
Integrating XTANGO's Animator into

the SR Concurrent Programming Language

Stephen J. Hartley
Math and Computer Science Department

Drexel University
Philadelphia, PA 19104

(215) 895-2678
shartley@mcs.drexel.edu

August 23, 1994

Abstract

XTANGO's animation interpreter program, animator,
has been very useful as a tool for animating concurrent
programs written for an operating systems or concur-
rent programming class. Additional print statements
can be added to a program and the output of the pro-
gram can be read by the animation interpreter. The
resulting algorithm animation will appear in a new win-
dow on the user's workstation running X-windows. SR
is a concurrent programming language that can be used
by students in an operating systems or concurrent pro-
gramming class.
This paper describes integrating XTANGO's anima-

tion interpreter into SR so that procedure calls can be
made directly to the animation code, rather than gen-
erating an intermediate output �le or piping the SR
program's output to the animator program. Two new
animation commands, stepjump and stepjumpto, were
added so that more that one object can be moving at a

time in the XTANGO window.
Algorithm animation using SR is now even easier. An

example SR program is included.

1 Animating SR Programs with

XTANGO

In operating systems courses, students study various
classical synchronization problems such as the dining
philosophers, the readers and writers, and the producers
and consumers with bounded bu�er [7]. In concurrent
and parallel programming courses, students study par-
allel versions of sorting algorithms, such as quicksort,
merge sort, pipeline sort, and compare-exchange sort

Submitted to the Twenty-Sixth SIGCSE Technical Sympo-

sium, March 2-4, 1995, Nashville, Tennessee. Copyright c1994

by Stephen J. Hartley

[5]. Even though the computing systems being studied
are getting more and more powerful, these algorithms
and classical problems are usually analyzed using black-
board, chalk, pencil, and paper.

John Stasko has written a package called XTANGO
[6] that can be used to animate C language programs.
The package contains a library of routines that can be
called to draw animations in an X-window. Also in-
cluded is a stand-alone program, animator, that can
read window drawing commands from a �le or UNIX
pipe.

The SR concurrent programming language [1] can be
used as the programming environment in an operating
systems class [2, 3] to give students practical experience
with semaphores, monitors, message passing, and the
rendezvous. By putting in additional print statements,
students can animate their SR programs that simulate
the dining philosophers and other classical operating
systems synchronization problems [4]. The output of
the program can be saved in a �le to be read later by
the animation interpreter, or a UNIX pipe can be set
up as follows.

sr -o simulation simulation.sr

simulation | animator

Table 1 lists the animator commands with a brief
description of each.

2 Integrating animator into SR

The original animator interpreter program from
XTANGO is a C language program that parses lines of
input containing commands and their arguments. Once
a command is parsed, a procedure of the name of the
command is called to interface with the XTANGO li-
brary routines.

1

command and arguments brief description

bg colorval change background color

coords lx by rx ty change the displayed coordinates

delay steps regenerate same animation frame

line id xpos ypos xsize ysize colorval widthval draw a line

rectangle id xpos ypos xsize ysize colorval fillval draw a rectangle

circle id xpos ypos radius colorval fillval draw a circle

triangle id v1x v1y v2x v2y v3x v3y colorval fillval draw a triangle

text id xpos ypos centered colorval string display some text

bigtext id xpos ypos centered colorval string use a larger font

move id xpos ypos smoothly move the object

moverelative id xdelta ydelta smoothly move the object

moveto id id smoothly move the object

jump id xpos ypos move the object in one jump

jumprelative id xdelta ydelta move the object in one jump

jumpto id id move the object in one jump

color id colorval change object color

delete id delete the object

fill id fillval change object �ll value

vis id toggle object visibility

lower id push object to lower viewing plane

raise id raise object to closer viewing plane

exchangepos id id smoothly exchange positions

switchpos id id exchange positions in one jump

swapid id id exchange ids

Table 1: XTANGO's animator Commands.

To integrate animator into SR, the input line pars-
ing code of animator.c was taken out. An SR global
resource, SRanimator, was written that consists of an
in statement (rendezvous) inside a \do forever" loop.
The in statement accepts calls to the interface routines,
exported by the global. The names of the interface
routines are the same as the original animator com-
mands, pre�xed with \A_". The body of each branch of
the in statement calls the corresponding command in
animator.c.
When compiling and linking an SR program, the user

must also compile the global resource containing the
interface routines and link in the modi�ed animation
code as follows. Note that several X-windows libraries
must be speci�ed during linking.

cc -c animator.c

sr -c SRanimator.sr

sr -c simulation.sr

srl -o simulation SRanimator \

other resources animator.o xtango.o \

-lXaw -lXmu -lXext -lXt -lX11 -lm

3 Two New Animation Com-

mands

The move, moverelative, and moveto commands move
an object from one location on the screen to another in a
sequence of smaller steps so the motion is smooth in the

window. The corresponding jump commands move the
object in one instantaneous step. Since the XTANGO
library routines were designed for sequential programs,
they can handle only one operation at a time, and there-
fore only one object at a time can be moving in the win-
dow. This is a limitation for the animation of concur-
rent programs which need two or more objects moving
at the same time. To deal with this, two new commands
were added to the animation code integrated into SR:
stepjump and stepjumpto. Each of these takes two ad-
ditional arguments, the number of steps and the num-
ber of milliseconds between each step. These commands

are implemented inside SRanimator by breaking a jump
up into the number of steps speci�ed and sleeping (SR
nap() function) the number of milliseconds speci�ed
between each smaller jump. While this is being done,
other animation commands can be processed.

4 An Example

The Appendix shows the SR code for a simulation of
the dining philosophers without a central server process
(section 13.3 of [1]). Figure 1 shows a snapshot of the
animation window during a simulation. Two forks, the
ones philosopher 4 has just �nished using, can be seen
to be in motion at the same time. The code uses a call
to A_stepjumpto to perform a fork move in �ve steps.

2

Figure 1: Animation Snapshot of the Distributed Dining
Philosophers.

5 Comparison with SRWin

SR has a built-in interface to X-windows called SRWin
[8]. SRWin is at a lower level and \closer" to the X-
windows system. In my opinion, it is harder for students
to use SRWin for algorithm animation than XTANGO's
animator command set.

6 Conclusions

Integrating XTANGO's animator into SR has made an-
imation of concurrent SR programs even easier for stu-

dents and instructors than described in [4]. The anima-
tion can be accomplished with less overhead since com-
mands do not have to be formatted with a print state-
ment, written to a �le or pipe, and then parsed by the
animator program; the binary values of the command
arguments are sent to SRanimator using SR's message
passing. The SR development team at the University
of Arizona will include SRanimator into a future release
(perhaps late 1994).

References

[1] Gregory R. Andrews and Ronald A. Olsson, The
SR Programming Language: Concurrency in Prac-

tice, Benjamin/Cummings Publishing, 1993 (the
SR language is available by anonymous ftp from
machine cs.arizona.edu in �le /sr/sr.tar.Z).

[2] Stephen J. Hartley, \Experience with the Lan-
guage SR in an Undergraduate Operating Systems
Course," ACM SIGCSE Bulletin, Vol. 24, No. 1,
March 1992.

[3] Stephen J. Hartley, \An Operating Systems Labo-
ratory Based on the SR (Synchronizing Resources)
Programming Language," Computer Science Edu-

cation, Vol. 3, No. 3, 1992.

[4] Stephen J. Hartley, \AnimatingOperating Systems
Algorithms with XTANGO," ACM SIGCSE Bul-

letin, Vol. 26, No. 1, March 1994.

[5] Michael J. Quinn, Parallel Computing: Theory and
Practice, second edition, McGraw-Hill, 1994.

[6] John T. Stasko, \XTANGO Algorithm Anima-
tion Designer's Package," available by anonymous
ftp from machine par.cc.gatech.edu (from di-
rectory pub, retrieve �le xtango.tar.Z, then un-
compress and extract �le xtangodoc.ps fromdirec-
tory ./xtango/doc in the archive �le xtango.tar).

[7] Andrew S. Tanenbaum, Modern Operating Sys-

tems, Prentice Hall, 1992.

[8] Qiang A. Zhao, SRWin, a Graphics Library for SR,
Department of Computer Science Technical Report
93-14, University of Arizona, May 1993 (available
by anonymous ftp from machine cs.arizona.edu
in �le /reports/1993/TR93-14.ps).

A Appendix: Distributed Dining

Philosophers

Distributed Dining Philosophers. Based

on the example in Section 13.3 of "The

SR Programming Language: Concurrency in

Practice", by Greg Andrews and Ron Olsson,

Benjamin/Cummings, 1993. The algorithm

is from Chandy and Misra, "Drinking

Philosophers Problem", ACM TOPLAS v 6,

n 4, Oct 1984, pp 632-646.

#

Usage: a.out [n secs t_secs e_secs

t_secs e_secs ...]

(for n philosophers, secs seconds running

time, t_secs max thinking seconds, e_secs

max eating seconds for each philosopher)

#

Modified for xtango's animator interpreter

imported global resource SRanimator. All

animator calls start with "A_".

resource Philosopher

import Servant, SRanimator

body Philosopher(myservant : cap Servant;

3

id, thinking, eating: int)

process phil

do true ->

nap(int(random(thinking)))

write(age(), "philosopher", id,

"is hungry")

Change a hungry philosopher's symbol

to be solid green.

A_color(id, "green")

A_fill(id, "solid")

Above for animator.

myservant.getforks()

Change an eating philosopher's symbol

to be solid blue.

A_color(id, "blue")

Above for animator.

nap(int(random(eating)))

Change a thinking philosopher's symbol

to an outline black circle.

A_fill(id, "outline")

A_color(id, "black")

Above for animator.

myservant.relforks()

od

end phil

end Philosopher

resource Servant

import SRanimator

op getforks(), relforks()

op needR(), needL(), passR(), passL()

op links(r, l : cap Servant)

op forks(haveR, dirtyR,

haveL, dirtyL : bool)

This op and the variables below are used

to hold the symbol id numbers of the

left and right fork symbols and where

the left and right forks are placed next

to the philosopher when it possesses them.

op fork_ids(forkR, forkL,

holderR, holderL : int)

Above for animator.

body Servant(id : int)

op hungry(), eat()

var r, l : cap Servant

var haveR, dirtyR, haveL, dirtyL : bool

Used with the fork_ids op above.

var forkR, forkL, holderR, holderL : int

Above for animator.

proc getforks()

send hungry()

receive eat()

end

process server

receive links(r, l)

receive forks(haveR, dirtyR,

haveL, dirtyL)

Move a left or right fork initially

given to this philosopher to be next

to the philosopher.

receive fork_ids(forkR, forkL,

holderR, holderL)

if haveR ->

A_jumpto(forkR, holderR)

fi

if haveL ->

A_jumpto(forkL, holderL)

fi

if dirtyR ->

A_color(forkR, "orange")

A_fill(forkR, "solid")

fi

if dirtyL ->

A_color(forkL, "orange")

A_fill(forkL, "solid")

fi

Above for animator.

do true->

in hungry() ->

if ~haveR ->

send r.needL()

[] else ->

write(age(), "philosopher", id,

"has right fork")

fi

if ~haveL ->

send l.needR()

[] else ->

write(age(), "philosopher", id,

"has left fork")

fi

do ~(haveR & haveL) ->

in passR() ->

haveR := true; dirtyR := false

write(age(), "philosopher", id,

"got right fork")

Move the right fork from where it was

to be next to this philosopher and then

change its symbol to be a black outline

circle i.e. not dirty. Also raise the

fork's symbol to the closest viewing

plane to make it more visible.

A_stepjumpto(forkR, holderR, 5, 100)

A_fill(forkR, "outline")

A_color(forkR, "black")

A_raise(forkR)

4

Above for animator.

[] passL() ->

haveL := true; dirtyL := false

write(age(), "philosopher", id,

"got left fork")

Ditto for the left fork.

A_stepjumpto(forkL, holderL, 5, 100)

A_fill(forkL, "outline")

A_color(forkL, "black")

A_raise(forkL)

Above for animator.

[] needR() st dirtyR ->

haveR := false; dirtyR := false

send r.passL(); send r.needL()

write(age(), "philosopher", id,

"sends dirty right fork")

[] needL() st dirtyL ->

haveL := false; dirtyL := false

send l.passR(); send l.needR()

write(age(), "philosopher", id,

"sends dirty left fork")

ni

od

write(age(), "philosopher", id,

"has both forks")

send eat()

dirtyR := true; dirtyL := true

receive relforks()

write(age(), "philosopher", id,

"is finished eating")

Now that the philosopher has finished

eating, its forks are dirty so change

their symbols to be solid orange circles.

A_color(forkL, "orange")

A_fill(forkL, "solid")

A_color(forkR, "orange")

A_fill(forkR, "solid")

Above for animator.

[] needR() ->

haveR := false; dirtyR := false

send r.passL()

write(age(), "philosopher", id,

"sends right fork")

[] needL() ->

haveL := false; dirtyL := false

send l.passR()

write(age(), "philosopher", id,

"sends left fork")

ni

od

end server

end Servant

resource Main()

import Philosopher, Servant, SRanimator

var n := 5; getarg(1, n)

var runtime := 60; getarg(2, runtime)

var s[1:n] : cap Servant

var p[1:n] : cap Philosopher

var think[1:n] : int := ([n] 5)

var eat[1:n] : int := ([n] 2)

fa i := 1 to n ->

getarg(2*i+1, think[i])

getarg(2*i+2, eat[i])

af

write(n, "philosophers;",

"think, eat times in seconds:")

fa i := 1 to n ->

writes(" ", think[i])

af

write()

fa i := 1 to n ->

writes(" ", eat[i])

af

write()

Change coordinates so 0,0 is the center,

then create a big black outline circle

to be the table.

A_coords(-1.5, -1.5, 1.5, 1.5)

A_circle(1000, 0.0, 0.0, 1.0, "black", "outline")

Put some annotated symbols on the screen.

A_circle(1001, -1.4, -0.6, 0.02, "black", "outline")

A_text(1002, -1.3, -0.625, 0, "black", "clean fork")

A_circle(1003, -1.4, -0.8, 0.02, "orange", "solid")

A_text(1004, -1.3, -0.825, 0, "black", "dirty fork")

A_circle(1005, -1.4, -1.0, 0.05, "black", "outline")

A_text(1006, -1.3, -1.025, 0, "black", "THINKING")

A_circle(1007, -1.4, -1.2, 0.05, "green", "solid")

A_text(1008, -1.3, -1.225, 0, "black", "HUNGRY")

A_circle(1009, -1.4, -1.4, 0.05, "blue", "solid")

A_text(1010, -1.3, -1.425, 0, "black", "EATING")

Put a clean set of forks, small black

outline circles, near the table.

A_text(1011, -1.0+0.05*(n+1), -1.41, 0,

"black", "forks")

fa i := 1 to n ->

A_circle(3000+i-1, -1.0+0.05*i, -1.4, 0.02,

"black", "outline")

af

const TWO_PI := 2.0*acos(-1.0)

fa i := 1 to n ->

Put the philosophers, black outline

circles, around the table.

A_circle(i, sin(i*(TWO_PI/n)), cos(i*(TWO_PI/n)),

0.1, "black", "outline")

Number the philosophers.

A_text(2000+i, sin(i*(TWO_PI/n))+0.1,

cos(i*(TWO_PI/n))+0.1, 1, "black", string(i))

Put nearly invisible circles (points)

on the left and right side of each

philosopher to be places the forks can

be moved to when the philosopher gets

5

possession of a fork.

A_circle(4000+2*i, sin(i*(TWO_PI/n)-0.12),

cos(i*(TWO_PI/n)-0.13), 0.001, "black", "outline")

A_circle(4000+2*i+1, sin(i*(TWO_PI/n)+0.12),

cos(i*(TWO_PI/n)+0.13), 0.001, "black", "outline")

af

Above for animator.

fa i := 1 to n ->

s[i] := create Servant(i)

create Philosopher(s[i], i, 1000*think[i],

1000*eat[i])

af

fa i := 1 to n ->

send s[i].links(s[((i-2) mod n)+1],

s[(i mod n)+1])

af

send s[1].forks(true, true, true, true)

fa i := 2 to n-1 ->

send s[i].forks(false, false, true, false)

af

send s[n].forks(false, false, false, false)

Send to each philosopher the xtango

animator symbol id's of the two forks

the philosopher needs to eat and the

places where possessed forks are to

be moved next to the philosopher.

fa i := 1 to n ->

send s[i].fork_ids(3000+((i-1) mod n),

3000+(i mod n), 4000+2*i, 4000+2*i+1)

af

Above for animator.

nap(1000*runtime)

write("must stop now")

A_end()

stop

end Main

6

