
Student Errors in Concurrent Programming Assignments

Jan Lönnberg
Helsinki University of Technology

P.O. Box 5400
Finland

jlonnber@cs.hut.fi

ABSTRACT
This poster abstract describes the ongoing work at Helsinki
University of Technology on observing defects in concur-
rent programming assignment submissions and examin-
ing the underlying causes of these errors and the methods
used to find them. The work is part of a larger endeavour
to find problematic aspects of debugging concurrent pro-
grams and develop approaches to aid programmers in this
task.

Keywords
Concurrent Programming, Computer Science Education,
Bugs, Errors, Defect Cause Analysis

1. INTRODUCTION
Students’ solutions to programming assignments provide
material that can be used to improve several interlinked
processes. The student-submitted assignment solutions
(or submissions) can be used to evaluate and improve the
students’ learning, the teaching and the assignments. In-
formation on defects in students’ programs can also be
used as a starting point for the development of debugging
methodology and tools. Concurrency further complicates
the programming process by introducing nondeterminism
and its effect on debugging has seen little research.

For the reasons outlined above, I am examining submis-
sions from the three programming assignments on the
concurrent programming course at Helsinki University of
Technology. The first involves writing control code for
simulated trains that communicate using semaphores. In
the second and third, the student implements and ap-
plies the Reactor pattern [5] and tuple spaces (respec-
tively). The first data was collected during the Autumn
2005 course1, and more detailed data will be collected dur-
ing the Autumn 2006 course2. In 2005, students were re-
quired to submit both the actual program source code and
a brief report outlining how their solution works with an
emphasis on concurrency-related behaviour. Defects were
found in the programs using a combination of testing and
manual analysis and students’ explanations of how their
code works were used to deduce the underlying mistakes.

The work described here can be considered to belong to
two different areas of research: research on defects in pro-
grams (e.g. [4]) and research on student errors in com-
puter science assignments (e.g. [3, 6]). The former work
aims to improve the quality of software by understand-
ing why programmers err (“What errors do programmers
make? Why do they make them? How can we get rid of

1http://www.cs.hut.fi/Studies/T-106.420/main.html
2http://www.cs.hut.fi/Studies/T-106.5600/english.shtml

them?”), while the latter aims at improving the quality
of teaching (“What are the deficiencies in the students’
knowledge and skill and in the teaching? How can we
detect and eliminate them?”).

2. APPLICATIONS
As noted above, information on the types of defects in
students’ programs can be applied to developing teaching,
the assignments and the assessment thereof, and to the
development of debugging tools and methodology.

2.1 Teaching and Assignments
The results of an assignment can be used to determine
whether students are effectively learning what they should.
In particular, if a large number of students has problems
understanding and/or applying some relevant knowledge,
the teaching of this knowledge needs to be improved.

If students, on the other hand, produce many defects un-
related to the subject matter they are being taught, the
assignment may be testing the wrong knowledge and skills.
If the defects can be traced to misconceptions about the
assignment or the artificial environment in which it is done
(if it exists), the students may be distracted from learning
relevant matters by difficulties specific to the assignment.
Penalising students for defects that are arguably caused
by a badly-designed assignment rather than any problem
the student may have is hardly just. Therefore, it is im-
portant to recognise or eliminate these defects.

An experienced grader can quickly spot common defects
in the assignments he grades, as he knows what to look
for. Information on common defects can therefore be very
useful to new graders on a course as a substitute for actual
experience (both general and assignment-specific). Infor-
mation on the errors underlying a defect can be used to
guess the error made even in the absence of explanatory
reports or comments.

Automatic assessment of programming assignments is typ-
ically done by executing test runs on the code to be as-
sessed and assigning a grade based on the number of tests
that passed [1]. One of the problems with automated as-
sessment is that it is hard to design tests that detect all
common errors and distinguish between different types of
error without empirical data from real students.

2.2 Testing and Debugging
Concurrency makes debugging harder, as concurrent pro-
cesses often interact in unexpected ways that can be hard
to trace (e.g. race conditions). Only a few debuggers (e.g.
RetroVue [2]) are specifically designed to aid in debug-
ging concurrent programs, and they do not seem to be

Proceedings, Koli Calling 2006

145

http://www.cs.hut.fi/Studies/T-106.420/main.html
http://www.cs.hut.fi/Studies/T-106.5600/english.shtml


widespread. Having quantitative data on concurrent pro-
gramming errors provides a background against which de-
bugging methods and tools can be developed that address
common real-world problems related to concurrency. This
information is hard to get from commercial development.

3. METHODOLOGY
In this research, the actual debugging and some of the de-
fect detection is done using a set of automated tests and
traditional debugging tools (especially print commands)
as a complement to reading the code and trying to un-
derstand how it works and looking for common mistakes.
This is part of the assessment process for the submissions,
as knowledge of the defects in the program is required to
give a grade that accurately reflects the proficiency of the
student in concurrent programming and to provide con-
structive feedback on the defects (if any) in the submitted
program.

The assignments have been designed in such a way that
the solutions will be similar in structure. This means that
many of the defects in the submissions can be considered
to be the same defect in the algorithm that the program
implements, providing a natural way of grouping many of
the defects. The defects are further grouped by the part
or aspect of the program affected and what the underlying
error (mistake or misconception) was.

The errors made by students on the 2005 course were de-
termined by examining the explanations provided by the
student(s) in the form of code comments and the report
explaining their reasoning. This information was collected
to determine whether the defects were caused by slips in
the implementation phase, design errors or misconceptions
about concurrency or programming in general. In prac-
tice, only a few causes could be confirmed based on the
students’ explanations; in many cases, due to insufficient
explanations, only a probable cause or probable causes
could be determined.

4. PRELIMINARY RESULTS
The following preliminary results are based on the data
from the Autumn 2005 course. Roughly half of the defects
found (40 %, 60 % and 36 % in the respective assignments)
appear to be cases of students misinterpreting what they
are supposed to achieve. In the first assignment, only 15
% of these apparent misinterpretations could be confirmed
based on student’s explanations in their reports and com-
ments (the others may be e.g. slips), but 44 % of them were
confirmed in the second and third assignments. Based on
the observed defects and explanations, most goal misun-
derstandings involve writing solutions that work correctly
but use inter-thread communication methods other than
those allowed in the assignment. In the second assign-
ment, misconceptions about the Reactor pattern [5] are
also clearly a problem. The latter can probably be mit-
igated by providing clearer material on the Reactor pat-
tern. The former can be strongly discouraged by chang-
ing the environment in which the assignments are done to
reflect the requirements instead of having seemingly ar-
bitrary limitations on what the student may do (e.g. by
setting up a real distributed tuple space in assignment 3
instead of requiring the student to write code that runs
in a single process but communicates only through the
tuple space). Such modifications have been made to the
2006 assignments; the defect statistics will show whether
the modifications are successful. Decreasing the amount

of misunderstandings of the goals of the assignments is
useful in many ways: it allows information relevant to de-
bugging of concurrent programs to be gathered more ef-
fectively (less irrelevant defects) and less of students’ and
teaching assistants’ time is wasted on problems irrelevant
to the learning goals of the course.

The simple train simulator used in the first assignment is
directly related to 41 % of the defects in that assignment;
89 % of these are off-by-one errors in sensor positioning
with many possible underlying causes. Only a few (5 %)
of these could be confirmed to be misunderstandings of
simulator behaviour or slips. This assignment also had
the lowest proportion (12 %) of defects clearly related to
concurrency (resource allocation between trains and other
incorrect assumptions about interactions between trains).
The other two assignments had 29 % (52 % confirmed)
and 27 % (22 % confirmed) respectively: mostly failures
to take into account all possible orderings of operations
in different processes or limit them using synchronisation
constructs.

The number of defects for which an exact error could be
confirmed was quite low (23 %, 45 % and 34 % for the re-
spective assignments); this suggests that asking students
to explain the reasoning behind their entire solution in a
written report does not give enough information to recon-
struct their errors. In order to improve this in the 2006
data, students submitting corrected code after failing the
assignment will be required to explain the reasoning be-
hind the defective code. In order to get more information
about their debugging methodology and the difficulties
they face, they must also provide information about the
measures they took (tools and debugging approach used,
time taken) to track down and correct the defects.

5. ACKNOWLEDGEMENTS
This work was supported by the Academy of Finland (un-
der grant number 210947) and Tekniikan edistämissäätiö.

6. REFERENCES
[1] K. Ala-Mutka. A survey of automated assessment

approaches for programming assignments. Computer
Science Education, 15(2):83–102, 2005.

[2] J. Callaway. Visualization of threads in a running
Java program. Master’s thesis, University of
California, June 2002.

[3] L. Grandell, M. Peltomäki, and T. Salakoski. High
school programming — a beyond-syntax analysis of
novice programmers’ difficulties. In Proceedings of the
Koli Calling 2005 Conference on Computer Science
Education, pages 17–24, 2005.

[4] A. J. Ko and B. A. Myers. A framework and
methodology for studying the causes of software
errors in programming systems. Journal of Visual
Languages & Computing, 16(1-2):41–84, 2005.

[5] D. C. Schmidt. Reactor: An object behavioral
pattern for concurrent event demultiplexing and
dispatching. In J. O. Coplien and D. C. Schmidt,
editors, Pattern Languages of Program Design.
Addison-Wesley, 1995.

[6] O. Seppälä, L. Malmi, and A. Korhonen.
Observations on student errors in algorithm
simulation exercises. In Proceedings of the 5th Annual
Finnish / Baltic Sea Conference on Computer
Science Education, pages 81–86. University of
Joensuu, November 2005.

Proceedings, Koli Calling 2006

146




