi

INTRODUCTION

want to release products without working twelve hours a day, seven
days aweek. Thefinal five chapters build on the earlier chapters, focus-
ing singly on overblown corporate processes, the ins and outs of sched-
uling, programmer training, attitudes, and long hours.

Writing Solid Code and Debugging the Development Process are com-
panion books. You'l find that the ideas in the two books interact with
one another to a certain extent. When ideas in the two books overlap,
you'll find that Writing Solid Code tends to be more focused on the code
itself. In oneinstance | excerpt part of a section from Writing Solid Code
in this book because | think that the point it makes is even more critical
to the smooth running of a project than it is to writing bug-free code.

DEVELOPMENTAT MICROSOFT—A SNAPSHOT

Most of the examples in this book are drawn from my experience at
Microsoft. A brief description of how responsibilities are divided among
leads and a sketch of how atypical project proceeds at Microsoft might
put those examples in context for you.

A Microsoft project typically has at least three different types of
leads working directly on the development of the product:

* Project Lead. The project lead is ultimately responsible for the
code. He or she is aso responsible for developing and moni-
toring the schedule, keeping the project on track, training the
programmers, conducting program reviews for upper man-

agement, and so on. The project lead is usually one of the
most experienced programmers on the team and will often
write code, but only as a secondary activity.

* Technical Lead. The technical lead is the programmer on the
team who knows the product's code better than anyone else.
The technical leaed is respongble for the internal integrity of
the product, seeing that all new features are designed with
the existing code in mind. He or she is also usually respon-
siblefor ensuring that all technical documentsfor the project
are kept up-to-date: file format documents, internal design
documents, and so on. Likethe project lead, thetechnical |lead
is usually one of the most experienced programmers on the
project.

XVvii

DEBUGGINGTHEDEVELOPMENT PROCESS

* Program Manager. The program manager is responsible for
coordinating product development with marketing, docu-
mentation, testing, and product support. In short, the pro-
gram manager's job is to see that the product—everything
that goes into the box—gets done, and that it gets done at the
level of quality expected by the company. The program man-
ager usualy works with the product support team to coordi-
nate external beta releases of the product and works with end
users to see how the product might be improved. Program
managers are often programmers themselves, but they limit
their programming to using the product's macro language (if
one exists) to write "wizards' and other useful end user mac-
ros. More than anyone dsg, the program manager is respon-
siblefor the "vison" of what the product should be.

The name "program manager” can be mideading be-
cause it impliesthat the program manager is superior in rank
to the project lead, the test lead, the documentation lead, and
the marketing lead. In fact, the program manager is at the
same level as the other leads. A more appropriate name for
the program manager would be "product lead" since the pro-
gram manager isresponsible for ensuring that all the parts of
the product—not just the code—get done on schedule and at
an acceptablelevel of quality.

On a typicd project, the program manager (or managers if the
project is large enough) works up front with the marketing, develop-
ment, and product support teams to come up with a list of improve-
ments for the product. After the list of features has been created, the
program manager writes the product specification, which describes in
detail how each feature will appear to the user—providing, for instance,
adrawing of anew dialog box with a description of how it will work, or
the name of a new macro function with a description of its arguments.
As soon as the product spec hasbeen drafted, it is passed out to al of the
teams involved with the product for athorough review. Once the final
spec has been nailed down, the teams go to work.

The program manager meanwhile uses mock-ups of features to
conduct usability studies to be sure that al of the new features are as
intuitively easy to useaseverybody originally thought they would be. I

XVLU

INTRODUCTION

a feature turns out to be awkward to use, the program manager pro-
poses changes to the spec. The program manager also works on sample
documents for the product disks and on those end user macros | men-
tioned earlier. As features are completed, he or she reviews each to
ensurethat it meets all the quality standards for shipping the product—
in particular, that the feature is snappy enough on low-end machines.

Development continues and eventually reaches a point known as
"visua freeze," meaning that all features that will affect the display
have been completed. Once the code reaches the visual freeze point, the
user manuals are finalized with screen shots of the program. Conse-
guently, from that point on, developers have to be careful not to affect
the display in any way so that the screen shots in the manualswon't dif-
fer fromwhat the user seesin the program. The programmers, of course,
would prefer that the screen shots be taken only after dl the code is fin-
ished, but the manuals need along lead time and have to be sent to the
printer well before the code will be finalized. In some cases, in order to
reach visua freeze on al the features in time for the manuals to be ready
«at the release date, the programmers will only partially implement the
features—for instance, displaying a nonfunctional dialog good for
screen shots but not much else. The programmers come back to the fea-
tures and fully implement them later.

Once dl of thefeatures have been completed—the "code complete’
stage—the programmers put their effort into fixing all outstanding bugs
in the bug-list and making any necessary performance improvements.
When the code is finally ready to be shipped, the project lead or the tech-
nical lead creates the "golden master disks" The program manager
sends the golden masters off to manufacturing for duplication, and the
software gets stuffed into the boxes with the manuals, the registration
cards, and other goodies. A little bit of shrink-wrap, and the product is
ready for an end user.

I've left out a lot of details, but this brief overview should be
enough to enable you to put the occasional example in this book that
might otherwise be too Microsoft-specific into context.

| should aso mention that e-mail isthelifeblood of Microsoft. All
internal businessis conducted over e-mail, and, at least in development
circles, you have to have aredly good reason to interrupt someone with
atelephonecall. Most interaction among devel opersgoesonover e-mail

XiX

DEBUGGINGTHEDEVELOPMENT PROCESS

and in the numerous hall meetings that spring up spontaneoudly. This
corporate sensitivity to interruptions accountsfor Microsoft's policy of
giving everyone aprivate officewith adoor. If you'reworking and you
don't want to be interrupted, you simply close your door.

IT'S HARDER THAN IT SOUNDS

My final concernisthat thisbook might makeit sound asif applying al
of its advice will, overnight, transform a less-than-model project. Cer-
tainly you can apply many of its techniques and strategies immediately,
and you will get quick results; but others—some of the training tech-
niques, for instance—take time to produce results. If your team is cur-
rently having trouble, you can't expect to read this book and aweek later
have your project turned around. In my experience, turning around a
troubled project takes two to sSx months, with most of the improvement
coming about in those first two months. From that point on, the im-
provements come more dowly and are less dramatic.

XX

LLAYING THE
'GROUNDWOR

Have you ever stopped to consider what makes one project lead or pro-
grammer more effective than another? Is it one or two profound pieces
of wisdom, or is it a grab bag full of little snippets of knowledge that
when taken together produce this thing we call "mastery”?

| wishthe answer werethat mastery comesfromjust oneor two pro-
found insights—that would certainly ssimplify training. The reality is
that mastery is acollection of numerous little bits of knowledge, beliefs,
skills, and habitsthat beginnershaveyet to accumulate. Ironically, none,
or at least very few, of theselittlebits of experience are particularly hard
to comeby. But there are alot of them, and they are often learned i neffi-
ciently, through trial and error.

Trial and error is the time-honored approach to gaining mastery,
but that can be along, arduous undertaking, even if you dramatically

DEBUGGING THEDEVELOPMENT PROCESS

speed the processthrough active study. A much faster method of jump-
starting your skillsisto take on the beliefs and habits of people who al-
ready excel in your area of interest. They've already learned what you
want to know, so why go through all the trouble yourself when you can
look at their practices, mimic them, and get similar results?

Inthisfirst chapter, | will describewhat | havefound to be the most
important practices that project leads and their team members should
embrace if they want to stay focused and hit their ship dates without
having to work 8*0-hour weeks. These points lay the groundwork for the
following chapters.

FOCUSONIMPROVING THEPRODUCT

Companies pay programmers to produce useful, high-qudity products
in areasonable time frame. But programmers often get sidetracked into
doing work that has nothing to do with creating a product. They, or their
leads, fail to recognize abasic truth of product devel opment:

Any work that does not result in an improved product is
potentially wasted or misguided effort.

If you don't immediately see why this point is so important, con-
sider two extremes. Which programmer ismorelikely to produce a use-
ful, high-quality product in a reasonable time frame: the programmer
who regularly attends meetings, writes status reports, and is buried in
e-mall or the programmer who uses dl her time to research, design,
implement, and test new features? Is there any question that the first
programmer's schedule will dip whereas the second, much more fo-
cused, programmer not only islikely to finish on schedule but may even
finishearly?

I've found that groups regularly get into troubl e because program-
mersare doing work they shouldn't be doing. They're spending too much
time preparing for meetings, going to meetings, summarizing meetings,
writingstatusreports, and answeringe-mail. Someprogrammersinitiate
this kind of activity themselves. More often, such distractions are at the
behest of amisguided lead.

1 LAYING THE GROUNDWORK

One lead with whom | worked required every team member to
send aweekly e-mail messagereporting on the status of hisor her work.
The entire team would then meet for an hour or so to rehash what every-
body had been doing and to discuss any external issues that had
cropped up. After the meeting, anybody who had offered new informa-
tion would have to write those thoughts down in another piece of e-mall
and send it off to the lead,

Now, this lead wasjust trying to be thorough. What he didn't redl-
ize was that he was choking his team with a lot of pointless process
work. Wes it redly necessary to have both status reports and status
meetings? And what about those follow-up reports? Were they redly
necessary, or could they havebeen eiminated in 99 percent of the cases
if the lead had smply taken better notes during meetings?

Obvioudy, your answers to such questions will depend on your
particular corporate environment, but in the actua case I've just de-
scribed, the only process work that ever turned out to have any value
was the initial status report. | don't remember a single status meeting
that was worth the time it took to attend, and every time the lead asked
for follow-up reports| winced, thinking, "Why? They just told you what
they thought.”

| was only an occasiond visitor to these regular status meetings, so
| wasn't often affected by the status work. | always wondered, though,
how much other unnecessary process work that group was routinely
saddled with.

In hiswdl-intentioned zed to be thorough, that group's lead vio-
lated what | consider to be afundamental guideline for project leads:

The project lead should ruthlessly eliminate any obstacles that
keep the developers from the truly important work: improving
theproduct.

There's nothing earth-shattering about this observation, yet how many
leadsdo you know who makeit apriority to actively look for and €limi-
nateunnecessary obstacles?

If thelead I've been talking about had been actively trying to elimi-
nate unnecessary work, I'm sure he could have come up with a much

DEBUGGING THE DEVELOPMENT PROCESS

simpler and more effective method of determining the state of his
project. Having status reports, status meetings, and follow-up reports
was overkill.
_.__‘_.._
Don't waste the devel opers time

on work that does not improve
theproduct.

Don't TakeMe Too Literally...

When | say that developers shouldn't do any work that doesn't improve
the product, don't take that imperative so literally that you keep them
from doing their desgn and testing work and from getting the training
they need. None of these activities contributes directly to a single line of
code, but they al influence the quality of the products you release. If a
developer thinks through and tosses out three flawed designs, for in-
stance, that's far better for the product than having her implement the
first design she comes up with.

And team interaction might not have much to do with improving
the product, but getting the team together under pleasant circumstances
can do alot to improve morale and ultimately the quality and efficiency
of the team's work.

RUN INTERFERENCE

In your own groups, if you want to consistently hit your deadlines, you
must protect your development team from unnecessary work. In par-
ticular, any time you find yourself about to delegate work to the entire
team, stop and ask whether you can protect the team by doing the work
yourself. If you haveto present a project review to thefolks upstairs, for
example, isitreally necessary to bring development to ahalt and require
that every programmer write areport summarizing what he or she has

1 LAYING THE GROUNDWORK

done? Not in my opinion. As the lead, you should be able to compile
that information without help, and you canthen present theinformation
moreeffectively sinceit'scomingfromonesource. Yes, it might costyou
acouple of hours of your own time, but that's better than disrupting the
entire team for atask that does nothing to improve the product.

| often go a step further. If | find that a programmer is getting
bogged down in atask that is necessary but that does not improve the
product, | will take that task from the programmer, if | can, so that he or
she can stay focused. There's no reason—except perhaps for training
purposes—for programmers to answer project e-mail questions if
they're questions the lead can field. Nor should programmers be attend-
ing meetings or writing reports the lead can handle, or better, eliminate
atogether.

| know this advice contradicts what many management courses
and books have to say about delegating work. 1'm not saying that those
courses and books are wrong, but you must be smart, that is, selective,
about the tasks you delegate. If you're delegating work just to lighten
your own load, you're probably hindering the development team with
work that does not improve the product. Just because the other team
members can do thework doesn't mean they should do the work.

Have you ever seen a house being moved across town? | don't
mean the contents. | mean the house itself—pulled off its foundation
and shifted to a large flatbed truck trailer. | like to think of projects as
those houses in transit, and of the leads as the people who drive ahead,
arranging to have overhead power lines disconnected and removing
other obstacles that would block progress. These "leads' make it pos-
sible for the house to roll steadily toward its destination, not having to
stop along the way.

While the house is rolling, the leads don't expect the truck drivers
to pull over at every intersection to help the public utility people discon-
nect and reconnect the hanging stoplights. Nor do they ask thedriversto
stop at tollbooths along the way, or to stop for meetings with the public
utility folkswho are moving the power lines.

Those "house leads’ understand something that many software
leads don't: if you want your project to move forward unimpeded, you

DEBUGGING THE DEVELOPMENT PROCESS

must actively search out and eliminate all obstacles to progress. Sure,
thedriver could pull over and pay thetoll-taker—heis, after al, the one
drivingthetruck. But doesn'tit make moresensefor thelead totakecare
of that task so that progress can continue unabated? Unfortunately, too
many software |leads delegate when they shouldn't, making their devel-
opers do the equivalent of negotiating with the public utility folks and
pulling over to deal with the toll-takers. Their projects get dowed—or
stopped—nhy every obstacle that comes aong.

—Q/w._.__.

Shield the development team
from any work that interferes
withprogress.
.___'}_.._

But| Lead Other Leads

I've been assuming that you lead programmers; but if you lead testers,
documentation writers, or some other type of team, your job is only
dightly different from the one I've been talking about. The general idea
isthat you should makeit possible for the members of your team to stay
focused on their jobs, whether they're programming, testing code, or
writing the manuals.

Evenif your team is composed entirely of other leads, you should
determine what their jobs should be and protect them from unnecessary
digractions. Holding status meetings for leads can bejust as wasteful as
holding status meetings for programmers, particularly if the leadswork
on independent projects and don't need to know the status of other
groups projects. Y ou may not be pulling thoseleads from theimportant
work of directly improving their products, but in such cases you are
pulling them from the important work of clearing obstacles to the im-
provement of their projects.

1 LAYING THE GROUNDWORK

THERE'SALWAYS A BETTER WAY

As a lead, I'm always asking mysalf one question, in al phases of
the project:

What am | ultimately trying to accomplish?

| constantly ask this question because it's so easy to get sidetracked on
work that isn't important. If you've ever spent more time formatting a
memo—playing with fonts and styles—than you did writing the memo
inthefirst place, you know what | mean. In the moment, you get caught
up because the work seemsimportant, but if you step back and get some
perspective, you see that it's the message that's important, not how
artistic you can makeit.

We've already seen an example of misdirected effort in the status
meetings and status reports I've talked about. How would you answer
this question:

What am | ultimately trying to accomplish by holding status
meetings and requiringstatus reports?

Isn't the primary goal of gathering project status information to detect,
a the earliest possble moment, whether the project is going astray?
Think about that. Suppose all projects were finished exactly as sched-
uled—no project end date ever dipped, and nobody ever worked over-
time. Would anybody ever gather status information? Of course not.
There'd be no reason to.

If the ultimate purpose of status meetings and status reports is to
determine whether a project's schedule isin danger of dipping, is it re-
aly necessary to pull the development team away from their work to
collect thisinformation? | don't think so. | have never held status meet-
ings, and they are thefirst bit of pointless process| eliminate whenever |
become the new lead of agroup. | smply don't believeit's necessary to
hold status meetingsto determinewhether ascheduleisgoingto slip—
that is, not if you're aso collecting status reports.

So what about those status reports? How important are they? |
think status reports—of some sort—are a necessary evil. A lead does,
after al, need to know when problems occur. But notethat while status

DEBUGGING THE DEVELOPMENT PROCESS

reports are necessary, they—Iike status meetings—do not improve the
product in any way. When you believe that atask is necessary but see
that it doesn't improve the product, you should always ask amore spe-
cific form of this genera question:

How can | keep the benefits of this task yet remove the drawbacks?

Status reports do serve avaluable purpose, but they take time to write
and can create anegative mind set intheteam—at |least they canthe way
they have been donein many Microsoft groups.

If each week programmers must write a report accounting for the
hours they've worked and explaining why any tasks took more time
than originally estimated, the status report causes unnecessary stress
and engenders in the developers and everybody e se the feeling that the

" Status Meeting" Defined

No doubt, what |'ve been calling a status meeting is going to differ from
one company to the next. When | say "status meeting,” | mean those
dreary get-togethers in which each team member describes what he or
she did and didn't do that week. Y ou can spot these meetings easily be-
cause the major point isto talk about what did and didn't get done.
Another type of statusmeetingisoneinwhichleadsfrom different
teams get together and describe what they did and didn't get done. Al-
though similar to the project status meeting, these meetings are held to
coordinate multi-team projects. The leads don't report every little thing
that happened—they report only those itemsthat affect the other groups
inthe project, Did they miss or make adrop date? Arethey still on track
for some future date? Is another group now making demands on their
time?Thepurpose of these meetingsisto resol vedependency issues. Any
team that is dependent on another teamisin aprecarious position asfar
asitsown scheduleis concerned, and it's essential that members know,
a the earliest possble moment, when a team they're relying on is going
toslipaschedule, cut features, or otherwisethreatentheir own project.
But again, noticethat it's the leads who are meeting—not the pro-
grammers, who should be off working on their respectiveprojects.

1 LAYING THE GROUNDWORK

project isalwaysdipping. Moreoftenthan not, aprogrammer sitsdown
to write the status report and realizes that she can account for only 27
hours of scheduled work yet knows that she worked seven 12-hour days
that week. And she knows that she wasn't goofing off all that time.

If you've never been in this position, imagine how frustrating it
would beto realize you've dipped your schedule even after you've put
in a seven-day week, not to mention that you have to somehow account
for your time. And suppose that the same scenario repeats itsalf week
after week. Areyou going tojump out of bed each morning, enthusiastic
and ready to start another productive day? Or—more likely—are you
going to be exasperated, frustrated, and depressed? Each week you work
harder, trying to get more work done, yet you continueto dip. . .

| hate such status reports because they force the devel opment team
to focus on dl the work they didn't do instead of putting the emphasis
on what they did do. Rather than feeling enthusiastic because they are
steadily improving the product, the team members are forced to remind
themsalves that they're behind schedule, screwing up in some way they
can't immediately see. They know they're working hard, but they can't
seem to keep from dipping.

A team isn't that different from an individual. If a team sees itself
ason arall, it will tend to keep rolling, but if ateam sees itself as con-
stantly dipping, the laws of inertia and self-fulfilling prophecy will
apply there too, and that is ultimately demoralizing.

Don't misunderstand me: something is definitely wrong if a pro-
grammer isworking 84-hour weeksbut can account for only 27 hours of
scheduled work. Perhaps she's agreeing to interview too many job can-
didates, or attending too many unnecessary meetings, or possibly she's
too concerned about how her e-mail reads, so that she edits and re-edits
replies that aren't really worth spending that kind of time on. You and
she need to address those problems. But even if the programmer is hav-
ing trouble allocating her time, that's no reason to have the status report
regularly dap her in the face. Aswe'll see later, there are better ways to
handl e such problems.

Let'sreturnto the earlier question: how can you keep the benefits
of having status reports yet remove the drawbacks? One answer is to
create a new type of status report, one that takes little or no timeto put
together and that also makes doing such a report a positive experience

DEBUGGINGTHEDEVELOPMENT PROCESS

rather than anegative one. I'm sure there are many alternative ways of
achieving these goals, but thisiswhat | ask my teamsto do:

* Eachtime ateam member merges anew featureinto the mas-
ter sources, he or she is to send a short piece of email an-
nouncing the new functionality to the rest of the team.

* Anytime there's a possibility that afeature will dip, the team
member responsible for that feature isto drop by my office to
discuss the cause and brainstorm a solution.

That'sit. A typica status report might look like this

| just checked in the new search and replace feature.
It stomps on the S&R feature in FaxMangler! Check it out.
- Hubie

Imagine how the team members would fed if they were congtantly
sending and receiving such positive e-mail. Quite abit different than the
hated status reports | talked about earlier would make them feel. Pro-
grammers actually enjoy sending little notes like this one—and nobody
thinks of such anote as a status report.

When a programmer thinks the feature he or she is responsible for
might dip, we talk about the cause and how it can be prevented in the
future. Did weforget to schedule time for an important side item? Was
the schedule too ambitious? Is a bug somewhere d<e in the product
making this feature difficult to implement or test? Whatever the prob-
lem, wetry to find some way to prevent it from recurring in the future.

The point is that | can easly gauge the project Status solely on the
basis of these two kinds of feedback. And if | have to, | can easlly pass
proj ect status news up the chain of command—theindividual program-
mers don't need to participate in that chore at al.

Even better, both types of feedback have secondary benefits. The
first kind reinforces the perception among the team members that the
project is continually improving, and the second creates alearning expe-
rience for the programmer and the lead. We don't just shrug and say,
"Ohwedll, schedules dip all thetime. It'sno big deal."

Going overboard in gathering status information is just one
example of how process work tends to expand and get formalized into
grandiose procedures if people forget what they are redly trying to
accomplish. They get caught up in the processinstead of the product.

10

1 LAYING THE GROUNDWORK

Only when you're clear about what you and your team should be
doing can you fulfill the project's needs with the least amount of effort
and frustration. Review any task assignments that either are unpleasant
or pull programmers from working on the product. Can you eliminate
the unpleasant tasks, or a least find more enjoyable approaches to
accomplishing them? And what about those tasks that don't contribute
to improving the product? Get rid of them too, if you can—at least asfar
as the programmers are concerned.

Always determinewhat you'retrying to

accomplish, and thenfind the most efficient
and pleasurable way to have your team do it.

Bombardedby Success?

Y ou'd think that if you asked team members to send little "check it out”
notes to each other, the entirateam would be bombarded by e-mail mes-
sages announcing their successes. In practice, the number of messages
per day issmall. The reason: people don't send these messages to every-
body on thewhole project, just to the lead and the four or five other pro-
grammers who are working on their specific part of the project.

One of the larger Microsoft teams might have 50 programmers, but
that large team is typicaly subdivided into much smaler teams, with no
more than 5 or 6 programmers working on any specific piece of the
project. Each of these "feature teams' has a well-defined area of respon-
shility, alead, and its own schedule. Programmers on feature teams are
part of the larger team, of course, but on a day-to-day bass, their true
team isthe 4 or 5 other programmers with whom they share a common
project goal.

In practice, you could be on a 50-person project yet receive only a
handful of "check it out” noteson any given day—asteady, but not over-
whelming number. Just enough messages to give you a sense of constant

progress.

7l

L

DEBUGGING THE DEVELOPMENT PROCESS

STATE YOUR OBJECTIVES

How many people do you know who woke up one day to find that,
miraculously, they had taken just the right courses to obtain a computer
science degree? How many people do you know who accidentally
packed up their houses and moved to new cities? Pretty silly-sounding.
Clearly, people don't get college degrees or move across the country by
accident. They plan to do those things. At some point they think, "I'm
going to become acomputer programmer” or "I'd like to live next door
to Disney World." Then they take action to make those things happen.

Unfortunately, the random approachto goa achievement worksall
too well in many other areas of life. You can find a great job by chance,
make akilling in the stock market with a lucky pick, and even, sadly,
ship a software product without a goal more concrete than "We have to
get WordSmasher finished.”

In each of these situations, you can achieve the goa, but the ques-
tion is, How much time and energy will you waste getting there? Are
you more likely to get agreat job by bouncing from one company to the
next, or would it be more effective to take a day to determine what a
great job would have to be like and then interview only at companies
withjobs that meet your criteria?

One common trait | found among the half-dozen floundering
groups|'veworked withwasthat they al had vague goals. In onecase, a
group was providing auser interface library to 20 or so other groups at
Microsoft. Not only was the group swamped with work, but the groups
using the library were complaining about the sze and bugginess of the
code.

After thelead and | reviewed thelibrary'stask list, | asked the lead
what his goasfor the project were.

"To provideaWindows-like user interfacelibrary for theMSDOS
character-based applications,” he said.

| asked him what dse.

"What do you mean?"

"'ProvidingaWindows-likeuser interfacelibrary' isapretty vague
god," | said. "Do you have more concrete goals than that?

"Wadll, thelibrary should be bug-free."

| nodded. "Anything else?’

1 LAYING THE GROUNDWORK

He paused a moment and then shrugged. "Not that | can think of."

| then pointed out that a primary goal for any library isto contain
only codethat will be useful todl thegroupsusing that library. Thelead
thought that point was obvious, but | wasn't so sure as we began to re-
view the list of features he had agreed to implement.

| pointed to an unusual item near thetop of theligt. "What'sthisfor?"

"The Works group asked for that. It dlowsthemto. . . ." he sad.

"Isit useful to any other group?’

"No. Just the Works group.”

| pointed to the next item. "What about this feature?’

"That's for the CodeView team.”

"And this item here?’

"Word wants that."

As we went down the task lig, it became clear that the lead had
agreed to implement every request that came in. He may have known
that alibrary should contain only code that will be useful to al groups,
but he wasn't using that criterion in his decision-making process.

The lead's god for the library was ssimply "to provide a Windows-
likeuser interfacelibrary.” What if hisgoal had been abit more detailed?

Goal: To provide a Windows-like user interface library that
contains onlyfunctionality that is useful to all the groups who
will usethelibrary.

With this dightly more precise god, the lead would have seen that many
of the requests from individual groups were inappropriate for a shared
library.

After wereviewed thetask list, | moved to another problem.

"Many of the groupsare complaining that they havetroublelinking
whenever you release an updated library. What's causing that problem?”

"Oh, that's easy. They're forgetting to change the names of the
functions in their source code."

| was confused, so | asked himto show meanexample. In one case,
he (or another programmer on the team) had fixed abug in afunction,
and while he was at it, had changed the function's name so that it was

DEBUGGING THE DEVELOPMENT PROCESS

more consistent with the names of other entry points. In another case, a
programmer had implemented anew function similar to an existing one.
The programmer had then renamed the original function to emphasize
the difference between it and the new function.

The lead didn't understand why the other groups were fussing—
changing anameis simple. He had never stopped to consider that every
time his group changed anamein the library, the 20 or so other groups
that used the library would have to search through dl their files, chang-
ing the names at al the cal sites. The lead dso hadn't realized that link
problems reflected poorly on the library. If the team couldn't do some-
thing as smple as rdlease a library that conagently linked, what, the
other groups and | had to wonder, must their code be like?

If that lead had spent a moment looking at the library from the
other groups pointsof view, hewould have seen that backward compati-
bility wasimportant. Groups want to be ableto take anew library, copy
it to their project, and link. They don't want unexpected errors.

Again, a more concrete set of project goals could have prevented
this link problem:

Goals: To provide a Windows-like user interface library that
contains onlyfunctionality that is useful to all the groups who

will use the library and that is backwards compatible with previous
releases. . .

Oncel understood theissues affecting the user interfacelibrary, the
lead and | worked out a complete set of goads. What's important to note
Isthat all of the details were apparent, once looked for, and could have
been established in advance. If the lead had bothered to ask the question
"What am | trying to accomplish with this user interface library?' he
could have derived alist of project goalsin amatter of minutes.

A more thorough lead would spend several hours or even severa
days creating detailed project gods. The goals wouldn't have'to be pro-
found; they would just need to be written down and put in plain sight so
that they could be a constant guide.

By ensuring that all new code would be useful to all groups, theli-
brary lead could have kept the library much smaller, he could have fin-
ished important features more quickly, and his team probably wouldn't

14

1 LAYING THE GROUNDWORK

have had to work 80-hour weeksin a desperate attempt to deliver al the
features he had promised. Think about that: just one refinement of the
god, and the course of the project could have beendramatically different.

Establish detailed project goals

to prevent wasting timeon
inappropriate tasks.

Dependent on Dependencies

One of the easiest waysfor your project to spin out of control isto haveit
be too dependent on groups you have no control over. Using shared li-
braries is strategically important for a number of well-known reasons.
But as a lead, you must weigh the benefits of leveraging such code
againgt the drawbacks of not having control over the development ef-
fort. To keep the dependenciesissue in mind—and in sight—you should
make this one of the refinements of your project goals:

Minimize the project's dependencies on other groups.

Considering the damage a late library can do to other groups
schedules, alibrary lead owes it to his or her "customers' to be up front
about the library's schedule and warn dependent groups the moment a
dip seemslikely.

Similarly, a development team relying on shared libraries should
listen to alibrary lead who says a given request can't be fulfilled by a
given date. By badgering library teams into accepting requests they
don't think they can fulfill on time, pushy leads create not only depen-
denciesfor their projects but risky dependencies at that.

These two points are obvious. But having spent years turning
around struggling library groups, I've seen both mistakes far too many
times.

i

DEBUGGINGTHEDEVELOPMENT PROCESS

MAKE THE EFFORT

Management books often make setting goals sound like some mystical
ideology you must smply have faith in: "We don't know exactly why
setting goalsworks, but our studies show conclusively that groupswho
have concrete, detailed goal s consi stently outproduce thosewho don't—
by awidemargin."

I don't know why such management books make the effectiveness
of goal setting sound so surprising—goals smply help you compose a
morevivid pictureof what itisyou'retryingtodo. If your goa ismerely
to buy ahouse, you're going to look at alot more houses before finding
oneyoulikethanif your goa isto get aturn-of-the-century, tricolor Vic-
torian withfour bedrooms, two bathrooms, and astatue of St. Francisin
theback yard. Themoredetailed goal makesyou moreefficient because
it dlows you to instantly regect anything that doesn't match the picture
in your head. Specific project goas work because they help you sift
through the daily garbage that gets thrown at a project. They help you
stay focused on the strategic aspects of your project.

Unfortunately, there's nothing in the software development pro-
cess that forces project leads to stop and come up with detailed goals. In
fact, there's plenty of pressure to skip the whole goa-setting process.
Who hastimeto set goalswhen aproject isout of control from the outset
and already dlipping like crazy? And someleads skip goal-setting for an
entirely different reason: nobody else sets goas—why should they?
L eads who don't set goals for elther reason cause themsealves, and their
team members, alot of unnecessary frustration.

If you want your group to run smoothly, you must take the time to
develop detailed goals. It's usually not fun, but taking a day or two to
set goalsisasmall priceto pay for having afocused project. No group
should have to work long hours under constant pressure—that's a
symptomof unfocusedwork.

Don't skip the goal-setting process simply
becauseyou think it would take too much time
or because nobody else sets goals. The extra effort
you exert upfront will more than repay you.

__6_.._

THE GROUNDWORK

KNOW YOUR CODING PRIORITIES

If you were to ask three different friends to drop by the supermarket to
pick up some asparagus, green beans, and corn, would it surprise you to
find that one friend bought canned vegetables because they were the
cheapest, another bought frozen vegetabl es because they were easiest to
cook, and the third bought fresh vegetables because they were organi-
caly grown and tasted the best? Can you at least imagine such a thing
happening?

The three friends buy different types of vegetables for the same rea-
son one programmer will emphasize speed in his code, another will em-
phasize smal sizein hers, and a third will emphasize simplicity—their
choicesdiffer becausetheir prioritiesaredifferent.

Suppose your product has to be blindingly fast but the program-
mers on your team are writing code with simplicity in mind. It's un-
likely that those programmers are going to use fancy cache-lookups or
other faster yet more complicated agorithms. Suppose that your pri-
mary goal isto create a robust application in the shortest time possible
but the programmers are following their standard policy of writing
highly optimized—and risky—code. Again, their misplaced priorities
are going to thwart your godl.

Project goalsand coding priorities are not the samething. Goalsand
prioritiesdo tend to overlap, mainly becausethe project goashelp define
what the coding priorities should be. Here's a good generalization:

* Project goasdrivethe direction of the project.
* Coding priorities drive the implementation of the code.

Obvioudly, if your goal isto create the fastest Mandel brot plotter on the
planet, efficiency isgoing to beatop coding priority.

Despite theimportance of coding priorities, in my experience leads
rarely convey their coding priorities to the programmers. Should the
programmersfocuson speed?Onsize?On saf ety ? Robustness?Portabil -
ity? Maintainability? Every programmer has his or her persona views
about theimportance of one coding priority over another and left to his
or her own deviceswill produce code that reflectsthose views. It's com-
mon for one programmer, left alone, to consistently write code that's
clean and maintainabl e while another team member, |eft alone, focuses

17

DEBUGGING THE DEVELOPMENT PROCESS

on efficiency even if the result is unreadable spaghetti code filled with
obscure micro-optimizations and tons of assembly language.

If youwant your teamto achievethe project godsasefficiently and
precisaly as possible, you must establish and promote coding prioritiesto
guidethe programmers. At the very least, you should establish aranking
order for these priorities:

* Sze

* W

* Robustness

* Sdfety

* Tedability

* Maintainability
* Simplicity

* Reusability

* Portability

The only item on thislist of priorities that may need some explana-
tionis"safety." If you chose safety as ahigher priority than speed, you'd
choose one design over another because you'd think you'd be more
likely to implement the feature without any bugs. Table-driven code, for
example, can be dower than logic-driven code, assuming you're scan-
ning the table and not doing a smple lookup, but table solutions are of -
ten much safer to implement than logic-driven solutions. If you chose
safety as a higher priority than speed in this hypothetical situation,
you'd implement the table solution unless there were overriding concerns.

In addition to ranking coding priorities, you should aso establish a
quality bar for each priority. If robustnessis ahigh priority for you, how
robust should the code be? At the very least, the code should never fail
for lega inputs, but what about when the code receives garbage as in-
put? Should the code take extra pains to handle garbage intelligently
(trading both size and speed for robustness), should the code use pro-
gram assertionsto check for garbage, or shouldyou let GarbageIn, Gar-
bage Out rule? There is no right answer to this question; the answer
depends on what you're doing.

THE GROUNDWORK

An operating system should probably accept garbage without
crashing; an application program in which an end user can make mis-
takes entering data most certainly shouldn't crash. But if you're talking
about a function deep in the guts of your program, where the only con-
ceivable way the function could get garbage inputs would be if there
were abug elsewhere in your code, an assertion failure would be more
appropriate. In such a case, you might gtill choose to handle the garbage
safely if it didn't cost much extra code.

The point isthat you must decide, in advance, what the coding pri-
orities and quality bars will be; otherwise, the team will have to waste
time rewriting misconceived or substandard code.

Establish coding priorities and quality
bars to guide the development team.

B

1

Safety vs. Portability

In my own priority ligts, | usually make safety a higher priority than
portability—I'd rather have correct code than portable code. This has
led to some confusion because portable code is often seen as the safest
code of all. Infact, the two priorities aren't really linked; it just happens
that portable codeis usualy quite safe given the constraints that govern
the writing of such code.

When writing C code, programmers commonly write macros that
look and behave as though they were functions. The problem is that
these "macro functions' can cause subtle bugs if they're not written
carefully, and even when they're written carefully, they can cause other
bugsif they aren't "called" carefully. The problemiswell known among
experienced C programmers. Macro functions are beneficial but risky.

Y ou can gain the benefits of macro functions without the risks if
you're willing to use the nonstandard inline directive found in some C
compilers. Theonly costisthat theinlinedirectiveisnot universally por-
table. Safety over portability. . .

DEBUGGINGTHEDEVELOPMENTPROCESS

Snap Decisions
You've probably heard that most extremely successful people have a
tendency to make on-the-spot decisons. That may seem contrary to
what you'd expect—you'd think that people who make snap decisions
wouldfall flat ontheir facesmost of thetime. But thedifferencebetween
these accomplished people and the average personisthat they have con-
crete goals and clear priorities. If you hand such people a problem or a
proposal, they instantly measure it against the goas and priorities
etched intheir brains, and you get an instant answer. The clarity of their
goals and priorities also accounts for the other well-known trait of such
people: they rarely change their minds once they've made a decision.
Changing their minds would mean betraying what they believe in.
These successful people are not actually making snap decisons—
that idea implies that no thought is involved. It's simply that these
people know their goas and priorities so well that they don't have to
wade through al the possibilities that don't match their criteria. The re-
sult: they spend their time acting on their decisons, not deliberating
over them.

STICK TOTHEBASICS

If you look back at the points raised in this chapter, you'll see that they
boil down to a simple formula for software development: figure out
what you're trying to do and how you should do it, and then make sure
that every team member stays focused on the project gods, coding pri-
orities, and quality barsyou've come up with. Pretty basic stuff.

Now take alook at the teamsin your company. How many have
detailed goalsfor their projects? In how many do the programmers un-
derstand exactly how they should be writing their code and to what
standards of quality? Then ask yourself, "Are the programming teams
focused fully onimproving their products?

Now look at the project leadsinyour company. Do they habitually
call meetings to discuss every little thing, or do they reserve meetings
for truly important issues? Do they put obstacles in the programmers

THE GROUNDWORK

paths—asking them to write questionably useful reports, for instance—
or do the leads dtrive to remove obstacles to devel opment work?

The points in this chapter are basic, but in my experience few
groupsfocus on these fundamental concepts. And that, | believe, iswhy
you can't pick up InfoWorld or MacWEEK without reading about some
project that has dipped another six months or on which the program-
mers are working so hard that they don't even bother to go home
at night.

HIGHLIGHTS

Companies have hired their programmers to focus on creat-
ing high-quality products, but programmers can't do that if
they're constantly pulled away to work on peripheral tasks.
Make sure that every team member is focused on strategic
work, not on housekeeping tasks; look for and ruthlessly
eliminate any work that does not improve the product.

Unfortunately, some housekeeping work is necessary, at least
in larger companies. Ofte way to keep such work to a mini-
mum is to regularly ask the questions "What am | ultimately
trying to accomplish?' and "How can | keep the benefits of
the task yet eliminate the drawbacks?' Fulfill the need, not
some overblown corporate process.

Thebenefits of establishing specific goa's might not be easy to
e, but it's easy to see the chaos that ensues in groups that
don't set such goas. Yes creating detailed goals can be te-
dious; but that up-front work is much less painful than lead-
ing a project that dips two days every week. Keep that user
interfacelibrary project in mind. One small refinement of the
project goals could have prevented that project from turning
into the pressure cooker it was. A second refinement could
havemadeitfly.

Every team member needs to know the coding priorities. Is
maintainability important? What about portability? Size?
Speed? If you want the code to reflect the goals for the prod-
uct, you must tell programmers what trade-offs to make as

DEBUGGINGTHEDEVELOPMENT PROCESS

they implement features. Y ou must also establish quality bars
so that team members won't waste timewriting code that will
have to be rewritten before you ship. The earlier you define
the quality bars, the earlier you'll minimize wasted effort.

2

I'HE SYSTEMATIC
APPROACH

I've been programming computers for almost two decades, so you might
be surprised to learn that | don't use a word processor when | sit down
to write technical documents or books such as this one. | write every-
thing by hand on a pad of lega paper, and later | transcribe what I've
written into aword processor for editing.

I'm obvioudly not computer-phobic, and writing the old-fashioned
way with pen and paper certainly isn't easier than using aword proces-
sor. Nevertheless, that's what | do.

| discovered long ago that whenever | sat down to write using a
word processor, | would get so caught up in editing every sentence the
moment | wrote it that after a day's worth of effort I'd have written al-
most nothing. Editing was too easy, much easier than writing the next
paragraph, and | naturally fell into the habit of doing the easy work. |

23

DEBUGGING THE DEVELOPMENT PROCESS

had to do it sometime anyway, right? In redlity, | was editing in order to
procrastinate, and it worked al too well.

Once | redlized | had been sabotaging my writing effort, | looked
for aprocess | could use to get the results | needed: being able to write
technical papers much more speedily. | tried to force mysdf not to edit as
| wrote with the word processor, but | wasn't very successful. | needed
a system in which writing would be easier than editing. That's when |
stopped using aword processor to write my first drafts and went back to
traditional longhand. | now use the word processor only for what it's
especidly suited for—editing what I've aready written.

My new "writing system" solved my procrastination problem by
getting me to focus on the writing part of writing.

The important point here is that adopting a trivial process or sys-
tem can produce dramatic results. | now write five pages in the time it
used to take me to write five paragraphs. Was thisimprovement the re-
sult of my becoming a more experienced writer? No. Was it because |
worked harder and longer? Again, no. | became a more productive
writer because | noticed that the tool | was using had drawbacks and |
developed a new system for writing.

Asyou'll see throughout this chapter, the use of little systems can
achieve amazing results. Once you grasp this concept and learn to apply
it to your software projects, you can truly clam that you're working
smart, not hard, and you can come that much closer to hitting your
deadlines without the long hours and daily stress that seem to afflict so
many software projectstoday.

BAD COFFEE

A common problem for servers in coffee shops is remembering who's
drinking regular coffee and who's drinking the decaffeinated stuff. A
coffee shop manager with unlimited time and resources might send all
the servers to Kevin Trudeau's Mega Memory seminar, where they'd
learn to vividly imagine a caf with a hide that matches, say, the
customer's paidey tie, so that seeing the tie at refill time would trigger
the thought of the paisley calf—and decaf coffee. Most coffee shop man-
agers take a much simpler approach to the problem, though: they just
tell the serversto giveyou adifferent kind of cup if you order decaf. The

24

2 THE SYSTEMATIC APPROACH

server need only look at your cup to know what type of coffee you're
drinking.

A trivia systemfor solving acommon problem.

Now imagine a coffee shop that has a whole collection of such
trivial "systems' that produce better resultswith little or no extraeffort.
Let'slook at another example.

There are two coffee shops near my house. They have identical
coffeemakers, they use the same supplier for their beans, and the servers
in both places are college students. But one shop consistently brews
great coffee, whereas coffee at the other shop is sometimes good, some-
times watery, sometimes too thick, and sometimes burned beyond
drinking—you never know what you're going to get when you order
coffee there.

Circumstances at the two shops are identical except for one seem-
ingly insignificant detail: the shop that consistently serves great coffee
has a short horizontal line embossed on the side of each of its coffee pots.
That short lineis part of asmple "quality system” that consistently pro-
duces good coffee. When a new employee first comes on duty at this
shop, the manager pulls him; aside and gives him a short lecture:

"Whenever you pour a cup of coffee and the level of coffee drops
below thisling" he says, pointing to the mark on the pot, "immediately
start a new pot. Don't go on to do anything else before you start that
new pot."

"What if it's really busy?'

"I don't care if the placeisfilled with Seettle Seahawks an hour af -
ter they've blown a Super Bowl game. Start that new pot before you give
Mad Dog Mitchell the cup you'vejust poured.”

The manager goes onto explain that by taking 15 secondsto start a
new pot before the old one is empty, the server might make the current
customer wait an extra 15 seconds but that the practice preventsthe next
customer from having to wait afull 7 minutesfor anew pot to brew be-
cause the current pot ran out.

If you order coffee at the other coffee shop, it's not unusual for the
server to reach for the pot only to find it empty, and you have to begin
that 7-minutewait. Of course, sometimesyou don't haveto wait thefull
7 minutes. To shorten your wait, some servers will watch until just

DEBUGGING THE DEVELOPMENT PROCESS

enough coffee for one cup has brewed and pour you that cup. But for
good coffee, you must let the entire pot of water drip through so that the
initial sludge can mix with afull pot of hot water. If you pour a cup too
early inthe process, that cup will be so strong it will be undrinkable, and
any other cups you pour from that pot will taste like hot water. That's
one reason the quality of the second shop's coffee fluctuates. Depending
on when your coffeeis poured, you'll get Sudge, coffee-colored hot wa-
ter, or sometimes even normal coffee. And of course occasionally you'll
get burned coffee—when the pot holds just enough coffee for one cup
and there's not enough liquid to prevent the coffee from burning on the
warmer as the water boils out.

The only difference between the two shops isthat in one they make
coffee when their pots get low and in the other they make coffee when
their pots get empty. Their systems are so similar, yet they produce dras-
tically different results, and the results have nothing to do with the skill of
the people involved.

I wouldn't be talking about these coffee shop systems unless they
made a point that related to software development. They do.

If | were to ask you if it mattered when in the software develop-
ment process your team fixed bugs, provided the bugswere fixed before
you shipped the product, what would your answer be? Would you argue
that the team shouldn't focus on bugs until all the features have been
implemented? Would you argue that bugs should be fixed as soon as
they're found? Or would you argue that it doesn't matter, that it takes
the same amount of time to fix abug no matter when you get around to
doing it?

If you thought that it doesn't matter when you fix bugs, you would
be wrong, just as a coffee shop manager would be wrong if he thought it
didn't matter exactly when his servers made new coffee. Possbly the
worst position a project lead can find herself inis to be so overwhelmed
by bugs that the bugs—not the goals—drive the project. If you want to
stay in control of your project, one of your concrete goals must be to
never have any outstanding bugs. To ignore this goal isto set adestruc-
tive process in motion, one | described in Wkriting Solid Code. There |
noted that when | first joined the Microsoft Excel group, it was custom-
ary to postpone bug-fixing until the end of the project. | pointed out the

26

2 THE SYSTEMATIC APPROACH

many problems that approach created—the worst being the impossibil-
ity of predicting when the product would be ready. It wasjust too hard
to estimate the time it would take to fix the bugs that remained at the
end of the project, to say nothing of the new bugs programmers would
introduce as they fixed old ones. And of course fixing one bug inevitably
exposed latent bugs the testing group had been unable to find because
the first bug had obscured them.

Concentrating on features and ignoring bugs enabled the team
to make the product look much more complete than it actually was.
But high-level managers would use the product and wonder why
"feature complete” software had to spend six more months in devel op-
ment. The developers frantically debugging the code knew why. Bugs.
Everywhere.

When a series of bug-ridden products ended with the cancellation
of abuggy unannounced application, Microsoft was finally prompted to
do some soul-searching. Here's how | summarized the results of that
self-examination in Writing Solid Code:

* You don't save time by fixing bugs late in the product
cycle. In fact, you lose time because it's often harder to
fix bugs in code you wrote a year ago than in code you
wrote days ago.

* Fixing bugs "as you go" provides damage control be-
cause the earlier you learn of your mistakes, the less
likely you are to repeat those mistakes.

* Bugs are a form of negative feedback that keep fast but
sloppy programmers in check. If you don't allow pro-
grammersto work on new featuresuntil they havefixed
al their bugs, you prevent doppy programmers from
spreading half-implemented features throughout the
product—they're too busy fixing bugs. If you allow pro-
grammersto ignoretheir bugs, you lose that regulation.

* By keeping the bug count near zero, you have a much
easier time predicting when you'll finish the product.
Instead of trying to guess how long it will take to finish
32 features and 1742 bug-fixes, you just have to guess
how long it will take to finish the 32 features. Even bet-
ter, you're often in a postion to drop the unfinished
features and ship what you have.

27

DEBUGGING THE DEVELOPMENT PROCESS

Asl saidinWriting Solid Code, 1 believethese observationsapply to any
softwaredevel opment project, and I'll repeat theadvicel ended withthere:

If you are not already fixing bugs as you find them, let Microsoft's
negative experience be alesson to you. Y ou can learn through your
own hard experience, or you can learn from the costly mistakes of
others.

Don'tfix bugs later; fix them now.
_.___Q.___

WTien programmersfix their bugs mattersagreat ded, just aswhen
servers make new coffee matters a great deal. Requiring programmers to
fix their bugs the moment they're found introduces a small system into

fr— , —1

" Unacceptably Slow"

Some groups at Microsoft have broadened the traditional concept of
what constitutes a bug to include any flaw that has to be addressed be-
fore the product is shipped. In these groups, afeature could be consid-
ered buggy simply because it was unacceptably dow. The feature might
function without error, but the fact that it would still require work be-
foreit wasready to ship would be considered abug.

If they have a policy of fixing bugs as they're found, groups that
define bugs so broadly are forced early on to define what is and is not
"unacceptably dow." In fact, they're forced to define al their quaity
bars early on. The result: programmers don't waste time rewriting
unshippable code, at least not more than once or twice, before they learn
what quality levelsthey're aiming for.

The drawback to this approach is that some programmers might
waste time writing complex, efficient code, say, when straightforward
code would do just fine. But such a tendency could be easily detected
(and corrected) inregular codereviews.

2 THE SYSTEMATIC APPROACH

the development process that protects the product in many ways. In
addition to the benefits | described in Writing Solid Code, the system pro-
duces these good sde effects:

* The constant message to programmersisthat bugs are serious
and must not beignored. This point isemphasized right from
the start of the project and receives perpetua reinforcement.

* Programmers become solely responsible for fixing their own
bugs. Nolonger do the careful programmershaveto help fix
the bugs of the doppy programmers. Instead, the careful pro-
grammers get to implement the features the doppy program-
mers can't get to because they're stuck fixing bugs in their
earlier features. The effect is that programmers are rewarded
for being careful. Justice!

* |If programmers are fixing bugs as they're found, the project
can't possibly have a runaway bug-list. In fact, the bug-list
can never sneak up and threaten your project's timely deliv-
ery. How could it? Y ou're aways fighting the monster while
it's little.

* Finaly, and perhaps most important, requiring programmers
to fix their bugs as they find them makes it quite apparent if
a particular programmer needs more training—his or her
schedule starts dipping, alerting you to a problem that might
otherwise go unnoticed.

Whether you redlize it or not, your development processis filled
with little systemsthat affect the quality of the product and the course of
the project. That coffee shop manager with the mark on his pot under-
stood the power of developing a system and used that power to his
advantage. You can do the same with your projects, coming up with
little systems that naturally give you the results you want.

Actively use systems that improve
the development process.

DEBUGGING THE DEVELOPMENT PROCESS

The E-Mail Trap

Electronic mail isawonderful tool. | can't imagine working efficiently
without it. Having said that, | have to add that when it isn't handled
wisdly, email can destroy your productivity.

I've found that newly hired programmers alow e-mail to con-
stantly interrupt their work. | don't mean that they're sending too much
e-mail; | mean that they're sopping to read every new message asit ar-
rives. New employees don't get much mail that they have to respond to;
most e-mail they receive consists of passiveinformation that'sjust mak-
ing the rounds. You know, things like the closing price of Microsoft
stock, what Spencer Katt had to say about this or that company that
week, the business news wire releases for the day, and so on. This stuff
tricklesin throughout the day.

New employees tend to leave their email readers running and to
stop every 5 minutes to check out the latest "blip." They never get any
work done because their entire day is broken into 5-minute time dices.

To combat this tendency, | routinely tell new hires to respond to
their email in batches: "Read it when you arrive in the morning, when
you return from lunch, andjust before you leave for the day." That tiny
systemfor e-mail reading—governing only when they read their mail—
alows devel opers to get their work done because the work is no longer
subject to constant i nterruption.

The developers are reading the same number of messages; that
hasn't changed. They're just reading those messages more efficiently
and doing their other work more efficiently as a consequence.

LEANING ON CRUTCHES?

I've described using such trivial systems to programmers and leads on
many occasions, and every onceinawhile I'll runinto somebody who
thinks systemsare abad idea. Such aperson usually maintainsthat sys-
temsareacrutch: "Y ou're chesting those people out of alearning experi-
ence. The nextjob they go to, they'll not have learned anything."

30

2 THE SYSTEMATIC APPROACH

Asmuch as| believein using systems, | do take serioudy the con-
cern these people express. Asyou'll see throughout the book, | believe
you must continually work to improve the skills of each member of your
team. | just don't believe that the project has to be a casualty of that
|earning experience.

The beauty of setting up a system is that team members don't have
to immediately grasp the rationales behind the system in order for it to
work. But don't keep the rational es behind your system a secret. 1'd urge
you to do just the opposite: fully describe the thinking behind the sys-
tem you sat up and what you expect the system to accomplish. In time,
the team members will begin to appreciate the thinking behind the sys-
tem and probably start to add improvements that will make it even more
effective. Encourage your team to understand and improve the sysems
you put in place.

Don't use systemsin lieu of training.
Use systems and explain why you
expect them to work.

PLEASE PASSTHE POPCORN

Well-designed systems for working are val uable because they can nudge
peopleinto doing what's best for the product. A strategy is valuable be-
cause it condenses a body of experience into a smple attack plan that
anybody can immediately understand and act on. A collection of such
dtrategies can catapult an individual (or ateam) to ahigher level of pro-
ductivity, quality, or whatever it isthat the strategiesfocus on.

As alead, you should encourage your team to share the strategies
they've found to be effective in achieving project goals and priorities.
My highest priority for software products is that they always be bug-
free, for ingance, but aswe al know, achieving that state is much easer
to talk about than to accomplish. Even so, | can look at different pro-
grammers and see that some have much lower bug rates than others.
Why? The programmerswith lower bug rates have a better understand-
ing of how to prevent bugs and of how to effectively find any bugsthat

DEBUGGING THE DEVELOPMENT PROCESS

do creep into their code. They have better strategies for writing bug-free
programs.

To encourage developers to come up with strategies that result in
bug-free code, | have them ask themselves two questions each time they
track down the cause of abug:

How could | have prevented this bug?
and
How could | have easily (and automatically) detected this bug?

As you can probably imagine, any programmer who habitually
asks these questions begins to spot error-prone coding habits and starts
to weed them out of his or her coding practice. Such a programmer also
begins to discover better strategies for finding bugs. Of course, most
programmers would, in time, develop such strategies anyway, but by
constantly asking those two questions, they more rapidly—and con-
sciously—Ilearn how to prevent and detect bugs. As with anything ese,
if you systematically focus on an area, you get better results than you
would if you haphazardly wandered over to it every now and then.
There's no magic here.

Asalead, you can ask yoursdlf smilar questions for each problem
you encounter:

How can | avoid this problem in thefuture?
and
What can | learn from this mistake/experience?

These are critical questions that successful leads habitually ask them-
selves as they actively improve their kills. Some leads forever repesat
the same mistakes because they fail to ask these questions and act on
their findings.

Of course, the quality of the questions you ask will determine
the quality of the strategies you derive from them. Consider these two
questions:

2 THE SYSTEMATIC APPROACH

Why do our schedules always dlip?
VS.
How can we prevent schedul eslipping in thefuture?

Although the questions are quite Smilar, would you give the same
answersto both? | doubt it. | doubt it because thefirst question getsyou
to focus on al the reasons your schedules dip: you have too many de-
pendencies on other teams, your tools arelousy, your bossis abozo and
always gets in your way, and so on. The second question gets you to fo-
cus on what you can do to prevent dipping in the future: reducing your
dependency on other groups, buying better tools, establishing a new
work arrangement with your boss. The questions focus on different
aspects of the problem—one on causes, the other on prevention—so the
guality of the answersfor the two is different. Thefirst question dicits
complaints; the second question dicits anattackplan.

Even if the questions you ask yourself have the right focus, they
may not be precise enough to dicit effective drategies. Just as goads gain
power as you increase their detail, questions become more powerful as
you increasetheir precision. Let'stake alook at another question:

How can we consistently hit our ship dates?

Some leads who asked that question might decide to pressure their
teams to work overtime by threatening them. Others might decide to
bribe their teams to work overtime with bonuses or free dinners or by
projecting blockbuster movies at midnight and passing out buckets of
popcorn. (Don't laugh. It has happened.)

But suppose those leads had asked amore precise, and in my opin-
ionmorebeneficial, question:

How can we consistently hit our ship dates, without having
developers work overtime?

The leads would obvioudy get a different kind of answer because
threats or midnight movieswouldn't answer the requirements posed by
this more precise question. The leadswould have to toss out any "solu-
tion" that caled for getting their teams to work overtime. They'd be

33

DEBUGGING THEDEVELOPMENT PROCESS

forced to search for other possibilities. They might decide that to hit
their ship dates without demanding overtime work they'd have to hire
more developers. That's a possibility, but not one that companies usu-
dly like to condder, at least not until al other approaches have been
exhausted. To eliminate that unacceptable solution from consideration,
I'll increase the precision of the question even further:

How can we consistently hit our ship dates, without having
devel oper sworkovertime, andwithout hiringadditional people?

The question now eiminates two undesirable solutions, forcing
leads to think more creatively and, not incidentally, to focus more on the
work itself. Maybe alead would decidethat it wasn't so critical, after dl,
that his team write all the code in the product: he could hire a short-term
consultant, or the team could use a code library another team might
have offered them just the month before, or they could even buy afully
documented commercial library, which could cut their development
time dramatically. Maybe they'd decide to cut featuresthat, upon reflec-
tion, they'd see wouldn't redly add much vaue to the product.

[

The Ideal Question

Asweéll see throughout this book, there are numerous ways to increase
productivity without resorting to 80-hour weeks. When you ask ques-
tions to dicit solutions, keep in mind that question from Chapter 1:
What am | ultimately trying to accomplish? No lead is ultimately trying
to get people to work overtime; most are in fact ultimately trying to get
more work done in a shorter period of time.

The ssimplest technique for zeroing in on the best questionto ask is
to envision how you would idedly like your project to run and to tailor
your gquestion so that it reflectsthat ideal. Wouldn't your ideal project be
one in which you made perfect estimates, you hit every feature mile-
stone, nobody worked overtime, and al concerned thoroughly enjoyed
their work? That'salot to ask, but if you tailor your questionsto reflect
that ided, you'll come up with the solutions that will bring you closer to
those goals.

1l

2 THE SYSTEMATIC APPROACH

The point is that by asking a more precise question, one that takes
into account the resultsthey'd ideally like to see, leads force themselves
to weed out all the less than ideal solutions—the ones they might have
glommed onto ssimply because they were the first solutions that pre-
sented themsalves. Asking increasingly detailed questions stimulates
the thinking process that |eads to inventive solutions.

Ask detailed questions that yield
strategies and systems that help to
achieve your ideal project goals.

GOTOS HAVE THEIR PLACE

Asyou go about creating and promoting strategies, regularly remind the
development team that the strategies are not rules that are meant to be
followed 100 percent of the time. You want to be sure that people are
thinking about what they're doing, not blindly following a set of rules
even when those rules don't make sense.

One coding strategy that many programmers treat as an ironclad
ruleis"Don't use goto statements.” But experienced programmers gen-
erdly agree that there are a few specid scenarios—mostly dedling with
complex error-handling—in which using goto statements actually im-
proves the clarity of code. When | see that a programmer has imple-
mented that kind of error-handling code, scrupulously avoiding gotos,
| usually raise the issue with the programmer.

"Did you condider using gotos to improve this code?' | ask.

"What? Of course not! Gotos are evil and create totally unreadable
spaghetti code. Only incompetent programmers use gotos.”

"Weéll, there are afew casesinwhich using gotos can make sense,” |
tell theprogrammer. "Thisisoneof those cases. L et'scompareyour code
to an implementation that uses a goto statement.” | hand the program-
mer the goto version. "Which implementation is easier to read and
understand?"

"Thegotoversion,” theprogrammer will usually rel uctantly admit.

"Sowhichimplementationwill you useinthefuture?"

35

DEBUGGINGTHEDEVELOPMENT PROCESS

"Mine, because it doesn't use any gotos."

"Wait, | thought you just agreed that the goto version was easier to
read and understand.”

"It is easer to read and understand, but using gotos can cause the
compiler to generate lessthan optimal code.”

"Let's assume that you're right, that the compiler generates some
less than optimal code in this function. How often would this coding
scenario show up?

"Not very often, | guess.”

"And whichisahigher coding priority for the project, code clarity
or a questionable efficiency gain?"

"Code clarity."

"So which versionis easier to read and understand and follows our
project priorities?'

At this point there isusually along pause.

"But gotosarebad," the programmer blurtsout inalagt, pitiful protest.

I'll be the first to admit that there aren't many places in which us-
ing gotos actually clarifies the code; you can be sure that whenever I'm
reviewing code and | see a goto, alarms start going off. I am not pro-
goto—the presence of a goto usually does indicate a quick and dirty

U

Show Me Code!

Perhaps the most thorough discussion ever published about the pros
and consof using gotos can be found in Chapter 16 of Steve McConnell's
Code Complete. In addition to showing those instances in which the judi-
cious use of agoto can actually improve code, McConnell fully delin-
eates the arguments against and for gotos and goes on to show how
often the goto debate is phony. He finishes up with aligt of articles that
have exhaustively covered the use of gotos, including Edsger Dijkstra's
original letter to the editor on the subject and Donald Knuth's example-
rich "Structured Programming with go to Statements.” As McConnell
points out, "[the goto debate] erupts from time to time in most work-
places, textbooks, and magazines, but you won't hear anything that
wasn't fully explored 20 years ago."

2 THE SYSTEMATIC APPROACH

design hacked together while the programmer sat in front of the key-
board with a sugar buzz. But while I'm generally against using gotos,
I'm even more against blindly following rules when they don't make
sense and actually work to the detriment of the product.

That's the major drawback to strategies. If you push them as invio-
lable rules, you risk having team members do stupid things.

I know instructors mean well when they advise programmers not
to use gotos, but | wish they would explain that gotos should be used
rarely, instead of never. Even better, | wish that they'd demonstrate
those few cases in which using gotos actually makes sense—it's not asiif
there are dozens of scenarios they'd have to cover. The problem, | think,
is that many instructors were taught that gotos should never be used
and they pass this advice on with ever-growing fervor. The mere pres-
ence of agoto is enough for someinstructors (and programmers) to de-
clare the code terrible, just as any form of nudity is enough for some
peopleto proclaim afilm immoral.

There are very few programming strategies that should be en-
forced as rules, and you need to make that clear. Otherwise, you may
end up with developers blindly following a rule in Situations in which it
doesn't make sense. This disclaimer certainly appliesto al the strategies
inthisbook.

__Q____.
Don't present strategies as ironclad

rules; present strategies as guidelines
to befollowed most of the time.

FEEDBACK LOOPS

Electrical engineers use the concept of positive and negative feedback
loops to describe the characteristics of a particular type of circuit, onein
which the output of the circuit is fed back as an input to that same cir-
cuit. Here'sapicture.

37

DEBUGGINGTHEDEVELOPMENT PROCESS

Feedback

4 inputs 1 output

With the output contributing to its own result, such circuits behave
in one of two ways:. the output amplifiesitself, so that the stronger it is,
the stronger it gets, or just the opposite occurs, so that the stronger the
output is, the weaker it gets. Feedback loops in which the output ampli-
fies itself are known as positive feedback loops, and those in which the
output weakens itself are known as negative feedback loops. From this
admittedly simplified description of the two types of loops, it might
seem that positive feedback loops are great because they leverage their
own power whereas negative feedback loops are worthless because
every time the output gets stronger, the effect is counteracted. In fact,
negative feedback loops are far more useful than positiveloops.

If you've ever been in an auditorium and heard a speaker and a
microphone together cause an ear-shattering screech that could wake
Elvis, you've been the victim of a positive feedback loop. The micro-
phone has picked up and reamplified its own output, driving the ampli-
fier into overload. That's the common problem with positive feedback
loops: they typically overload themselves.

A negative feedback loop would take a high output and use it to
reduce the loop's future output. Imagine welding the brake pedal of
your car to the accelerator: step on the gas abit, and the brakes go ona
bit to counteract the acceleration; floor the gas, and you floor the brakes
too. The stronger the output, the harder the circuit counteractsit. Such
behavior may sound as usdaless as going into overload dl the time, but
negative feedback loops don't need to completely dominate the outpuit;
they just need to exert enough force to regul ate and stabilize the circuit.

I've been talking about electrical circuits, but you'll find feedback
loopsin all sorts of systems, whether systemsfor personal relationships
or for softwaredevel opment. Some of thefeedback |oopsdevel op with-
out conscious intention, and others are designed, but whatever their

38

2 THE SYSTEMATIC APPROACH

origins, you can achieve greater control over your project by becoming
aware of feedback loops and making deliberate use of them.

Bugs, for example, are a common "output” of writing code.
Wouldn't it be wonderful if you could design a negative feedback |oop
into your development process so that whenever the bug count grew,
something would counteract that growth with equal force? Weve a-
ready talked about exactly such afeedback loop:

Requirethat programmer sfix their bugs the moment they're
found.

If a programmer's code never has bugs, the requirement that bugs
be fixed the moment they'refound will never affect her and she can hap-
pily implement new features. But if a programmer writes code that's
riddled with bugs, the requirement will kick in in full force, pulling that
programmer off the implementation of new features and back to work
on bugs, preventing her from spreading doppy work throughout the
program. The more bugs the programmer has, the harder the brakes are
applied. The requirement that bugs be fixed immediately implements a
negative feedback loop designed to keep the product bug-free at al
times. And, of course, the practice gives you al those other benefits |
mentioned earlier in the chapter—the relative ease with which recent
bugs can be fixed, the speed with which programmers learn from fresh
mistakes, easier prediction of project completion dates, and so on.

Negative feedback loops can hurt aswell as help, though. Do you
remember that lead | talked about in Chapter 1, the onewho required his
team members to submit status reports, attend status meetings, and then
write follow-up reports on any insights they had come up with during
the meetings? That lead was trying to get as much good information
from the team as he could. Unfortunately, he'd set up a negative feed-
back loop that thwarted a desirable output. He wanted to hear any ideas
his team members might come up with to solve aproblem, but by asking
them to write up those thoughts in reports, he discouraged them from
saying anything. His system made people clam up—the more you
spoke, the longer the report you had to write. Nobody liked writing
those reports, so they learned to keep quiet. Just the opposite of what the
leadwashopingfor.Backfire.

DEBUGGINGTHEDEVELOPMENT PROCESS

Y oumust alsobecareful not to unwittingly set up destructiveposi-
tivefeedback loops. If you base rai sesand bonusesonthe number of new
lines of code programmers write—and rewriting bad code doesn't
count—don't be surprised if the programmers, over time, develop the

Negative Feedback Is Not Negative Reinforcement

Don't confuse negativefeedback with negativereinforcement. | think of
negative reinforcement as scolding, berating, or threatening an em-
ployee—like whipping a horse to get it to do what you want. Or, if an
employee steps out of line, WHACK, giving him or her a solid dose of
negative reinforcement to discourage stepping out of line in the future.

That kind of management style is reprehensible and certainly not
what I'madvocating. Think about thenegativefeedback requirement that
programmers fix their bugs as they're found. A programmer shouldn't
be anxious about having to fix hisbugs asthey're reported. The require-
ment might have put him in a position he doesn't like—being stuck on
the samefeaturefor dayson end—but that's very different fromfilling
him with a sense of dread. The god is to have the right things happen
easly and naturally, without personal distress—not to assert who is
boss or to put the employee in his or her place.

Many years ago a Microsoft, there were a couple of leads who,
when a project was not running smoothly, would round up the devel op-
ment team and proceed to tell them that they were the worst program-
mers a Microsoft, that they weren't worthy of calling themselves
Microsoft programmers, and other such nonsense. I'm not sure what
those leads were trying to accomplish, but if their goa was to get the
teamsto rally and try harder, they picked a pretty strange way of doing
it. AsI'm sure you can imagine, those leads only succeeded in angering
and depressing their devel opment teams. Furthermore, in every case of
which | was aware, the problems with the project were management re-
lated—the projects had no clear focus or were Ssmply too ambitious. The
programmers on those projects weren't any better or worse than other
programmers in the company, and berating them didn't change any-
thingforthebetter—only for theworse.

40

2 THE SYSTEMATIC APPROACH

habit of sticking with their clunky first-draft code and patching flawed
designs with new code instead of doing badly needed rewrites. You
might intend the bonus to be an incentive for programmers to be more
productive, but the long-term result would probably be acompany full of
programmers who are satisfied with dapped-together implementations.

| hope you'll take two points away from this discussion. First,
whenever you desgn a new system, try to include beneficial negative
feedback loops that help to keep the project on track. Second, consider
the long-term effects of any feedback |oops you decide to employ; make
sure there are no feedback loops that can ultimately cripple the effort.

Deliberately use negative
feedback loops in your systems to
achieve desirable side effects.

Beware of feedback loops that create
undesirable side effects.

THE SMPLER, THE BETTER

Finaly, make sure that the systems and strategies you come up with are
easy to understand and follow.

Consider some of the systems I've covered: writing in longhand,
using two kinds of coffee cups, watching aline on a coffee pot, reading
e-mail inbatches, fixing bugsthe moment you find them. These systems
aretrivial, not hulking processesthat will bog downthewhole operation.

Onetendency at workplacesisfor smple processesto blossominto
time-consuming busy-work because people get caught up in creating

-processes instead of working on the product. Having programmers ask,
"How could | have prevented thisbug?' issimple. Taking that system a
step further and asking every programmer to write a "prevention re-
port" for every bug he or she encountersis atogether different. All of
a sudden the systematic asking of a ssimple question has turned into a
cumbersome process. Such processgrowthisasnatural asthe growth of
brambles, and you must actively keep that growth cut back.

41

DEBUGGING THE DEVELOPMENT PROCESS

Remember, the overdl god is to stay focused on improving the
product, not on fulfilling process requirements. Y ou want to gain the
benefits that systems can provide and jettison the drawbacks. Well-
designed systems and appropriately applied strategies accomplish both
of these goals.

HIGHLIGHTS

Smple work sysems can produce dramatic results. Take a
good look at the processes your team members are aready
following. Arethere problemswith those processes? Arethey
too time-consuming? Too error-prone? Are they frustrating
and counterproductive in some way? If they are, look for
simple changes you can make to improve those processes.

* Asyou put systems in place, explain the purposes behind
them so that the development team can understand what as-
pect of the product the sysems are meant to improve. This
openness will educate team members over time and aso en-
able them to intelligently improve the systems and create
new, better ones.

Refine the questions you ask as you look for solutions to prob-
lems. Develop the ability to ask precise questions to increase
the quality of your answers. Unfortunately, it's not enough to
be precise. A precise but wrong question will get you a bad
answer. Be sure the question you ask focuses on what you're
ultimately trying to achieve, on your ideal solution. Don't
ask, "How can we get programmers to work longer hours?"
Ask, "How can programmers get more done in less time?!

The more appedling or effective a strategy is, the more people
onyour teamwill want to treat it as an ironclad rule. Remind
your team that even the best strategies don't apply to every
situation. "Avoid using gotos' isastrategy that canlead pro-
grammers to write more readable code. But you should en-
courage programmers to see that they should set aside even
this strategy when avoiding gotos would make the code less
readable.

42

2 THE SYSTEMATIC APPROACH

Whenever you create afeedback |oop, be sureto consider the
sdeeffectsandthelong-termeffects. Thebest feedback |oops

enhance the desirabl e aspects over time while simultaneously
reducing thenegative effects.

43

OF STRATEGIC

| like to think that my projects are always on course, but in fact they
never are. Sometimes a project is ahead of schedule, sometimes behind,
but always close. The project zigzags along an imaginary line that plots
the ideal course.

Even the best-run projects are never on course. But if you let a
project coast, not knowing how far off course it is, you're going to wake
up one morning to find that you've zigged so much that you can't zag
enough to correct. In that respect, a project is like a rocket amed at the
moon—atiny fraction of a degree off, and the rocket will missthe moon
by thousands of miles. If your project is off track, even dightly, it will
steadily get further off track unless you make regular, tiny adjustments
to its course.

45

DEBUGGINGTHEDEVELOPMENT PROCESS

Effective leaders understand this principle. They take consistent,
daily steps to nudge their projects back onto those imaginary trgecto-
ries. Inthis chapter, we'll look at smple, effective strategiesyou can use
to keep your projectson track.

FREEWAY OVERPASSES

I'm convinced that the main reason projects go astray is that the people
running the projects don't spend enough time thinking about how to
keep them running smoothly. They don't anticipate problems and
instead wait until problems show up. By then, it's too late. What could
have taken 30 seconds of extra thought to prevent a month ago is now
going to take hours or days to correct. This is known as "working in
reaction,” and many leads seem to do it.

The aternative to ssmply reacting is to actively look for potential
problems and take little steps to avoid them. Suppose one of those house
movers | talked about in Chapter 1 had hopped into his flatbed truck
and started dowly on his way dong the route to the house's new loca
tion, only to turn a corner and be blocked by alow freeway overpass.
Oops—qgotta retrace at least part of the route and have the same over-
head power and phone lines taken down again. Or what if the planned
route looked flat on the map but had hills too steep to pull a house up?
Or what if the route were usually passable but road crews were out that
week resurfacing a stretch of the road? Each of these obstacles could
have been foreseen by the "house lead" if only he had taken the time to
drive the route the day before and then again an hour before starting the
house rolling. Can you concelve of a house lead's not taking that step?
Why then do so many softwareleadsfail to drive ahead and look for ob-
stacles that could easily be avoided, allowing their projects to be stalled
by those obstacles?

L eads don't always ook ahead because that's harder to do than not
looking ahead. How many times have you heard a lead faced with an
unexpected obstacle say, "l could have prevented thisif I'd spent time
thinking about it earlier"? In my experience, few leads make such an
admission. Rather, leads tend to be not at al surprised that something
unexpected has come up. After al, they think, it happens to everybody,
al thetime. It'snormal.

3 OF STRATEGIC IMPORTANCE

To get out of thismind s&t, you need to work proactively insteed of re-
actively. There are many techniquesyou can useto train yourself to work
proactively, but they canall beboiled downto afairly smplepractice:.

Regularly stop what you're doing and look ahead, making little
adjustments now to avoid big obstacles later on.

L eads don't have troubl e spotting the already big obstacles coming
up—say, having to support Windows NT oncethe regular Windows ver-
sion is done, or having to find time to create a demonstration-quality
product in time for COMDEX. It's the little obstacles that blindside
people, the ones that blossom into huge obstaclesif they aren't foreseen
and handled early, while they are still manageable. That kind of fore-
sight is like stopping for gas before heading to the ski slopes—taking
that ssimple step could prevent you from having to make along, snowy
trek because you ran out of gas halfway up the mountain.

The habit I've developed and used successfully for more than a
decade isto spend the first 10 or 15 minutes of each day making a list
of answers to this question:

What can | do today that would help keep the project on trackfor
the nextfew months?

It's asmple question, but if you ask it regularly, it will give you dl
the information you'll need to protect your projects from being clob-
bered by problems you could have foreseen. Note that the tasks you'll
list probably won't be complex. In fact, most such tasks are smple and
can be completed in a few minutes. My own ligt of tasks is usually like
this one:

* Order the MIPS and Alpha processor manuals so that they'll
be here well before Hubie needs them.

* Send e-mail to the Word team reminding them that they must
make additional feature requests by Monday if they'll need
thosefeaturesin our nextlibrary release.

* Send e-mail to the Graphics lead to verify that the Graphics
library we're depending on is still on track for delivery three
weeks from now.

47

DEBUGGING THE DEVELOPMENT PROCESS

None of these tasks would take me much timeto do, but they could
save me an enormous amount of time later on. Ordering that MIPS pro-
cessor manual may not seem like abig deal, but if the manual takesthree
weeks to arrive, that could cause a three-week dip in the MIPS work.
How long doesiit take to order a manual ? About 10 minutes? Y ou could
spend 10 minutes now and have the manual intime, or spend 10 minutes
and three weeks later on...

Often, by means of such little tasks, you can discover that the
Graphics lead thinks he might dip two weeks, or that the Word group
does have another request but didn't think there was any need to hurry
up to tell you. Without checking (looking ahead), you could get caught
off guard by adip of the Graphics library schedule, or you could have a
last minute fire when the Word team realizes that the feature they need
hasn't made it into the next release of the library.

In an ideal world the Graphics lead would tell you well in advance
that his project was going to dip, but how many times does that redly
happen? In my experience, almost never, because leads don't want to
alarm anybody until it's clear that they are definitely going to dip—
three days before the scheduled drop.

Each day, ask, "What can | do today to
help keep the project on trackfor the
next few months?"

——————

BAD INTELLIGENCE

During the development of Word for Windows, | was asked to take a
look at aninternal code library written by non-Word programmers. The
library was a dialog manager whose purpose was to isolate the operat-
ing system from Microsoft's applications, allowing programmers to
create dialogs without worrying about whether the applications were
going to run on Windows, the Macintosh, or some other system.

| was called in to find out why the library was so sow—the Word
for Windows project lead and program manager were irritated by the
delay between the time a dialog was invoked and the time it was fully

3 OF STRATEGIC IMPORTANCE

displayed and ready for user interaction. The programmersworking on
the dialog manager had profiled their code and had made numerous
optimizations, but theWord group wasstill dissatisfied and wasmaking
a ruckus, dowly ruining the library's reputation within the company.
Other teamswho were planning to use thelibrary had begun to back off.

When | talked with Word's program manager to better understand
the speed problem and find out what performance would be acceptable
to the Word group, he handed me a list of acceptable display times—
their quality bar. Each dialog had to be fully displayed in the time indi-
cated next to its name. The program manager then demonstrated by
bringing Word up and invoking a dialog with one hand while starting a
stopwatch with the other. "See" he said, showing me the stopwatch.
"This didog takes too much time." Visually the dialog itself didn't seem
to be that dow to me, so | reached over and invoked the dialog a second
time to get another look. The dialog appeared amost instantly. | pointed
out that the second invocation waswell under the acceptable timelimit.

"It's always fine the second time," he said. "Were only concerned
about the first time, when the dialog isinvoked after a period of inactiv-
ity. That'swhen thediadogsaretoo dow."

| understood the problem and went back to my office to look at the
code. What | found was startling. It turned out that, at the time, Word
itself contained an optimization that overrode the norma Windows
code-swapping a gorithm. The optimizationwaskicking out al "unnec-
essary” code segments after a certain period of inactivity, and that
optimization was kicking out every byte of code related to the dialog
manager. A little measuring showed that even if the dialog code were
executed ingtantaneoudy, no didlog would pass its speed test; Word
simply took too long to reload those "unnecessary™” segments.

So the speed problem that the Word people had been complaining
about wasn't a speed problem at all, but was instead a code-swapping
problem. The Word team thought the dialog manager was much too
dow, yet the dialog team couldn't see where the slowdown was—the
code seemed fast enough in the library's test application, and there was
no reason the dialog manager should have behaved differently when
linked into Word. Of course, the test application didn't override the
Windowsswapping algorithm.

DEBUGGING THE DEVELOPMENT PROCESS

The Word team had been complaining about the speed problem for
months, and the dialog team had been working long, hard hoursto opti-
mize code and algorithmsin thelibrary, hoping that each latest round of
improvementswould finally be enough to satisfy Word's requirements.
Had anybody stopped to profile Word'shandling of the dialog manager

Ir

The Debugging Game

Many programmers don't do research during debugging sessons. Some
programmers try to fix a bug by jumping into the code, making a
change, and then rerunning the program to see if the bug went away.
When they see that the bug il exids, they make another change and do
another run. Nope, that didn't work, better try something d<e. . .

| know that some programmers play the "maybe this is the prob-
lem” game because whenever they get a difficult bug for which none of
their guesses seems to work, they ask me, their lead, what they should
try next. The "next?" question is a dead-giveaway that they're playing
the guessing game instead of actually looking for the cause of the bug.

In my experience, the most efficient way to track down abug isto
set abreakpoint in the debugger, determine which piece of datais bad,
and then backtrack to the origin of that bad data, even if it means
mucking around in data structures, following pointers, and other such
tedious stuff. There's no question that it's sometimes easier to guess
where abug isand thenfix it with alucky hit, but it's consistently more
efficient to look at the actual dataand backtrack to its corruption.

I'm also skeptical of programmers who find bugs by "looking at
the code." Andrew Koenig's C Traps and Pitfalls is an entire book of C
examplesthat ook perfectly correct but in fact contain subtlebugs. And
Gimpel Software's marketing campaign for their PC-Lint product fea-
tures magazine ads each month that point out obvioudy correct, yet
buggy, code.

Looking for bugs by looking at the source code is lazy and ineffi-
cient; it shouldn't take a programmer any more time to view the codein
a debugger, watching the data as he or she progressively steps through
each line of source.

L

50

3 OF STRATEGIC IMPORTANCE

code, he or she would have seen that no amount of code optimization
could have solved the problem the Word team was complaining about.

Granted, it's not always reasonable for alibrary team to regularly
build and test all of the dozens (or sometimes thousands) of applications
they support. It does make sense for a library team to use an aggres-
sive—and | stressaggr essivehere—test application specifically designed
to exerciseevery aspect of thelibrary. Butinthiscase, the Word team had
been complaining loudly for quite some time, and the library team
had found no obvious problems in their test application's use of the
library. Somebody well before me should have built and profiled Word
to see why it was behaving so differently from the test application. A
little bit of research early on could have saved months of misguided
optimization work, and the library probably wouldn't have developed
an undeserved reputation.

As alead, you should keep a wary eye open for any problem that
perssts and make sure that you, or someone, sopsto do some focused
research to figure out what's going wrong. The research may be tedious
and time-consuming, but that's better than spending weeks or months
trying to fix the wrong problem.

_4,,.“..___.
Don't waste time working on the wrong
problem. Always determine what the real
problem is before you try to make afix.

—¢_

OUTRAGEOUSMENUS

Onetime, the technical lead for the Windows-like user interfacelibrary |
talked about in Chapter 1 came to me in apanic. He had just received a
request from an application group for afeature that would take weeksto
implement, yet our delivery schedules were pretty much carved in
stone—we were not in a position to dip, at least not without severe re-
percussions. | asked him what the application group's request was.
"They want a modified form of our drop-down list boxes. They
want to be ableto usethe list boxes outside dia ogs; they want to be able
to display the list boxes without their scroll bars and to be able to dim

51

DEBUGGING THE DEVELOPMENT PROCESS

some of thelist box items. They dsowant to beableto click on alist box
item and haveit automatically pop up another list box, but if you move
the mouseback into the origina list box, the new list box automatically
disappears.”

Whew!

| had to agree: implementing those requests would kill our deliv-
ery schedules. After hearing afull description of the request, though, |
wasn't concerned—anything that unusual didn't belong in a shared
library. My initia thought wasto give the application group the codefor
the standard list boxes so that they could implement those quirky list
boxes themselves. Sill, | was puzzled by their request. What were they
going to use those lig boxes for? | assumed it must be for some new-
fangled user interface I'd yet to see. So before saying we wouldn't do it,
| asked the technical lead to find out what the gpplication group was
going to do with those bizarre list boxes. He returned a while later, a
wide grinon hisface.

"They want to use the lig boxes to smulate hierarchical menus,
like the menus in Windows and on the Macintosh.”

Now | knew why the technical lead was grinning: we aready had
an add-on library that fully supported hierarchicd menus, the other
group was smply unaware of the fact.

| bring this story up because it's common for groups to ask for
something without explaining the reason behind their request. | see this
dl thetime, even outside work. At adiner | sometimes go to for an early
lunch, people occasondly come in and, seeing that everybody is dill
eating breakfast, ask the waitress, "How late are you going to be serving
breakfast?" 1've seen dozens of hungry peopleturn ontheir heds, mum-
bling, "I really want lunch,” and walk out the door before the waitress
can tell them they can order lunch. Thelunch menuisavailable around
theclock.

Why did those people ask about breakfast when what they really
wantedtoknow was"Canl getlunch?' Ther thinkingwent off onatan-
gent that seemed to be rel ated to what they wanted, and they asked the
wrong question. It happensall thetime. I'm sengitive to the problem of
asking thewrong question, but | till find myself asking my wife, Beth,
whenshell behomefrom her evening soccer game—whenwhat | really
want toknow iswhat time she'dliketo havedinner.

3 OF STRATEGIC IMPORTANCE

Asking thewrong question or raising thewrong issue seemstobea
common problem, and if you're aware of this tendency in people, you
can save everybody time and effort by making it a habit to determine
what the other people are actualy trying to accomplish. If what they're
trying to achieve isn't clear from their request, be sure to ask them what
they're trying to do before you spend much time working on the
request—or you refuseit.

People often askfor something other than
what they really need. Always determine what
they are trying to accomplish before dealing
with any request.

First Define the Context

A good way to avoid miscommunication in your own requests isto first
define the context of what you're trying to accomplish and then make
your specific request. Suppose the programmer from the application
group who made the list box request had started his e-mail this way:

We need hierarchical menus for the next release of our
product. Since drop-down list boxes are similar to menus,
we think we can simulate hierarchical menus if you can
provide us with a modified form of drop-down list boxes
that allows us to. . .

If we had received that e-mall message, our technica lead
wouldn't have panicked, he wouldn't have had to meet with me to fig-
ure out how to handle the request, and he could have immediately told
the other group about the add-on library's support for hierarchical
menus. Even more important, | wouldn't have almost rejected their
request—in which case they could have spent weeks reimplementing a
library we already had.

By first telling people what you're trying to accomplish, you get
them focused on helping with your ultimate need, not on one possible
solution to that need.

53

DEBUGGINGTHEDEVELOPMENT PROCESS

JUSTSAYNO

Suppose we hadn't bothered to find out why that group needed those
weird list boxes and had simply turned down their request. Do you
think they would have said, "OK, we understand. Thanks anyway"?
Maybe. But plenty of groups would have argued that as custodians of
the user interface library we had a responsibility to maintain the code
and provide new features when they were asked for—that giving them
some source code to adapt just wouldn't do.

Of course, the easiest way to resolve such disagreements is to
knuckle under and agree to do the work, and that's exactly what I've
seen many leadsin troubled groups do. These leadswould rather defuse
a tense dituation than fight for what's best for the product or their team.

Sometimes a group will make a perfectly reasonable request that,
because your schedule is full, you can't meet, and you're put in the posi-
tion of saying No to that group. | know from experience that there are
plenty of leads who, to avoid the confrontation, will agree to fulfill the
request anyway, without having any idea how they'll get the work done
on time. Somehow, they think, they'll pull it off. And, of course, they
rarely do.

What these leads don't redlize is that by agreeing to work they
shouldn't do or can't do they are dodging abit of short-term pain in ex-
change for alot of long-term pain—and not just for themselves, but for
every sngle member of their teams. Which do you suppose is more
painful al theway around: showing the lead of a dependent group why
you can't possibly fulfill arequest given your current schedule, or prom-
ising to finish the work on a specific date and then missing that date by
9X weeks?

Consider the difference. When the lead of the dependent group
makes a regquest, the date on which that request needs to be fulfilled is
often inthe distant future; if you can't fulfill the request, there's plenty
of time for you and the lead of the dependent group to consider alterna-
tives. The only way you can be considered the villain is to regject the
request without even trying to help the other lead work something out.
Compare that approach to caving in and agreeing to deliver some new
functionality, thinking you will somehow get the work done—and

54

3 OF STRATEGIC IMPORTANCE

missing the deadline you agreed to. Not only did your group miss its
deadline, but you've possibly caused all the groups depending onyou to
miss their deadlines as well.

Think of it thisway: if youwere buying ahouse and needed aloan,
which bank would upset you more, the one whose |oan officer turned
you down immediately, or the one whose loan officer agreed to give you
the loan but changed his mind two months later as you were signing the
closing papers?

I'm not saying that you should turn down requests just so that
you'll have a cushy schedule. I'm saying that you should never commit
to a date you know you can't meet. It might be tempting to think that
you'll somehow make the date, but that's usually just wishful thinking.
There are enough dipsin dates leads "know" they can make, let aonein
the dates they're unsure of.

It's not easy to fight these little battles up front, but it beats having
the company CEO sitting on your desk several weeks or months later
demanding to know why you waited until Marketing's ads had hit the
magazine stands before you confessed that you couldn't possibly make

the datesyou promised. '

—1

Don't Halt the Machinery

Fighting your battles up front puts a critica process in motion—the
search for a true solution. If you were truthful and realistic about what
your team could actually accomplish and said No when you knew you
couldn't meet a date, the search for a workable solution would continue.
Maybe the other group would do the work themsdlves, or maybe they'd
split the work with you, or maybe they'd ask other groupsinyour orga-
nization if they had a smilar piece of code already written, perhaps bur-
ied in the guts of some application. Who knows?

Saying No may be unpleasant, but it keeps the problem-solving
machinery chugging away until somebody, somehow, cansay Yes and
believe in what he or she is saying.

55

DEBUGGINGTHEDEVELOPMENTPROCESS

R e —

Never commit to dates you know you can't
meet. You'll hurt everybody involved.

| failed to Say No

Onetime, the Word for MSDOS team asked our user interfacelibrary
teamtoimplement acostly add-onfeatureintimefor Word'supcoming
beta release. We were booked solid with work, and | couldn't see any
way to meet their date without dipping our own date and affecting the
more than 20 other groups using the library. | explained to the Word
group that we coul d—and would—do thework, just not intimefor their
deadline. | proposed that, if they definitely needed the feature that
quickly, they implement the add-on themsalves, turning it over to us
whenit wascompleted. Wewould document thefeaturefor other teams,
enhance our test gpplication to cover the feature, and support and con-
tinue to enhance the feature in the future. The Word team was upset.
They felt we should do the work since it was a feature that every other
group would eventualy want to use. They were right on that point, but
that didn't change the fact that we couldn't implement the code in time
for their rdease. We battled over this feature for nearly two months. |
finally got so frustrated with the arguing that | broke down and agreed
to do the feature, figuring that I'd temporarily pull a programmer off
one of the other projects| wasleading.

Weél, | couldn't find that spare programmer, and the result was
disastrous. We missed Word's deadline by weeks, and they screamed
bloody murder. Wemissed dl of our other commitmentstoo—whichwe
had been on track for—affecting those 20-odd other teams. More
screaming. What amess. If | had stuck to my gunsand said No as| knew
| shouldhave, everybody woul d havebeenawhol el ot better of f,includ-
ing the Word group.

3 OF STRATEGIC IMPORTANCE

THE NEED TO PLEASE

Asalead, you'regoingto befaced with all sortsof demands. Tobeeffec-
tive, you must learn to say No when it's appropriate. Others may not
like it, and they may think you're wrong, but you have to redlize that
you can't always please everybody—there are often just too many con-
flicting requests.

If you'rein charge of ashared library, oneteam may ask you to add
afeature that benefits only thar project. If you say No, they'll probably
get upset. If you say Y esto their unique request, another team may com-
plain about the increase in the Sze of the library. These no-win Situations
come up al the time, particularly when you're responsible for code
shared by multiple projects.

Which course of action should you take when you're faced with
conflicting demands? That's where your detailed project goals comein
handy. If one of your godsisto provide functionality that will be useful
to al of the groups using your library, you know to reject arequest that
doesn't match that criterion. Sure, you'll get complaints, but it doesn't
take much time to explain your reasons and to point out that if you
implement one unusual request you'll have to implement the specid re-
quests made by every other project you're supporting, which will pull
you off featuresall groups want and bloat the library with features that
most groups don't need.

There seemsto be ahuman need to please everybody, and that need
can get leads into trouble because, in their desire to please everybody,
they can do things that don't make sense for the project.

In my experience, people don't like having their requests rejected,
but if you have solid reasons, they do understand and often appreciate
your not giving them false promises.

Don't let wanting to please everybody
jeopardizeyour project. Useyour goals
to guideyour decisions.

__Q,__

57

DEBUGGING THEDEVELOPMENT PROCESS

Not a Librarian?

I've been assuming for the sake of argument that you'releading alibrary
project, and | know that that's probably not the case. The points
I'm making apply to most projects, though. Instead of having other
leads making demands on your group, you might have a marketing
team making the demands, or the folks who'll use the finished product.
Every project will have some outside demands made upon it—even top
secret projects always seem to have people outside the development
team poking their noses in and making suggestions.

2l

]

SUPERIOR SUGGESTIONS

Y ou should be especidly conscious of not trying to please everybody
when it's your boss who makes suggestions. I'm not talking about resst-
ing authority. | just want to point out that superiors can make bad sug-
gestionsjust as everybody dse can, particularly if they aren't aware of
your gods, your priorities, and the technical chalenges you face. If you
want to be an effective lead, you must weigh al suggestions (or de-
mands), no matter where they originate, against the needs of your
project.

If your boss asks you to do something you think is a bad idea, ex-
plain your concerns before you undertake the work. Sometimes your
boss will agree with your concerns and drop the suggestion; other times,
your boss will acknowledge your concerns and go on to ask you to
honor his or her suggestion anyway—in the best case scenario, provid-
ing solid justification. Regardless of the outcome, one or both of you will
probably |earn something.

| once reviewed a large piece of code written by an experienced
programmer. | was surprised to find severa critica desgn flaws in the
code, flaws | wouldn't have expected to appear in code from this par-
ticular programmer. | asked the programmer why he had chosen such
a design.

"I just did the implementation. Kirby did the design." Kirby was
hislead at the time.

58

3 OF STRATEGIC IMPORTANCE

"How do you feel about thisdesign?' | was curious.

"It's not the way | would have done it."

"Did you feel that way at the time you did the implementation?”

"Yeah," he shrugged. "But | had just started at Microsoft, Kirby
was the lead, and | figured he was more experienced than | was. |
thought he saw something in the design that | didn't. | didn't want to
rock the boat."

In fact, Kirby was less experienced than the programmer who did
the implementation. Kirby had simply been fortunate in getting a more
experienced programmer on his team.

In another case in point, | was leading the teams responsible for
Microsoft's 680x0 cross development system. Periodicadly Mort, a man-
ager who had the power to change my development plans, would drop
by my office to chat about the progress of the 680x0 C/C++ compiler.
During every visit, Mort would get around to asking what grew to be the
inevitable question, "How's the FORTRAN work going?’

Now, Mort knew darn well we weren't trying to produce a
FORTRAN compiler, but he had a fondness for FORTRAN and felt
there was amarket for a good Macintosh FORTRAN compiler. Besides,
creating a FORTRAN compiler out of the C/C++ work we were doing
wasn't abad idea—especialy if you knew, as Mort did, that Microsoft's
compilers use the common three-stage process described in most
compiler texts:

Front end: Parse the specific language (C/ C++, FORTRAN,
Pascd, and so on) into a common intermediate
language.

Optimizer: Perform al compiler optimizations (code
motion, commonsubexpressionelimination,
strength reduction, and so on) on the inter-
mediate |language.

Back end: Generate optimized object code from the now-
optimizedintermediatelanguage.
It'sabit more complicated than that, but you can seefrom this stag-
ing that to get a M acintosh compiler we needed only to write anew back
end, onethat generated M otorol a680x0 codeinstead of Intel 80x86 code.

9

DEBUGGINGTHEDEVELOPMENT PROCESS

In theory, then, once we had finished the 680x0 back end, we
should have had our C/C++ compiler, plus FORTRAN and Pasca
compilers—we just needed to link in the proper front ends. That's in
theory. And that's why Mort was o interested in the possibility of a
FORTRAN product. Inredlity, though, to build the FORTRAN compiler,
we would have needed to fully implement the back end, and we were
implementing only the 95 percent or so required by the C/ C++ compiler.

Whenever Mort asked about the FORTRAN compiler, my answer
was always the same: "We haven't done anything with that compiler.” |
would aways follow with "But we're not doing anything in the back end
that would prevent usfrom doingthe FORTRAN work at alater date.”

Mort may have been right that there was a market for a good
FORTRAN compiler on the Macintosh, but he was ignoring my team's
project priorities. Just because therewas amarket and it was possible to
createtheproduct wasno reasonto temporarily halt work onthe C/C++
compiler, which even he agreed had asignificantly larger market poten-
tial. We wouldn't have had this discusson more than once if Mort hadn't
been personaly interested in the FORTRAN compiler. His persond
interest was getting intheway of hisbusness sense.

You must protect your project from outside manipulation, espe-
cidly if the request comesfrom somebody who has clout. Somebody like
Mort might not be right, but you might feel obliged to comply. In my
early yearsasalead, | probably would have bowed to Mort's pressure—
| certainly caved in on smilar requedts. | eventualy learned, though,
that no matter where a request originaes, you must question it. Does it
improve the product? Is it dtrategicaly necessary according to your
goas? Does it draw focus away from more important work? Will it be
unnecessarily expensive or risky to implement? You must feel good
about the answers to these questions, or you shouldn't do the work.

You are responsiblefor your project.
Don't et ill-considered suggestionsfrom
superiorsdisrupt your progress.

3 OF STRATEGIC IMPORTANCE

THE TRUE COST

Why did Mort think that a Macintosh FORTRAN compiler was worth
considering as a goal for the cross compiler project? Was it because
people wouldn't stop cdling Microsoft to ask why we didn't have such
a compiler in our product line? Was it because coding in FORTRAN
just made sense for the Macintosh environment? Of course not. The
only reason the FORTRAN compiler was ever an issue was because
one person who was fond of FORTRAN saw the possibility of getting
a free FORTRAN compiler out of the C/C++ compiler work we were
aready doing.

| get excited about free products and features as much as the next
person. There's that warm feeling you get when you realize that because
you were such abrilliant designer, some unexpected functionality pops
out. But free products are amost never strategic for your company, and
freefeatures aredmost never strategic for your product. After al, if they
were strategic, they would have been planned for, not serendipitously
discovered.

It'sinteresting to note that we could aso have gotten a Pascal com-
piler out of the C/C++ work by updating the older Pascal front end, but
that idea never came up, even though the Macintosh was for many years
a Pasca-only system—all the manuals and code examples from Apple
Computer were in Pascd, and there were no serious development sys-
tems to compete with Apple's Pascal system. That's all changed now, of
course; C/ C++ hasbecome the language of choicefor the Macintosh. But
If Microsoft were to ship a Macintosh compiler other than the C/C++
compiler, it would make far more sense, | think, to ship a Pascd, not a
FORTRAN, compiler.

Mort was excited about the FORTRAN compiler because it was
free, not because it was strategic. But how free would that FORTRAN
compiler actually have been? To bring that free compiler to market, we
would have had to

* Finish the remaining 5 percent or so of the back end to the
compiler—afew programmer-months worth of work.

* Find some way to enable FORTRAN programmers to inter-
act in the Pascal-defined Macintosh operating system, which

61

DEBUGGING THE DEVELOPMENT PROCESS

makes heavy use of Pascal records—something FORTRAN
doesn't directly support. We would adso have had to find
some way to alow everything from Macintosh "traps' to
Pascal-stylestringsinFORTRAN.

* Write manuas and help files to accompany the product.

* Fully test the compiler, linker, debugger, and other tools that
would go inthebox.

I'm sure | could think of additional-tasks that would be necessary (say,
training a product support team), but these are the obvious chores that
come to mind. How free does that compiler sound now? Granted, the
technical writers could probably pull the manuals and help files
together fairly quickly if they used the existing 80x86 FORTRAN docu-
ments as astarting point. But there's no shortcut to testing a compiler.
The Macintosh FORTRAN compiler would have required the same full-
blown testing effort that any release of the 80x86 compiler would
undergo.

That FORTRAN compiler was anything but free. Y es, the compiler
was chegp compared to what it would cogt starting from scratch. But
"chegp" can Hill be expensve—just ask anybody who's bought a used
Boeing 747 ately.

Free products and features—Iike free puppies—smply do not ex-
is. Anytime you hear, or even think, the word "freg," your immediate
reaction should be resstance, not acceptance. Think of free products and
features as you would those cold-cadl offers in which you're told that
you'll get afree dream vacation in Bermuda for smply dropping by a
showroom to hear about some new downtown luxury condominiums.
In rare instances, such opportunities may be gold bars to be picked up,
but in most cases, they're merely lead weights. If you want to keep your
projects focused and under control, stick to the strategic work and leave
those lead weights aone.

There is no such thing as afree
product or feature.

————

62

3 OF STRATEGIC IMPORTANCE

THELAYOFFMACRO

Sometimes it's not a superior who makes questionabl e requests, but the
marketing team. The scent of abig sale can cause the marketing team to
consder featuresthey'd never ask for inlessheady situations. Y ou need
to protect your product from such requests.

When | wasworking on Microsoft Excel, the marketing team asked
the development team to extend the product's macro language to
include anew LAY OFF macro, which, as you can probably guess, was
supposed to take alist of names and randomly pick people to lay off. A
large corporate client had requested this LAY OFF macro so that they
could lay people off without anybody being able to claim that the selec-
tions were biased. The company would be in aposition to ssimply point
to Excd to prove their innocence.

If youknow Excdl, youknow that it doesn't containsuchaL AY OFF
macro. Thetask fell to me, and | refused to implement the request: | felt
the macro would harm the product. My lead agreed, and for monthswe
beat of f the marketing team's persistent requestsfor thefeature. Market-
ing felt they needed the macro to closethe sde.

Thefeaturebecame abig*jokeinthe development group. "Let'sdo
it, and well hardwire our namesinto the code so that well never belaid
off! No, better than that, let's hardwire the marketers' names into the
code so that they'll alwaysbelaid off!" Of course, none of that ever hap-
pened. In the end, Marketing wrote a smple user-defined macro to ac-
complish the same purpose. With that macro, the corporate client's
request was met without Microsoft's having to build such an odious fea-
ture into the product.

In my experience, such ridiculousrequests arerare. The marketing
folks don't want to hurt the product. Just the opposite—they want the
best product possible. But sometimes they're not too clear about what
"best" means and ask for features you probably shouldn't implement.
There are at least two types of such features: those that fill out feature
sets and those that satisfy one of those product checklists you find in
magazinereviews. Sometimesfilling out featuresetsor satisfying prod-
uct checklists does improve the product, but just as often adding such
featuresmerely causesbl oat and wastesdevel opment time.

DEBUGGINGTHEDEVELOPMENT PROCESS

The reason | say that—besides years of observation—is the motiva-
tion behind the requests. Think about it. Suppose the marketing team
comes to you and says, "The Hewlett-Packard HP12c business calcula-
tor has these five functionsthat we don't yet support in our spreadshest.
Wed like you to add them to the standard set of functions.” Would
fulfilling such a request make for a strategic improvement to the prod-
uct, or isit more likely that the request came about because a marketer
realized, "Hey, we don't support the full set of HP12c features, we'd
better add what we don't have'? Those additiona features may actualy
be important, but if they are, why weren't they included in an earlier
release? It's possible that those features smply weren't worth the time
and effort. They gill may not be.

Strategic Marketing

| don't want to leave you with the impression that you should adopt a
cavalier attitude toward requests made by the marketing team. Every
once in a while, they'll ask for something inappropriate, but usually
they have sound reasons for their requests. At least that's been my
experience.

Sometimes the marketing team will ask for features that aren't stra-
tegic for the product from a functional point of view but that are quite
strategic for sales reasons. Does any application really need to read and
write 23 different file formats, for instance? Of course not; users need
only one file format to store their work in. Support for the other 22 for-
mats is driven primarily by marketing needs. If your application isn't
"file friendly," that can kill sades if for no other reason than it discour-
ages usersfrom dumping competing productsin favor of yours—they'd
losetheir preexisting work.

If you're faced with a feature you feel doesn't improve the product,
consider whether the feature would measurably increase sdes. That
LAY OFF macro was inappropriate because it would have harmed the
product, not becauseits only reason for being wasto land that large cor-
porateaccount.

3 OF STRATEGIC IMPORTANCE

If marketers are looking at magazine product-feature checklists,
you'll runinto the same problem—the requests will be for features that
fill out the chart, not for features that are strategically necessary for the
product. Sometimes the marketing team will see a questionably useful
feature in a competing product and, in a knee-jerk conviction that your
product has to do everything that the competitors products do, ask for
thefeature. Watch out.

____..@\\.___
Implement features only if they are strategic to
theproduct. Don't implementfeaturesmerely
tofill outfeature sets or review checklists.

TOTALLY COOL, TECHNICALLY AWESOME

In Chapter 1, | mentioned that the user interface library lead and |
reviewed the task list for the library. One of the items on that list was a
ax-week task to implement a feature that would dlow third party
vendors to hook little standal one applications into Microsoft's character-
based applications. The ideawas to make it possble to implement calcu-
lators, notepads, clock displays, and other types of desk accessories that
Windows and Macintosh users take for granted. | thought the feature
was interesting, but it didn't seem to me to be strategic for any of the 20
or so internal groups using the library.

When | asked the lead which group had asked for the feature, he
told me that nobody had; it was on the task list because the previous lead
had felt that it was important. | then asked if any of the groups had ex-
pressed interest in the feature when they had learned of it. Again, the
lead said he didn't know, and he added that if | was considering cutting
the feature, the previous lead would fight it if he found out.

| figured that if the previous lead felt that strongly about support-
ing desk accessories, there must be groups who really wanted the func-
tionality and that the current lead must simply be unaware of them. So
before cutting thefeature, we asked the groupsif they'd heard of thefea-
ture and whether they were interested in such support. The responses
we got were al pretty much the same: "Y eah, we heard about that. So
and So tried to convince us that it was important.”

DEBUGGINGTHEDEVELOPMENT PROCESS

Most groups didn't want the functionality at al. A few were more
interested than others, but only if we beefed up the feature so that there
was strong communication between the accessory and the application.
They didn't want calculators and dock displays, they wanted the ability
to truly extend the application—for grammar checkers and other tools
that could provide important functionality. Of course, providing a gen-
eral purpose interface to alow such functionality was much more com-
plicated thanthe original idea. Wedidn't havethetimeto implement the
six-week feature, much less something more complex.

Our findings pretty much killed the feature, but before scratching
it off the ligt, | talked with the previous lead to get his thoughts on the
issue. He was disappointed by my decison to cut the feature, but nothing
more. He couldn't provide any compdling reasons to implement the
code except that it would be an interesting programming challenge and

What About Third Party Vendors?

It's possible that third party vendors would have loved to have seen
support for those little pop-up applications. It's likely that some small
company or enterprising individual would have seized upon that niche
market and created numerous little add-ons for Microsoft's character-
based applications. Nobody got the chance because | cut the feature. But
| didn't cut the feature without first consdering how beneficial such
third party support might have been.

Had the add-on capability been much more powerful, as the appli-
cations groups wanted it to be third party developers could have
created some truly useful add-ons for other users which in turn could
have increased demand for the character-based products. But calcula-
tors? Notepads? Clocks? Nobody choosesaword processor, adebugger,
or any other application smply because athird party vendor sdls anifty
add-on scientific calculator.

Simply put, the users didn't need the functionality, which meant
that the applicationsdidn't need it. It would have been wasteful for usto
spend six weeks working on pop-up code when we could work on code
that users redlly did care about.

3 OF STRATEGIC IMPORTANCE

that it would have been cool if people could have used the little pop-
up applications instead of TSRs, MS-DOSSs problematic approach to
achieving the same ends.

In effect, what we had was a six-week feature that was not at all
strategic to the success of the user interface library, nor to the successes
of the agpplications using the library. The task was on the schedule for
only two reasons:. it would have been fun to work on, and it would have
been cool for the character-based applications to have desk accessories
just as their Windows and Macintosh counterparts did.

Don't implement features simply
because they are technically challenging
or "cool" orfunor. . .

B —

ISITBETTER?

Sometimes tasks sneak onto the schedule because they seem truly im-
portant, but in fact they may not be if you consider whether they are
strategic. For example, it has aways irritated me that Excel uses anon-
standard clipboard paradigm — the clipboard is not persistent. It's not
that Excel's moddl is awkward or less useful; it just bugs me that Excel's
clipboard doesn't behave the way clipboards found in every other
Macintosh and'Windows application behave. The saving grace is that
Excd's clipboard implementation is close enough to the standard model
that few people ever notice that it's different.

Now, | believe in following standards, particularly those that con-
cern user interfaces. So you can imagine that if | were the Excel lead, |
might think itimportant to bring Excel into line and would therefore put
a "standardize the clipboard” task on the schedule. And, in fact, | do
think that's important. However, | do not think that standardizing the
clipboard is strategic in any way. Changing the clipboard's behavior
could also break existing user-defined macros that rely on the current
clipboardbehavior.

If | werethe Excel lead, | would want to standardize the clipboard,
but | would strike that task from the schedule in aninstant. | would feel

67

DEBUGGING THE DEVELOPMENT PROCESS

differently if users were confused or irritated by Excd's clipboard, but
as| said, most people never notice that it'sdifferent.

Another typeof importantwork that israrely strategicisreformat-
ting sourcefilesto adopt new coding styles or naming conventions. Sup-
pose a project lead decides that al functions must have function headers
that describe what the functions do and what the parameters mean. That
seems perfectly reasonable. What | question is a lead's taking the next
step—Dbringing development to a halt so that the entire team can spend
days or weeks retroactively adding header comments to al the
headerless functions written over the years. It's even worse when a lead
halts development to ingtitute a new naming convention. That can be
incredibly costly if the team stops to rename every existing variable and
function name. Suchwork may beimportant for maintainability, butitis
rarely strategic. You can tel that the work is nonstrategic because it
doesn't improve the product in any way.

True, you can view such file reformatting as an investment in main-
tainability that will ultimately improve the product, but stopping al de-
velopment isastiff priceto pay. If you ask how you can get the benefits
and eliminate the drawbacks, you can derive aternative approaches to
adding those header comments al at the same time. An approach could
be as smple as asking dl programmers to spend half an hour a week
writing headers and to add headers to any functions they touch during
the day as they work on strategic tasks. Sure, it'll take longer before all
the functions have header comments, but such an approach puts the
initid investment more in line with the expected return.

Of coursg, if you're talking about stopping development to add de-
bug code to the product, that might be another matter; adding debug
code could definitely improve the quality of the product—and rapidly.
The return on investment could be substantial, even in the short term.

Occasiondly, I'll run across a Usenet news article in which a pro-
grammer says something like "Were in the process of rewriting al of
our C code using objectsin C++, and | can't figure out how C++ does. . ."
When | read such notes, | shudder and hope that those programmers—
actually their leads—aren't killing their products by taking the huge
time hit that such arewrite must entail.

Y ou could argue that it would be beneficia to rewrite an assembly
language program in a high-level language such as C—the resulting

3 OF STRATEGIC IMPORTANCE

productivity gains could outweigh the costs of doing the rewrite, and
the resulting code might be more portable. But I've got to question re-
writing a Pasca program in C, or rewriting a C program using object-
oriented designsin C++. | suspect that many such rewrites are initiated
by leads who get caught up in the hoopla of the latest industry trend.
When C++ first started getting attention, there were programmers at
Microsoft who wanted to recode anything and everything using object-
oriented designs. It didn't matter that the original code worked fine.
These programmers felt that it was absolutely necessary to rewrite the
existing code. Fortunately, calmer minds prevailed, restricting object-
oriented work to new code and to cases in which rewriting a product
would provide strategic benefits.

Don't wastetime on questionableimprovement

wor k. Weigh thepotential valuereturned against
the time you would have to invest.

The" Productivity" Cry

Thereason | most often heard for rewriting existing C programsin C++
was that the development team would be so much more productive us-
ing object-oriented methodologies. That may be true, but the people
making those clams were ignoring a significant detail: al the time lost
doing the rewrite. Rewriting a C program to use object-oriented designs
inC++isnot alineby linetrandation, as aPascal to C translation can be;
it'satotal, ground-up rewrite.

If you're leading multiple groups and one of them comes to you
wanting to move from C to C++, ask them whether they're talking about
rewriting the application using object-oriented designs, or whether
they're smply interested in using the more flexible C++ compiler to
compiletheir existing C code. If they're talking about doing an object-
oriented rewrite, be sure to determine whether the benefits would over-
come the timelost doing the redesign and rewrite.

J]

DEBUGGING THE DEVELOPMENT PROCESS

LET NOTHING INTERFERE

By now you should have a pretty strong awareness of the kind of work
you should be focused on: the strategic work as defined by the project
godls. But being focused on strategic work is not enough to prevent
schedule dips. You can deflect "free" features, quash the impulse to go
after "cool" features, and minimize effort on questionable improvement
work. But if you don't learn to say No when you should or if you don't
determine what others truly want, you can find yoursdlf drowning in
work that you shouldn't be doing.

The key to keeping your projects on track is knowing exactly what
you should be doing and then letting nothing interfere with that effort.
Of course, the trick is in knowing exactly what you should be doing.
That'swhy it's vital that you create detailed project gods.

HIGHLIGHTS

Don't let foreseeable problems surprise you. If you want your
project to run smoothly, take time to look into the future. Y ou
can prevent many catastrophes by taking small actions today
that either eliminate the problems in the future or steer you
clear of them. If you regularly ask the question "What can| do
today to help keep the project on track for the next few
months?' you can determine the actions you need to take.

Beforeyou settle in to solve a problem, be sure you're attack-
ing the right problem. Remember the misguided optimization
work the dialog team was doing? The group complaining
about the speed problem inadvertently mided the people on
the library team. Get to the bottom of the problem before you
try totreat it.

Before spending any significant time on atask, do some re-
search so that you know you'll be filling the real need. That
request for those bizarre list boxes was mideading because
the group really needed hierarchical menus. Whenyouget re-
quests, be sure to find out what it is the askers are trying to
accomplish. It can saveyou lots of time.

70

3 OF STRATEGIC IMPORTANCE

For avariety of reasons, someleadsfind it difficult to say No
to demands made on their teams. In the most serious in-
stances, alead will commit to a ship date knowing the team
can't make it. If you have trouble saying No, consider how
you'd want groups you're depending on to respond to your
own requests. Would you want to know up front that they
couldn't make the date on which you need the feature, or
would you rather they agreed and then missed that date? Be
as responsible to other groups as you would want them to be
toyours.

Whenever you get a feature request, determine whether the
feature is drategic to the product. If the feature isn't drategic,
don't implement it. It doesn't matter that the feature appears
to be "free" or that it's technically exciting or that a competi-
tor hasit. Especidly watch for features that round out a set—
such features can appear to be strategically necessary because
it feels as though you must include them for completeness. If
you're unsure whether afeature is strategic, consder the mo-
tivation behind the request for it.

71

UNBRIDLED
ENTHUSIASM

After reading thefirst three chapters of thisbook, you might have gotten
the impression that I'm one of those leads who likes to keep my team
members noses to the grindstone. I've certainly put enough emphasis
on staying focused to justify such a suspicion. But my goal is not to ex-
tract the maximum amount of work out of each team member. My goal is
to put out a great product that the devel opment team has an exhilarating
time putting together.

Haveyou ever worked on aproject that sizzled with enthusiasm? If
you haven't, have you at least had single days on which you felt greet as
you |eft the office? Think back to such a day. Wasiit filled with meetings,
reports, interviews, and e-mail exchanges, or did you spend the day
working uninterrupted, creating great new designs and coding hot new

73

DEBUGGINGTHEDEVELOPMENT PROCESS

features? We both know the answer. I've never met aprogrammer who
got excited about having written yet another report or having attended
yet another meeting.

One of my driving gods as a lead is to create an atmosphere in
which the development team can have ablast as they create a product
they're proud of. | do that in part by working hard to ensure that pro-
grammers don't have to write unnecessary reports, or attend unneces-
sary meetings, or fuss with schedules, or do anything dse that pulls
them away from creating new and exciting features for the product. In
this chapter, I'll tell you why | think such processes are harmful—as
they're commonly practiced—and how you can replace overblown cor-
porate processes that suck the life out of projects with ssimpler, more
effective practices.

THE UNREAD REPORT

Right after | got back from abusiness trip one time, my lead called me
into his office and quizzed me on all the details. When we'd finished
talking, he asked me to write up a detailed trip report describing every-
thing I'd just told him. That seemed like awaste of timeto me, so | asked
If the report was really necessary. He assured me that it was, so | spent
the better part of an afternoon writing that report instead of working on
features.

Later that month, my lead asked me a question | had fully an-
swered in the trip report. | could understand his not remembering the
details, but | was puzzled that he hadn't referred to the report for
the answer, so | asked him if held read the report. He admitted that he
hadn't—he had filed it as soon as I'd given it to him.

"Why did you have me write that report if you never intended to
read it?' | wasirked.

He gave me asurprised look and said, "Everybody hasto writetrip
reports. It'spolicy. . ."

Any reason he could have offered for having me write the report
would have been better than that poor rationale. If he'd had me write
the report because studies show that writing something down cements
the knowledge better in your head, | could have understood that. If held

74

4 UNBRIDLED ENTHUSASM

told me he intended to pass the report on to his own lead or to other
teamswho could benefit fromits contents, | could have understood that
too. But having me write a report when he knew he was going to file it
away unread was absurd. This was an excellent example of somebody's
following aguideline asif it were an ironclad rule, and because of it we
wound up doing something stupid. Any time corporate policy has
somebody writing a report that nobody will read, corporate policy is
wrong—unlessthe ultimate purposeisto cement the knowledge better in
thewriter'shead. But if that's the case, do all trips need such cementing?
My lead was following business-as-usual, not ruthlessly eliminating all
obstacles to product improvement.

The Mystery of the End-Cut Pot Roast

One problem with any process you put in place is that over time people
tend to forget the original reason you set up the process, and continue to
observe it even though it may be outdated. Somewhere | read a story
that succinctly illustrates this point:

A young boy once asked his mother why sheld cut the ends off apot
roast before she put the roast into the oven. "Well," she said, "be-
causethat'swhat my mother taught meto do.” But the questiongot
her to wondering, so she asked her own mother for the reason
behind lopping off the ends. "To tell you the truth, | don't know,"
answvered her mother. "I've dways done it because that's what |
saw your grandmother do.” A real mystery. Sotheboy'smother put
the question to her grandmother. Grandma's reply: "Back then, |
had a small roasting pan—roasts wouldn't fit into the pan unless
| cut off theends."

Like that boy's mother, the lead who had me write a report he
didn't intend to read was following a procedure without understanding
its original purpose. Since having me write a report that he knew no-
body would read was so clearly a questionable practice, he should have
(or I should have) tracked down the idea behind such reports. We might
have discovered that not all business trips call for trip reports, and in
fact | later found out that they don't.

75

DEBUGGINGTHEDEVELOPMENT PROCESS

Some trip reports are definitely worthwhile, particularly the re-
ports people write as soon as they get back from trade shows such as
COMDEX. Those reports are typically chock-full of observations and
insights about the state of the industry, about what the competitionisup
to and how the crowds responded to the competition's booths and dem-
onstrations, and about how those same crowds responded to their own
company's booths and demonstrations. After a show like COMDEX,
trip reports flood e-mail networks. Great stuff.

But not al trip reports provide that kind of value. Just because you
flew to Kokomo, Indiana, to isolate abug at aste therethat you couldn't
reproduce in your office doesn't mean it's worthwhile to write atrip re-
port when you get back. Would you write atrip report if you had walked
down the hall to isolate a problem that showed up only on a tester's
machine? | hope not. Would you write a trip report if you had driven
across town to isolate a problem that affected a loca company? At
Microsoft, youwouldn't. Y ouwouldn'tevenwriteatrip report if the of f-
site location were on the opposite side of the state and it had taken you
four hours to drive there. But if you took a 20-minute puddle-jumper
flight, most managerswould ask you to write atrip report. Why? | don't
believe the reason has anything to do with whether the report is actually
needed. The manager has to fill out specia paperwork to authorize the
expenditure for the plane ticket. The trip is therefore specid, the man-
ager reasons, and requires areport.

When | sad that leads should ruthlesdy eiminate unnecessary
work, the superfluous trip report was the kind of thing | was talking
about. Just as| don't call meetings unless the value they provide offsets
the interruption they cause, | never ask for areport unlessthere is a com-
pelling reason for one. I'd much rather have people working on the
product and interacting with other team members than working on are-
port | don't really need. My view is any time I'm about to interrupt a
team member's work, 1'd better have a darn good reason—to heck with
business-as-usual .

| rarely ask for reports because | don't believe they're worth the
disruption they cause. But when | feel | must have areport, my prefer-
enceisto get an oral report because it takes much less time—5 minutes
of interactivecommuni cationvs. 30 minutes—or more—of writing.

76

4 UNBRIDLED ENTHUSASV

If you ask some people to write areport, their eyes glaze over. If
you drop by three hourslater, you'reliable to find the personfrozenin
front of the word processor, having written only two paragraphs. For
some people, writing a report ranks right up there with speaking to a
full auditorium—it paralyzesthem.

Ancther problem with written reports—if you don't explain ex-
actly what you want—isthat people go on at |length about stuff you have
no interest in. And many people get bogged down in bad prose because
they think the text has to "sound like" areport. Instead of writing "the
bug showed up only when the floppy drive was empty,” such people
think they need to say something like "the error occurred only in those
instances in which the drive mechanism contained no media." It's
harder and takes longer to write in that unnatural style. It's dso harder
and takes longer to read that kind of writing. Besdes, reports written
that way are about as exciting as the test pattern on your television set.

When | do ask peopleto write reports, | ask them to keep the reports
as short as possble and to keep the writing informal—to avoid report-
speak. | don't demand that they write reportsin this Syle, but | do encour-
age it. For people who get paralyzed at the prospect of writing a report,
thesetwo requestshelpmakeit alesspainful,, lesstime-consuming affair.

"Keep it as short as possble?' they'll say. "No problem!”

If ateam member wants to expand on afew ideasin awritten re-
port, that's al right with me too. Some people prefer writing reports
over presenting them ordly, particularly if they're trying to persuade
the reader to act on the contents. A written report can enable both the
writer and me to carefully consider exactly what's reported and the line
of action the reporter thinkswe should take. My god overdl, though, is
to get theinformation | need with theleast amount of pain and interrup-
tion to the writer.

Written reports, like meetings, interrupt the writer's work. Don't
ask for them unlessthey providereal value—enough to offset the cost of
the interruption they cause.

Be sure that every report you ask
for is worth the time it takesfor the
writer to prepare it.

—_— ——

7

DEBUGGINGTHEDEVELOPMENT PROCESS

THE GOOD, THE BAD, AND THE SHELVED

Onekind of report | have found to be invaluable whenit's donewell is
the project postmortem report. I'm talking about the project analysis
some teams write up shortly after a rdease. A postmortem report
answers the question "What can we learn from the project we just fin-
ished?' What went right (let's keep doing that) and what went wrong
(how can we prevent those problems from recurring in the upcoming
project?)? Postmortem reports are crucial because they force the team
members to actively consider how they can improve the development
process.

| love reading project postmortems because they contain so much
good information. But al too often, I'll read a postmortem report that
contains important insights but is effectively worthless because the
writer hasn't taken the next step: describing exactly what's going to be
done about those insights. In one case, | read a pile of postmortems a
product team had written over the years. Each report started with "We
should have included more debugging code at the start of the project,”
followed shortly by "We aso should havefixed bugs up front instead of
allowing them to collect until the end of the project.” Both excellent
observations. Unfortunately, the sameinsights appeared in the postmor-
tems for rdease after release of that product. Apparently, nobody was
acting on the team's hard-won knowledge.

If you do postmortem reports—and | advise you to—be sure to
include a detail ed attack plan that describeshow you planto take care of
each known problem so that it doesn't come up again in the next project
cycle. I'm sure the team whose pile of postmortems | read never in-
cluded more debug code at the start of each project or changed their
bug-fixing habits. Once the postmortem report was written, they stored
it away on some dusty shelf, never to be read again nor acted upon.

Some postmortem reports I've read have contained attack plans,
but the plans were ineffective because they weren't specific enough—
they had no teeth. Suppose apostmortem report contained this problem
and attack plan:

78

4 UNBRIDLED ENTHUSASM

Problem: external beta sites felt their bug reports fell
on deaf ears, mainly because the bugs they reported would
continue to appear in beta release after beta release of
our Mandelbrot package. These bugs were slipping through
the cracks because we had no systematic approach for
tracking external bug reports. In the future, we must

try to track external bug reports more carefully.

Inmany cases, that wasall thepostmortem report would say onthe mat-
ter. From the occasional team who took the extra step and developed a
more specific plan of attack, theplanwould look likethis:

Solution: the Plotting Division needs to implement a
better method for tracking bugs reported by external
beta sites.

From the rare team who developed a detailed attack plan, the plan
would look likethis:

Solution: to prevent our losing track of bugs reported
by external beta sites--a problem that affects not

only our Mandelbrot project, but also the Biorhythm and
Morph projects--Hufile Dobson has agreed to review three
well-respected bug-tracking systems (Bug Control, Pro-
grammer's Database, and FixIt!) and recommend one tool
for division-wide use. Hubie will make his recommendation
within the next two weeks (by June 12). We will use the
system Hubie recommends for our Mandelbrot project as
an initial test case, and we will maintain a list of any
tracking problems we encounter.

Which of the three reports do you suppose would be most likely to
produce change in the development process? The one that states little
more than the problem and an intention to do better, the one with a
smple attack plan, or the one with the detailed attack plan? Is there any
question that the fina plan would be the most effective?

The final plan will be the most effective because it tells exactly
what the solution will be, who will be responsible, when the deadlineis,
and where the plan will be applied. The plan aso provides for evalua
tion. Who isaccountableinthefirst or second example? It'seasy enough
to say, as the second report does, that the Plotting Divison should
implement a new bug-tracking system, but who is that? And by when

DEBUGGINGTHEDEVELOPMENTPROCESS

should the Plotting Division implement a new method for tracking ex-
ternal bug reports? Onwhich project will they try it out? Will they report
the results of the trial ? Without such details, attack plans are toothless.

The postmortem report should aso describe development prac-
ticesyou found to be worthwhilein the course of the project. Thereport
might say that once the team began using program assertions and debug
code, hidden bugs began popping out everywhere, even in code thought
to be bug-free. The report might note that the practice of stepping
through code in the debugger the moment'it is written was at first a bit
tedious, but that once programmers got used to the practice the number
of bugs found by testers dropped considerably and without hurting the
schedule. Or the report might observe that having detailed project goals
really helped the team stay focused. These are excellent points. But the
report shouldn't stop there.

For each such observation, the postmortem report should indicate
how the observation will be exploited in the future. It's not enough that
a team discover what works well; they must use that knowledge to its
full advantage. If only some team members were habitually stepping
through their code the moment they wrote it, for instance, the report
might describe the steps that will ensure that al team members will
begin to use that bug-finding technique.

Finally, the postmortem should describe as part of its attack plan
some method for making the findings in the report available to other
teams. This part of the attack plan could be as smple as saying "we will
provide copies of this report to the following leads by such and such a
date." That plan tells what, who, and when.

Researching and writing postmortem reports takes time and adds
yet more process to development—which | oppose on principle—but
the educational benefits of postmortem reports compensatefor thetime
deficit, with one caveat: you must act on your findings. If postmortem
reports end up on the shelf, never to be read again, they haven't been
worth doing.

By theway, you don't need towait for theend of afull releasecycle
towrite apostmortem report. Every timeyou runinto aproblem or dis-
cover abetter way of doing things, jot your findingsdowninan ongoing
document and take immediate action to exploit your new knowledge.
Why wait until you've shipped to gain the benefits?

80

4 UNBRIDLED ENTHUSASV

Use postmortem reports to improve your
development process. To make a report effective,
describe exactly how your team plans tofix
known problems and how it plans to exploit the
effective development practices it has discovered.

MEETINGSTO MISS

In Chapter 1,1 talked about why | think weekly status meetings are un-
necessary if you're aready collecting status reports of some kind. But
status meetings are just one form of the recurrent meeting, a kind of
meeting Jroutinely try to eradicate. By "recurrent meeting” | mean any
regularly scheduled gathering. You arrive at work, week in and week
out, and you think, "It's Tuesday. I'd better not forget that regular three
oclock mesting."

| rarely hold meetings because they can be so disruptive to the
smooth flow of work, and | particularly didike recurring meetings be-
cause the motivation for holding such meetings usually isn't clear. Are
you meeting because you need to, or because it's three o'clock Tuesday?
Some people would argue that weekly status mesetings are indispens-
able. I've gone without them for years. It's not the meeting that'simpor-
tant; it's the information you would get by attending such a mesting. If
you can get (or pass on) the status information more efficiently without
amesting, why not takethat approach?Asl sadin Chapter 1, my teams
little "I'vejust finished. . ." e-mail notes have worked finefor me.

Does it ever make sense to hold meetings? Of course. There are
times when meetings do more good than harm. In particular, meetings
can be valuablewhen

* oneindividual must pass information on to alarge number of
other people and ameeting isthe most efficient way to do that

* people must be able to actively respond to information—to
ask questions or to interact with other attendees

* value will be redized from seeing or experiencing some-
thing—a product demonstration, for instance

DEBUGGING THE DEVELOPMENT PROCESS

* amatter too delicate for a memo or an e-mail—a reorganiza-
tion or layoffs, for example—must be discussed

A meeting doesn't need to meet al of these criteriain order to be
worthwhile—any one of themwill do, provided thereisn't abetter alter-
native. In the days of stone tablets and parchment scrolls, it made sense
to hold meetings to pass out information—that was the most efficient
method. Y ou gathered the masses and did the "Hear ye, hear ye" bit. But
today, with photocopiers, e ectronic mail, and electronic bulletin boards,
you can pass out information with much greater efficiency, and without
interrupting people'swork. Of course, you should use common sense. |
you have something important to say, holding a meeting to say it under-
scores the importance and guarantees that everyone will hear the mes-
sage. And if you're adynamic speaker, you can rally attendeesto action.

Beforeyou cal any meeting, take aminute to ask these questions.

Will the results of this meeting be important enough to warrant
interrupting the work of the people who will have to attend it?

Istherealessdisruptiveway | can get theresults|'d getfrom
holdingthemeeting?

Team Spirit

I've heard some leads say that their weekly status meetings are impor-
tant because the meetings get the entire team into one room where they
can e each other face-to-face. The practice builds team spirit, they say.
I've heard of leads who hold status meetings primarily so that the team
members can get together. The objective is a good one, but in my experi-
ence, the status meeting is just about the worst venue for promoting
team spirit. If your status meetings are like the ones I've described, in
which the focus is on what everybody didn't get done that week, such
status meetings won't really help build team spirit.

If your team members don't tend to meet often in spontaneoushall
gatherings and brainstorming sessons, maybe you do need to create
opportunities for mingling. If that's the goal, go out for group lunches,
or schedule some other positive activity together. Forget using those
punishing status meetings for that purpose.

4 UNBRIDLED ENTHUSASV

When you ask these questions about a prospective design meeting,
you can see that it probably does make sense to interrupt the team's
work, or at least thework of part of theteam. Thework done at adesign
meeting improves the product. It directly influences how the product
will be built. The team may be getting pulled from their individual
tasks, but they're still focused on the product, not on housekeeping.
Design mesetings dso encourage rapid-fire debate over the trade-offs
among various designs. You can't easily or efficiently brainstorm that
way over e-mail.

| would be suspicious, though, of any desgn meeting that was
regularly held at three o'clock every Tuesday. Unless you have sched-
uled a series of specific design tasks—design the memory manager this
Tuesday, the file 1/0O next Tuesday, the interna document structure the
Tuesday after that, and so on—I doubt that a regular design meeting
makes sense. I'd imagine that a recurring design meeting would always
open with the question "Have any new design issues cropped up this
week?' And I'd like to assume that if such issues had cropped up, they
wouldn't have been kept quiet until the next Tuesday. Team members
should bring up new desgn issues immediately, and if a gathering

[

Good Meeting Times

If you must have a meeting, at least schedule it so that it doesn't break
up an otherwise large chunk of time. Don't schedule your one-hour
meeting a 10:00 A.M. or 300 P.M. so that it chops the morning or the
afternoon into two-hour pieces. Schedule the meeting at the beginning
or the end of the day, or just before or right after lunch. In other words,
schedule your mesetings next to standard break times to maximize the
size of uninterrupted time blocks.

Another approach is to schedule al your weekly meetings in one
conti nuousbl ock—say, on M onday morning or Friday afternoon. Mon-
day morning and Friday afternoon are notoriously the least productive
times of thework week anyway. Put all your meetingsinto one of those
blocks of time, and keep them out of thebetter, more productive, partsof
theweek.

1]

83

DEBUGGING THEDEVELOPMENT PROCESS

seems necessary to work out problems, you can call an ad hoc meeting.
Reserving a time each week "just in casg”" there are problems seems to
me to be more disruptive than hel pful.
—_—
Bewareofrecurrent meetings. Makesure
they'reworth the disruption they cause.

EFFECTIVE MEETINGS

As much as | didike holding meetings, or attending other peopl€e's meet-
ings, | recognize that meetings are sometimes necessary. And as for any
unpleasant task | believeis necessary, | ask the benefits-drawbacks ques-
tion: How can| get the benefits of this meeting without the drawbacks?

The benefits of meetings are the results you get out of those meet-
ings, and the chief drawback is that so many meetings are a waste of
time because there aren't any results—often because the purpose of a
meeting was never clear to the participants. You can hold a far more
effective meeting if you first decide exactly what you want to accom-
plish at the meeting and then come up with a plan to get those results by
meeting's end. It's the old "set your goals and create an attack plan”
scenario.

Once you've decided that a meeting is necessary, be sure to ask this
question before you send out the invitations:

What do | expect to achieve at this meeting, and how can | be sure
to achieve it?

If you ask this question before each meeting, you have a much better
chance of not wasting everybody's time with random presentation and
discussion.

Remember that hypothetical house-moving lead | talked about in
Chapter 3, the one who didn't drive ahead to check out the route before
the house hit the road? The driver ran into overpasses, hills, and road-
work because the lead didn't take the steps beforehand that would have
ensured they could get the results they wanted.

84

4 UNBRIDLED ENTHUSASM

When you ask yourself what you expect to achieve at a meeting,
youforceyourself tolook ahead for possible obstaclesto what you hope
to achieve and to take steps to avoid them. If you have a clear idea of
what you want to achieve and of what is necessary to achieveit, you can
see that al key decison makers attend and that they bring whatever
you'll need for the results you want. How many meetings have beenfor
naught ssimply because akey decision maker couldn't attend, or because
somebody didn't know to bring avital piece of information?

Stll, despite your best efforts, there will be times when you won't
have dl the information you need to make afinal decison. When that
happens, the meeting coordinator will often say something like
"George, find out if your two-week guesstimate for theAnagramfeature
Is accurate, and we'll meet again to decide whether to includeit in this
rdease”

L eads who use that approach waste peoplestime. Everybody met,
yet nothing was decided. If your goa isto get adecison, make sureyou
getadecision, evenifit'saconditional one. It'sfar better toend ameeting
with, "Assuming that George's guesstimate for the Anagram feature is
accurate, does everybody agree that this feature is strategic enough to
delay our WordSmasher ship date?’

With that question, you may find that nobody thinks the featureis
strategic enough to jeopardize the ship date. Or maybe that they think
the featureis so important it doesn't matter how it affects the ship date.
But more often than not, you can get a conditional decision: "Let'sdoit,
provided the Anagram feature won't delay the ship date by more than
two weeks."

Such adecisonmay not beasconcreteasadefiniteY eaor Nay, but
it's infinitely preferable to postponing the resolution of the issue and
calling yet another meeting. If your goal isto get adecision, get one. If
your god isto achieve something ese, make sure you achieve that.

____Q“a_
Before calling any meeting, be sure you
know exactly what you want to achieve

and what you need to achieve it. Then
make sureyou do achieveit.

85

DEBUGGINGTHEDEVELOPMENT PROCESS

A Metricfor Meetings

I've hammered on the idea of getting decisions at your meetings because
almost every worthwhile meeting ends with a decision of some kind. If
you hold a meeting that doesn't end in a decison, that meeting has
probably been awaste of time.

Think about a status mesting. Is it held to reach a decison? No, its
purpose is to pass information around. What about a design meeting?
Yes, you're deciding on adesign for the product. The meeting may be a
brainstorming sesson, but the goal isto leave the meeting with adesign,
or at least a design approach, that everybody agrees on.

What about an upper management project review meeting? Can it
end with a decison? That depends. |'ve seen two types. In the first, the
lead describes the course of the project over the last year, touching on
major highlights, and finishes by reviewing the current schedule and
expressing some level of confidence about the projected dates. In the
second type of project review meeting, the lead doesn't dawdle over the
past but instead describes in detail where she is taking the project, why
she has chosen that direction, what her detailed attack plan is, what the
dternative approaches that she rgected were and why she rgected
them, how her plan fitsinto the long-term direction of the company, and
finally how upper management can hep—all she needs is their support.

The first type of review meeting isjust dumping information on
upper management, whereas the second type is a presentation to per-
suade upper management to back thelead's plan, to get them todecideto
support her plan. Which type of presentation do you think is better for
the company, getting upper management to focus on the past or getting
them to commit to acoursefor thefuture?

Some gatherings, such as pep ralies and the annual company
meeting, don't result in decisions, but those meetings have a different
purpose, and more important, they aren't held each week, or even each
month.

4 UNBRIDLED ENTHUSASM

NO FOLLOW-UPWORK

Another drawback to meetings is that they tend to create follow-up
tasks for the people who attend. Sometimes you can't do without a fol-
low-up task—-you need to have George figure out exactly how long it
wouldtaketoimplement that AnagramfeatureinWordSmasher—but a
lot of follow-up work is busywork. Remember the lead who required
team members to send follow-up e-mail repeating what they'd said at
the meeting? Follow-up work isjust that much more work that pulls the
development team away from the tasks they were doing before the
meeting started.

Whenever you're wrapping up a meseting, restating the decisons
you've reeched and recounting the action items for various attendees, be
sureto consder whether each follow-up action itemis essentid. | know
several leads who seem to fed that everybody must have picked up at
least one action item by the end of a meeting. Such alead will circle the
table mentioning what each person is to do—until he hits upon some-
body with no follow-up task. Hell stop for a minute, scratch his heed,
and manufacture atask; "George, why don'tyou..."

If you'vefalleninto thistendency, try adifferent approach. Asyou
cirde the table, reevaluate each action item to determine whether it's
really worth spending time on. A typical diadogue might go like this

"Next is George. You were going to get an estimate for the Ana-
gram feature. Realigtically, do you think there's any possbility of doing
that feature without affecting the ship date by more than two weeks?"

"Actudly, I've thought of some additiona issues in the last 20
minutes,” George says. "I now think the feature will teke at least three
weeksto implement.”

"OK. The Anagram feature isn't important enough to jeopardize
our ship date, s0 let's postpone the feature until the 31 rdease. Every-
body agree? Good. George, you have no action items. Now, Rebecca, you
were going to..."

I think you'l| be surprised at how many foll ow-up tasksdon't seem
nearly as important by the end of the meeting as they did earlier, in the
middle of an intense discussion.

87

DEBUGGING THE DEVELOPMENT PROCESS

__‘:;__
Tryto eliminate unnecessary
follow-up work.

Wriggling Out Of Work

Doesn't circling the table looking for ways to eliminate work create a.
harmful negative feedback loop, one that encourages people to misin-
form you so that they'll get out of some work? Did George redly find
another week's worth of work when he looked again at doing the Ana-
gram feature, or did he fabricate that week's worth of work as a means
of getting the feature killed—and reducing his work load?

In any organization, you're going to find some individuas who
have no qualms about lying to ease their burdens. That's life. But |
believe the vast majority of people are sincere and don't play such
games. You quickly find out who the other few are.

Besides, | doubt that a team would so easily kill afeature (or an
action item) if they felt it was important. That Anagram feature would
not have been dropped if the others at the meeting had felt it was strate-
gic to the current release.

BREAK OUT THE JACKHAMMER

If you want to keep the excitement level inyour team high, enable them
to work on the product without constantly being pulled off their work to
write reports, attend meetings, and deal with other processes that won't
help to improve the product. Unfortunately, the corporate tendency isto
call meetings for every little thing and to ask for reports as a knee-jerk
reaction: "I'm busy right now; send me areport.”

Y ou might think that alittle speed bump inthe road would bejust a
small obstacle, but imagine how such a bump would affect a race car
going at a high speed—it could break the car apart. The development
team is like that race car, raring to go, and just as they start to pick up

88

4 UNBRIDLED ENTHUSASM

soeed, WHUMP, they hit a speed bump in the form of a meeting, a
report, or some other corporate process. Sometimes it'sworse. The lead
who regularly asked for status reports, called status meetings, and re-
quiredfollow-upreportswasaone-manspeed-bumpbuilder. WHUMP,
WHUMP, WHUMP...

Y ou may not have control over dl the speed bumps that dow your
team, but you certainly have control over many of them. Retire that
truck full of blacktop and break out your jackhammer. Do some rea
damage to those bumps.

HIGHLIGHTS

Try to limit the number of reportsyou ask other team mem-
bers to write. Be sure that every report you ask for will pro-
vide more value to you or the company than would be lost by
interrupting thewriter'swork.

Postmortem reports are invaluable when you do them cor-
rectly. Unless your postmortem reports explain exactly how
you intend to fix known problems or exploit known improve-
ments, though, the reports probably aren't worth doing.

Before you cal ameeting, be sure the results you think you'll
get from that meeting are worth the disruption to the work
of the peoplewhowould haveto attend. Beparticularly wary
of any regular meeting. Regular, standing meetings often
aren't worth the time to walk to them, much less attend.

If you must hold ameseting, minimize the amount of interrup-

tion it will cause. Schedule the meeting so that it won't break
up an otherwiselarge block of time.

Whenever you cal ameeting, be sureyou know ahead of time
exactly what you'retryingto accomplish, and then makesure
you do accomplish it. Remember aso that conditional deci-
sions are better than no decisons.

| explained in Chapter 2 why | believeit's critical that teamsfix bugs as
they're found. We didn't follow that practice back when | was working
onthe Microsoft Excel project. Infact, wewere pressured to ignore bugs
until al scheduled features had been completed. Why? Because if we
had stopped to fix bugs we would have appeared to have dipped the
schedule. It wouldn't have mattered that the ship date would actually
have been pulled in; anything that appeared to cause intermediate dips
was discouraged, and a growing bug-list didn't count as slipping—
you'd dipped only if you hadn't "finished" afeature as scheduled. The
schedule, not the project goas and priorities, not even common sense,
was driving the development process.

9

DEBUGGING THE DEVELOPMENT PROCESS

At that time, Microsoft's Applications divison used atype of sched-
ule that seemed reasonable on paper but that in practice demoralized
teams and created a Situation in which the strongest motive was to hit
deadlines at the expense of all else—including product quality. Of
course, at the time nobody thought of it that way because the problems
weren't apparent. It took Microsoft several years—a round of product
cyclesfor its applications—to redlize the problemsinherent in the sched-
uling system it wasusing.

Once the problems with the scheduling system became apparent,
the process was tossed out, and a more humane scheduling system was
brought in. Still, that was a costly learning experience for Microsoft, and
I'll describe that experience so that others don't follow the same mis-
taken path. I'll also describe the scheduling process that many groups at
Microsoft have moved to and that | have found to work quite well.

ON A PROJECT LONG, LONG AGO. ..

My primary reason for joining Microsoft back in 1986 was to work on
high-quaity Macintosh applications. | was assigned to Microsoft Excd,
then Microsoft'slatest entry into the Macintosh market. By any measure,
working on Excel should have been exciting for me. It met all of my
criteria; it was a serious Macintosh application, it was a highly visble
application, and usersloved it. Even better, Microsoft wasn't about to go
belly-up, so | knew that the product would have along life. | could get
the Macintosh experience | wanted and have an influence on one of the
industry's most promising applications.

Working on Excel was exciting at first, but after several monthsthe .
work had become dull and then finally just plain aggravating. The Excel
project should have been a dream project. It didn't make sense that |
should find it so aggravating, but other team members were aggravated
too, and so were programmers | knew who were working on other
Microsoft projects. The problem wasn't the people we worked with, nor
wasit thework setting—M icrosoft's environment was the best 1'd expe-
rienced, hands down, in 10 years of computer industry work, and |
know the aggravated team members and programmers on other
Microsoft projects felt that way too. No, the aggravation was a side

92

5 SCHEDULING MADNESS

effect of the type of project schedules Microsoft had begun using right
around the time | joined up.

In the projects I'd worked on before | joined Microsoft, the team
members had been excited by the work, and the dominant feeling had
been enthusiasm over how much better the product was getting with
each passing day. The Excel project never felt that way. Although we
regularly improved the product, we were bombarded perpetually with
the message that we were dipping. | was dipping, he was dipping,
everybody was dipping, the project was dipping! The focus wasn't on the
quality or even the quantity of our work: it was on the schedule.

In Chapter 1,1 mentioned weekly status reports that had the effect
of regularly dapping the programmers in the face. Those reports were
just one aspect of the demoralizing scheduling process Microsoft was
using back then. Besides writing those weekly status reports, the team
members had to meet each week with the testing and documentation
teams for a general discusson of how weld dipped that week. Wed
learn that the writers were stopped cold because the programmers had
dipped and that the testers were sitting on their hands because the pro-
grammers had dipped. Allave talked about was dipping.

I think even worse than the status reports and those awful status
meetings was the project task list. Each week the Excel lead would use
the latest round of status reports to update the master task list. Then
he'd distribute the updated master list to each team member. Nothing
wrong with that. But thefirst item you'd notice on the cover page would
be the chart showing exactly how much each team member had dipped
that week and how much the project as a whole had dipped. The chart
didn't explain that you'd dipped because you'd had to tackle severd
unlisted but nevertheless required tasks that hadn't been anticipated
back when the schedule had been created. Upper management would
get these reports, seethat you'd slipped yet again, and demand to know
what was going on. Slagp! Sigp! Sap! It was not pretty in those days.

After the sting had lessened a bit, you'd turn to subsequent pages
of themaster task list and see what seemed like thousands of unfinished
items. Worsg, the list would be amost identica to the one you'd seen the
week before. Here we were, working our hardest, and amost nothing
seemed to be getting done. It was like that joke, "How do you eat an

DEBUGGING THE DEVELOPMENT PROCESS

elephant? ... A bite at atime." The task list was our elephant, and it
seemed as if we'd never finish eating it.

The focus was so much on the schedul€e's deadline that no matter
how solid our work was we couldn't feel any sense of accomplishment.
Quitethe contrary: wewere overwhelmed by the feeling we were so far
behind that even with our best effortswe couldn't make any headway. It
wasn't the nature of the work that was the problem,; it was the apparent
hopel essness of the position we were in.

Until that Excel project, 1'd never seen how destructive a schedule
can be to morale. What should have been my dreamjob felt like anight-
mare. We were constantly dlipping our schedule, but we weren't goofing
off. Thereality was that the project's schedule was hopelessy unrealis-
tic. The schedule made these assumptions, for ingance:

* That all tasks—for a two-year project—were known and
listed on the schedule

* That each week each programmer would complete 40 hours
worth of the tasks listed on the schedule

* That al task estimates were completely accurate

* That al features would be implemented perfectly, without
bugs

The world's most accomplished programming team couldn't have
met a schedule based on those assumptions—unless, that is, they had
regularly worked 80-hour weeks from the outset to compensate for all
the unforeseen tasks, inaccurate estimates, and bugs, to say nothing of
the meetings, reports, interviews, and e-mail that stedl hours each week.
The schedule also failed to account for the 10 legal holidays each year
and for each programmer'stwo-week vacation each year. For atwo-year
project, that wasanal most-tivo-teant+monthsschedulingerror. Thesched-
ule was doomed to dip.

.___._Q,_._
Never allow the schedule to drive the
project or to demoralize the team.

__«,_____

5 SCHEDULING MADNESS

Just Following Standard Procedure

| want to emphasi ze that the Excel lead didn't intend to create a demor-
alizing stuation. He was following the accepted scheduling process,
and he later even adjusted the 40-hours-per-week assumption to ac-
count for meetings and other regular but unscheduled tasks—some-
thing that some leads on other projectswould never do. Nor do | believe
the schedule was intentionally designed to extract 80-hour work weeks
from the programmers, athough that was the result and is perhaps
the source of Microsoft's reputation for working people hard. | believe
the schedule was a sincere attempt to accurately predict and track
progress. After dl, what makes more sense than using the sum of the
edtimates for dl known tasks to derive a scheduled "done date'? Of
course, nobody believed the task list was complete or that dl the esti-
mates were accurate, but that didn't stop people—particularly upper
management—ifrom treating the derived "done date" asthough it were
redistic. Intime, most Microsoft groups scrapped these task-list-driven
schedules for a type of schedule that was more successful and that I'll
describe later in the chapter.

=1

PRIMING THE PUMP

Y ou've probably heard at least one lead say, "If you want the team to
work hard, you have to give them an aggressive schedule.” | think dl
leads believe that to some degree—I certainly do. The question is, how
aggressive is "aggressve'? If aggressive means making the schedule
chalenging enough that it drives the project forward at a reasonable
clip, that'sfine; butifaggressivemeansunattainabl e, suchaschedulecan
only demoralize theteam as dip-hysteria setsin.

A schedule should be aggressive enough to ingtill a sense of ur-
gency in the programmers, to help them stay more focused on the
important work. Think about your own situation. If you weretaking off
for athree-week vacation tomorrow, would you work at the same pace
today that you normally would? My guess is that you'd work much
smarter today than you usually do. Y ou'd probably focus squarely on

DEBUGGING THEDEVELOPMENT PROCESS

getting al high-priority items out of the way—no long chatsinthe halls,
no time spent on unimportant e-mail or news, No unnecessary meetings.
That's the sense of urgency in action—better focus.

At Microsoft, the same sense of urgency develops whenever afinal
ship date nears. The lead typically sends out an e-mail message similar
to this one:

We're nearing our ship date, so we need to be particu-
larly careful about how we use our time. Everybody's time
is valuable now--we're all working toward this one final
goal. Think twice before calling a meeting. Think twice
before bothering somebody with a question you could
easily look up yourself. If you come across an unexpected
task, don't assume that somebody else is going to take
care of it; they're just as busy as you are. Don't keep
a private to-do list of tasks that you'll get around to
"eventually." There is no "eventually." Tell me about
every pending task so that we can decide whether the task
is critical for this release. If you find yourself with
nothing to do. don't kick back because you think you're
done. Unless the team is done, you're not done. | could
go on, but you're all smart. You've all got brains. You
know if you're wasting time.

Whenever | see a notice like this one (they get passed to other groups
periodically), my questionis, shouldn't the team be working that way al
thetime?

"Geez, Steve, that sounds pretty awful. | thought you said in the
last chapter that you weren't a'nose to the grindstone' kind of lead.” I'm
not. If you look at the essence of that message, you'll see that it says,
"Don't do business-as-usual. Work smarter-than-usual. Question every
task to prevent wasting time, be careful about wasting other people's
time, and take an active role in moving the product forward." That's
what I've been saying al aong. The language in the e-mail is harsh be-
cause the lead wants to convey in one message what I've had the luxury
of spending afew chapters on.

If you felt pressed for time, would you conclude a meeting with
"George, find out about such and such, and we'll meet again to make a
final decison"?1 doubt it. When people are pressed for time, they don't
put tasks of f—they either kill those tasks or handlethemimmediately.

5 SCHEDULING MADNESS

Do you think ateam would crackle with energy if they didn't have
asense of urgency? I magine ateamwith so much timeto sparethat they
could arrive each morning, put their feet up, and mull over every aspect
of their project. Such contemplation can be rewarding, and thefindings
can certainly be valuable, but would the team befilled with energy and
enthusiasm? Would the project be exciting? Somehow | doubt it, just as|
doubt that a dow exchange of ideas can be as exciting as a rapid-fire
brainstorming sesson. | believe that for ateam to get on a creative roll,
you have to pump energy into the process. The sense of urgency—time
pressure—isone source of that energy.

—_—
Make sureyour schedules are attainable
but aggressive enough to keep team members
focused on steady progress.

6“

HOWMUCHISTOOMUCH?

Can you pump too much urgency into a situation? Sure. If the schedule
startsto look unattainable, you risk having team members start to make
stupid decisons. I've worked with programmers who felt so swamped
they stopped testing their code. If the code compiled and didn't blow up
thefirst timethey ranit, they moved on. Those programmersknew they
weren't doing quality work, but they felt they had no choice, given the
pressure of the schedule. They crossed their fingers and prayed that the
testing team would catch any bugs that dipped through.

As alead, you must keep your eye on the decisons people make
under schedul e pressure and remind people, when you haveto, that hit-
ting the deadline is rarely so critica that they should jeopardize the
product with ill-concelved designs, dapped-together implementations,
or untested code. Missing adeadline will hurt the project once, but bad
designs and implementations will haunt the product forever—unless
someone further down the line decides to use valuable time to rewrite
al the doppy code.

97

DEBUGGING THE DEVELOPMENT PROCESS

Never allow team members to jeopardize
the product in the attempt to hit what might
be, after all, an arbitrary deadline.

THE WIN-ABLE SCHEDULE

A win-able schedule is one that benefits both the company and the de-
veloper. As I've pointed out, the schedule must be aggressive enough to
get the product out the door but attainable enough to alow the devel op-
ersto feel they have time to do what you and they believe isbest for the
product. Another essential aspect of a win-able schedule is that it em-
phasize the progress made by the team, creating situations in which the
team can have "wins"

Do you remember that elephantine Excel task list | talked about
ealier in this chapter, the one that stayed the same size from week to
week? For amost two years | would routinely arrive at work each day
and knock a few tasks off that huge list. How much urgency do you
think | felt as| chipped away at features for adeadline two years away?
| can tell you: not much. In fact, the project didn't begin to feel urgent
until practically the last couple of months, when the deadline was in
plain sight.

Maybe you've heard the saying that a god without a deadline is
just a wish. It's the deadline that pumps energy into the development
effort and gets people to scrap the dreary procedures of business-as-
usua infavor of more effective strategies. We had adeadline for the Ex-
cd project, but that deadline was so far out that it had no power to ignite
the team. We might aswell have said, "Someday welll ship Excel.”

Without exception, every exciting project I've worked on has had
deadlines much closer than Excel's two-year release date. It's not that
the projects weren't large and didn't undergo development over along
period of time—they were and they did—but they were broken up into
smaller subprojects, each with its own deadline, and the deadlines were
spaced roughly two months apart. The result was that each subproject
had an attainabl e near-term deadlinethat promoted the sense of urgency
and each contributed to our feeling of progress as we completed it. We
didn't ship every two years. We "shipped" every two months.

3]

5 CHEDULING MADNESS

Thankfully, most Microsoft teams have moved to some form of this
milestone-scheduling snce the days when | worked on that Excel
project. But using milestone-schedulingisn't enough. If you wereto take

I

Arbitrary Deadlines

In my experience, most deadlines are arbitrary, ether derived from the
list of known tasks or ssmply handed down from above: "Thou shalt
shiponJune 11, or =" If you agree to adeadline, you should try to hit
it, but the fact that you or upper management has set a date doesn't
mean that the date is a priority that overrides quality. The date is too ar-
bitrary. Think about your own project. If you missed the ship date by a
month, what would the long-term impact on the company be? Would
anyone even care Sx months later? But suppose, instead, that you hit
your deadline and shipped your code with bugs and ill-concelved fea-
tures. Which would affect your product more, adightly late release date
or an ondaught of bad product reviews?

Unless your code has to be functional by a date that amply can't be
changed—say, the arrival of Halley's Comet after along 76 years—your
release date is probably not so critical that you must hit it at al codsts. If
your not having a piece of equipment ready for a scheduled space
shuttle launch would cost your company millions of dollars, it would
probably be better to cut functionality and focus on getting al the bugs
out of the remaining code than to send dl the code aloft and have the
equipment crash the first time the astronauts try to useit.

Of course, this discussion makesit sound asif it takes more time to
do thingsright. In my experience, it takes less time to do something the
right way. Y ou do spend more time up front as you set goals and priori-
ties think through desgns and implementations, create test suites, and
st quality bars, but you save alot of time later. Think about it. Which
would be more valuable, writing test suites at the start of the project or
atthevery end? It'sthat ssimple. When other teams are working 80-hour
weeks, scrambling to whittle down their huge bug-lists, your team can
have ailmost no bugs and spend the last few weeks of the project cycle
adding ever more thorough checks to the test suites and debug code just
to find that one, last, unknown bug.

7l

DEBUGGINGTHEDEVELOPMENTPROCESS

Excel's two-year task lis and merely chop it into two-month chunks,
you wouldn't change anything—you'd still have a two-year schedule,
but now with artificial "ship" dates every two months. It's not the two-
month period aonethat creates the wins and fosters enthusiasm. It'sthe
thrill of finishing aninteresting subproject.

"Finishing all top-priority items' may be important, but the top-
priority items don't make up a subproject. They'rejust arandom list of
things that happen to beimportant. There's no motivating theme behind
suchalist.

"Implementing the charting subsystem" is a subproject. All of the
tasks that would be involved would relate to that common theme. Y ou
might use a task ligt to remind people of the known charting issues
they'd have to handle, but ultimately the theme of the subproject would
drive development. The goa wouldn't be for the team to finish 352
unrelated tasks. The god would be to do everything necessary to fully
complete—to "ship"—the charting subsystem, regardless of whether
the tasks it would take were on alist somewhere. The subproject would
bein "ship mode" from the outset.

Think of it thisway: if you were throwing a dinner party and you
went to the storefor groceries, would you search only for the party items
you'd thought to write down on your shopping list, or would you view
that lig as the "known items' you need for the party and walk the store
aidesthinking "What dse do | need? What have | forgotten? There must
be something | haven't thought of ..." Wouldn't you aso have a sense of
urgency? That's the difference between trying to fulfill a god—"Get
everything | need for my party"—and merely checking off itemson alist
of unrelated tasks.

Remember that typical e-mail message from the lead as a ship date
nears? The emphasisis on wrapping everything up, especiadly al loose
ends. When people focus on atask list, the question they ask themselves
is "What's next on my lig?" When they focus on a subproject, the
guestionisusually quite different: "What else needs to get done?' The
focusis on searching out and handling every task related to the sub-
project.

Any milestone without atheme ends up having to be driven by a
task list because, without atheme, you need such alist in order to know
what you're supposed to do.

inn

5 SCHEDULING MADNESS

Break long-term projects into shorter,
well-defined subprojects.

The Wow! Factor

One way to view the difference between improving the product with
unrelated high-priority tasks and completing specific subprojects is to
look at your house as if you were going to remodd it. Which updates
would have more impact: newly painted trim in one room, a new light
fixture in another, a new end table in the living room, and so on, or the
living room completely transformed—new paint, new carpet, new fur-
niture, and new art onthe walls? When you rel ease a subproject, you get
the "living room effect." Internal users, beta testers, upper manage-
ment—in fact, everybody who fires up the code—thinks Wow! when
they see what's been done. With the incrementa task list approach,
people notice a change here, a change there, but nothing mgjor. That's
not bad, but why settle for low impact when you could get more?

Of course, the only difficulty lies in choosing subprojects that
present enough different aspects of the work that programmerswon't be
stumbling over each other, dl needing to work on the same source file.
I've never found this to be adifficult problem to solve, though.

Eliciting aWow! canbe acritical catalyst that gets ateam going on
a cregtive roll.

ENHANCING THE Wow! EFFECT

A milestone god such as "Finish dl top-priority items' isjust a mish-
mash of probably unrelated items. If the ship date for such a subproject
were threatened, the lead would be able to mask the problem by quietly
reprioritizing the tasks. That might allow the lead to look better, but it
would be amideading and questionable way to go about things.

A more coherent milestone theme would be "Complete al features
that affect the visual display so that we can finalize screen shotsfor the

DEBUGGING THE DEVELOPMENT PROCESS

user manual."” Thismilestoneis better because it has atheme that's easy
to grasp and because it's easy to judge which tasks are appropriate. You
can point to any known task and instantly determine whether it affects
the visual display. Even better, if an unforeseen task crops up midway
through the milestone period, anybody on the team, no matter how
green, can eadly determine whether it needs to be tackled or whether it
can be postponed until work on an appropriate subproject begins.
Often you can attack a mgjor project in any of severa ways. Use
that latitude to create subprojects-that will result in exciting conclusions,
togetthat Wow! effect. Whenwewereworking ontheMacintoshC/C++
cross development system, | broke the job up into these subprojects:

* Isolate al Intel 80x86-gpecific code in the compiler to enable
support for other processor types.

*

Implement abare-bones MC680xO code generator inthe
compiler.

*

Implement MC680x0O assembly listing support in dl tools.
Implement MC680xO object file support in dl tools.
* Link a single-segment gpplication, and run it.

*

* Link a multi-segment application, and run it.
* Add code optimizations to the code generator.

| chose these specific milestones and others because each,
according to my estimation, would take between one and two monthsto
complete, each was easy to understand, and, with the exception of iso-
|ating the Intel 80x86 code, each had an exciting conclusion. Don't think
we didn't hoot and holler the first time we had code generation working
or when wefirst saw the generated code dumped on the screen in proper
assembly language format. We cheered when welinked and ranour first
test application and especidly when, after adding some basic optimiza-
tions, werealized that the compiler was a ready generating code compa-
rable to code from the two leading Macintosh compilers on the market.

It was exciting!

5 SCHEDULING MADNESS

ﬁ,

Don'tForgettheDetails

Of course, none of the milestone descriptions was as smple as the one-
liners for the cross development system | listed on the opposite page.
"Link a single-segment application and run it" doesn't provide enough
detail. The actual milestone statement was more specific:

We should be able to copy an arbitrary single-file Macintosh pro-
gram into a build directory, rename the file test.c, and type make.
The program should compile without problems, the object files
should link without problems, and the executable should transfer
automatically to the Macintosh over a cable that connects the
Macintosh with the development machine. Then, on the Macintosh,
we should be able to double-click on the new file and run the code
without problems.

From this more detailed description, you can see that we had to
handle al the loose ends in the compiler project, including support for
the Macintosh-gpecific C-language extensions such as \p Pascd grings,
Pascal-compatible calling conventions for use in cal-back routines,
ROM traps, 4-character 'longs for resource types, and so on. We had to
modify the 80x86 linker to support MC680xO code and to creeate
Macintosh-formatted executables. We had to write the runtime startup
code, some C library code, and the code to support the transfer mecha-
nism between the PC development machine and the target Macintosh.
There was a lot of stuff to do.

You won't aways achieve such aggressve milestone gods. We
didn't for this particular milestone, but we came close. Supporting some
of the Macintosh C-language extensons required changes to the front
end of the compiler, and a different team was in charge of that code. At
thetime, they were frantically putting thefinal touches ontheir own re-
lease and didn't have time enough to do that work, much less ours, nor
did they want us mucking around in their code. We got those changes
after their release. Y ou take what you can get.

]

DEBUGGING THE DEVELOPMENT PROCESS

| could have organized the project so that dl high-priority work
was done first, followed by secondary work, and so on, but the sub-
projects would have been quite different, and they dmost certainly
woul dn't havebeen accompanied by theWow! effect.

To keep the subprojects chalenging (and redidtic), wedidnt use a
sample"hdloworld" test application. That would hardly haveexercised
the compiler, thelinker, and the other tools. We used a. small but fully
functiona public domain Macintosh program. Because we used ared
gpplication, we not only saw that the compiler wastruly viable but were
a0 forced to handle numerous fina-detail issues that a Smpler pro-
gram wouldn't have raised. In task list scheduling, handling such
details would have been relegated to the end of the whole project, but
the thought of seeing the real-life Macintosh application run spurred the
team on, and what could have been boring final-detail work later turned
intoworkwewantedtodo—andquickly.

Granted, it can be quite disturbing to upper management if he or
she doesn't understand that you're using thisthematic method of sched-
uling. It will seem as though you're throwing darts to choose which
tasks to do rather than picking the highest-priority tasks.

Tofoster creativerolls, makesure
that each subproject resultsin an
exciting conclusion.

THE BEST-CASE DATE

People often forget that the purpose of the schedule is to estimate a
completion date given the tasks known at the time. Such adateisnot a
commitment inthe sensethat you must hit it at all cods, rather, the date
is agood-faith estimate of when the known tasks could be done, with
the understanding that there are usualy plenty of unknown tasks. In
short, the schedule predicts abest-case ship date, not the ship date. That
may not bewhat upper management wantsto hear, butit'sredity. Using
milestone scheduling instead of task-list-driven scheduling helps to
bring the best-case date in line with aredigtic ship date, but milestone
scheduling isn't perfect elther.

5 SCHEDULING MADNESS

Asalead, you must protect your product by emphasizing to your
team that product quality is more important than hitting an arbitrary
deadline. Remember the lesson from this chapter:

The surest way to mismanage a project and jeopardize the product
isto put so much emphasison the schedulethat it demoralizes
theteamand drives themto make stupid decisions despite their
better judgments.

1 certainly believe that you should try to hit every deadline you
commit to, but keep that "best-case date” ideain mind. That way, if you
find yourself about to make abad decisonjust to hit that best-case date,
maybe you'll stop yourself before any serious damage can be done.

HIGHLIGHTS

The schedule can have a devastating effect on a project if it
creates dip-hysteria and causes team members to make bad
trade-offs in order to hit arbitrary deadlines. If you create a
schedule that has unattai nable goals—in hopes of extracting
as much overtime as you can get out of each developer—
you're cregting a Stuation that will demoralize the team.
Once the team members fedl they're in a hopeless position,
you're going to get anything but optimum work from them,
and once the project is finished—maybe sooner—they're go-
ing to look elsewhere for work.

By using project milestones instead of task lists to schedule,
you can shift the focus to compl eting subprojects, which cre-
ates "wins' for the team and emphasizes progress. If you
gpace the milestones at roughly two-month intervals, you can
create a sense of urgency that will help people stay focused,
particularly if the milestones have strong, exciting themes.
Try to create milestone subproject gods that result in the
team's thinking "Wow! Look at what we've accomplished!"
As they reach successive milestones, the team will have a
growing sense that their work is important and that they're

DEBUGGING THEDEVELOPMENT PROCESS

doing something valuablefor the product's users. That sense
of contribution and the sense of value created can have are-
markable influence, making ateam pull together to put out a
great product—and have ablast doing it.

CONS TANT,
LINCEASING

During thisyear's Winter Olympic Games, | was struck by one aspect of
the figure skating events. The televison footage of earlier gold meda
performances seemed to suggest that 25 years ago you could win agold
medal with afew layback and st spins, a couple of double toe loops, and
a cleen, graceful program. Today such a smple performance, however
pleasing to watch, wouldn't win a hometown skating championship.
Nowadays you must do at least three triple jumps, several combination
jumps, ahost of spins, and lots of fancy footwork. On top of that, your
program must have style, or the scores for artistic impression will ook
more like grade point averages than the 5.8s and 5.9s you need to win
the gold.

At onepointinthe TV coverage, the commentator mentioned that
Katarina Witt planned to skate the same program with which she had

DEBUGGINGTHEDEVELOPMENT PROCESS

won the gold medal six years earlier at the Calgary Olympics. He added
that it wasunlikely Ms. Witt would place near thetop evenif shegave a
clean performance—the very best programs only six years ago simply
weren't demanding enough for competition today.

Think about that. Are skaterstoday actually better than the skaters
of a quarter century ago? Of course, but not because Homo sapiens has
evolved to a higher state of athletic capability. Some of the improve-
mentsintoday's performances, I'm sure, are aresult of better skates and
ice arenas. But the dominant reason for the improvement is that each
year skaters raise their standards as they try to dethrone the latest
national or world champion. Skaters 25 years ago could have included
all those triple and combination jumps in their routines, but they didn't
need to, so they didn't stretch themselves to master those feats.

In the book Peopleware, Tom DeMarco and Timothy Lister describe
asimilar difference in standards of performance among programmers
who work for different companies. DeMarco and Lister conducted
"coding wars" in which they gave a programming task to two program-
mers from every company participating in one of the contests. They
found that the results differed remarkably from one programmer to the
next, a times by as much as 11 to 1 in performance. That disparity is
probably not too surprising. The surprising news is that programmers
from the same company tended to produce similar results. If one did
poorly, so would the other. Likewise, if one did well, both did well, even
though the two programmers were working independently. DeMarco
and Lister point out that the work environments at the companies could
account for some of the difference in performance among the compa-
nies, but | believe the major reason for the 11 to 1 variance is that the
acceptable skill level for the "average programmer” varies from one
company to the next.

Whenwasthe last time you heard alead say to aprogrammer, "I'm
disappointed in you. You're doing just what you're expected to do"?
Whether a company is aware of the phenomenon or not, its program-
mers have an average skill level, and once a programmer reaches that
average level, the pressure to continue learning eases up even though
the programmer might still be capable of dramatic improvement. The
programmersare like thoseice skaters 25 years ago—good enough. And

6 CONSTANT, UNCEASNG |IMPROVEMENT

leads tend not to spend timetraining people who are aready doing their
job at an acceptable level. They work with people who haven't yet
reached that level.

Having a team of programmers who do what is expected is not
good enough. An effective lead perpetually raises the standards, as
coaches for Olympic-class skaters must do. As you raise the program-
ming standards of your team, you'll ultimately raise the standards—the
average—of your wholecompany.

FIVE-YEAR TENDERFEET

Occasiondly I'll run across a programmer who after five or more years
dtill works on the same project he or she was first assgned to. No prob-
lem with that, but in many cases | find that the programmer is not only
on the same project but dso doing the samejob. If the programmer was
assigned to the Microsoft Excel project to work on Macintosh-specific
features, for instance, that's what helll till be doing—as the specidist in
that area. If the programmer was assigned to the compiler's code
optimizer project, years later shell sill be working on that isolated
chunk of code—again, as the specididt.

From a project standpoint, creating long-term specidists for spe-
cific parts of your product is a good idea, but creating specidists can
backfireif you don't educate them wisdly. Y ou'll cripple those program-
mers and ultimately hurt your project and your company if you don't
seeto it that your speciaists continue to learn new sKills.

Suppose that Wilbur, a newly hired programmer, spends his first
year becoming your file converter specidist and then spends the next
four yearswriting filtersto read and write the file formats of competing
products. There's no question that such work is important, but Wilbur
will have gained ayear'sworth of rea experience and then tapered off,
learning little dse for the next four years. Wilbur would clam that he
has five years of programming experience, but that would be mislead-
ing—hewouldinfact have oneyear's experiencefivetimesover.

If Wilbur had spent the last four of those five years working on
other areas of the application, he'd have amuch wider range of skills. If
he had been moved around to work on different aspects of amainstream

DEBUGGING THE DEVELOPMENT PROCESS

Windows or Macintosh application, for instance, he would have had an
opportunity to develop all of this additional know-how:

* How to create and manipulate the user interface libraries—
the menu manager, the dialog manager, the window man-
ager—and all of the user interface gadgets you'd create with
those libraries.

* How to hook into the help library to provide context-sensitive
help for any new dialogs or other user interface extensons he
incorporates into the application.

* How to use the graphics library to draw shgpes, plot bit
maps, do off-screen drawing, handle color palettes, and so on,
for digplay devices with various characteristics.

* How to send output to printers, achieving the highest quality
for each device, and how to make use of specia features
unigue to each device, such as the ability of PostScript print-
ersto print watermarks and hairlines.

* How to handle international issues such as double-byte
characters, country-specifictime and date formats, text orien-
tation, and so on.

* How to handle the issues related to running an applicationin
a networked environment.

* How to share data with other applications, whether the task is
as sample as putting the data on the system clipboard or as
complex as using the Windows Dynamic Data Exchange
library or the Object Linking and Embedding library.

* How to write code that will work on dl the popular microcom-
puter operating sysems—MS-DOS, Windows, WindowsNT,
0S/2, and the Macintosh.

Y ou get theidea. These skillsareeasily within thegrasp of any pro-
grammer who works on a Windows or Macintosh application for five
years—provided that every new task contains an asyet-unlearned
element that forces aprogrammer to learn and grow.

6 CONSTANT, UNCEASNG IMPROVEMENT

Compare the two skill sets. If you were to start a new team, which
Wilbur would you want more, the five-year file converter specialist or
the Wilbur with one year's experience in writing file converters plus
four moreyears experiencewiththevaried skillsinthelist? Remember,
both Wilburshaveworkedfor fiveyears...

A lead's natural tendency when assigning tasks would be to give
al the file converter work to Wilbur because he's the speciadigt in that
area. It'snot until the Wilbursof theworld threatento |eavetheir projects
for more interesting work that leads switch mental gears and start throw-
ing new and different taskstheir way.

But "if the specidigs aren't doing the tasks they're expert in,
wouldn't they be working more dowly on tasks they know less about?’
Or to put it another way, "Don't you lose time by not putting the most
experienced programmer on each task?"

If you view the project in terms of its specific tasks, the answer
must be Y es, each task is being done more slowly than it could be done
by a specidist. However, that little setback is more than compensated
for when you look at the project as awhole. If you're constantly training
team members so that they're proficient in al areas of your project, you
build a much stronger team, one in which most team members can
handle any unexpected problem. If a killer bug shows up, you don't
need torely onyour specidisttofix it—anybody canfix it. If youneed to
implement anew feature in an existing body of code, any of many team
members can efficiently do the work, not just one. Team members adso
know more about common subsystems, so you reduce duplicate code
andimprove product-wide design. Theentireteam hasversatile skill sets.

Y our team may be losing little bits of time during development as
they learn new skills and gain experience, but for each minute they lose
learning anew skill, they save multiple minutesin thefuture asthey use
that kill again and again. Constant training is an investment, one that
offerstremendousleverageand tremendousrewards.

—_—

Don'tallowprogrammer stostagnate.

Constantly expose each team member
to new areas of the project.

—_

DEBUGGING THEDEVELOPMENT PROCESS

REUSABLE SKILLS

At Microsoft, when anovice programmer moves onto aproject, he or she
is typicaly given introductory work such as tracking down bugs and in-
corporating small changes here and there. Then gradually, as the pro-
grammer learns more about the program, the tasks become increasingly
more difficult, until the programmer isimplementing full-blown mega
features. This gradualist approach makes sense because you can't very
well have novices making major changes to code they know nothing
about. My only disagreement with this approach is that the tasks are
assgned according to their difficulty rather than according to the
breadth of sills they could teach the programmer. Asyou assign tasks
to programmers, keep the skills-teaching ideain mind. Don't assign suc-
cessve tasks solely on the basis of difficulty; make sure that each task
will teach a new sKill as wdl, even if that means moving a novice pro-
grammer more quickly to difficult features. Even better, assign tasks at
first that teach sills of benefit not only to your project but to the whole
company.

In a spreadsheet program, for indance, tasks might range from
implementing a new dialog of some sort to working on the recalculation
engine. The skills a programmer would learn from these two tasks fall at
two extremes. one kill has nothing to do with spreadsheets specificdly,
and the other higtorically has little use outsde spreadsheet program-
ming. Putting aprogrammer on the recal cul ation engine would be educa-
tional and would provide a valuable service to the project, but the skill
wouldn't be astransferabl e asknowing how to implement adialog would
be. Learning how to create and manipulate diaogs could be useful in
every projectthecompany might undertake.

Credting a better "average programmer” means raising the stan-
dard throughout the company, not just onyour project. Y ou could assign
programmers arandom variety of tasks and ensure that team members
would constantly learn, but you can do better than that. Analyze each
task from the standpoint of the skills it calls upon, and assign it to the
programmer who most needs to learn those skills. An experienced pro-
grammer should already know how to create didogs, manipulate
windows, change font Szes, and so on. Sheis ready to develop less glo-
bally useful—more specidized—skills such as the ability to add new

6 CONSTANT, UNCEASNG IMPROVEMENT

macro functions to the spreadsheet's macro language. At some point,
shell know the program so well that in order to continue learning shelll
have to move to extremely project-specific work such as implementing
an even smarter recaculation engine.

A novice team member should be assigned afew tasksinwhich he
must learn to create diaogs, followed by afew tasks that force him to
manipulate windows, and so on. Deliberately assgn tasks that cumula-
tively require dl the genera skills. That way, if the division should be
reorganized and the programmer should find himsef on another
project, the skillshe's learned will still be useful.

Thisis another example of asmall system that produces greater re-
sults. Which specific work you assign to a novice programmer may not
make much difference in the progress of your own project, but by first
exposing a new programmer to awide range of general skills that he or
she canbringto any project, you make the programmer more valuableto
the company.

Whentraining programmers,focusfirst
on skills that are useful to the entire company
and second on skills specific to your project.

GIVEEXPERTSTHEBOOT

If you constantly expose a team member to new tasks that call for new
skills, he or she will eventually reach a point at which your project no
longer offers roomto grow. Y ou could let the programmer's growth stall
whileyour project benefited from his or her expertise, but for the benefit
of the company, you should kick such an expert off your team. If you al-
low programmers to stagnate, you hurt the overal skill leve of the com-
pany. Y ou have aduty to the programmers and to the company to find
the programmers positionsin which they can grow.

Am | joking? No.

The tendency is to jealously hold onto the team's best program-
mers even if they aren't learning anything new. Why would you want to
kick your best programmer off theteam? That would beinsane. . .

DEBUGGING THE DEVELOPMENT PROCESS

In Chapter 3,1 talked about adialog manager library that theWord
for Windows group had been complaining about. Although | wasn't the
lead of the dialog manager team then, | did eventually wind up in that
position. And there came apoint at which the main programmer on the
team had reached aplateau: he wasn't learning anything new withinthe
constraints of that project. Besdes, hewastired of working onthe same
old code. He needed to stretch his sKills.

When | asked whether he knew of any interesting openings on other
projects, he described aposition in Microsoft's new user interfacelab in
which he would be able to design and implement experimental user in-
terfaceideas. Inmany ways, it ssemed likeadreamjob for the program-
mer, so | talked to the lab's director to verify that the job was a good
opportunity for thisprogrammer tolearn new skills. Thepositionlooked
great. Inlessthan aweek, the dia og team's best programmer was gone,
leaving agaping hole.

In these situations, you can either panic or get excited. | get excited
because | believe that gaping holes attract team memberswho are ready
togrow andfill them. Somebody alwaysrisesto the occas on, experienc-
ing tremendous growth as he or shefillsthe gap. The dialog team's gap
proved to be no different. Another member jumped headlong into the
opening.

Occasondly I'd bump into the lab director and ask how the project
was going. "Beyond my wildest dreams” held say. "We're accomplish-
ing more than | ever imagined or hoped for." He had been expecting to
get an entry-level programmer, but held gotten a far more experienced
programmer, and his group was barreling aong.

The dialog manager group with its new lead programmer was bar-
reling aong too. The new lead had just needed the room to grow, room
that had been taken up by the expert programmer.

Y ou might think that kicking your best programmer off the team
would do irreparable harm to your project. It rarely works out that way.
In this case, the diaog team experienced a short-term loss, but the com-
pany saw a huge long-term gain. Instead of a dow-moving user inter-
face project and two programmers who had stopped growing, the
company got afast-moving user interface project and two programmers
who were undergoing rapid growth. That outcome shouldn't be too
surprising. Aslong asits people are growing, so isthe company.

114

6 CONSTANT, UNCEASNG IMPROVEMENT

Don'tjealously hold onto your best program-
mers if they've stopped growing. For the good
of the programmers, their replacements, and
the company, transfer stalled programmers to
new projects where growth can continue.

——f

TheCross-Pollination Theory—Dismissed

Occasiondly I'll run across the idea that companies should periodically
shuffle programmers around so that they can transfer ideas from one
project to another. It's the cross-pollination theory.

The cross-pollination theory appeals to me because its purpose is
to improve development processes within the company, but in my expe-
rience the cross-pollination practice falls short of its god, and for a
simple reason: it ignores human nature. Advocates of the theory assume
that programmers who move to brand-new groups will teach the new
groups the specid knowledge they bring with them. But how many
people fed comfortable doing that in a new environment? And evenif a
programmer would feel comfortable as an evangelist, how many groups
would appreciate some newcomer's telling them what they should do?
A new lead might fedl fine propounding fresh ideas hours or days into
the project, but nonleads? It might beyears, if ever, before aprogrammer
would feel comfortable enough to push his or her ideasbeyond anarrow
work focus.

Advocates of the cross-pollination theory assume that new people
bring new knowledge into the group. In fact, that's backwards from
what actually happens: new people don't bring their knowledge into the
new group as much as they get knowledge from the new group. New
people find themsaves immersed in different, and possbly better, ways
of doing things. And they learn. The primary benefitisto the person do-
ing the moving. If that person can continueto grow on hisor her current
project, why cause disruption? Let the people who are stagnating move
to other teams and learn more. Don't shuffle people around to other
teams expecting them to spread theword. They usually won't.

=]

DEBUGGING THE DEVELOPMENT PROCESS

THE NEW YEAR's SYNDROME

Not all skills can be attained in the course of doing well-chosen project
tasks. A skill such aslearning to lead projects must be deliberately pur-
sued as agoa in itself. The person must decide to be a good lead and
then take steps to make it happen. It's proactive learning, as opposed to
learning asa sdeeffect of working on atask.

If you want your team membersto make greeat leaps aswell astake
incremental daily steps to improvement, you must see that they actively
pursue the greater goals.

The traditional approach to establishing such goals is to list them
as personal skill objectives on the annua performance review. We dl
know what happens to those gods. except for a few self-motivated and
driven individuas, people forget them before the week is over. Then
aong comes the next review, and their leads are dismayed to see that
none of the persona growth gods have been fulfilled. | think we've dl
seen this happen—it's the New Year's Resolution Syndrome, only the
dateisdifferent.

Such gods fall by the wayside because there are no attack plans for
achieving them or because, if there are such plans, the plans have no
teeth—just as those postmortem plans | spoke of in Chapter 4 had
no teeth. Ligting a goa on a review form with no provision for how it
will be achieved is like saying "I'm going to be rich" but never deciding
exactly how you're going to make that happen. To achieve the god,
you need a concrete plan, a redistic deadline, and a constant focus on
thegoal.

One way to ensure that each team member makes a handful of
growth leaps each year is to align the personal growth goals with the
two-month project milestones. One god per milestone. That practiceen-
ablesteam membersto make six leapsayear—moreif therearemultiple
goals per milestone.

Improvement goal s don't need to be all-encompassing. They canbe
as smple asreading one good technical or businessbook each milestone
or developing agood habit such as stepping through al new codeinthe
debugger to proactively look for bugs. Sometimes the growth goal can
be to correct a bad work habit such as writing code on the fly at the
keyboard—the design-as-you-go approach to programming.

6 CONSTANT, UNCEASNG IMPROVEMENT

I

Read Any Good Books L ately?

| read constantly to gain new knowledge and insights. Why spend years
of learning by trial and error when | can pick up a good book and in a
few days achieveinsightsthat took someone else decadesto formul ate?
What adedl. If team membersreadjust six insightful booksayear, imag-
ine how that could influence their work. | particularly like books that
transform ingghts into strategies you can immediately carry out. That's
why | wrote both Writing Solid Code and this book as strategy books. But
mine are hardly the first. The Elements of Programming Style, by Brian
Kernighanand P. J. Plauger, wasfirst published in 1974 and is till valu-
able today. Writing Efficient Programs, by Jon Bentley, is another excellent
strategy book, asis Andrew Koenig's C Traps & Pitfalls for C and C++
programmers.

In addition to these strategy books, there are dozens of other excel-
lent—and practical—books on software development, from Gerald
Weinberg's dassc The Psychology of Computer Programming to the much
more recent Code Complete, by Steve McConndll, which includes a full
chapter on "Whereto Go for More Information,” with brief descriptions
of dozens of the industry's best books, articles, and organizations.

But don't limit yourself to books and articles that talk strictly about
software development. Mark McCormack’'s What They Don't Teach You at
HarvardBusinessSchool, for instance, may focuson project management
at IMG, his sports marketing firm, and Michael Gerber's The E-Myth
may focus on how to build franchise operations, but books like these
provide awealth of information you can apply immediately to software
development. And don't make the mistake of thinking that such books
are suitable only for project leads. The greenest member of the team can
benefit from such books.

ml

To ensuretheir personal interest in achieving such goals, | encour-
ageteam membersto choosethe skillsthey want to pursue, and | merely
verify that each god is worth going after:

* The <kill or knowledge would benefit the programmer, the
project, and the company. Learning LISP could be useful to an
individual, but for acompany such as Microsoft, it would be
asuseful as scubagear to aswordfish.

117

DEBUGGINGTHEDEVELOPMENT PROCESS

* Thegod is achievable within a reasonable time frame such as
the two-month milestone interval. Anybody can read agood
technical book in two months. It's much harder to become a
C++ expertinthat short atime.

* The goa has measurable results. A god such as "becoming a
better programmer” is hard to measure, whereas agoal such
as "deveoping the habit of stepping through al new code in
the debugger to catch bugs' is easy to measure: the program-
mer either has or hasn't developed the habit.

* ldedly, the skill or knowledge will have immediate useful-
ness to the project. A programmer might acquire a worth-
while sKill, but if he has no immediate use for the new skill,
he's likely to lose or forget what he's learned.

Such a list keeps the focus on skills that are useful to theindividual, to
hisor her project, and to the company—in sum, it focuses on the kinds of
skills a programmer needs in order to be consdered for promotion. If
the programmer can't think of a skill to focus on, choose one yoursdlf:
"What additional skillswould thisprogrammer need for meto feel com-
fortable about promoting him or her?

Make sure each team member learns

one new significant skill at least
every two months.

Train Your Replacement

Programmers don't usually choose to pursue management skills unless
they have reason to believe they're going to need those skills. Find the
people who have an interest in becoming team leads, and help them
acquirethe skillsthey'll need to lead teamsin the future. And remember,
unless you plan to lead your current team forever, you need to train
somebody to replace you. If you don't, you might find yoursdlf in a
tough spot, wanting to lead an exciting new project and unableto make
the move because nobody is capable of taking over your current job.

6 CONSTANT, UNCEASNG IMPROVEMENT

IN THE MOMENT

A particularly good approach to identifying skillsfor your team mem-
bers to develop isto st agrowth goal the moment you see a problem or
an opportunity. When | spot programmers debugging ineffectively, |
show them a better way and get them to commit to mastering the new
practice over the next few weeks. When aprogrammer remarksthat she
wants to learn techniques for writing fast code, | hand her a copy of Jon
Bentley's Writing Efficient Programs and secure her commitment to read-
ing it—and later discussing it. If | turn up an error-prone coding practice
as | review some new code, | stop and describe my concern to the pro-
grammer and get him to commit to weeding the practice out of his
programming style.

I'm big on setting improvement goals in the moment. Such goals
have impact because they contain astrong emotional element. Which do
you think would influence a programmer more: showing him code he
wrote ayear ago and asking him to weed out a risky coding practice or
showing him apiece of code he wrote yesterday and asking him to weed
out the practice? ,

| once trained alead who would search me out every time he had
a problem. Hed say, "The WordSmasher group doesn't have time to
implement their Anagram feature, and they want to know if we can help
out. What should we do?' The lead came to me so often that | eventually
concluded he wasn't doing his own thinking. When | explained my feel-
ings to him, he replied that he aways thought through the possible solu-
tions but didn't want to make a mistake. That was why he was asking
me what to do. | pointed out that his approach made him seem too de-
pendent and that we needed to work on the problem.

| understood the lead's need for confirmation, so | told him to feel
freeto talk to me about problems asthey arose, on one condition: instead
of dumping the probleminmy lap, hewasto

* Explain the problem to me.

* Describe any solutions he could come up with, including the
pros and cons of each one.

* Suggest a course of action and tell me why he chose that
course.

DEBUGGINGTHEDEVELOPMENTPROCESS

Once the lead began following this practice, my perception of him
changed immediately and radically. On 9 out of 10 occasions, al | had to
do was sy, "Yed Do it." to afully considered plan of action. The few
times| thought adifferent course of action made sense, | explained my
rationale to him, we talked it over, and he got new insights. Sometimes|
got the new insights. We'd go with hisoriginal suggestion if my solution
was merdly different and not demonstrably better.

This improvement took almost no new effort on either his part or
mine, but the shift in his effectiveness was dramatic. We went from a
relationship in which | felt asif | were making all his decisons to one
in which | was acknowledging his own good decisons. My attitude
changed from "this guy is too dependent and doesn't think things
through" to "this guy is thoughtful and makes good decisons™ His atti-
tude changed too, from being afraid to make decisons to knowing that
most of his decisons were solid. It didn't take too many weeks for our
"What should | do?' meetings to all but disappear. He consulted me
only for truly puzzling problems for which he couldn't come up with
any good solution.

What caused this dramatic change? Was it a magjor revamping of
this person's sills? No, it was a ample change in communication
style provoked by my redlization that he had become too dependent. A
minor change, a major improvement.

Take immediate corrective action
the moment you realize that an
area needs improvement.

—_——

AFTER-THE-FACT MANAGEMENT

Notethat | gave that lead on-the-spot feedback and a goal he could act
on immediately. | didn't wait for the annual review. | don't believe the
annual review is a good tool for planning personal improvement or
achievement goals. In my experience such a delayed response to prob-
lemsisn't effective—at |east not unless the annual review aso contains
detailed attack plans for the gods. Another problem with using the

6 CONSTANT, UNCEASNG IMPROVEMENT

annual review for improvement goasisthat few leads are ableto effec-
tively evaluate anyone's growth over such along period of time.

We've all heard sories about the review in which the manager
brings up aproblem with the programmer's performance that has never
been mentioned beforetojustify giving the programmer areview rating
lower than the programmer expected. In shock, the programmer stam-
mers, "Can you give me an example of what you're talking about?' The
manager stumbles abit and comes up with something, that, yes, the pro-
grammer did do, or failed to do, but which sounds absurdly out of pro-
portion in the context of the programmer's performance for the whole
review period. "You've given me a low rating because of that?' Of
course, it sounds ridiculous to the manager too, so she scrambles to
come up with another example of the problem but usually can't because
so much time has passed.

Then, of course, once the programmer leaves the meeting and has
time to think about the review a bit, his or her reaction is anger. "Why
didn't she tell me something was wrong, rather than waiting a year?
How could | have fixed something | didn't even know was wrong?'

I've lost track of the number of times I've heard people say that
about their managers.

What if professional football teams worked that way? What if
coaches waited until the end of the season to tell players what they're
doingwrong?

"Mad Dog, I'm putting you on the bench next season.”

"Huh?What? | thought | played great," says Mad Dog, confused.

"You played well, but at each snap of the ball, you hesitated before
running into position.”

"l did?

"Yes, you did, and that prevented you from catching as many
passes as you could have. I'm putting you on the bench until something
changes. Of course, this means that your yearly salary will drop from
$5.2 million to $18,274. But don't worry, you'll still have your benefits-
free soft drinks and hot dogs at the concession stand, and discounted
souvenirs."

Mad Dog, particularly mad now: "If you spotted this, why didn't
you tell me earlier? | could have done something about it."

"Hey, I'm telling you now, at our end-of-the-season contract
review."

DEBUGGINGTHEDEVELOPMENT PROCESS

Sounds pretty slly, doesn't it? But how doesit differ from the way
many |leads make use of the annual review?

Remember the lead | felt was too dependent and was not thinking
things through? The common approach at most companies would be to
wait until the end of the review period and note the problem on the re-
view document:

Relies too much on other people to make his decisions;
doesn't take the time to think problems through.

Then, of course, after the confused exchange at the review meeting,
the attack plan to fix the problem would be something like this.

| won't rely on other people to make my decisions for me;
Il think my problems through.

That attack plan won't be effective because it istoo vague. The plan
doesn't describe what the person is to do, how heisto do it, or how to
measure the results—the plan has no teeth. In al likelihood, the problem
will still exist ayear later, at the next review.

Personnel reviews, as I've seen them done, are amost totally
worthless as a tool to promote employee growth. Don't bother with the
new goals part of the review. Actively promote improvement by seizing
the moment and aligning growth goals with your project milestones.
Use theformal review to document employee growth during the review
period—that's what upper management really needs to sse anyway.
Listing areas in which people could improve doesn't redly tell upper
management much. Documenting the important skills that people have
actually mastered and how they applied those skills demonstrates con-
stant growth and gives upper management something tangible with
which tojustify raises, bonuses, and promotions.

__Q:‘._____.

Don't use the annual personnel review to set
achievement goals. Usethereview to document
thepersonal growth goalsachieved during
thereviewperiod.

6 CONSTANT, UNCEASNG IMPROVEMENT

THOROUGHLY KNOWLEDGEABLE

Mogt of the interviews | conducted at Microsoft were with college stu-
dents about to graduate, but occasionally | interviewed a working
programmer who wanted to join Microsoft. At first | was surprised to
find that the experienced programmers who came from small, upstart
companies seemed, in general, more skilled than the experienced
programmers from the big-name software houses, even though the pro-
grammers had been working for comparable numbers of years. | believe
that what 1've been talking about in this chapter accounts for the differ-
ence. The programmers working for the upstart companies had to be
knowledgeable in dozens of areas, hot expert in one. Their companies
didn't have the luxury of staffing 30-person teams in which each indi-
vidual could focus on one primary area. Out of necessity, those pro-
grammerswere forced to learn more sKills.

As a lead—even in a big outfit that can afford speciadists—you
must create the pressure to learn new sKills. It doesn't matter whether
you teach team members personally or whether they get their training
through books and technical seminars. As long as your teams continue
to experience constant, unceasing improvement, the "average program-
mer" in your company will continue to get better—Ilike those Olympic-
class skaters—and that can only be good for your project, for your
company, and ultimately for your customers.

HIGHLIGHTS

Never alow a team member to stagnate by limiting him or
her to work on one specific part of your project. Once pro-
grammers have mastered an area, move them to a new area
where they can continue to improve ther skills.

Skills vary in usefulness from those that can be applied to any
project to those that can be applied to only one specific type
of project. When you train your team members, maximize
their value to the company by first training them in the most
widely useful skills and save the project-specific skills
forladt.

DEBUGGING THEDEVELOPMENT PROCESS

* |t'stempting to hold onto your top programmers, but if they
aren't learning anything new on your project, you're staling
their growth and holding the company's average skill level
down. When a top programmer leaves the team for a new
podition, not only does he or she start growing again, but so
does his or her replacement. A double benefit.

* To ensure that the skills of the team members are expanding
on a regular bass, see that every team member is always
working on at least one major improvement goa. The easest
approach is to dign growth gods with the two-month mile-
gones, enabling at leest 9x skill legps a year—which is 9x
more per year than many programmers currently experience.
If Wilbur, the file converter specidist, had read just 6 high-
quality technical books a year, after his first five years of
progranming he'd have read 30 such books. How do you
suppose that would have influenced his work? Or what if
Wilbur had mixed the reading of 15 good books with the
mastery of 15 valuable kills over that first five years?

* The best growth goasemerge from astrong, immediate need.
If you find ateam member working inefficiently or repeating
the same type of mistake, seize the opportunity to create a
specific improvement god that the team member can act on
immediately. Because such on-the-spot gods lend themsalves
to immediate action for adefinite purpose, the programmer is
likely to give them more attention than he would give to ab-
stract goals devised for an annual review.

124

/

I T ,S A LL A BO)
ATTITUDE

In Chapter 6,1 emphasized how important it is that you work with team
memberstoimprovetheir skillsand knowledge. Exposing team members
to new kinds of tasks promotesincremental learning, and getting the pro-
grammers to read books and devel op new coding habits makesfor even
more impressive results. But the most profound improvements come
about when ateam adopts new attitudes about how to develop products.

BUGGY ATTITUDES

Asl saidin Chapter 1, thejob of theprofessional programmer istowrite
useful, bug-freecodeinareasonabletimeframe. A key pointinthatidea
is that the code be "bug-free." Unfortunately, writing bug-free code is
hard. If it weren't, everybody would write bug-free code.

DEBUGGING THE DEVELOPMENT PROCESS

One pervasive attitude in programming shops is that bugs are
inevitable and there's not much you can do about them except to fix
them when they show up. While common, that attitude is completely
wrongheaded. Programmers can make great strides toward writing
bug-freecode, butitrequiresextraeffort, effortthat programmerswon't
willingly make until they internalize the attitude that writing bug-free
code is critica to product development.

One simple—and obvious—technique | useto catch an entire class
of bugs is to turn on the compiler's optional warnings, the ones that
display an error message for correct, yet probably buggy, code. For
example, many C compilers have an optiona warning to catch this
common mistake:

if (ch = tab_char) /* Note single = sign. */

The code aboveis perfectly correct C code, yet it contains abug that
the compiler can detect. The tab character is being assgned to ch when
what the programmer i ntended wasto compar ethetab character toch:

if (ch == tab_char) /* Note double = sign. */

Enabling just one commonly supported compiler warning would
alow the compiler to flag al such erroneous assgnment bugs, yet I've
worked with many programmers who absolutely refuse to use that
option. The programmers fed that the warning interferes with writing
code because the compiler gives them awarning even when they inten-
tionally make an assignment in an if statement, forcing them to rewrite
their code. Instead of writing

if (ch = readkeyboardO)
process character typed by the user

which would generate a warning, they would have to make a dight
change, having to write either

ch = readkeyboardO:
if (ch != nul_char)
process character typed by the user

7 IT'S ALL ABOUT ATTITUDE

or the more terse

if «ch = readkeyboarcK)) != nul_char),
process character typed by the user

Neither of the two work-arounds would generate any additional
object code because both smply make the test against the nul character
explicit ingtead of implicit. And to most C programmers, either of the
work-aroundsisas clear asthe original code—possibly more so if apro-
grammer isreading the code quickly.

But some programmers are adamant. They refuse to use optional
compiler warnings. "I should be able to write code any way | want,"
they say. "The compiler should never issue awarning for perfectly legal
code." Given the intensity with which some programmers talk about
this issue, you'd think | was suggesting that they give up their desktop
PCs and go back to using punch cards.

This issue points up a difference in programmer attitudes toward
bugs. Snce | habitually use the compiler work-arounds, | never get
warnings unless I've actually created a bug by mistake—and | want to
know when I've made such a mistake. To me, being able to find bugs
eadly isfar moreimportant than what | view as aninconsequential style
change. Programmers who refuse to enable any compiler warnings, it
seems to me, are more concerned with personal expression than with de-
tecting bugs. If those programmers aren't willing to make such minor
changes, what are the odds of their making more critical changes?
Would they adopt the team-wide or company-wide naming or coding
style? Would they agree to give up favorite but error-prone coding
tricks? Would they even entertain the idea of stepping through al their
new code in a debugger to detect implementation bugs at the earliest
possible moment?

Yes, writing bug-free code takes effort, effort that programmers
won't make unless their attitude is that bugs are simply unacceptabl e.

On my own projects, | review every reported bug, keeping an eye
out for bugs that should have been caught by someone's using the
project's unit tests or stepping through the code with the debugger. Any
programmer who alows such bugsto get into the master sources needs
moretraining—heor sheisfailingto meet the quality bar.

DEBUGGING THE DEVELOPMENT PROCESS

Novice programmers tend to give up far too early because they
havethebasic attitudethat their code probably doesn't containbugs:

I'm done because the code compiles without error and appears to
run correctly.

Novice programmers have that attitude because they haven't yet been
caught over and over again by overflow and underflow bugs, sgned
and unsgned data type bugs, generd type conversion bugs, precedence
bugs, subtle logic bugs, and dl the other bugs that go unnoticed when
novices read code in the editor and that show up only for pecid cases
when they run their code—casesthey haven't yet learned to test for.

Fix Bugs Early

The primary reason | push hard for programmers to step through their
codethemoment they writeit andtoruntheir unittestsisthat it takesso
much less time than letting even a single bug dip by and find its way
intotheproduct'smaster sources.

The moment a bug makes it into the master sources, it not only
hurts the product but costs everyone huge amounts of time. The pro-
grammer on her end hasto stop working on features and track down the
bug, apply afix, test the change (we hope), and report the bug as fixed.
Back to Testing. Snceabugwasfound, thetestersmust retest the entire
featureto ensure that the fix works and that the fix hasn't broken any-
thing dse. Then they must write aregresson test for the bug. If there-
gression test can't be automated, a tester must manually verify that the
bug has not returned in every future testing release.

Compare dl that effort expended on a single bug to the effort it
would take for the programmer to step through the code and run the
unit test before ever merging the feature into the master sources. If the
programmer findsthebugbef oresendingthef eatureto Testing, noneof
that protracted effort | just outlined is necessary. That'swhy | say that
it's so much cheaper for programmersto find their bugs before the test-
ing team ever seesthe code.

7 ITS ALL ABOUT ATTITUDE

Experienced programmers who consistently have low bug rates
have learned that they're more likely to find Bigfoot slurping ice cream
at the local Baskin-Robbins than they are to write bug-free code. Unlike
the novices, such experienced programmers assume that their code
probably does contain bugs.

Until Ifind all the unknown bugs in this code, I'm not done.

It might seem that with such an attitude, programmers could go
overboard in testing their code, but I've yet to see that happen. Anybody
who is smart enough to write programs realizes when he or she is wast-
ing time on redundant tests. Somebody smart enough to write programs
doesn't dways redize, though, when he or sheisn't testing thoroughly
enough. It's hard to know that you've forgotten to test a unique
scenario or two.

Be sure programmers understand that
writing bug-free code is so difficult that
they can't afford not to use every means

to ditect and prevent bugs.

RESISTING EFFORT

One question | regularly ask as | review both desgns and implementa-
tions is "How error-prone is this design or implementation?* | look for
wesknesses and try to judge how risky the code would be to modify.
When | find aweakness, | take steps to overcome it, by either changing
the design to get rid of the weakness or introducing debug code into the
program to monitor the implementation for trouble.

| once reviewed a new feature that had been implemented using a
large table of numbers. | like table-driven implementations, as a rule,
because they're usually concise and less prone to errors, but they do
have a weakness in that the data in the table could be wrong. | pointed
this weakness out to the programmer who had implemented the code
for the feature and asked him to add some debug code to validate the

DEBUGGING THE DEVELOPMENT PROCESS

table during program initialization. Without thinking, the programmer
blurted, "Writing that code will take too much time!"

Klaxonsblared. Red lightsflashed. Flareswent skyward.

Those alarms went off because that programmer committed what
| consider to be a fundamental error in inteligent decison making: he
didn't ask himsdf whether my request made sense. Instead, he pounced
on how much extra time he thought writing the debug code would take.

That programmer's first response should have been "Does the re-
quest make senss?' His second response should have been "Does it
fulfill the project goals and coding priorities?" The question whether the
task would take too much time or effort should have come third in the
order of evaluation.

After the programmer had calmed down, | explained my objec-
tions to his decison-making strategy and asked him to start evaluating
requests according to the order of questions I've described:

* Does adding the debug code make sense?

* If 90, does adding the debug code fulfill the gods and coding
priorities of the project?

* Fndly, is adding the debug code important enough to justify
the time that will have to be spent doing it?

After we stepped through this evaluation process, the programmer—
dill reluctant—agreed to implement the debug code.

Thirty minutes later he came into my office, having added the de-
bug code to the program, and showed me three potentia problemsin the
tablethat the debug code had flagged. Two of the problemswere obvious
bugs—once they had been pointed out. The third problem was confusing:
neither he nor | could see the bug the debug code was reporting. We
thought at first that the debug code itsdf might have a bug, causing an
invalid report. But if the debug code was buggy, that bug wasn't obvious
touseither. We pondered the suspected bug for nearly 10 minutesbefore
wefinally redlized that the datain the table wasindeed wrong. That bug
was hard to spot even though the debug code pointed right at the errone-
ous table entry. Imagine how hard the bug would have been to spot
without the debug codeto lead usto it.

That programmer learned two valuablelessonsthat day. First, that
it's till worthwhile to add debug support to code you already think is

7 ITS ALL ABOUT ATTITUDE

bug-free. And second, that the first reaction to any proposal should
never be "That will take too much time" or its disguised sibling, "That's
too hard (and would therefore require too much time).”

Watch outfor and correct the "it's too much
work" reaction. Train programmers tofirst
consider whether the task makes sense
and whether it matches up with the project
goals and priorities.

S SE—

CAN'TTITUDE

I've worked with many programmers—and project leads—who hardly
ever hit upon new ideas or employ new development Strategies because
they shut down their thought processes before they ever get started.
Have you ever been a a meeting in which some poor soul proposed a
new idea only to be bludgeoned by the others with dl the reasons the
idea couldn't possibly wo*k, with how impossible it would be to get up-
per management to agree, or smply with thebald "You can't do that! It's
never been done beforel™

This "can't attitude"—can'ttitude—is so destructive to creativity
and problem solving that | try to discourage it whenever | run across it.
| have arule—and in this case it is a rule—that nobody on my teamsis
dlowed to say that something can't be done. They can say it would be
"hard" or that it would "take tons of time," but they can't say "can't."
My reason:

When somebody says that something can't bedone, he or she is
usually wrong.

I learned long ago to disregard most clamsthat you can't do such
and such. More often than not, the person who says that hasn't given
oneiotaof thought—at | east not latel y—towhether youreally can't. Yes,
of course, you can come up with hundreds of hypothetical, and absurd,
Situations in which something can't be done—getting all 2704 known
bugs fixed by noon tomorrow, for instance. But usually when people

DEBUGGING THE DEVELOPMENT PROCESS

make suggestions that get shot down with can'ts, the suggestions aren't
absurd; if they were, the people wouldn't have proposed them.

Whenever you hear somebody say that something can't be done,
ask yourself whether that person seems to have given any red thought
to the question. If you know the person has, consder whether his or her
evaluation is dated. Things change, especidly in our industry. Maybe
what couldn't have been accomplished last year can be accomplished
fairly handily now—particularly if the proposal revolves around asize
or speed trade-of f. Therewasatime, after al, when people maintained,
"You can't do agraphical user interface. It would take tons of memory
and be unbearably dow." That wasoncetrue. Now it'snot.

Sometimesit's apolitical or administrative matter that meetswith
the can't resistance. Microsoft leads will tell you that you can't give
back-to-back promotions or araise bigger than the biggest dlowed, but
I've done both of those things in exceptional circumstances. Was it easy?
Definitely not. | had to go out of my way to prove that what | was asking
for was in the best interest of the company. | was successful because
what | asked for made sense, despite corporate policy. Those accom-
plishments weren't impossible to achieve, just hard.

Many times people latch onto the "can't be done" attitude smply
because whatever you're talking about is outside their experience.

In 1988, when we were nearing completion of Microsoft Excel 15
for the Macintosh, upper management was al ready talking about the 2.0
release. The plan was that the Macintosh team would continue to port
features from the Windows version of Excd, implementing look-aike
features when the Windows Excel code couldn't merely be swiped and
reworked to fit. Having spent two years doingjust such work, | wasn't
thrilled with the idea. | felt there were too many problems with that ap-
proach. Despite their external smilarities, there were numerous differ-
ences between Excd for Windows and Excel for the Macintosh because
they were, in fact, two different bodies of code. | dso felt that Excd for
the Macintosh would never be on a par with its Windows sibling. The
Windows product was aready considerably more powerful than the
Macintosh product, and their team was larger than ours—a recipe for
ever-wideningfeaturedisparity andincompatibility.

Therewas also aserious problemwith the Macintosh implementa-
tion. Because of adesign decisionthat had apervasiveinfluenceonthe

7 ITSALL ABOUT ATTITUDE

code, the Macintosh application couldn't use more than 1 MB of RAM.
Evenworse, the code had to residein thefirst| MB of RAM. Userswere
complaining loudly—why couldn't Excel usethe other 7MB of RAM in
their systems? Outrageous!

Programmers at Apple Computer discovered Excel's predilection
for low memory addresses as they were developing MultiFinder, their
then-new multitasking operating system. The Apple programmers had
designed MultiFinder to load applications from the top of memory
down, but they discovered that Excel wouldn't work unless it was
loaded at the very bottom of memory. Around their shop, Excel became
known as "the application afraid of heights” To get Exce and
MultiFinder to work together, Apple's programmers included specid
code in MultiFinder to look for and accommodate Excel, uniquely |oad-
ing it into low memory. And they asked Microsoft to work on Excel's
acrophobia, a phobiathat had already been "cured" in the Windows ver-
sion of the product. In fact, the Windows Excel team had done aline-by-
line rewrite of the product and fixed numerous problems, with the
result that their code far surpassed the Macintosh code in quality and
maintainability.

When | looked at the 2.0 development plan to rip out Macintosh
Excel'sgutsto fix the 1-MB problem and to port as many Windows Excel
features as possble, | saw that the Macintosh team members would be
spending al their time duplicating work that the Windows team had
long ago completed. And we'd ill end up with a somewhat incompat-
ible and far less powerful product than theirs. That seemed like a big
waste of timeto me.

Why not instead, | thought, expend half as much energy to create a
multi-platform version of Excel from the existing Windows sources?'d
spent years writing multi-platform code before joining Microsoft, so |
knew what the chalenges were in writing such code, and | couldn't see
any reason why the Windows Excel code couldn't be modified to sup-
port the Macintosh. If we took that approach, | reasoned, the Macintosh
product—being built from the same code—would bejust as powerful as
the Windows product and fully compatible. The 1-MB memory restriction
would disappear, and instead of having to invest in the full develop-
ment effort that would otherwise be required, Microsoft would be able

DEBUGGING THEDEVELOPMENT PROCESS

to create future Macintosh releases at a fraction of the previous develop-
ment cosL.

When | talked to upper management about scrapping the 2.0 devel -
opment planinfavor of creatingamulti-platform version of Excdl, they
asked me to take aweek to review the Excel for Windows sources and
write an attack plan proposal for thework.

A week later, after | had released the attack plan to upper manage-
ment and both Excd teams, | was taken aback by dl the objections to
what | proposed. Even though the attack plan was straightforward,
people focused on dl the problems they felt couldn't be overcome. |
was surrounded by can'ttitude.

"Maguire is dreaming,”" said one programmer. "Windows and the
Macintosh arejust too different,” said another. A third said, "Assuming
we could create amulti-platform product, it would ruin Excdl. The code
would be too dow and too fat and wouldn't take advantage of the
unique features of each platform.” Still another said, "We don't have the
time now. We should wait until after the next rdeass'—asif there would
be time then. One person even threatened to quit the company if we
chose to take on the amount of work he thought it would take.

| had been expecting the plan to be whol eheartedly embraced. | got
an education that day. | learned that fear of the unknown can affect even
the best and most self-assured development teams.

A few days later, the Excel teams met with upper management,
there was a vote—the only vote | ever saw a Microsoft—and the plan
was shot down. There would be no multi-platform product, and work
on Macintosh Excel 2.0 would go ahead as planned.

| was 4ill reding from the decison when we got word that Bill
Gates, Microsoft's CEO, had read the proposed attack plan and thought
that the multi-platform approach made sense. The work was on.

The team went on to do the multi-platform work in just eight
months. And the application never fell prey to adl those early concerns
people had expressed. It'struethat afew operationswere abit dower in
the multi-platform version of Excel than in the original Macintosh ver-
son, but the dowdown was the result of lifting the 1-MB redtriction, not
of the multi-platform work. The product's speed would have been af -
fected by thelifting of the restriction either way.

7 ITS ALL ABOUT ATTITUDE

The Excel programmers were rightly proud of their accomplish-
ment, and many went on to help other Microsoft project teamsimplement
multi-platform code.

Don't let can'ttitude discourage
innovation.

e

Don't BringMe Problems! Bring Me Solutions!

The problem with can'ttitude—if there's enough of it—is that people
stop speaking up when they see an opportunity for innovation, or
worse, when they see a problem that needs to be fixed. Sadly, some
project leads go out of their way to shut down people who would other-
wise raise valid concerns. Have you ever been at a meeting in which
somebody raised a problem and the lead barked back, "Don't bring up
any problem you don't know how to solve—it wastes our time"'?

Unfortunately, that approach leads team membersto clam up until
they can think of solutions for the problems they've noticed. A program-
mer could spot a serious problem affecting devel opment but, not know-
ing how to solve the problem, might never bring it up for fear of getting
acrushing and humiliating response.

Leads who insgt that team members can't bring up any problems
they don't know how to solve should instead realize that al problems
need to be raised regardless of whether there is a known solution. Would
you want a worker at a nuclear plant to clamn up because she didn't
know what to do about the green goo she found leaking from a critical
part of the reactor? Of course not. She might not know how to handle the
goo, but somebody ese on the reactor team probably would know or
would certainly be motivated to find a solution quickly.

Why should devel opment teamsberun any differently?Evenif the
person who brings up the problem doesn't have a solution, somebody
s on theteam might be able to come up with one. Problems that aren't
brought up are problems that don't get solved.

1l

DEBUGGING THEDEVELOPMENT PROCESS

IT'SGOOD ENOUGH FOR USERS

Occasionaly I'll runinto a programmer who thinks he or sheis unique
in requiring things from a product that mere users don't need.

Onetime | asked a programmer to demonstrate an important fea-
ture he had just completed. He launched the application and began
showing me how the feature worked. The feature looked sharp, except
that it seemed duggish.

"Areyou running the debug version of the code?' | asked, thinking
that debug code must be responsible for the poky response.

"No, thisisthe ship verson.” He went on demonstrating.

"Have you thought about how to speed things up?”

"What do you mean?"

"I mean, don't you think the code is abit dow?"

"Wel, | wouldn't like it, but it'll be OK for the users.”

| was shocked. "What makesyou so different from the users? Espe-
cidly inthis case, when the users are other programmersjust like you?"

1 have never understood why some programmersthink that users—
whether they're other programmers or gourmet pasta shop owners—are
any less concerned about speed and other aspects of quality than the
programmer who wrote the code.

I'd argue that end users are more particular about speed and other
aspects of quality since they actualy use the features, whereas the pro-
grammers who write the code often don't. Do you think the program-
mersworking on Microsoft'sFORTRAN compiler use FORTRAN when
they write code? Do the programmers who worked on Word's Mail
Merge feature ever use that capability? What about Excel's macro lan-
guage? Dozens of programmers have extended the macro language
over the years, but how many have ever written their own user-defined
macros? I'm not saying that all of these programmers are guilty of the
gross disregard for the user expressed by that earlier programmer. That
smply isn't so. My point is that programmers routinely implement code
that they themselves never have occasion to use. Think about your own
project. Do the programmers on your team actually use the code they
write?

When programmers don't use the code they write, it's easy for
them to distance themselves from the end user. This distancing may

7 IT'S ALL ABOUT ATTITUDE

account for the occasona programmer who thinks that end users are
bozos who aren't concerned about speed and other aspects of software
guality—at least not to the same degree that the programmer himsdlf
would be.

To keep the end user in mind, programmers should measure their
work against this reminder—you might want to put it on alarge banner
you hang over the entrance to your building:

The end user is at least as concerned about speed and other aspects
of software quality as the programmer who implements the code.

We all know that some users don't care much about the quality of
the programs they use, as long as they aren't prevented from getting

Usability

When Microsoft first began conducting usability studiesin the late 1980s
to figure out how to make their products easser to use, their researchers
found that 6 to 8 out of 10 users couldn't understand the user interface
and get to mogt of the features. When they heard about those findings, the
first question some programmers asked was "Where did we find eght
dumb users?' They didn't consider the possbility that it might be the
user interfacethat wasdumb.

If the programmers on your team conscioudy or unconsciously be-
lieve that the users are unintelligent, you had better correct that atti-
tude—and fast. Consider two teams, one on which the programmers
believe that users are probably intelligent, discerning consumers and
another on which the programmers assume that users are essentially
dumb. Which teamis morelikely to take users complaints seriously and
act on them to improve the software? Which team is more likely to ask
usersfor their opinions about new features that would improve the prod-
uct? Which of the two teams is going to consstently put out a product
that fits the users needs? On the other hand, whichteamismorelikely to
ignoreusers complaintsandinstead wastetimeonfeaturesthat the users
don't need or want? The basic attitude the team adoptstoward the users
can make a great difference in the quality of the product.

DEBUGGINGTHEDEVELOPMENT PROCESS

their jobs done. But if you want to ship great products, you can't target
those unfussy people. Y ou must target the users who do care whether a
program is dow or quirky or contains bugs that can make it crash.

._..__Q__.__.
Don't let programmers believe that
users don't care as much about software
guality asprogrammersdo.

BEWARE THE SUBSTANDARD FEATURE

| used to have the attitude that it was better to give the user a painfully
dow feature, or an overly restrictive one, than to cut the feature and give
the user nothing at all. "At least the user will have something between
now and when we ship the more polished version in the next release,”
I'd reason. Eventually it dawned on me that users weren't aware of the
choice I'd made—qgiving them something, even of substandard quality,
over giving them nothing at all. Users, | realized, open the box, run the
program, and see only that they've gotten another poorly implemented
feature. "Why doesit always take them two releasesto get things right?”
they wonder.

I've seen this reaction often enough now that rather than trying to
give the user something, | cut any feature that doesn't meet the quality
bar. Usersrarely misswhat they've never had, but if you give them afea®
ture they fed is unpolished or frustrating to use, they're liable to think
less of the whole program. If you give them severa such features, they
might start looking at your competitor's product.

It pains me to say this, but if a feature doesn't meet your quality
bar, condder cutting it, even if it ssems as if it could be a useful feature.
Wait until the next release, and do it right. If the feature is so strategic
that you feel you must ship it, it's dso probably worth dipping your
ship dateto do it right.

____Q__.._
Don't ship substandardfeatures.
Postpone them until you can implement
them properly.

7 ITSALL ABOUT ATTITUDE

THE SENSTIVE PROGRAMMER

In Chapter 1,1 described a situation in which alead for a Windows-like
user interface library had never bothered to view the library as one of
the library's "customers' would. The lead had never considered the
posshility that a library that wasn't backwards compatible would be
frustrating to its users. I've seen this lack of appreciation for the users
perspective so many times that it's worth talking about.

When the Windows Excel team was rewriting parts of the applica-
tion so that it would work on the Macintosh, one programmer was
implementing keyboard-driven menus, a capability many busness
users were asking for that the Macintosh operating system didn't offer.
Macintosh users were required to use the mouse. Since there was
no Macintosh standard for keyboard-driven menus to follow, the pro-
grammer implemented Windows-style keyboard-driven menus to mini-
mize the user interface differences between the Windows and Macintosh
versons of the product. When the programmer finished the feature, he
cdled me into his office to demonstrate his new creation. The menus
looked just as they did in Windows. | was impressed.

"Wow!" | sad as | played with the menus. When the excitement
wore off, | turned to the programmer: "How do | disable the Windows
interface?’

"Why would you want to do that?' he said, puzzled. "The feature
doesn't interfere with the Macintosh mouse-driven interface. There's no
reason to disable the interface.”

| was surprised by the programmer's response because, at the
time, you couldn't pick up a Macintosh-oriented magazine that wasn't
full of hatred for Windows. Macintosh users were upset that the indus-
try was raving about Windows, which they considered a third-rate
product, and that their beloved Macintosh was viewed as a whimsical
toy. Windowswasthearchvillainto Macintosh userseverywhere.

"If Excel ships with Windows-style menus as the default,” | said,
"it'l aienate Macintosh users. Excel will get killed in reviews if it has
'Windows written all over it."

The programmer was reluctant to change his code—he'd been
thinking he was done and was eager to move on to the next feature. We
caled over some other team members to talk about the interface. The

DEBUGGINGTHEDEVELOPMENT PROCESS

consensuswas unanimous: Excel for the Macintosh not only had to ook
like a Macintosh product right out of the box but had to bleed Apple's
six colorsaswell. The programmer went back to work.

A whilelater the programmer emerged from his office, offering to
demonstrate his new version of the feature. | was surprised to see that
he hadn't merely added an on/off switch for Windows-style menus. He
had implemented a smart feature in which the menus were drawn in
standard Macintosh format by default but were redrawn as Windows-
style menus the moment the user hit the lead-in key for keyboard-driven
menus. The menus remained in Windows mode until they were dis-
missed; then reverted to Macintosh-style menus. Even better, the pro-
grammer responsible for implementing the new Macintosh diadogs
carried the feature into that code as well. When you invoked a dialog
using the mouse, you got a standard Macintosh didog; when you in-
voked a dialog by means of a Windows-style menu, the dialog came up
with the Windows-style interface. The best of both worlds.

Be sure that programmers always view
the product as an end user would.
Programmers must be sensitive to the
end user's perceptions.

—_——

THEWHOLE PRODUCT AND NOTHING BUT

For the longest time, Microsoft's Languages division—the division re-
sponsible for compilers, debuggers, linkers, and so on—viewed the
tools as separate, autonomous products. That made sense from a devel-
opment viewpoint, but it didn't make sense from an end user viewpoint.
Programmers who bought a Microsoft development system didn't care
whether the compiler and debugger development teams were different.
From their viewpoint, Microsoft C/C++, the debugger, and the linker
were parts of the same product. Pretty easy to understand.
Unfortunately, that wasn't the predominant attitude toward the
toolsin the Languages division. Programmers, both external and inter-
nal, were asking for improved debugging features, but the debugging

140

7 ITSALL ABOUT ATTITUDE

team didn't have enough peopletofill therequests. Meanwhile, the com-
piler team was merrily working on code optimizations that few people
were asking for. The mindset was "Weve got to keep improving the com-
piler." It should have been "Weve got to improve the overall product.”

For years, Microsoft's linker was clunky, dow, and tedious to use
while competing products had fast linkers. Every programmer in the
company knew that Microsoft's linker crawled, but very little was done
to improve it. The one programmer assgned to the linker did his best to
improve the tool, but he had other duties and didn't have time to make
major speed improvements to the linker. Besides, the view in the Lan-
guages divison seemed to be, it was the compiler that was important—
the linker was just a support tool. Users didn't see it that way, though,
because they didn't distinguish between the compiler and the linker. To
users, they were part of the same product.

At least one Microsoft team dumped the company's own linker
and used acompsetitor'slinker. And in the Applications divison, apro-
grammer finally got so frustrated with the linker that he hacked to-
gether aquick and dirty incremental linker for theApplications teamsto
use. The Languages group eventually discovered theApplications incre-
mental linker, cleaned it up a bit, and began shipping that linker with
retail releases of the compiler.

Eventually, after a few rounds of management change, the Lan-
guages group caught on and began improving the development system,
not just the compiler. The result was Visua C++, a product that review-
ers hailed as a refreshing, long-needed change to Microsoft's develop-
ment system.

Theproduct iseverything that
goes into the box.

DOUBLE MEANSTROUBLE

Asthe Excel programmer waswriting hiskeyboard-driven menu code,
aWord programmer not more than ten doors away was implementing
thesamefeaturein Word for the Macintosh. Although | pointed out this

141

DEBUGGINGTHEDEVELOPMENT PROCESS

duplicate effort to the Excel programmer and mentioned it to the man-
ager in charge of both Excel and Word, nothing happened. The two pro-
grammers continued to implement the code in paralel. When the
products eventually shipped, both sported keyboard-driven menus, but
the user interfacesweretotally different. | saw that asalost opportunity
to make the Excel and Word interfaces work identically, to save half the
development effort, and to create amenu library that Microsoft's other
Macintosh teams could have popped into their products. The attitude
wasn't so much "not invented here" as it was indifference. Nobody
seemed to be concerned that programmers were duplicating effort and
creating unnecessary differences between products.

| take the other approach to development effort: if | can reuse code
that has already been written and debugged, I'll grab it in an instant.
Similarly, | alwayswrite code assuming that some other team is going to
borrow itinthe future. No, | don't write al my code so that it's portable,
nor do | spend extratimejust in case the code might be reused. But if I'm
faced with the choice between two equally good dedgns, | aways
choose the design that can be more easily shared.

In Excel's initia release, one of the programmers implemented a
feature never seen in a Macintosh application before: a "print preview"
feature that enabled the user to view pages on the screen formatted as
they'd actually be printed. The design for the print preview feature was
-straightforward. The "page viewer" would take a "picture” of a page
and then display it. If the user wanted to preview afull document, an-
other piece of code simply called the viewer to display pictures of suc-
cessive pages.

The feature was such a hit with users that the Macintosh Word
team added a print preview feature to their application, one with a
much nicer and more useful page viewer. The Word implementation
made Excel'slook rough and unpolished. | was assgned the task of add-
ing many of Word's bells and whistles to the Excel version.

My first thought was to scrap the Excel print preview code and
transplant Word's implementation into Excel. Not only would trans-
planting take less time than implementing all the new code, | thought,
but transplanting the code would make the two applications look and
behave identically. When | explained to the Word programmer what |
intended to do, he told me that his implementation of the print preview

142

7 IT'S ALL ABOUT ATTITUDE

featurewasinextricably tiedto Word. Hecould havewrittenthecodeto
be more shareable, he said, but it had never occurred to him that we
might want the code for the Excel project. After dl, Excd adready had a
print preview feature. Sadly, | couldn't use his polished page viewer.

In the end, | enhanced Excel's existing print preview code, but the
Word feature was ill much nicer. Even more disappointing, because
Excd's code was sharegble, its verson of print preview was the verson
that spread to Microsoft's other applications.

Asl'vesad, one of the best waysto implement asolid new feature
isto grabit from ateam that has already done the work of writing and
debugging the code. Mogt programmers gppreciate this point. But most
programmers, it ssems, fail to recognize that they can't grab code unless
they and other programmers write their own code so that it can be
grabbed.

To increase the value of their code to the company, programmers
should develop the attitude that all of their code is likely to be reused.
With that objective in mind, they should reduce the code's dependence
on the hogt application. It's a problem not unlike writing code to avoid
explicit references to global djttar sometimes it's necessary, but often by
using a dightly different design you can eliminate the explicit depen-
dencewithlittle or no extraeffort.

Programmers should ask,

Could this code be useful to other (evenfuture) applications?

If theanswer isY es thecodeisacandidatefor reuse. Boththekeyboard-
driven menusand the print preview feature could havebeen coded in an
application-independent way. Reusability just wasn't considered a pri-
ority. Too bad. It could have increased the quality of both Word and Ex-
cd, with halfthe effort.
Give some priority to writing easily
shared code. Programmers can't share

each other's code unless they're writing
it so that it can be shared.

——

143

DEBUGGING THEDEVELOPMENT PROCESS

LEVERAGE YOUR LEVERAGEABILITY

If your team or company is to become successful, you have to ensure
that people understand the power of leverage, how a little well-placed
effort canyiedldamuchgreater return. Every team member should keep
this fundamental principle in mind:

You can extract extra valuefrom every task you do by either using
existing leverageor creating newleverage.

The one example of this principle that al programmers know
about is reusing existing code or creating reusable code. But there are
many waysto useor createleverage.

In Chapter 6, | described how you could make employees more
valuableto the company by first teaching them skillsthey could use not
just onyour project, but on any project. That's creeting leverage. Asfar
as your project is concerned, the order in which you teach worthwhile
skills doesn't matter. The order inwhichyou teach skills is unimportant
until aprogrammer movesto anew group. Then ether the programmer
must start at square one because the skills he or she has learned so far
are worthless to the new group, or the programmer can leverage the
skills learned on the previous project because those skills are more glo-
baly useful.

Asl've sad, you can cregte leverage out of dmogt any task—you
just need to look for it and then exploit it. For example, during one of the
featurereviewsfor the user interfacelibrary, the technical lead handed
me his lig of proposed library extensons. The functionality looked
good—it reflected what the other teamswereaskingfor.

"Thislooks good,” | told him. "But some of these interfaces ssemto
differ from the way Windows does the same thing. Have you cross-
checkedthefunctionality withthe Windowsreference manual s?"

Theleadblew up. "Steve, thislibraryisn't Windows. Who careshow
Windowsdoesit aslongasweprovidethefunctionality inanintelligent
way? It seemslike awaste to keep pulling out the Windows manuals.”

He had a good point. | realized then that | had never explained to
him why | felt it was important to model Windows.

"Just s0 I'm sure | understand,” | sad, "you're saying that it
doesn't matter what our interfaceslook likeaslong asthey dotheirjob

144

7 IT'S ALL ABOUT ATTITUDE

well. They could mirror Windowsinterfaces or betotally different. The
choiceis arbitrary."

"Yeah," he nodded.

"Let me ask you a question. Since Word for MS-DOS uses our li-
brary, could a Windows programmer mistake Word's source code for a
Windows application if he or she didn't examine it closaly?"

"Yeah, but it's not Windows code."

"Bear with me" | said. "More than 20 projects use our library. Do
you think the programmers working on those projectswill stay on those
teamsforever?"

"No. They'll probably switch to Windows projects.”

"I think so too. So tell me, when those programmers switch to Win-
dows projects, how easily will they pick up Windows programming?"

"Pretty easlly since our library is like a subset of Windows." Y ou
could see the redlization sweep across his face even as he said that.

"Y ou mean, we're teaching them Windows programming?”

"And what does it cost the company?"

He thought a moment.

"Practically nothing, | guess—just my having to occasionally ook
up some functions in die Windows reference manuals.”

"Right. And here's something dse to think about: How will this
Windows experience help you in the future? Will you be on this project
forever, or will you aso eventually move to aWindows project?”

It might seem that you couldn't get leverage out of something as
smple as what you name your functions, but you can.

People don't often create new leverage because it calls for looking
into the future and making the grand leap of faith, believing that if you
createtheleverage now, it will actually be used in the future. Will the le-
verage be used? Maybe not. But the business environment changes so
quickly that, to be hedthy, a company should create opportunities that
can be exploited at a moment's notice. One truth I've ssen proven over
and over againisthis:

Ifyou create leverage and make others aware of it, they will
someday exploit that leverage.

When | started the Macintosh cross devel opment project, both the
Applicationsdivision and the Languagesdivisionviewed thework asan

145

DEBUGGING THE DEVELOPMENT PROCESS

in-house-only development system. My goal was to create a develop-
ment system as an extension of the commercia 80x86 product so that the
in-house Macintosh development system could continually inherit al
improvements made to the commercial product. That's an obvious case
of creating and using leverage, but | pushed for more. | believed that
other, non-Microsoft, programmers who were writing applications for
Windows would cross-compile those applications for the Macintosh if
they had a good—and familiar—cross development system at their dis-
posal. Most people thought | was crazy, but so what? | knew that if we
assumed that the cross devel opment system would never be a product,
we'd make decisons inappropriate for aproduct. | dso knew that if we
wrote the code assuming that it would someday be a product, wed
make decisons that reflected that attitude.

In design meetings | would often point out that, yes, a particular
design was workable for an in-house solution but that we'd havetoripit
out and start over if Microsoft ever chose to ship the code as a product.

"But we're never going to ship this as a product,” 1'd hear.

"Wadl, not if we make that assumption,” I'd say. "Let'sjust take a
moment to see if there's an equaly good design that would work for
both the in-house and product solutions.”

In most cases, not only did we come up with dua-purpose solu-
tions, but often the designs were better and took lesstime to implement.
The extra up-front thinking forced us to come up with more designs to
consider. In afew cases, the only dual-purpose solution we could find
looked asif it would take more time to implement than the in-house so-
lution. In such a case, we chose the in-house design that would require
the least additional rewriting if Microsoft ever chose to turn the cross
development system into a product.

Whenever upper management asked about the state of the project,
| would tell them what they wanted to know and always tell them again
of our policy of not doing anything that would prevent the company
from shipping the code. Upper management's only concern—one |
shared—was that we not spend time doing product work that might
never beused.

Nobody ever believed that the code would ship as a product, but
oneday Microsoftannouncedits"WindowsEverywhere" campaign. All
of a sudden it had become strategic for Microsoft to provide Windows

146

7 IT'S ALL ABOUT ATTITUDE

solutions for non-80x86 platforms. The Macintosh cross devel opment
system was declared a product, given higher priority, and assigned
moreprogrammers.

_____@ﬂ.‘.._.

Extract the most value possible from
every task you do, by either exploiting
existing leverage or creating new leverage.
___._«»...,._—

LEVERAGING ATTITUDES

I've been talking about adopting the attitude that you'll exploit leverage
whenever and wherever you see the possibility. That idea pervades this
chapter even more than I've suggested. Ingtilling beneficia attitudesin
your team isthe ultimate use of leverage. With one small change in atti-
tude you can get atremendousreturnfor the effort, morereturnthan on
any other training investment I'm aware of.

Congant, incremental improvement is great, and that alone is of-
ten enough to keep you fthead of your competitors, but if you want your
teams to pull ahead, you must help them to develop beneficid attitudes
that drivethemto carry on, without supervision. That lead who wasirri-
tated because | asked him to refer to the Windows reference manuals
never referred to the manuals himsdf until | explained the thinking be-
hind my request. Once he understood my motivation—trying to create
leverage—I| never again had to pester him to check the Windows manu-
as. He became sdlf-motivated.

HIGHLIGHTS

* Novice programmers must understand how difficult writing
bug-free code is. If they have that understanding, they won't
so readily assume that their code is bug-free. More experi-
enced programmers must understand that even though writ-
ing bug-free codeisdifficult, it doesn't mean they should give
up trying to write such code; it means that they must spend
more time testing their code up front, before the code ever

147

DEBUGGING THEDEVELOPMENT PROCESS

reaches the testing group. And because it's so difficult to
write bug-free code, and so costly when bugs make it into the
master sources, al programmers must use every tool at their
disposal to detect and prevent bugs, even if that means ad-
justing their coding styles to weed out error-prone language
idioms.

Weatch for the "it's too much work™" and "it'stoo hard" reflex
reactions. When you hear somebody object that a task will
take too much time or that it will be too hard, ask yourself if
the individual first considered whether the task was impor-
tant and whether it matched the project gods and priorities.
If it seemsto you that he or she was merely responding reflex-
ively, try to refocus the person on the merits of doing the task
s0 he or she can evaluate the ideafreshly and fairly.

A common tendency is for people to think negatively when
they're faced with something they haven't tried before. In one
form or another, they latch onto the ideathat the task is some-
how impossible. Try to shake up this habitual response andin-
stead help ingtill in team members the belief that most tasks
can be doneif only peoplewould take sometimeto think about
them. It's amazing how often you can respond to a "can't"
judgment with the question "l redlize it can't be done, but if it
could be done, how would you do it?' and hear people réttle
off exactly how they would do the thing they just said was im-
possible. The word "could" takes them out of reaction mode
and puts them into thinking mode, right where they should be.

The attitude that the user is neither demanding nor discern-
ing is a detrimental one. Whenever you hear team members
expressing such views, remind them that users—who by defi-
nition actually use the product—are at least as concerned
about speed and the other aspects of software quality as the
programmerswho write the code.

Teach programmersto view the product asan end user woul d.
Programmers must recognize that end usersview everything
that goesinto the box as a sngle product. Usersdon't care how

148

7 Zr's ALL ABOUT ATTITUDE

the individua pieces got into the box, they don't care if the
product wasbuilt by 27 different teams, they don't care what
language the codewas written in—they don't care about any
of that stuff. These pointsof informati on may beimportant to
the company, and to the development teams, but users see
only that the product is one item produced by one company.
Programmers (and leads) may not work on every piece of the
product, but they should be concerned when any piece
doesn't meet the quality standards set for the product. When
enough people express concern about a substandard piece,
that piece will get fixed.

Leverage is the most powerful tool at your disposa for add-
ing value to your team, your project, your company, and even
the industry. Take advantage of the principle of leverage by
using it whenever you can. Strive to create new leverage in
every task you undertake, whether it's writing code that
could be shared, training team members in a way that makes
them more valuable to the company as a whole and not just
valuablefor your-own team, or taking aseemingly arbitrary
decison like what you name a function and turning it into
a way to prepare programmers for a future project. Think
"leverage” in everything you do.

149

THAT SINKING
FEELING

When projects start dipping, the first two actions leads often take are the
easy, obvious ones. hire more people, and force the team to work longer
hours. These may seem like reasonable responses, but in fact they're
probably the worst approaches leads can take to turning around a
troubled project.

Imagine a sixteenth century merchant galleon crossing the Atlantic
Oceanfrom the Old World to the New World. Whenthegalleonisfar out
in the ocean, the first mate notices that the ship is taking on water and
alertsthe captain. The captain orders members of the crew to bail water,
but despite their efforts, the water continues to rise. The captain orders
more crew members to bail water—to no avail. Soon the captain hasthe
entire crew bailing water in shifts, but the water continuestorise. . .

DEBUGGING THE DEVELOPMENT PROCESS

Redlizing that he has no more sailors to cal on, and with the ship
continuing to take onwater, the captain ordersal crew membersto bail
ever longer hours, their days and nights becoming nothing but bailing
water, collapsing from exhaustion, waking up, and going back to bail-
ing. It works. The salors are not only able to prevent the water from
rising, but they're able to make headway, bailing water out faster than
it's coming in. The captain is happy. Through his brilliant management
of human resources, he has prevented the ship from sinking.

Atleast for thefirst week.

Soon the crew members get bone weary and bail less water than
they did when they worked in shifts and were well rested. The ship
again starts taking on more water than they can bail out. The first mate
triesto convince the captain that he must alow the crew memberstorest
if he wantsthem to be effective. But because the ship is sinking the cap-
tain rejects dl talk of giving the crew abreak. "Were sinking. The crew
must work long hours,” the captain shouts. "We—are—sinking!"

The water continues to rise and the ship eventually sinks, taking
everybody with her.

Could there have been a better approach to saving that ship than
putting al the crew members on thebailing task and thenforcingthemto
work long, hard hours? If you were on a ship that was taking on water,
what would you do? | can tel you what I'd do: I'd search for the leaks.
Wouldn't you?

Thisis such an obvious point, but why then do so many leads run
their projects asif they were sinking ships? When aproject startsto dip,
many alead will first throw more people onto thejob. If the project con-
tinues to dip and the lead can't get more people, he or she will demand
that the developers put in longer hours. Just as that ship captain did.
The project can be waist-deep in water, but the lead won't stop to look
for and fix thelesks. Fortunately for their companies, most project teams
can bail water dightly faster than it comesin, and they end up shipping
their products, but often not without an enormous amount of misplaced
effort.

In Chapter 1,1 described a user interface library team that had been
working 80-hour weeksfor morethanayear, withnoendinsight. Water
was gushing in on that project, but nobody stopped to look for leaks.

8 THAT SNKING FEELING

Theteamwasfully staffed, and they were working 12-hour days, seven
daysaweek. What more could they do?But asl pointed out in Chapter 1,
that team was spending most of its time on work they shouldn't have
been doing. They were ignoring what should have been their primary
god: to provide a library that contains onlyfunctionality that is useful to all
groupswho will usethelibrary. That was alesk.

In Chapter 3,1 talked about a dialog manager team that was work-
ing hard to speed up their library for the Word for Windows team.
Despite dl their hard work, they kept falling short of the quality bar for
speed that the Word team had set. Word's swapping hack that kicked out
dl "unnecessary" code segments was kicking out every byte of the
library code, so that physicaly reloading the code, to say nothing of
executing the code, took more time than Word's quality bar allowed. But
nobody was looking at load issues. The dialog manager team members
were focused on optimizing the code to make it run faster.

And in Chapter 5, | described the Excel team's working 80-hour
weeks to meet an unreadlistic and demoralizing schedule.

In al of those cases, the need to work long hours should have been
ared flag, a clear indication that something, somewhere, was seriously
wrong. Unfortunately, many leads take the two obvious steps when
projects start to dip their schedules—hiring more people and demand-
ing longer hours—instead of looking for the causes of the scheduledips.

HAVE A LIFE

Asl'vesad, for severa yearsat Microsoft, my job wasto take flounder-
ing projects and make them functional again. In every case, the team
members had been working long hours, seven days aweek, in a desper-
ate attempt to catch a ship date that was moving ever further away.
Team morale was usually low, and often programmers had come to de-
test their jobs.

Onmy first day asthe new lead, my initial actionswere awaysto
put a stop to the long hours and start looking for the causes of the dlip-
ping schedule. | would walk down the halls in the early evening and
kick people out. "Get outtahere. Go havealife."

Programmers would, protest: "I can't leave—I'm behind on this
feature."

DEBUGGING THE DEVELOPMENT PROCESS

"That's OK," I'd say. "The entire team has been working insane
hours for nearly ayear, and al that effort hasn't kept the project from
regularly slipping. Working long hours won't bring this project under
control. Theres something fundamentally wrong here, something we
need to find and fix, and continuing to work long hoursis not going to
help us find the problem. Go home. Get some rest. WEll look for the
problem first thing tomorrow."

At first the team members would think | wasjoking. The message
they had been getting—in some cases for more than a year—was work
harder, longer hours, and | was telling them to go home while the sun
was dill out. They thought | was nuts. If the project was dipping so badly
now, they thought, what would it look like if they stopped working those
long hours?

But over the next few weeks, 1'd hit the project with al the strate-
gies I've described in the first seven chapters of thisbook. 1'd put a stop
to unnecessary reports and meetings and dl other unnecessary inter-
ruptions. I'd toss out the existing task-list-driven schedule and replace
it with awin-able schedule made up of subproject milestones of the type
I've described in Chapter 5, cutting all nongtrategic features in the pro-
cess I'd promote the attitudes I've presented in Chapter 7, such as the
attitude that it's crucia that the team fix bugs the moment they're
found. I'd make sure that the project gods were clear and that the pro-
grammers understood that one of my goals as alead was to help create
large blocks of time during the day for them to work uninterrupted. 1'd
do all of thethingsI've encouraged you to do. A hard month or two later,
the team would hit their first milestone, as planned, but they'd do it
without working 80-hour weeks. They'd have their first win. In the fol-
lowing months, hitting those subproject milestones would get progres-
svey easer as new work skills became habits.

—Q___

Ifyour project isdlipping, something
iswrong. Don't ignorethecauses
and demand long hours of the team
members. Find andfix the problems.

—_—

8 THAT SNKING FEELING

THE COMMITMENT MYTH

Some teams work long hours, not to meet an ever dlipping schedule, but
because an upper-level manager demands that they work 80-hour
weeks, believing that development teams must work long hours to get
products out the door. When such a manager sees ateam working 40-
hour weeks, his or her immediate interpretation is that the team is not
committed to the company. If you point out that the team hits all its drop
dates, the upper-level manager will counter with the statement that the
team must be padding its schedules with gobs of free time. That same
manager will hold up ateam whose members work 80-hour weeks as an
example for other teams to follow. "This team shows commitment!" If
the team isn't hitting its deadlines, well, that's just because the project's
schedule is unattainable, just as a schedule should be if you want pro-
grammers to work as hard as possible.

Obvioudly, | disagree with that point of view. If | held that view, |
would have to conclude that the user interface library project, the dialog
manager project, and the Excel project were model projects to be emu-
lated. And I'd have to conclude that any team who had concrete goals
and objectives, who focused on strategic features, who constantly in-
vested in training, and who as a consequence aways hit their drop dates
whileworking efficient 40-hour weekswas ateam who were screwing up.

It sounds glly when | put it that way, but that's effectively what
that manager is saying when he sees ateam working only 40-hour weeks
and demands that the lead force the team members to put in more hours:
"Thisisnot a company of clock-watchers. Y ou tell your team they're ex-
pected to put in more hours. | want to see some commitment!”

What nonsense. Managers like that praise the teams who work in-
efficiently and think the worst of the teams who work well. Compare
such a manager with a manager who looks at a 40-hour-per-week team
and is grateful that at least one project is running smoothly. That man-
ager asks the team what they're doing to achieve such success and
works to get other teams to duplicate that success.

Why such oppositereactionsto the sameevent? Inaword, attitudes.

The two upper-level managers respond differently because their
primary attitudes about projects that run smoothly are polar opposites:
one manager assumes that teams who work only 40-hour weeks and

DEBUGGING THEDEVELOPMENT PROCESS

who consistently meet their schedules are doing something wrong; the
other type of manager assumes those teams are doing something right.
Either manager could be mistaken in the case of aparticular project, but
what good does it do to start out assuming the worst of ateam?

Just as some leads ask first for long hours instead of looking for
the real problem and then solving it, some upper-level managers have
glommed onto that same uninventive approach, bdieving that long
hours are good for the project and the corporate culture. Such managers
forget that the business purpose of a development team is to contribute
value to the company. A team can contribute value in numerous ways:
reducing their cost-of-goods and thereby increasing the profit per box
shipped, writing shareable code that saves development time, and so
on. A manager who demands long hours focuses on one obvious way it
might seem that programmers can add val ue to the company: giving the
company all of their waking—and some of their sleeping—time.

It might seem logical that having the programmers work al of
those hours would enable them to finish the product sooner. Unfortu-
nately, it doesn't work that way, not in software development. If the
company made widgets and managers demanded that workers run the
widget-making machines for three extra hours every day, the company
would get three hours worth more of widgets—added value. Therésa
direct correlation between the number of hours worked and the amount
of product produced, a correlation that in my experience doesn't exist in
software devel opment.

If upper management pressures programmers to put in 12-hour
days, working, say, from 10 o'clock in the morning to 10 o'clock at night,

L

Don't Blame the Programmers

I've been picking on the user interface library and dialog manager
proj ects, but the problems with those projects and with the Excel project
were not the programmers. In al of these cases, the programmers were
working hard, trying to do their best in afrustrating situation. It's easy
to make the mistake of blaming the programmerswhen aprojectisdip-
ping and not running smoothly, but if the entire team isin trouble, that
indicatesamanagement problem.

8 THAT SNKING FEELING

the programmers might leave the office three hours later than they
would otherwise; but consider what actually goes on during those three
extrahours.

Take those twelve hours, and subtract one hour for lunch and an-
other hour for dinner since 10 o'clock israther late to work without stop-
pingto eat. Factor inthe natural tendency of programmerswho regularly
work 12-hour days to fit other activities into their work schedules, such
as taking an hour each day to jog in the park or work out at the health
club. That leaves nine of the twelve hours for actual work. And since
programmers who work 12-hour days don't feel they have time outside
work, they wind up taking care of other personal business at the office.
I've seen programmers working through their stacks of unpaid bills,
writing checks and licking envelopes. I've seen programmers practicing
their piano skills on keyboards they keep in their offices. I've seen pro-
grammers playing in the halls with other team members, everything
from group juggling to "hdl golf."

People who work 12-hour days rarely put in more than the stan-
dard eight work hours they'd put inif they worked a normal 9-hour day,
such as the traditional 8 to 5 workday. A programmer who works 12-
hour days might actually get some work done between 8 o'clock and 10
o'clock at night, making it appear to some managers that long hours do
result in added productivity, but those two hours actually just make up
for dinner and some of the other persona time the programmer spent
earlier inthe day.

Sometimes a programmer will actually get more than eight hours
of work done when he or she stays late—mainly when driven, being
kept awake by thoughts of an elusive bug or afeature that's amost fin-
ished. The desire to find a resolution keeps the programmer focused on
the problem. But in such a case, the programmer will tend to stay late
even without pressure from upper management.

As alead, one of your jobs is to protect the team members from
those upper-level managers who think that forcing team members to
work long hoursis going to be productive. It won't be easy, but you've
got to stand firm and fight such demands, explaining to those upper-
level managers why their demands will only hurt the project. When
upper-level management demands long hours of teams, it's a lose-lose

DEBUGGINGTHEDEVELOPMENT PROCESS

situation for the lead: you have to either fight management or hurt the
team. Personaly, I'd rather fight upper-level management than force
team members to do something I'm fundamentally opposed to, but
thankfully, | haven't had to fight many of those battles. Most of the
upper-level managers I've worked for at Microsoft and elsewhere have
understood that demanding long hours of the team was a misguided
and inefficient approach to increasing productivity.

_@—

Beware of the misguided belief that
long hoursresultingreater productivity.
Ifanything, long hours only hurt
productivity.

But Successful People WorkTheir Guts Out

Y ou've probably run across the argument that because extremely suc-
cessful people, as a group, worked a punishing schedule every day
before they "made it," it's clearly necessary to work long hours if you
want to succeed.

If you dig deeper, you'll find that extremely successful people
didn't become successful because they worked long hours. They became
successful because they had an intense inner desire to accomplish some-
thing they had envisioned. They worked tenaciously toward their goas
because of that inner drive, and it was their constant focus that made
them successful. These successful people worked long hours because
every fiber of their being drove them to work toward their gods, they
didn't work all those hours because somebody ese forced them to.
There are countless examples of people who put enormous efforts into
their businesses or other endeavors and who till did not succeed. Long
hours is not the key ingredient. The key ingredients of success are a
crystal-clear goal, aredlistic attack planto achievethat goa, and conss
tent, daily action to reach that goal.

8 THAT SNKING FEELING

WEEKEND WARRIORS

Y ou can probably get those demanding managers to see that forcing the
team to work long days won't increase productivity, that it's better to
enabl ethe devel opment team towork moreefficiently. But those upper-
level managers may turn your argument againgt you: "You say your
team can work efficiently without working long days. Fine. But | want
them in here on the weekends. Y ou can't tell me that having them work
weekends won't increase productivity.” In most cases they would be
right, at least for awhile, particularly if the team already worksefficient
40-hour weeks and has plenty of personal time in the evenings.

But those upper-level managers need to redize that if they demand
that teams work weekends, they may create an adversarial relationship
between the teams and management. The people on the development
teams know that weekends properly belong to them, not to the com-
pany, and the more weekends they're forced to work, the more likely
they're going to resent being taken advantage of. If programmers start
leaving the team, or worse, the company, to work for less exploitative
management, the company loses because those programmers will have
to be replaced by new programmerswho naturally will know less about
the project and might be less experienced overdl. The resulting loss of
productivity might be great enough to cancel the gains made during al
those weekends. And imagine the loss to a team—and this has been
known to happen—when a fourth of its members leave the week after
their product is released. Does that bother those short-sighted manag-
ers? No way: "Good. We've weeded out the wimps and the whiners."

One argument I've heard is that competition is so fierce in the soft-
wareindustry that if acompany isto stay competitive, the devel opment
teamshave to work long hours and weekends. Haveto isanother one of
those expressions you should become sendtized to. Saying that develop-
ershavetowork weekendsto beat the competitionisjust another way of
saying "We can't beat the competition unless programmers work week-
ends" Oh? The team isn't smart enough to find other waysto release a
product earlier? | hope this book brings home the point that there are
numerouswaysto get thejob donewithmuchlesseffort thanmost teams
are expending.

DEBUGGING THEDEVELOPMENT PROCESS

———
Weekends belong to the team members,
not to the company. Teams don't
need to work weekends in order to
beat the competition.

____Qg_____

THE INITIATION PROCESS

Some people indg that teams must work long hours for an altogether
different reason than getting more work done: the practice is vita to
team-building, they say. They say that working long hoursis an initia-
tion, akin to boot camp, that wears programmers down and ultimately
makes them fed that they've earned the right to be part of the team.

L et's assume that the point istrue, that some sort of rigorousinitia-
tionisbeneficia to team-building. Isworking long hours really the best
rigorous initiation?

Inafield such as programming, wherethe ability to thinkiscritical,
why put apremium onworking long hours?If theréstobe aninitiation,
shouldn't it be one that forces programmers to exercise their brains,
to think hard? When new programmers start out, they need to learn to
think hard about their designs, to think hard about how to implement
their designs cleanly, and to think hard about how to thoroughly and in-
telligently test their implementations. Anew programmer needsto learn
that when her code has abug, she must never guesswhereit isand try to
fix itwith alucky change—she must stop and think whether she has sys-
tematically tracked the bug dl the way to its source. She must learn to
think about the bugs she finds to determine whether there are related
bugs that haven't shown up yet. She must learn to think about how a
bug could have been more easily detected and how it could have been
prevented in the first place. She needs to learn right at the outset that
she is expected to read to keep abreast of the industry and to actively
increase her skill levels.

These practices are tough to learn and follow through on. Really
tough, because they can't be done mindiesdy. Y et they must be mastered
at some point. Make mastering these practicestheinitiation—not work-
ing long hours, which has nothing to do with programming well.

8 THAT SNKING FEELING

Stresstheimportance ofthinking hard,
not working hard.

— e

I'll Lose My Bonus!

When | went down the halls kicking programmers out of their offices
with "Go have a life" some programmers would protest: "But what
about bonuses? If | don't work long hours, | won't get abig bonus at re-
view time."

| would explain that | never base bonuses on how much overtime a
programmer works, that infact | view the need to work overtime as an
indication of problems that need to be fixed, not as something to reward
aprogrammer for.

"If you want large bonuses,”" I'd tell the programmer, "look for
methods that will help bring our products to market more quickly and
with higher quality. Point out areasin which we're duplicating effort, or
where we could leverage code written by another team. If you've got an
ideafor anew type of testing tool that would automatically detect certain
kinds of bugs that we have trouble spotting right now, bring it up. If you
know of a commercid tool that will do the samething, that's even better.
If you think of auser interfacefeature that would be moreintuitiveto use,
great—particularly if theideawould work acrossthe product line."

"And if you want to get large raises," 1'd continue, "increase your
persona value to the company by actively learning new skills and de-
veloping good work habits—things that will make you work more
effectively. If you want to really shine, develop the habit of constantly
earning bonuses—l ook constantly for new waysto bring our productsto
market more quickly and with higher quality. That habit will earn you
large bonuses and large raises”

| want programmers to work better, not longer.

|!

-]

DEBUGGING THE DEVELOPMENT PROCESS

TURNING THE PROJECT AROUND

If your teamiscurrently working long hoursand you decideto put ahalt
to that backbreaking effort in order to focus on finding the causes of prob-
lems and fixing them, you'd better brace yourself. When you first start
kicking people out, nobody will get any work done. That can be frighten-
ing, but it is an essentia part of the turn-around process. Just as people
don't naturally have study skills, they don't naturally have skills for
working efficiently in a 40-hour week. Such skills must be developed, or
relearned. Be prepared to do someimmediatetraining.

When | find a programmer who is having trouble getting his work
done in a40-hour week—and | don't believe it's because the schedule is
too ambitious—I ask himto make alist of how he spent histimethat day,
or the previous day, to get a sngpshot of how he useshistime. Thepro-
grammer would typically create alig similar to this one:

* Conducted an interview and wrote feedback for Human

Resources

* Chatted with a programmer on the CodeView team for
30 minutes

* Readthedaily drop of the comp.lang.c and comp.lang.c++
news groups

* Read PC Week
Took atwo-hour lunch break to eat and run errands
Reviewed a draft section of the user's manual

* Attended another team'’s status meeting to report on the
progress of afeaturethey want

* Played air hockey in the game room for 30 minutes
* Read 27 e-mail messages and responded to 15 of them

That'show hewould have spent hisfirst seven or eight hours at the
office, without having writtenany code. Am1 joking?No. Inmy experi-
ence thisisatypical list of activities for a programmer who is used to
working 12-hour days.

Of course the programmer wasn't reading PC Week every day, but
throughout theweek hewasreadi ngsomethi ngevery day—thecompany

*

*

8 THAT SNKING FEELING

newsletter and his subscriptions to InfoWorld, Microsoft Systems Journal,
PC Magazine, Windows Sources, and Software Development. E-mail would
be a constant interruption. He would conduct one or two interviews a
week, read those comp.lang news group drops daily, and regularly take
two-hour lunchesto run errands.

Flextime, or Do Time?

Microsoft, like many high-tech companies, has a "flextime" policy. You
can work any hours you want as long as you get your job done. That's
why | would find programmers who had no qualms about playing air
hockey for 30 minutes or taking two-hour lunches. Y ou can get fired at
stricter companies for taking such liberties, but not at Microsoft—as
long as you get your job done.

Hextime can be wonderful. If you have a dentist appointment, you
just go. You don't need specid clearance from your manager. If your
daughter is in a school play, you go. If you happen to be abaseball fan,
afternoon home games aren't a problem; you hop in your car and go.
Flextime can dramatically improve the quality of life for employees be-
causeit alows them to design their work schedules around the needs of
their persond lives.

But thereis adark sde to flextime, one that the Human Resources
folks don't tel you about as they itemize the reasons you should join the
company. By definition, flextime means that there are no set working
hours, so the primary way to gauge whether aprogrammer isworkingis
to see whether he or she is knocking out features as scheduled. If you
think this through abit further, you can see that if a programmer starts
dipping, the implication will be that he or she is not working enough.
Nobody comes right out and says that, of course, but there's no question
that you're expected to stay until you've finished. It doesn't matter that
you've aready put in afull day.

If you see that one of the programmers needs to work long daysto
do hisor her job, that'san indication of a problem. Maybe the program-
mer chronically abuses flextime, using it to mask a pattern of procrasti-
nation throughout the day, or maybe the long hours indicate something
more serious. Don't ignore the problem.

DEBUGGING THEDEVELOPMENT PROCESS

For a programmer working 12-hour days, such a schedule makes
sense. When elseishe going to run errands or read al those magazines?
If not during "work hours,” when? This is the point missed by those
upper-level managers intent on having programmers work long hours.
They badger the programmers into working long hours, and the pro-
grammers inevitably rearrange their lives to accommodate the longer
work schedule.

Once | had the programmer's typical workday down in black and
white, | would start asking questions.

"Now that you're leaving at areasonable hour and not at 10 o'clock
at night, do you 4ill need to take two-hour lunches to run errands, or
can you handle errands after work? Do you read e-mail inbatches afew
times a day, or do you let email constantly interrupt you? If keeping
regular hours meant you had to read your news groups and magazines
at home, would you be willing to make that trade-off? Do these talks
you're having with people on other teams concern project-related issues
that | should be handling instead of you?..."

I'd work with the programmer to create a schedule that would
allow him to get his work done during the day and leave at a reasonable
time. It's not difficult to work with a programmer to create a win-able
daily schedule. It just takes action on the lead's part.

Train the development team to work
effectively during a normal workday. Don't
allow them to work long hours, which serves
only to mask time-wasting activity.
———

| CAN'T WORK DURING THE DAY

Programmers themselves regularly complain that they can't get any
work done during the day, and alook at that programmer's work list in
the previous section supports that contention. Many of the tasks on that
work list seem to be legitimate business items. Programmers have to
conduct interviews, read and respond to e-mail, review draft sections of
user manuals, and so on.

8 THAT SNKING FEELING

The problem with such necessary business tasks is that they con-
stantly interrupt the primary job: improving theproduct. Just asreading
each e-mail message the moment it arrives chopstheworkday into little,
unproductive time chunks, so too does the regular stream of necessary
businessif team members don't have a plan for tackling such tasks effi-
ciently. If they're handling each task the moment it lands on their desks,
they'll have adifficult time getting work on the product done.

I've heard alot of management advice recommending that you fin-
ish every task the moment it shows up. Either handle it immediately, or
decide that you're never going to handle it and dismissit forever. | agree
with that advice because it prevents procrastination and helps people to
stay on top of things, but | want to qualify the point. If programmers
were to blindly follow that advice, interrupting their design and coding
work to handle every distraction as it arrived, they wouldn't get much
done on their product unless they worked late into the night, when there
are usually far fewer interruptions.

The key idea in the advice is to "handle the task the moment it
shows up." You might not think that programmers have any control
over when tasks show up, but they do. Consider the e-mail example. If
programmers respond to their email at st times, only two or three
times aday, they turn those random interruptionsinto predictable daily
tasks. Then they can either respond to their messages (handling them
immediately) or delete them (never to be considered again).

Programmers can apply the same principle to the other daily inter-
ruptions by turning them into predictable tasks that no longer disrupt
their work. They just have to create a schedule describing how they'll
work during the day—a plan that gives priority to improving the prod-
uct, not handling interruptions. Take my daily schedule, for example,
one which looks like the schedule shown on the next page.

| dedicate the time before lunch, when I'm freshest, to working
solely on the product or the project, depending on whether I'm working
primarily asaprogrammer or asalead. | rarely answer my phoneduring
thosehours, and | certainly don't turn on my e-mail reader because read-
ing and responding to e-mail is perhaps the most disruptive activity of
theenvironments | work in. | try to get three or four solid hours of unin-
terrupted work completed before| do anything ese. | don't read and re-
spond to e-mail for the first time until | get back from lunch.

DEBUGGING THE DEVELOPMENT PROCESS

Have lunch

Read and handle il for second Hme

Read and handte e-mail for final ime

After | handle the post-lunch emall task, | have a second block of
time devoted soldy to working on the product or the project. If other
tasks crop up during the day, | don't look at or think about them—they
go right into my pile of tasksto tackle at the end of the day, wherel have
time scheduled to do them. When | finally get to those tasks, | handle
them immediately or never. If for some reason | can't finish atask that
day, | don't look at it again until the scheduled time the following day.

The point is that, with such a schedule, eemail and other common
interruptions don't distract me from my primary work. | take care of
those tasks, but during the time | have planned for them, not when they
happen to roll in. My schedule turns unpredictable interruptions into
predictable tasks, and it puts those tasks lower in my list of priorities
than working on the product—just where they should be.

Unfortunately, too many programmers unknowingly have their
priorities reversed: they give e-mail and unforeseen tasks higher
priority than improving the product, so at the end of the day, they
haven't even begun to work on desgns or write code. Instead, they have
answered e-mail messages that didn't really need responses or tackled
tasks that could have been spread over severa days. What choice do
they have, then, but to work long hours? If they didn't, they'd never get
any product work done.

8 THAT SNKING FEELING

If you truly believe the project schedule is attainable and yet the
programmers find they must work long hours to meet that schedule,
you still have problems to find and solve. Y ou should check these pos-
shble sources of the trouble:

* Programmers are allowing unpredictable interruptions to
disrupt their work on the product instead of turning those
unpredictable interruptions into predictable tasks.

* Programmers are giving interruptions higher priority than
the primary task.

The schedule I've laid out works well for me, but I'm sure that for
others it would be too restrictive or too something for their tastes. I'm
sure that for some people the idea of not reading e-mail until after they
get back from lunch seems impractical: "I can't do that." If reading and
responding to e-mail is an integral part of their primary task, I'd agree
with them. But if their primary task is working on the product, 1'd urge
them to try working for afew hours each day beforefirst turning on their
e-mall reader. At the very leadt, 1'd urge them to consder reconfiguring
their mailersto cdl their hogts less frequently and to turn off the notifica
tion beep that soundswhen new mail arrives. Inany case, the members of
the devel opment team should have daily schedules that help keep them
focused ontheir primary work.

Work with programmers to create daily sched-
ules that turn unpredictable interruptions into

predictable tasks. The schedules should give their
primary tasks priority over all other work.

" Working Solely on the Product” Defined

When | say "working solely onthe product,” | don't mean that program-
mers should lock themsdlves in their offices and barricade the doors,
doing nothing but designing and writing code. Spontaneous discussions
in the hall, brainstorming sessons, and code reviews are aso part of
working solely onthe product.

]

DEBUGGINGTHEDEVELOPMENT PROCESS

CONSUMED BY EXCITEMENT

There are afew cases in which working long hours over the short term
makes sense—working the weekend right before a drop to put al the
finishing touches on the code, for example, or working hard the week
before a COMDEX show to create a killer demonstration. But | stress
short term. Long hours produceincreased productivity for only the first
week or two, when the sense of urgency is strongest. If you ask ateam to
work months of 80-hour weeks, they will work hard initialy, but once
the sense of urgency wears off, they'll fall into the pattern | described
earlier—taking two-hour lunches to run errands, having long chats in
the hdl, and so on.

The exception to this tendency iswhen people are so excited about
their project that you can't get them to leave. Such projects are truly
wonderful because you eat, breathe, and deegp programming. | hope
that everybody experiences such a project at least once, but | do have
one reservation about such projects.

Early inmy career, | spent nearly five yearsworking on a handful
of projects that were so exciting that | did little but write code, eat, and
deep. So did the other members of the development team. We didn't
know what asocid life was. We lived to code, often working until 2 or 3
o'clock in the morning, only to return sx or seven hours later to start
another day. And we loved it. We had that burning desire to see the
product finished as we envisioned it.

After working on those projects, | worked on several more exhila-
rating projects, but | didn't program to the exclusion of al ese. | worked
a traditional 8-hour day, which gave me the opportunity to pursue an
active socid life after work—going to parties, taking 40-mile bike rides
with friends, going to the theater, learning to ski, meeting new and inter-
esting people...

What an eye-opener. If somebody had told me as| worked on those
earlier projects to the exclusion of al ese that | was missing out on an
important part of life—a personal life—I would have laughed at them,
just as peopleusing 8-MHz IBM PC machines often laugh at people who
suggest they should upgrade to the latest machines, which are 100 times
faster. "I'm happy now. Why should | change?' But once the user's ma-
chine breaks and she buys a new one, her attitude undergoes adramatic

8 THAT SNKING FEELING

transformation: "l can't believe | waited so long to upgrade. To think
that | was actually satisfied with that old clunker!"

Like such computer users, | had no ideawhat | was missing out on,
not having had an active socid life for so long. Those projects were so
excitingthat | neverfelttheneedfor asocid life; my lifewascompleteas
it was. But once I'd worked on exhilarating projects duringwhich | a'so
pursued an active socid life, | learned how importantitis to have abal-
anced life. And that has been the driving force behind my desre to do
absolutely the best | can in aregular 8-hour day, o.that | can balance
that work with my personal life, getting the best of both worlds.

As exciting as it was when | was working on those all-consuming
projects, | wish that somebody had pulled me aside back then to explain
that there was more to life than work. | might not have listened, but |
still wish that somebody had tried. So even though programmerson my
teams are sometimes so thrilled with their work that they want to work
long hours, | urgethem, "Go home. Have alife.”

HIGHLIGHTS

The need to work long hoursis a clear indication that some-
thing is wrong in the development process, whether it's be-
cause the team is doing nonstrategic work or because the
team is being bullied by a misguided manager. No matter
what the reason for the need to work long hours, leads must
not ignore the problem and continueto let the team work late
into the night over thelong term. L eads must tackle that prob-
lem and make it possble for team members to work effec-
tively in the scheduled 40-hour week.

| often hear upper-level managers and project leads praise
team membersfor workinglonghours. "Y our commitment to
the company isadmirable. Excellentjob!" That's exactly the
wrong message that managers and leads should be sending.
People should be praised for working well, not for the num-
ber of hoursthey'reinthebuilding. Managersand leads must
never confuse "productivity" with "time at the office." One
person might work far fewer hours and produce more than
somebody who workstwice aslong.

DEBUGGINGTHEDEVELOPMENT PROCESS

Y ou can minimize meetings, reports, and other corporate pro-
cesses, but unlessyou also focus on the wasted effort unique
to each individual, you'll be missing a significant part of the
problems you need to work on. Makeit apriority to help each
team member design large blocks of uninterrupted time into
his or her daily work schedule.

If you care about your team members, don't dlow them to
spend dl their waking hours at work. Make sure they work a
solid 8-hour day, and then kick them out. Taking that stand at
your organization may seem sacrilegious, but if you believe,
as| do, that people work better if they have an enjoyable per-
sond life, take that stand.

There's nothing sacred about the 40-hour work week. It's a
U.S. tradition, so software projects tend to be scheduled on
the assumption that each programmer will work a 40-hour
week—five 8-hour workdays. If it takes a lot more than 40
hours per week per programmer to meet one of those sched-
ules, something is wrong. The schedule might be unredlistic,
or the programmers might need more training. Either way,
thereis a problem that needs to be fixed—not masked by hav-
ing the programmers work long hours to compensate for the
problem.

170

Epilogue

A WORD ON
L.LEADING

Occasiondly I'll come across the idea that as the lead for a project, you
cannot and never will be a part of the team, that you will dways be a
step removed, and that thereis nothing you can do about it. In my expe-
rience, that isn't true. I've been apart of dozens of teams—as both lead
and programmer—and without exception the teams that jelled were
those in which the lead was just ancother person on the team, one who
happened to have some nonprogramming responsibilities. There was
never thefeeling that the lead was superior.

To someone who didn't know much about American football, the
quarterback might seem to be in a superior position with respect to the
other players. After dl, the quarterback calls each play, the quarterback
isthefocal team member who has control of theball, and after avictory
it's the quarterback who usually gets carried off the field by the other
team members.

171

DEBUGGING THE DEVELOPMENT PROCESS

The quarterback might appear to be superior in rank to the other
players, but we know better. The quarterback isjust another team mem-
ber who happens to have unique responsbilities. An effective project
lead isno different. He or she understands that afocal team member is
not superior to other team members.

Thelead isjust another team member, who, like every other team
member, has his or her own set of unique responsibilities.

Effective leads understand that team members play different roles
ontheteam. Someteam members areresponsiblefor the dataentry part
of the project, othersfor the print engine, ill othersfor foreign file con-
verters and the user interface design. Leads may implement features
along with everybody dse, but in addition to that work, they have the
responsbility for setting project gods and priorities, keeping depen-
dent groups such as Testing and Marketing informed of progress, creat-
ing an environment in which the team members can work effectively,
and ensuring that team members are learning new kills as a way of
adding value to the company. A lead can do al those tasks without
adopting the attitude that he or she is superior.

If alead hasthe attitude that he or sheis superior, awhole array of
harmful behaviorsfollows. Here's what happensin extreme cases

* The lead blames the team for failures but gladly takes the
credit for successes

The lead doesn't care about the people on the team. They're
just workers. Who cares if they work 80-hour weeks? The
lead is concerned only that the team might make him look bad
by missing a scheduled date.

The lead expects team members to jump at every command
and never question her authority. "l said 'doit,' sodo it" isthe
motto.

* Anxious not to appear inferior in any way, the lead attacks
any team member who threatens his authority or who ap-
pears to be more skilled or knowledgeable than the lead in
any area

Because she must always be right, the lead never admits it
when sheiswrong.

*

*

*

172

EPILOGUE

* Thelead shuts down anybody who suggestsimprovementsto
the devel opment process or otherwise rocks the boat.

* Thelead acts asif heisindispensable.

Granted, not al leads who think of themsdlves as superior behave
so tyrannically, but even in mild cases the air of superiority still comes
through. Do team memberswork/or thelead or with the lead? Thevery
language the lead uses revedsthe underlying attitude.

A lead who views hersdlf as a team member works better because
she spends little or no time fighting to keep the other team membersin
their place—why should she? By choosing to adopt the attitude that
she's not superior, she relieves herself of having to attack perceived
threats to her authority. When such a lead discovers a superstar on the
team she's just inherited, she doesn't raise her guard and start the terri-
toria one-upmanship battle so common in people who must feel supe-
rior. Such alead ismore likely to be thankful and to work together with
the superstar for the benefit of the project.

Y our own attitude as alead caninfluence everythingyou do. If you
and a team member disagree over a performance review, how do you
react? Do you stand firm because you feel you need to be "right," or do
you discuss the problem to sseif there's another valid interpretation of
events? If you and the team member ill disagreed, would you amend
the review to describe both positions so that others who read the review
later could make their own evaluations?

Look again at the bulleted lig that characterizes the behaviors of
the leads who indst on regarding themsdves as superior. Would a lead
who viewed hersdlf asjust another team member exhibit those kinds of
behavior? Which type of lead would you be more willing to work with,
one who behaves in a superior way or one who treats you with more
respect? Bethekind of lead you would want to work with.

Leads should see themselves
as members of their teams, not
as superior to them.

—_—

173

My

REFERENCES

These books are explicitly referenced in the text.

Bentley, Jon. Writing Efficient Programs. Englewood Cliffs, N. J.: Prentice
Hdl, 1982

DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and
Teams. New York: Dorset House, 1987.

Gerber, Michad E. The E-Myth: Why Most Small Businesses Don't Work
and What To Do About It. New Y ork: Harper Business, 1986.

Kernighan, BrianW., and P. J. Plauger. The Elementsof Programming
Syle. 2d ed. New York: McGraw-Hill, 1978.

Koenig, Andrew. C Traps and Pitfalls. Reading, Mass: Addison-Wedey,
1980,

Maguire, Steve. Writing Solid Code. Redmond, Wash.: Microsoft Press,
1993,

McConndl, Steve. CodeCompl ete. Redmond, Wash.: Microsoft Press,
1933

McCormack, Mark H. What They Don't Teach You at Harvard Business
School. New York: Bantam Books, 1984.

Weinberg, Gerdd M. The Psychology of Computer Programm/,H. Nt-w
Y ork: VanNostrand Reinhold, 1971

These educators are mentioned in the preface:

Anthony Robbins

Robbins Research International, Inc.
9191 Towne Centre Drive, Suite 600
SanDiego, CA 92122

Phone: (800) 445-8183

FAX: (619) 5350861

175

DEBUGGING THE DEVELOPMENT PROCESS

Michael E. Gerber

Gerber Business Development Corporation
1135 N. McDowell Blvd.

Petaluma, CA 94954

Phone: (707) 778-2900

176

INDEX

A

annual reviews, 120-22
applications. See also Microsoft Excd
priorities for, 1819
and shared code, 14143
arbitrary deadlines, 99
assgnment bugs, 126-27
attack plans
includinginpostmortem reports,
7881
need for detail, 79-80
questionsthat dicit, 33 >
attitudes
about bugs, 12529
about leed, 171-73
leveraging, 144-49
negative, changing, 131-36
resistant, 129-31
toward users, 13640
toward working long hours, 156561,
168-70

B

backward compatibility, 14
bad coffee (example), 24-26
Bentley, Jon, 117,119
bonuses, bassfor, 161
books, recommended, 117
bugs

attitudestoward, 125-29

177

bugs, continued
fixing early, 128
god of bug-free code, 125-29
asnegativefeedback loop, 27,39
and quality definition, 28
questions to ask, 31-32
researchingproblems, 50
whentofix, 26-29

C code, rewritingin C++, 68-69
C compiler, 59-62,102-4
"can'titude," 131-3H
clipboard, Microsoft Excd, 67-68
code
bug-free, 125-29
goto statementsin, 35—37
line counts, 40-41
master, 127-28
multi-platform, 133-35
portability, 17,18,19
prioritiesfor, 17-19
reformatting sourcefiles, 68-69
reusable, 141-43
shared, 141-43
variations among programmers, 108
Code Complete, 36,117
coding wars, 108
coffee quality (example), 24-26
compatibility, backward, 14

DEBUGGING THE DEVELOPMENT PROCESS

compilers
cross devel opment project, 59-62,
102-4
and linker quality, 14041
turning on warnings, 126,127
"cool" features, 65-67
cross devel opment system
becomes product, 14547
and FORTRAN compiler, 59-62
subprojects in development, 102—4
cross-pollination theory, 115
crutches, systems as, 30
C Traps and Pitfalls, 50,117

D

deadlines. See also schedules; ship dates
arbitrary, 99
near-term, 98-101
and subprojects, 98-104,105
debug code, adding, 129,130-31
debugging
attitudes toward, 12529
questionsto ask, 31-3
research during, 50
when to do, 26-29
decison making
and mestings, 85,86
and priorities, 20,130,131
and snap decisions, 20
delegation, 4-5
DeMarco, Tom, 108
dependency issues
controlling, 15
and saying No, 54-55
and status mestings, 8
design meetings, 83-34
desk accessories, adding, 65-67

178

devel opment processat Microsoft,
XVii-XX

devel opmentteams. Seeprogrammers,
projectleads

dialog manager project, 48-51,114,153

Dijkstra, Edsger, 36

E

editing vs. writing, 23-24
The Elements of Programming Style, 117
e-mail
answering, 5
at Microsoft, xx
as problem, 2,3,30,163,164
for statusreporting, 10
when to read, 30,165,166
The E-Myth, 117
end-cut pot roast rule, 75
end users
attitude toward, 13640
considering, 13940
Excel. See Microsoft Exce

features. Seeproducts
featureteams, 11
feedback loops, 37-41
figure skating, 107-8
fixing bugs
attitudes toward, 125-29
questions to ask, 31-3
researchwhile, 50
when to do, 26-29
flextime, 163
focus
importanceof, 2-4

focus, continued
and need for status reports, 7-10
removing obstaclesto, 4—6
follow-up work, 3, 87-88
FORTRAN compiler,59-62
"free" features and products, 61-62
function headers, adding, 68

Gates, Bill, 134
Gerber, Michad, 117
Gimpe Software, 50
goal setting
and bug-fixing, 26-29
and coding priorities, 17-19
and deadlines, 99
and debug code, 130—31
and decison making, 20,130,131
importanceof, 16
in the moment, 11920
and need to say No, 57
personal, 116-20
specificity of, 12-15
and subprojects, 93-104
goto statements, 35-37
guiddlinesvs. rules, 35-37,75

H

headers, adding, 68
housekeeping. See processwork
house moving (example), 5,46

improvement gods, 116-20
inlinedirective, 19

INDEX

10

K

Kernighan, Brian, 117

keyboard-driven menus
and end users, 139-40
and shared code, 141-42

Knuth, Donald, 36

Koenig, Andrew, 117

L

LAY OFF macro, 63
leads, types of, xvii-xviii. Seealso project
leads, program managers
leverage
cregting, 144-45
useof, 14546
libraries. See user interface library
project
linker, need for improvement, 141
Liger, Timothy, 108
little systems, 24,25, 28,29, 30
long hours
attitudestoward, 15561
and persond life, 168-170
and time management, 162-67

M

M acintoshprojects. SeeMicrosoft
projects

macros, 19, 63,64

maintainability, 68

marketing teams, requestsfrom, 58,
63-65

master source code, 127-28

master task ligts. Seetask lists

mastery, 1-2

DEBUGGING THE DEVELOPMENT PROCESS

McConndl, Steve, 36,117
McCormack,Mark, 117

Microsoft projects, continued
user interface library, 12-1551-5356,

meetings 65-67,152-53
and action items, 87-88 Windows vs. Macintosh, 132,133-34,
benefitsvs. drawbacks, 84-85 13940
and decison making, 85,86 WordforMS-DOS, 56
desgn, 83-84 Word for Windows, 48-51
and follow-up tasks, 87-88 Microsoft Windows vs. Macintosh, 132,
good timesfor, 83 133-34,139-40
and negative feedback loops, 88 milestones

project review, 4-5,86

questions to ask before cdling, 82,84
recurrent, 81-84

status, 81

worthwhile, 81-82

Microsoft Excd

clipboard paradigm, 67-68

and LAYOFF macro, 63,64

multi-platform verson, 132-36

schedulefor, 91-95,153

Windows vs. Macintosh versons,
132-35,139-40

Microsoft projects. See al so names of

products

and Applications divison, 141,145

compiler cross development, 59-62,
102-4,146-47

dialog manager, 48-51,114,153

Excel for the Macintosh, 92-95,
132-35,139-40,142-43

and Languages divison, 140-41,145

M acintosh keyboard-driven menus,
139-40,141-42

Macintosh print preview feature,
142-43

multi-platform, 133-35

and shared code, 141-43

and personal growth gods, 11613
schedulingby, 98-104
multi-platform code, 133-35

N-O

naming conventions, 68
near-term deadlines, 98-101
negative feedback loops

and bug-fixing, 27,39

defined, 38

destructive, 39

and follow-up work, 88

VS. negative reinforcement, 40
No, saying, 54-56
object-oriented methodologies, 63-69
operating systems, prioritiesfor, 18
optional compiler warnings, 126,127
oral reports, 76

Pascal compiler, 60, 61,62,103
pay raises, basisfor, 161
PC-Lint, 50

Peopleware, 108

personal growth goas
digning with project milestones,
11618
documenting inannual reviews,
120-22
setting in the moment, 11920
persond life, 153,163-69,170
personal schedules, 162-67
planning, 12-15. Seealso attack plans
Plauger, P.J,, 117

portability, as coding priority, 17,1819

positive feedback loops, 38, 40-41
postmortem reports
acting on, 80-81
attack plansin, 78-81
importanceof, 78
when to write, 80
pot roast rule, 75
print preview feature, 142-43
priorities
for coding, 17-19
and decison making, 20,130,131
and subprojects, 100101
proactivity, 46-47
problems. See also questions
anticipating, 46-48
bringing up, 136
defining correctly, 4851
e-mail as 2, 3, 30,163,164
and use of time, 162-64
process work, 3-4, 7-10, 83-89
products. See also Microsoft projects
focus on improving, 2-4
"free" 61-62
inclusivedefinition, 141
requeststo add features, 63-65
substandard features, 133
programmanagers, xviii, Xix

programmers
attitudes toward bugs, 12529
"average' ill level, 1089112
and bug-fixing, 27, 28-29, 31-32
effectiveness of, 1-2
vs. end users, 136-38
on featureteams, 11
aslong-term specidigts, 109
need for focus, 2-4
persona schedules, 162-67
protecting, 4-6
questionstoask, 32
reassigning, 11315
and skill-building, 10813
and task decisons, 130,131
training, for promotion, 11613
fromupstart companies, 123
use of time, 162-67
working long hours, 151-70
projectgoas
and bug-fixing, 26-29
and coding priorities, 17-19
and debug code, 130-31
and decison making, 20,130,131
and need to say No, 57
setting, 1215
specificity of, 1215
and subprojects, 98-104
projectleads
anticipating problems, 46-48
asking questions, 32-35
and ddlegation, 4-5
effectiveness of, 1-2
vs. leaders, xv-xvi
need for focus, 34
of other leads, 6
proactivity of, 46-48
as protectors, 4-6

DEBUGGING THE DEVELOPMENT PROCESS

project leads, continued
statusmestingsfor, 8
as team members, 171-73
trainingfor, 11618
project review mesetings, 4-5,86
projects. See Microsoft projects; project
goals
project task list. Seetask lists
The Psychology of Computer Programming,
17

Q

quality bars, 18,19, 28, 49,138
questions. Seeal soproblems; requests
defining context, 53
level of precision, 32-35
wrong vs. right, 51-53

R

raises, basisfor, 161
recurrent meetings, 81-84
reports
follow-up, 3
ora, 76
postmortem, 7881
problemswith, 77
status, 3
trip, 74-76
requests. See also questions
for added product features, 63-65
definingcontext, 53
from superiors, 58-60
whentosay No, 54
research, as problem-solving strategy,
50,51
reusable code, 141-43

robustness, as coding priority, 17,18
rulesvs. guiddines, 35-37, 75

safety, as coding priority, 17,18,19
saying No, 54-56
schedules
aggressve vs. unattainable, 95-97
and arbitrary deadlines, 99
and bug-fixing, 27,28, 29
and goal setting, 99
and long working hours, 151-70
and Microsoft Excdl project, 91-95,
153
and milestones, 98-14
persond, 162-67
questionsto ask, 33-34
and sense of urgency, 95-97
and datus reports, 7-10
and subprojects, 98-104
undue focus on, 93-95
unreadlistic, 94,95,97
scheduling meetings, 82
sense of urgency, 95-97
shared library, asgod, 13 57
sharing code, 141-43
shipdates. Seeal sodeadlines
best case, 104,105
questionsto ask, 33-#A
680x0 crossdevel opment system
becomesproduct, 14547
and FORTRAN compiler, 59-62
subprojectsin development, 102-4
Sze, as coding priority, 17,18
skill-building, 1-2, 31,108-13
by asking questions, 32-35
leveraging, 144-45

skill-building, continued
forpromotion, 11618
andversatility, 111
snap decisons, 20
solutions, 135
Speed, as coding priority, 17,18
soeed bumps, 83-89
statusmestings, 3,7, 8
status reports
benefits vs. drawbacks, 810
as necessary evil, 7-10
needfor, 3
negativity of, 89
positive, 9-10
drategies. See goal setting; systems,
work
subprojects, 98-104
substandard features, 138
superiors, as team members, 171-73
systems, work, 24, 25, 28, 29, 30

task ligts
breaking up, 98-104
for Microsoft Excel project, 93-95
and subprojects, 98-104
teamleads. Seeprojectleads
team spirit, 82
technical leads, xvii
third party vendors, 65-67
time
efficient use of, 162-67
and scheduling meetings, 83
and sense of urgency, 95-97
training. See skill-building
trial and error, 1-2
trip reports, 74-76

INDEX

trivial processes, 24, 25, 28,29, 30

u

urgency, senseof, 95-97

usability studies, 137

user interfacelibrary project
responding to requests, 51-53, 56,

65-67

schedule problems, 152-53
setting goasfor, 12-15

users
attitude toward, 13640
consderation of, 139-40

V

Visual C++, 141
visual freezepoint, xix

W

weekends, working, 159-60

Weinberg, Gerald, 117

What They Don't Teach You at Harvard
Business School, 117

WindowsEverywhere, 146

Windows vs. Macintosh, 132133-34,
13940

Winter Olympics, 107

Word for MSDOS, 56

Word for Windows, 48-51

working hours, 151-70

work systems, 24, 25, 28, 29, 30

Wow! factor, 1014

Writing Efficient Programs, 117,119

Writing Solid Code, xii, xvi-xvii, 27-20,117

writing vs. editing, 23-24

ABOUT THEAUTHOR

Steve Maguire graduated from the University of Arizonawith adegree
in eectricd and computer engineering, but he has aways gravitated
toward work in computer software. Steve has programmed profession-
aly for the past 19 years in both Japan and the United States. In the late
1970s Steve regularly contributed developer tools, applications utili-
ties, and the occasond video game to the Processor Technology and
NorthStar users groups. Steve has been responsible for numerous
projects snce then, including valFOETH in 1982, an award-winning
FORTH devel opment system that enabled Atari programmers to write
high-quality graphics applications and video games.

In 1986 Steve joined Microsoft Corporation for the opportunity to
work on high-end Macintosh applications. Steve worked on Microsoft
Excd and led the development of Microsoft's Intel-hosted MC680xO
Macintosh cross devel opment system. He was the driving force behind
Microsoft's switch to a cross-platform shared code strategy in its appli-
cations development and is perhaps best known in the company for his
efforts to increase the utility and quality of shared code libraries. As a
veteran software design engineer and project lead, Steve spent severd
of his years a Microsoft working with troubled projects—enabling
teamsto work effectively and, not incidentally, to enjoy their work.

Debugging the Devel opment Processisthe second of severa books
Steve is writing to give programmers practical guidelines for develop-
ing professona, high-quality software. His first book, the criticaly
acclamed Writing Solid Code (Microsoft Press, 1993), focuses on strate-
gies that programmers can use to write bug-free programs. It won apres-
tigious Software Development Jolt Productivity Award and awards from
theSociety f or Technical Communicationin 1994.

Steve lives in Seattle, Washington, with his wife, Beth, and their
Airedaleterrier, Abby. He can be reached at stephenm@stor mdev.com or
microsoft! stor m! stephenm.

The manuscript for this book was prepared
using Microsoft Word 5.0 for theMacintosh
and submitted to Microsoft Pressin e ectronic
form. Galleys were prepared usng Microsoft
Word 2.0 for Windows. Pageswere composed
by Microsoft Pressusing Aldus PageM aker
5.0 for Windows, with text and display type
in Palatino. Composed pages were delivered
to the printer as dectronic prepressfiles.

Cover Designer
RebeccaJohnson

Interior Graphic Designer
KimEggleston

Principal Compositor/Illustrator
Peggy Herman

Principal Proofreader/Copy Editor
DeborahLong

Indexer
Julie K awabata

STEVEMAGUIRFSWRITING SOLID CODE, thecompanionvolume

toDebuggi ngtheDevel opment Pr ocess, coverstechniques, and Strategi esthat pro-
grammerscanuseimmediately to reducetheir bugratesand writebug-freecode.

Steve Maguire maintains that the most critical requirement for writing
bug-free code is to become attuned to what causes bugs. All of the techniques
and strategies Maguire presents in Writing Solid Code are the result of program-
mers asking themselves two questions over and over, year after year, every time
they find abug in their code:

* How could | have automatically detected thisbug?
* How could I have prevented this bug?

The easy answer to both questionswould be "better testing,” but that's not
automatic, nor is it realy preventive. Maguire says that answers like "better
testing" are so genera they have no muscle—they're effectively worthless. He
inggts that good answers to the two questions result in the specific techniques
that will diminate the kind of bug you've just found.

Writing Solid Code is devoted to the techniques and strategies that have
been found to reduce or completely eiminate entire classes of bugs. Some of the
book's points smack right up against common coding practices, but dl have
been effective in reducing the number of bugs in code. The book aso covers
techniques that programmers can use to automatically detect bugs—techniques
other than using test applications. By building "debug code' directly into their
programs, code that monitors a program
from the ingde, programmers can auto-
matically detect numeroustypes of other-
wise hard-to-find bugs. Writing Solid Code
covers the mogt effective ways to write
such debug code.

The book is written in the same
format and style as Debugging the Devel-
opment Process. Its examples are written
in the C programming language, but its
good advice is generaly applicable—
regardless of whether you're usng C,
FORTRAN, or some other programming
language. The next few pagescontainan | - STEVE MAGUIRE
excerpt from Writing Solid Code's Chap- | - beerorosomes oo cogorsen
ter 5, "Candy-Machine Interfaces." - -

HERE'S WHAT THE CRITICS HAVE SAID about the bestsdlling
Writing Solid Code, winner of a 1994 Software Devel opment Jolt Productivity
Awardand of awardsfromthe Society for Technica Communication.

Maguireswriting styleis fluid and clear, and the content is
intended to provoke both thought and action (namely changes
inyour bad habits).

—Ray Vddes, Dr. Dobb'sJournal

This unique volume gathers awesdlth of coding wisdom
developed over the years ingde Microsoft. These aren't coding
techniques so much as coding and testing phil osophies—
mindsets that help Microsoft's programmers produce better
code with fewer bugsin less time than their competitors.

—Jeff Duntemann, PC Techniques

Writing Solid Code is superbly written and offers a variety of
sound practical coding guidelines at alevd suitablefor the
professional C coder. The author's experience, coupled with

an obvious enthusiasm for the subject, has resulted in abook
whichisbothinformativeand easy toread... You'll find
historica notes about the development of programs such as
[Microsoft] Excd and Word... Youdo not, incidentaly, need to
bean MSDOS Windows, or Apple Mac programmer to appreci-
ate the wisdom in this book or to follow the code... An
excdllent book and one of those reatively rare offerings

that all C programmerswould dowell to read.

—Paul Overaa, Computing

If you are serious about devel oping C code, reaed this book.
Consider it carefully. Reject it if you will, but | think you
would befoolish to do 0. Thisiseasly my 'Book of theYear.'

—CVu

- EXCERPT FROM WRITING OLID CODE

5

CANDY-MACHINE

One of the perks that Microsoft gives its employeesisfree soft drinks, fla-
vored sdtzer water, milk (chocolate too!), and those little cartons of fruit
juices. As much as you want. But, darnit, if you want candy, you have to
pay for that yoursalf. Occasondly, | would get the munchies and stroll
downto avending machine. I'd plunk inmy quarters, press4 and then5 on
the sdection keypad, and watch in horror as the machine spit out ja apeno-
flavored bubble gum ingteed of the Grandmals Peanut Butter Cookie |
thought I'd asked for. Of course, the machinewasright and | waswrong—
number 45 wasthe gum. A quick look at thelittle Sgn by the cookiewould
aways verify my mistake: No. 21, 450.

87

88

WRITING SOLID CODE

That candy machine aways infuriated me because if the engineers
had spent an extra 30 seconds thinking about their design, they could have
saved me, and I'm sure countless others, from getting something they
didn't want. If one of the engineers had thought, *"Hmm. People are going
to be thinking '45<C' as they deposit their money—I'll bet some of them are
going to turn to the keypad and mistakenly enter the price instead of the
sdection number. To prevent that from happening, we should use an alpha
betic keypad instead of a numeric one."

The machine wouldn't have cogt any moreto make, and theimprove-
ment wouldn't have changed the design in any appreciable way, but every
timel turned to the keypad to punch in 45tf, | wouldfind | couldn't and so
be reminded to punch in the letter code. The interface design would have
led people to do the right thing.

When you design function interfaces, you face smilar problems. Un-
fortunately, programmers aren't often trained to think about how other
programmers will use their functions, but as with the candy machine, a
trivia difference in design can either cause bugs or prevent them. Ifs not
enough that your functionsbe bug-free; they must dso be safeto use.

getchar GETSAN int, OF COURSE

Many of the sandard C library functions, and thousands of functions pat-
terned after them, have candy-machine interfaces that can trip you up.
Think about the getchar function, for indance. The interface for getchar is
risky for severa reasons, but the most severe problem is that its design en-
courages programmersto write buggy code. Look at what Brian Kernighan
and DennisRitchiehaveto say about it in The C Programming Language:

Condgder the code

char c;

c = getchar();
if (c == EOF)

On a machine which does not do sign extension, c is dways postive
becauseitisachar, yet EOFisnegative. Asaresult, thetest alwaysfails.
To avoid this, wehavebeen careful to use i nt instead of char for any
variablewhich holdsavauereturned by getchar.

CANDY-MACHINE INTERFACES

With a name such as getchar ifs natura to define c to be a character,
and that'swhy programmersget caught by thisbug. But redly, isthereany
reasongetchar should beso hazardous?It'snot doing anything complex; it's
smply trying to read a character from a device and returning a possble
error condition.

The code below shows another problem common in many function
interfaces:

/* strdup -- allocate a duplicate of a string. */
char *strdup(char *str)
char *strNew;

strNew = (char *}maTloc(strlenCstr)+l):
strcpy(strNew, str);

return (strNew);

Thiscodewill work fineuntil yourunout of memory andmallocfails,
returning NUL L instead of apointer to memory. Who knowswhat strcpy
will do when the degtination pointer, strNew, isSNULL, but whether strcpy
crashes or quietly trashes memory, the result won't be what the program-
mer intended.

Programmershavetroubleusinggetchar andmall ocbecausethey can
write code that appearsto work correctly even though ifs flawed. 1fs not
until weeks or months later that the code crashes unexpectedly because, as
inthe sinking of the Titanic, aprecise series of improbable events tekes place
and leedsto disagter. Nethergetchar nor malloc leads programmersto write
correct code both leed programmersto ignore the error condition.

Theproblemwithgetchar andmallocisthattheir returnvaluesareim-
precise. Sometimes they return the valid data that you expect, but other
timesthey returnmagicerror values.

Ifgetchar didn't return thefunny EOF value, declaringcto be acharac-
ter would be correct and programmers wouldn't run into the bug that
Kernighan and Ritchietalk about. Smilarly, if mallocdidn't returnNULL as
though it were a pointer to memory, programmers wouldn't forget to
handle the error condition. The problem with these functions is not that
they return errors, but that they bury those errorsin normal return values
whereifseasy for programmersto overlook them.

WRITING SOLID CODE

What if you redesigned getchar <o that it returned both outputs sepa
rately? It could return TRUE or FALSE depending upon whether it sucocess-
fully read a new character, and the character itsdlf could be returned in a
variablethat you passby reference:

flag fGetChar(char *pch); [* prototype */
With the interface above, it would be natural to write

char ch;

if (fGetChar(&ch))

ch has the next character;
else

hit EOF, ch is garbage;

The problem with char vs. int goes away, and it's unlikdy that any
programmer, no matter how green, would accidentaly forget to test the er-
ror return value. Compare thereturn valuesfor getchar andfGetChar. Do
you see that getchar emphasizes the character being returned, whereas
fGetChar emphasizesdieerror condition? \Where do you think theemphasis
should be if your god isto write bug-free code?

True, you do lose theflexibility to write code such as

putchar(getcharO);

but how often areyou certain thatgetchar won't fail?Inamost al cases, the
code above would bewrong.

Someprogrammersmight think, " Sure,fGetChar may beasafer inter-
face, but you waste code because you haveto pass an extraargument when
you cdl it. And what if a programmer passes ch ingead of &ch? After dl,
forgetting the & is an age-old source of bugs when programmers use the
scan/function.”

Good questions.

Whether the compiler will generate better or worse code is actually
compiler dependent, but granted, most compilers will generate dightly
more code at each call. Still, theminor differencein codesizeisprobably not
worth worrying about when you consder that the cost of disk and memory
storage is plummeting while program complexity and associated bug rates
are climbing. Thisgap will only get larger in the future.

CANDY-MACHINE INTERFACES a1

The second concern—passing a character to fGetChar ingtead of a
pointer to acharacter—shouldn't worry you if you're using function proto-
typesassuggestedin Chapter 1. If you pass/GetChar anythingbut apointer
to a character, the compiler will automatically generate an error and show
youyour mistake.

Theredlity isthat combining mutualy exclusve outputsinto asingle
returnvalueisacarryover from assembly language, whereyou havealim-
ited number of machine registers to manipulate and pass data. In that envi-
ronment, using asingle register to return two mutually exclusvevaluesis
not only efficient but often necessary. Coding in Cisanother matter—even
though Cletsyou "get doseto themaching," that doesn't mean you should
write high-level assembly language.

When you design your function interfaces, choose designs that leed
programmers to write correct code thefirst time. Don't use confusing dual-
purpose return vaues—each output should represent exactly one data
type. Make it hard to ignore important details by making them explicit in
the design.

e —
Makeit hardtoignoreerror conditions.
Don't bury error codesin return values.

__*—..——

Writing Solid Code
Microsoft's Techniquesfor Developing Bug-Free C Programs
Seve Maguire

Foreword by DaveMoore
Director of Development, Microsoft Corporation

288 pages, softcover
$24.95 ($32.95 Canada)
ISBN 1-556155614

' STEVE MAGUIRE
Foreveort by Dave Moo
.+ Dingetorof Deveboperzre, Akt Corpeestin

Microsoft Press books are available wherever quality computer books are sold. Or call 1-800-M SPRESSfor ordering information.
Outside the U.S,, write to I nternational Coordinator, Microsoft Press, One Microsoft Way, Redmond, WA 98052-6399

