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Abstract.

This document presents two different paradigms of description of communication behaviour,
one focussing on global message flows and another on end-point behaviours, as formal calculi based
on session types. The global calculus originates from Choreography Description Language, a web
service description language developed by W3C WS-CDL working group. The end-point calculus is
a typed m-calculus. The global calculus describes an interaction scenario from a vantage viewpoint;
the endpoint calculus precisely identifies a local behaviour of each participant. After introducing the
static and dynamic semantics of these two calculi, we explore a theory of endpoint projection which
defines three principles for well-structured global description. The theory then defines a translation
under the three principles which is sound and complete in the sense that all and only behaviours speci-
fied in the global description are realised as communications among end-point processes. Throughout
the theory, underlying type structures play a fundamental role.

The document is divided in two parts: part I introduces the two descriptive frameworks using
simple but non-trivial examples; the second part establishes a theory of the global and end-point
formalisms.
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Part 1

Introductory Examples






1. Introduction to Part 1

This paper introduces two different ways of describing communication-centred software in the
form of formal calculi and discusses their relationship. Two different frameworks of description, one
centring on global message flows and another centring on local (end-point) behaviours, share the
common feature, structured representation of communications. The global calculus originates from
Choreography Description Language (CDL) [52], a web service description language developed by
W3C’s WS-CDL Working Group. The local calculus is based on the m-calculus [35], one of the
representative calculi for communicating processes. We show any well-formed description (in a
technical sense we shall make clear) in the global calculus has a precise representation in the local
calculus.

Both calculi are based on a common notion of structured communication, called session. A
session binds a series of communications between two parties into one, distinguishing them from
communications belonging to other sessions. This is a standard practice in business protocols (where
an instance of a protocol should be distinguished from another instance of the same or other proto-
cols) and in distributed programming (where two interacting parties use multiple TCP connections
for performing a unit of conversation). As we shall explore in the present paper, the notion of session
can be cleanly integrated with such notions as branching, recursion (loop) and exceptions. We show,
through examples taken from simple but non-trivial business protocols, how concise structured de-
scription of non-trivial interactive behaviour is possible using sessions. From a practical viewpoint,
a session gives us the following merits.

e It offers a clean way to describe a complex sequence of communications with rigorous
operational semantics, allowing structured description of interactive behaviour.

e Session-based programs can use a simple, algorithmically efficient typing algorithm to
check its conformance to expected interaction structures.

e Sessions offer a high-level abstraction for communication behaviour upon which further
refined reasoning techniques, including type/transition/logic-based ones, can be built.

The presentation in this paper focusses the first point, and gives a formal basis for the second point.
A full discussion of the second point and exploration of the third point are left to a later version of
this paper and in its sequels.

An engineering background of the present work is the explosive growth of the Internet and
world-wide web which has given rise to, in the shape of de facto standards, an omnipresent naming
scheme (URI/URL), an omnipresent communication protocols (HTTP/TCP/IP) and an omnipresent
data format (XML). These three elements arguably offer the key infra-structural bases for application-
level distributed programming. This engineering background makes it feasible and advantageous to
develop applications which will be engaged in complex sequences of interactions among two or more
parties. Another background is maturing of theories of processes centring on the ®-calculus and its
types. The ®-calculus and its theories of types are singular in that not only do they enable a study of
diverse ways for structuring communication but also they allow fruitful and often surprising connec-
tions to existing formalisms including process algebras (e.g. CSP and CCS), functional computation
(e.g. A-calculus), logics (Linear Logic) and objects (e.g. Java). We believe a combination of strong
practical needs for interactional computation and rich theoretical foundations will lead to rich dia-
logues between practice and theories. The present work is intended to offer some of the technical
elements which may become useful in this dialogue.

This paper consists of two parts. In the first part, which are the first give sections including this
Introduction, we informally introduce two paradigms of describing interactions through incremen-
tally complex examples. These examples come from use-cases for CDL found in CDL primer [45]
by Steve Ross-Talbot and Tony Fletcher, and those examples communicated by Gary Brown [13] and
Nickolas Kavanztas [29]. In the second part, which form the remaining sections, we introduce formal
semantics, type discipline, and the formal connection between the core parts of these two formalisms.



Structure of the paper. In the rest of this paper, Sections 2, 3 and 4 are devoted to informal
illustration of key technical elements through description of small but non-trivial use-cases in the
global and local calculi. The description starts from a simple example and reaches a fairly complex
one, illustrating the essence of each construct as well as the relationship between their respective
global descriptions and the corresponding local ones. Section 5 comments on the correspondence
and differences between our formal calculi and CDL. The second part (from Section 6 to Section
18) formally introduces two calculi (the global calculus in Sections 8, 9 and 10; and the endpoint
calculus in Sections 11 and 12), then develops the theory of end-point projections for these calculi
(in Sections 13, 14, 15 and 16), and concludes the paper with related works and further topics (in
Section 18). The appendix offers further technical details.
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FIGURE 1. Graphical Representation of Simple Protocol

2. Describing Communication Behaviour (1)

2.1. A Simple Business Protocol. In this section and the next, we show how small, but in-
creasingly complex, business protocols can be accurately and concisely described in two small pro-
gramming languages, one based on global message flows and another based on local, or end-point,
behaviours. Along the way we also illustrate each construct of these mini programming languages
(whose formal semantics is discussed in the second part of the paper).

Our starting point is a simple business protocol for purchasing a good among a buyer, a seller
and a shipper, which we call Simple BSH Protocol. Informally the expected interaction is described
as follows.

(1) First, Buyer asks Seller, through a specified channel, to offer a quote (we assume the good
to buy is fixed).

(2) Then Seller replies with a quote.

(3) Buyer then answers with either QuoteAcceptance or QuoteRejection. If the answer is
QuoteAcceptance, then Seller sends a confirmation to Buyer, and sends a channel of
Buyer to Shipper. Then Shipper sends the delivery details to Buyer, and the protocol
terminates. If the answer is QuoteRejection, then the interaction terminates.

Figure 1 presents an UML sequence diagram of this protocol. Observe that, in Figure 1, many details
are left unspecified: in real interaction, we need to specify, for example, the types of messages and the
information exchanged in interaction, etc. While the protocol does not include practically important
elements such as conditional and loops, its simplicity serves as a good starting point for introducing
two formalisms.

2.2. Assumption on Underlying Communication Mechanisms. We first outline the basic
assumptions common to both global and local formalisms. Below and henceforth we call the dramatis
personae of a protocol (Buyer, Seller and Shipper in the present case), participants.

e We assume each participant either communicates through channels or change the content
of variables local to it (two participants may have their own local variables with the same
name but they are considered distinct).

e In communication:



(1) A sender participant sends a message and a receiver receives it, i.e. we only con-
sider a point-to-point communication. A communication is always done through a
channel. The message in a communication consists of an operator name and, when
there is a value passing, a value. The value will be assigned to a local variable at the
receiver’s side upon the arrival of that message.

(2) Communication can be either an in-session communication which belongs to a ses-
sion, or session initiation channels which establishes a session (which may be liked
to establishing one or more fresh transport connections for a piece of conversation
between two distributed peers). In a session initiation communication, one or more
fresh session channels belonging to a session are declared, i.e. one session can use
multiple channels.

(3) A channel can be either a session channel which belongs to a specific session or
an session-initiating channel which is used for session-initiation. For a session-
initiating channel, we assume its sender and a receiver is pre-determined.

e We may or we may not demand:
(1) the order of messages from one participant to another through a specified channel is
preserved.
(2) each communication is synchronous, i.e. a sender immediately knows the arrival of
a message at a receiver.
(3) one party participating in a session can use a session-channel both for sending and
receiving.
The last three assumptions which we leave undermined do affect a way to formalise protocols, as well
as for understanding their formal properties. Nevertheless the existence or lack of these assumptions
do not substantially affect the informal discussions in this and the next section.

2.3. Representing Communication (1): Initiating Session. Buyer’s session-initiating com-
munication in Simple BSH Protocol is described in the global calculus as follows.

(1) Buyer — Seller : InitB2S(B2Sch) .1

which says:

Buyer initiates a session with Seller by communication through a session-
initiating channel INITB2S, declaring a fresh in-session channel B2Sch. Then
interaction moves to /.

Note “.” indicates sequencing, as in process calculi. A session initiation can specify more than one
session channels as needed, as the following example shows.

(2) Buyer — Seller : InitB2S(B2Sch, S2Bch) .1

which declares two (fresh) session channels, one from Buyer to Seller and another in the reverse
direction.

In local description, the behaviour is split into two, one for Buyer and another for Seller, using
the familiar notation from process algebras. For example (1) becomes:

3) Buyer[ InitB2S (B2Sch) . Py |, Seller| InitB2S (B2Sch) . P, |

Above Buyer[ P | specifies a buyer’s behaviour, while Seller| P | specifies a seller’s behaviour. The
over-lined channel indicates it is used for output (this follows the tradition of CCS/m-calculus: in
CSP, the same action is written InitB2S ! (B2Sch).

Note the behaviour of each participant is described rather than their interaction. When these
processes are combined, they engage in interaction as described in the scenario above.

2.4. Representing Communication (2): In-session Communication. An in-session commu-
nication specifies an operator and, as needed, a message content. First we present interaction without
communication of values.

4) Buyer — Seller : B2Sch (QuoteRequest).I’



where B2Sch is an in-session channel. It says:
Buyer sends a QuoteRequest-message to Seller, then the interaction I’ ensues.
The same behaviour can be written down in the local calculus as:

Q) B2Sch (QuoteRequest). Py, B2Sch (QuoteRequest) . P,
An in-session communication may involve value passing, as follows.

(6) Seller — Buyer : S2Bch (QuoteResponse, 3,000, x). I’
which says:

Seller sends a QuoteRespons-message with value 3,000 to Buyer; Buyer, upon
reception, assigns the received value, 3,000, to its local variable x.

This description can be translated into end-point behaviours as follows.
@) S2Bch (QuoteResponse, 3,000) . Py, S2Bch (QuoteResponse, y) . Py

which describes precisely the same communication behaviour.

2.5. Representing Branching. In various high-level protocols, we often find the situation
where a sender invokes one of the options offered by a receiver. A method invocation in object-
oriented languages is a simplest such example. In a global calculus, we may write an in-session
communication which involves such a branching behaviour as follows.

{Buyer — Seller : B2Sch (QuoteAccept).l;}
®) +

{Buyer — Seller : B2Sch (QuoteReject).l>}
which reads:

Through an in-session channel B2Sch, Buyer selects one of the two options
offered by Seller, QuoteAccept and QuoteReject, and respectively proceeds
to I and Ip.

The same interaction can be written down in the local calculus as follows. First, Buyer’s side (the
one who selects) becomes:

{B2Sch (QuoteAccept)..P;}
©)) &
{B2Sch (QuoteReject).P>}

Above @ indicates this agent may either behave as B2Sch (QuoteAccept)..P; or B2Sch (QuoteReject). P,
based on its own decision (this is so-called internal sum, whose nondeterminism comes from its in-
ternal behaviour).

In turn, Seller’s side (which waits with two options) becomes:

{B2Sch (QuoteAccept).Q;}
(10) +
{B2Sch {QuoteReject).(Q>}

Here + indicates this agent may either behave as B2Sch (QuoteAccept).Q; or as B2Sch (QuoteReject). Q>
depending on what the interacting party communicates through B2Sch (this is so-called external sum,
whose nondeterminism comes from the behaviour of an external process). Note both branches start
from input through the same channel B2Sch.

In the local descriptions, the original sum in the global description in (8) is decomposed into
the internal choice and the external choice. Similarly, /1 (resp. /) may be considered as the result of
interactions between Py and Q; (resp. P and Q7).



Buyer — Seller : InitB2S(B2Sch) .
Buyer — Seller : B2Sch (QuoteRequest).
Seller — Buyer : B2Sch (QuoteResponse, Vquote, Xquote) -
{ Buyer — Seller : B2Sch (QuoteAccept).
Seller — Buyer : B2Sch (OrderConfirmation).
Seller — Shipper : InitS2H(S2Hch) .
Seller — Shipper : S2Hch (RequestDeliveryDetails).
Shipper — Seller : S2Hch (DeliveryDetails, Vgetails, Xdetails) -
Seller — Buyer : B2Sch (DeliverDetails, Xgetails, Ydetails) -0 }
+
{ Buyer — Seller : B2Sch (QuoteReject).0 }

FIGURE 2. Global Description of Simple Protocol

2.6. Global Description of Simple BSH Protocol. We can now present the whole of a global
description of Simple BSH Protocol, in Figure 2. While its meaning should be clear from our fore-
going illustration, we illustrate the key aspects of the description in the following.

e Buyer initiates a session by invoking Seller through the session-initiating channel INITB2S,
declaring an in-session channel B25Ch. Next, Buyer sends another message to Seller with
the operation name “QuoteRequest” and without carried values (this message may as
well be combined with the first one in practice).

o Seller then sends (and Buyer receives) a reply “QuoteResponse” together with the quote
value Vquote- Vquote 18 a variable local to Seller (its exact content is irrelevant here). This
received value will then be stored in xquote, local to Buyer.

o In the next step, Buyer decides whether the quote is acceptable or not. Accordingly:

(1) Buyer may send QuoteAccept-message to Seller. Then Seller confirms the pur-
chase, and asks Shipper for details of a delivery; Shipper answers with the requested
details (say a delivery date), which Buyer forwards to Seller. Upon reception of this
message the protocol terminates (denoted by 0, the inaction).

(2) Alternatively Buyer may send QuoteReject-message to Seller, in which case the
protocol terminates without any further interactions.

Remark. The description could have used more than one channels: for example, the Buyer-Seller
interactions can use S2Bch in addition for communication from Seller to Buyer. The use of only
B2Sch may be considered as a way to describe “request-reply” mini-protocol inside a session, where
an initial sender sends a request through a channel, and a receiver in turn replies leaving the involved
channel implicit (which is a practice found in CDL, cf. [45]).

2.7. Local Description of Simple BSH Protocol. Figure 2 describes Simple BSH Protocol
from a vantage viewpoint, having all participants and their interaction flows in one view. The same
behaviour can be described focussing on behaviours of individual participants, as follows.

The description is now divided into (1) Buyer’s interactive behaviour, (2) Seller’s interactive be-
haviour, and (3) Shipper’s interactive behaviour. We focus on Buyer’s behaviour. One can intuitively
see two descriptions of the same protocol, a global version in Figure 2 and a local version in Figure 3,
represent the same software behaviours — we can extract the former from the latter and vice versa.
We shall later establish such compatibility as a formal result. However there is a basic difference
in the nature of descriptions: A global description allows us to see how messages are exchanged



Buyer[  InitB2S (B2Sch).
B2Sch (QuoteRequest).
B2Sch (QuoteResponse, Xquote) -
{ B2Sch{QuoteAccept).
B2Sch (OrderConfirmation).
B2Sch (DeliveryDetails, ygetails)-0 }
S
{ B2Sch{QuoteReject).0 } |

Seller[  InitB2S (B2Sch).
B2Sch (QuoteRequest).
B2Sch (QuoteResponse, Vauote) -
{ B2Sch(QuoteAccept).
B2Sch (OrderConfirmation).
IntS2H (S2Hch).
S2Hch (DeliveryDetails).
S2Hch (DeliveryDetails, Xgetails) -
B2Sch (DeliveryDetails, Xgetails) -0 }
4
{ B2Sch{QuoteReject).0 } ]

Shipper[  InitS2H (S2Hch) .
S2Hch (DeliveryDetails).
S2Hch (DeliveryDetails, vgetails) -0 |

FIGURE 3. Local Description of Simple Protocol

between participants and how, as a whole, the interaction scenario proceeds; whereas, in the local
description, the behaviour of each party is made explicit, as seen in distinct forms of choices used in

Buyer and Seller.



if xgquote < 1000 @Buyer then
{ Buyer — Seller : B2Sch (QuoteAccept).
Seller — Buyer : B2Sch (OrderConfirmation).
Seller — Shipper : InitS2H(S2Hch) .
Seller — Shipper : S2Hch (RequestDeliveryDetails).
Shipper — Seller : S2Hch (DeliveryDetails, Vyetails, Xdetails) -
Seller — Buyer : B2Sch (DeliverDetails, Xgetails, Ydetails) -0 }
else
{ Buyer — Seller : B2Sch (QuoteReject).0 }

FIGURE 4. Global Description of Simple Protocol with Conditional

Buyer[  InitB2S (B2Sch).
B2Sch (QuoteRequest).
B2Sch (QuoteResponse, Xquote) -
if xgquote <1000 then
{ B2Sch{QuoteAccept).
B2Sch (0rderConfirmation).
B2Sch (DeliveryDetails, ygetails)-0 }
else
{ B2Sch(QuoteReject).0 } |

FIGURE 5. Local Description of Simple Protocol with Conditional (Buyer)

3. Describing Communication Behaviour (2)

3.1. Conditional. In Simple BSH Protocol, we only specified that Buyer may choose either

QuoteAccept or QuoteReject nondeterministically. Suppose we wish to refine the description so
that Buyer would choose the former when the quote is bigger than a certain amount, otherwise if
else. For this purpose we can use a conditional.
The description now specifies the “reason” why each branch is taken. Notice the condition in the
conditional branch, x < 1000, is explicitly located: the description says this judgement takes place at
Buyer. The same scenario is described as follows using the end-point calculus. Other participants’
behaviours remain the same.

3.2. Recursion. Assume we wish to further refine the protocol with the following specification:
If the quote is too high, Buyer asks another quote until it receives a satisfactory
quote.
Such behaviour is easily described using a loop or, more generally, recursion. In Figure 6, we show
the global description of this enhanced protocol. There are only two additional lines: in the second
line, rec X. indicates that, intuitively:
We name the following block X. If X occurs inside that block, then we again
recur to the top of the block.
In the last line, which is the second branch, X recurs again. Thus, at this point, the description
recurs to a point immediately after rec X (i.e. the third line). The significance of recursion is its

10



Buyer — Seller : InitB2S(B2Sch) .
rec X.
{ Buyer — Seller : B2Sch (QuoteRequest).
Seller — Buyer : B2Sch (QuoteResponse, Vquote, Xquote) -
if xguote < 1000 @Buyer then
{ Buyer — Seller : B2Sch (QuoteAccept).
Seller — Buyer : B2Sch (OrderConfirmation).
Seller — Shipper : InitS2H(S2Hch) .
Seller — Shipper : S2Hch (RequestDeliveryDetails).
Shipper — Seller : S2Hch (DeliveryDetails, Vaetails, Xdetails) -
Seller — Buyer : B2Sch (DeliverDetails, Xgetails, Ydetails)-0 }
else
{ Buyer — Seller : B2Sch (QuoteReject).X } }

FIGURE 6. Global Description of Simple Protocol with Conditional and Recursion

expressiveness (it can easily express various forms of loops) and its theoretical tractability. In the
description, it is assumed that the value vquote Will be updated appropriately by Seller, which is
omitted from the protocol description.

It is instructive to see how this recursion is translated into end-point behaviour. We present the
local counterpart of Figure 6 in Figure 7 (we omit Shipper’s behaviour which does not change).
Observe both Buyer and Seller use recursion, so that they can collaboratively be engaged in recur-
sive interactions. No change is needed in Shipper’s local description, since it does not involve any
recursion.

3.3. Timeout. Let’s consider refining Simple BSH protocol as follows:

If Buyer does not reply in 30 seconds after Seller presents a quote, then Seller

will abort the transaction. Once Seller decides to do so, even if a confirmation

message arrives from Buyer later; it is deemed invalid.
For describing this refined behaviour, we first should have a means to describe a timeout. We consider
this mechanism consisting of (1) creating a timer with a timeout value; (2) starting a timer; and (3)
exception is thrown when a time out occurs. This exception is a local exception, in the sense that we
consider our abstract notion of exceptions on the basis of the following infra-structural support:

All exceptions are caught and handled within a participant locally (a participant

may interact with other parties as a result).
This is the standard, low-cost mechanism employed in many run-times such as those of Java and
C++.

Let us see how this can be realised in concrete syntax. We first refine the global description in

Figure 2. Some comments:

o In the first line (initiating a session), two session channels, B2Sch (for default communica-
tions) and S2Babort (for aborting a transaction), are communicated through InitB2S. This
generalised form of a session, where participants can use multiple channels in a single
session, is useful for varied purposes.

11



Buyer[  InitB2S (B2Sch).
rec X.
{ B2Sch(QuoteRequest).
B2Sch (QuoteResponse, Xquote) -
if xguote <1000 then
{ B2Sch{QuoteAccept).
B2Sch (0rderConfirmation).
B2Sch (DeliveryDetails, ygetails)-0 }
else
{ B2Sch{(QuoteReject).X } } |

Seller[  InitB2S (B2Sch).
rec X.
{ B2Sch(QuoteRequest).
B2Sch (QuoteResponse, Vqyote) -
{ B2Sch(QuoteAccept).
B2Sch (OrderConfirmation).
InitS2H (S2Hch).
S2Hch (DeliveryDetails).
S2Hch (DeliveryDetails, Xgetails) -
B2Sch (DeliveryDetails, Xgetails) -0 }
4
{ B2Sch(QuoteReject).X } |

FIGURE 7. Local Description of Simple Protocol with Recursion (Buyer/Seller)

Buyer — Seller : InitB2S(B2Sch, S2Babort) .
Buyer — Seller : B2Sch (QuoteRequest).
Seller — Buyer : B2Sch (QuoteResponse, Vquote, Xquote) -
let t = timer(30) @Seller in {
{ Buyer — Seller : B2Sch (QuoteAccept) timer(r).
Seller — Buyer : B2Sch (OrderConfirmation).

Seller — Buyer : B2Sch (DeliverDetails, Xgetails, Ydetails) -0 }
+

{ Buyer — Seller : B2Sch (QuoteReject) timer(s).0 }
catch (timeout(r))

{ Seller — Buyer : S2Babort (Abort).0 } }

FIGURE 8. Global Description of Simple Protocol with Timeout

o In the fourth line, a timer ¢ with timeout value 30 is initiated at Seller. This timer will be
stopped if the input guard specifying that timer (Lines 6 and 10) receives a message (the
two branches of a single choice have the same timer).

12



Seller[  InitB2S (B2Sch, S2Babort).
B2Sch (QuoteRequest).
B2Sch (QuoteResponse, Vqyote) -
let 7 = timer(30) in  {

{ B2Sch(QuoteAccept) timer(z).
B2Sch (0rderConfirmation).
B2Sch (DeliveryDetails, Xgetails) -0 }

4

{ B2Sch{QuoteReject) timer(z).0 }

catch (timeout(r))

{ S2Babort(rbort)abort.0 } } ]

Buyer[  InitB2S (B2Sch, S2Babort).

{

B2Sch (QuoteRequest).
B2Sch (QuoteResponse, Xquote) -
{ B2Sch(QuoteAccept).
B2Sch (0rderConfirmation).
B2Sch (DeliveryDetails, Xgetails) -0 }
S
{ B2Sch{QuoteReject).0

}

par
{ S2Babort (abort)abort.0 }

FIGURE 9. Local Description of Simple Protocol with Timeout

e In the second line to the last, an exception handler is given, which says: when the timer
fires, Seller will send an abort message to Buyer. It is omitted that, if Buyer’s message
arrives, Seller behaves as a sink, i.e. does nothing.

The same protocol can be described using the local formalism extended with timeout as follows.
As before, in the exception branch, that Seller is assumed to behave as a sink to messages at B2Sch
(i.e. B2Sch(QuoteAccept).0+ B2Sch (QuoteReject).0 is omitted: it is possible it would behave
non-trivially after it is in the abort mode). On the other hand, in Buyer’s behaviour, we use par which
indicates parallel composition. This behaviour is the same as before except the reception at the abort
channel is added on parallel.

3.4. Combining Conditional, Recursion and Timeout. As a conclusion to this section, we
present the combination of all constructs we have introduced so far. Figure Figure 10 gives a global
description of the following behaviour:

(1) First, Buyer asks Seller, through a specified channel, to offer a quote (we assume the good
to buy is fixed).

(2) Then Seller replies with a quote.

(3) Buyer then answers with either “I will buy” (if the price is cheap) or “I will not buy” (if
not) to Seller. S

(4) If the answer is “I will buy”, then Seller sends a confirmation to Buyer, and sends a
channel of Buyer to Shipper. Then Shipper sends the delivery details to Buyer, and the
protocol terminates.

(5) If the answer is “I will not buy”, then the interaction recurs to (1) above.

13



Buyer — Seller : InitB2S(B2Sch) .
rec X. {
Buyer — Seller : B2Sch (QuoteRequest).
Seller — Buyer : B2Sch (QuoteResponse, Vquote; Xquote) -
let 1 = timer(30) @Seller in {
if (xquote < 1000 @Buyer) {
Buyer — Seller : B2Sch (QuoteAccept) timer(z).
Seller — Buyer : B2Sch (OrderConfirmation).
Seller — Shipper : InitS2H(S2Hch) .
Seller — Shipper : S2Hch (RequestDeliveryDetails).
Shipper — Seller : S2Hch (DeliveryDetails, Vgetails, Xdetails) -
Seller — Buyer : B2Sch (DeliverDetails, Xgetails, Ydetails) -
0
} oelse {
Buyer — Seller : B2Sch (QuoteReject) timer(r). X }
catch (timeout(r)) {
Seller — Buyer : S2Babort (Abort) .0

FIGURE 10. Global Description of BSH Protocol with Conditional/Loop/Timeout

(6) If Buyer does not reply in time, Seller will abort the transaction.

The local description is given in Figure 11.

14



Buyer[  InitB2S (B2Sch, S2Babort) .
{
rec X.
{ B2Sch(QuoteRequest).
B2Sch (QuoteResponse, Xquote) -
if xguote <1000 then
{ B2Sch(QuoteAccept).
B2Sch (0rderConfirmation).
B2Sch (DeliveryDetails, ygetails)-0 }
else
{ B2Sch{QuoteReject).X } }
par
S2Babort (ABORT, Xaport ) -0
}
]

Seller[  InitB2S (B2Sch).
rec X.
{ B2Sch(QuoteRequest).
B2Sch (QuoteResponse, Vquote) -
let 7 = timer(30) in  {
{ B2Sch(QuoteAccept) timer(t).
B2Sch (OrderConfirmation).
IitS2H (S2Hch).
S2Hch (DeliveryDetails).
S2Hch (DeliveryDetails, Xgetails) -
B2Sch (DeliveryDetails, Xgetails) -0 }
4
{ B2Sch(QuoteReject) timer.X }
catch (timeout(7))
{ S2Babort (hbort, abort).0 }
}
]

Shipper[  InitS2H (S2Hch) .
S2Hch (DeliveryDetails).
S2Hch (DeliveryDetails, Vgetails) -0 |

FIGURE 11. End-Point Description of BSH Protocol with Conditional/Loop/Timeout

4. Describing Communication Behaviour (3)

4.1. Criss-Crossing of Actions: Proactive Quoting (1). In this section we treat behaviours
which involve criss-crossing: between two participants, say A and B, one message goes from A to B
and another from B to A in parallel, one of which often having a stronger priority. We use use-cases
contributed by Gary Brown [13] and Nickolas Kavanztas [29].

Brown’s use-case is a (simplified form of) one of the typical interaction patterns in Investment
Bank and other businesses. Its narrative description is extremely short, but the induced behaviour is
non-trivial to describe. We assume two participants, A and B.

(1) Initially, A sends a request for quote to B.
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A — B : InitA2B(A2Bch).
A — B :A2Bch (RequestQuote).
B — A:A2Bch (Quote, Yquote, Xquote) -
Pquotenccepted = £f @ B.
{
Ta. A — B:A2Bch(AcceptQuote). pguotencceppted :=tt @ B. 0
par
rec X.{
let t = timer(5) @B in
when (expired(7) @B)
if(pquotenccepted = T£@B) { B — A : A2Bch (RefreshQuote, Yquote, Xquote) - X }

FIGURE 12. A Proactive Quoting with a Criss-Cross (global)

(2) Then B sends an initial quote to A as a response.
(3) Then B will enter a loop, sending pro-actively a new quote in a “RefreshQuote”-message
every 5 seconds until A’s “AcceptQuote”-message arrives at B.
Thus the “AcceptQuote”’-message from A is in a race condition with a “RefreshQuote”-message from
B. Once the quote is accepted, B should terminate its loop. We leave unspecified in the use-case how
a quote is calculated, how A decides to accept a quote, and how A notifies which quote A is agreeing
on (refinements are easy).
The repeated actions at each time interval can be cleanly modelled using the predicate-based

invocation mechanism [S2], which is also useful for other purposes.

when (p@A) {I}

where p is a predicate (an expression of a boolean type). It reads:

The interaction / does not start until the predicate p becomes true: when it
becomes so, then / will be engaged in.

Its precise semantics is either (1) whenever p becomes true, / should start; or (2) when p becomes
true, / can start, but this “event” can be missed in which case I may not start. The behaviour in (1)
tends to become more deterministic, while (2) is realisable through busy-waiting without additional
synchronisation mechanism.

We use this construct to describe the use-case. We first informally illustrate the underlying idea
(suggested by [13]): after the initial quote has arrived at A, we consider there are two independent
threads of interactions, in both A and B.

e In one, A may decide to send the “AcceptQuote”-message; when B receives it, B will set
its local variable pquoteaccepted to “truth” (which should be initially “false”).

e In another, A is always ready to receive “RefreshQuote”-message (with a new quote
value); On the other hand, as far as the local variable p quoteacceptea is false, B will
repeatedly send, at each 5 seconds, a fresh quote.

Note the variable pguoteaccepted 1S used for communication between two threads in B. When B
ceases to send new quotes, A also cease to react to new quotes from B, thus both reaching a quiescent
state. The description in the global formalism (augmented with “when”-construct) follows.
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A[ TnitA2B (A2Bch, B2Ach).
A2Bch (RequestQuote).
B2Ach (Quote, Xguore) -
{7.A2Bch(AcceptQuote, xguore) .0 par rec X.{ B2Ach(RefreshQuote, xguore) - X } }

B  InitA2B (A2Bch, B2Ach).
A2Bch (RequestQuote) .
B2Ach (RefreshQuote, yquote) -
PquoteAcceppted += ff.

{

A2Bch (AcceptQuote). pauotencceppted :=tt . 0
par
rec X.{
let r = timer(5) in when (expired(r))
{ if (Pquoteaccepted = ££) { B2Ach (RefreshQuote, yguore) - X } }

FIGURE 13. A Proactive Quoting with a Criss-Cross (local)

Above, “t4” is the standard T-action local to A, indicating passage of an unspecified duration of time.
Thus as a whole

Ta. A — B:A2Bch(AcceptQuote). Pauotencceppted :=tt @B. 0,

indicates that the sending of “AcceptQuote” (with a quote value at the time) may take place after
some duration of time, and when B receives this message, B will assign “truth” to its local variable
Pquotencceppted- One may as well refine the above part as follows, using the “when” construct.

when (satisfied)@A)
{ A — B :A2Bch{AcceptQuote). pquotencceppted :=tt @B.0 }

where satisfied is an unspecified predicate local to A, indicating the satisfaction of A w.r.t., say,
the current quote value.

In the second thread, B is engaged in a loop: the timer ¢ expires at each 5 seconds and, when
expires(f) (which is a predicate rather than exception) becomes true, the body of “when” is exe-
cuted. If pguotenccepptea 18 false, it sends a quote and re-enters the loop: if pquotencceppted 18 true, it
terminates the loop. The interaction

B — A:A2Bch (RefreshQuote, Yquote, Xquote)

not only indicates B sends a “RefreshQuote”-message, but also A is ready to receive it and sets the
communicated quote into its variable xqyote-

The protocol description invites us to diverse forms of refinement. For example, we may con-
sider the predicate satisfied is a boolean variable set after A receives a new quote (in the second
thread). We leave exploration of such refinements to the reader.

Next we consider the local version of Figure 12, using the end-point counterpart of the “when”-
construct. This is given in Figure 13. One may compare the presented behaviours with those in
Figure 12. The “when” construct is used in B, with the same semantics as in the global calculus.

In the local description of A’s behaviour, the projection makes clear that, in one of its two
threads, A repeatedly gets ready to receive “RefreshQuote”-messages from B, while, independently,
may move to the stage where it sends an “AcceptQuote”-message to B. Thus, when a criss-cross
of these messages take place, A will simply receives the message from B while sending its own
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A — B : InitA2B(A2Bch, B2Ach) .
A — B:A2Bch(RequestQuote).
B — A: B2Ach(Quote, quote, Xguote) -
rec X.{
let 7 = timer(5) @B in
A — B : A2Bch (AcceptQuote)timer(z).0
catch(timeout (1))
B — A: B2Ach (RefreshQuote, newQuote, xguote) - X }

FIGURE 14. A Proactive Quoting with a Criss-Cross (global, with
atomic interaction)

message. As noted before, we may as well refine A’s behaviour, for example in its transition to the
quote acceptance state.

In the local description of B, the first thread does not start from the t-action (which is A’s local
action) but starts from the reception of “QuoteAcceptance”-message from A. The second thread is
engaged with the timeout and loop using the “when” construct, using the variable pgyoteacceptea-

The local descriptions of the proactive quoting protocol in Figure 13 are directly related with
its global description in Figure 12 and vice versa, up to the treatment of criss-crossing. In particular,
it is not hard to imagine how we can project the description in Figure 12 to the one in Figure 13
following a simple principle. A natural question is whether we can do the reverse translation in a
general way: can we integrate the local descriptions in Figure 13 to synthesize the global description
in Figure 12?7 What would be the general principle involved in such projection? Part of this question
will be answered in Part II of the present paper.

4.2. Criss-Crossing of Actions: Proactive Quoting (2). In this subsection, we present an

alternative global description of the proactive quoting protocol. It is simple and understandable, even
though the description is only sound under a strong assumption about the underlying communication
on mechanism. The description follows.
The description in Figure 12 is terse and understandable. However its clarity has become possible
only by assuming a significant condition on the underlying messaging semantics: each interaction
is atomic. This assumption becomes essential in A — B : A2Bch (AcceptQuote), which needs be
executed atomically: if not, it is possible that A sends a AcceptQuote-message to B, but the time-out
in B is caught, B sends RefreshQuote to A, and A should again sends AcceptQuote-message again,
which is not the expected behaviour of A. Rather it says that A — B : A2Bch (AcceptQuote) either
happens or not at all and moves to a timer, which is only realisable if this action is atomic. It may be
costly to realise such atomicity in general. At the same time, the description may suggest atomicity
of interaction can lead to terse specification of a complex behaviour.

Due to the assumption on atomicity and its interplay with timer, it is hard to devise local de-
scriptions directly corresponding to Figure 14. Even if we stipulate the same atomicity assumption
in local descriptions, it is hard to construct the projection onto A: the problem is that the *when’ loop
within A does not have an activity that it can observe to indicate that B has exited the loop. A possi-
ble approach to this would be to model a guard condition for A to also include the ’quoteAccepted’
variable — but this guard condition would also have to include the aspect of duration, otherwise
(as a result of the when’ blocking semantics) the guard at A would simply block until the variable
’quoteAccepted” was set to true, and it would not receive any of the quote refresh messages. Fur-
ther, if both participants are required to use the same guard condition, then it also assumes they have
synchronised clocks and evaluate the expressions at exactly the same time.
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RBC — STC : InitR2S(R2Sch) .
RBC — STC: R2Sch (CreateQrder).
STC — RBC: R2Sch (OrderAck) .
let t = timer(7)@RBC in
{STC — RBC: R2Sch (POCompleted) timer(¢).0}
catch timeout(z) {
RBC — STC : S2Rabort (Abort) . {
STC — RBC: R2Sabort (ConfirmAbort).0
+
STC — RBC: R2Sch (POConfirmation).0 }

FIGURE 15. A Global Description of T-Shirts Procurement

4.3. Criss-Crossing of Actions: A T-Shirts Procurement Protocol (1). Next we treat Ka-
vanztas’s use-case [29], which describes a protocol for purchase orders between a really big corpo-
ration (RBC) and a small T-shirts company (STC).

(1) RBC sends a purchase order (PO) to STC.

(2) STC acknowledges the PO and initiates a business process to handle the PO.

(3) After STC’s internal processes regarding the PO are completed, STC sends “PO-Completed”
to RBC in order for RBC to complete its own business process.

(4) RBC can send a Cancel Order message to abort STC’s business process (which can criss-
cross with a PO completed message), any time before RBC receives the PO Completed
message from STC

(5) If Cancel Order arrives at STC before PO Completed is sent from STC, then STC aborts
its business process and acknowledges this to RBC with PO Cancelled, in order for RBC
to abort its own business process. Otherwise, if STC has already sent PO Completed, it
ignores the Cancel Order because RBC has agreed it will honor POs when cancellations
are not sent out within an agreed-upon time-frame.

(6) If RBC has already sent the Cancel Order message and then it receives the PO Completed
message, then instead of aborting, RBC completes it.

Figure 15 presents a global description of this protocol.

Above, RBC first initialises a session channel R2Sch through InitR2S, then sends an order, which
STC acknowledges. RBC then starts a timer, i.e. the longest time T it is willing to wait before
the PO confirmation arrives. The timer is frozen upon the PO confirmation. Alternatively if the
time-out occurs, it is handled by the catch part: RBC sends an abort message to STC, and either
STC acknowledges it or its PO-confirmation arrives. Note we have made a timer explicit in this
description: we later show a description which does not rely on the use of a timer.

An acute reader may observe that this description again assumes atomicity of communication,
as in the previous subsection, in the sense that: the execution of an interaction A — B : ¢h (Op) means
the two things at the same time: A sends a message and B has received that message.

Next we give an end-point counterpart of the same description, in Figure 16.

In STC’s description, we use the following predicate-based exception mechanism. The syntax for
this exception handling is:

try {P} catch (p) {0}

whose semantics is, informally: to execute the interaction P unless the predicate (a boolean-valued
expression) p is satisfied (note p is treated as an event). In the latter case, Q would be executed. This
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RBC[ TnitR2S (R2Sch).
R2Sch (CreateOrder).
S2Rch (OrderAck).
let t = timer(7)in  {
S2Rch (POCompleted)timer(z).0

catch timeout(s) {
S2Babort (Rbort, true) .
S2Babort (ConfirmAbort).0
J’_
S2Rch (POCompleted).0} |

STC[  InitR2S (R2Sch).
R2Sch (CreateOrder).
Xaport .= false.
S2Rch (OrderAck).
try
{ 7.S2Rch(POCompleted).0}
catch (—xaport )
{82Babort (ConfirmAbort).0
J’_
S2Rch (POCompleted).0}
par
S2Babort (Bbort, Xaport) -0 ]

FIGURE 16. A Local Description of T-Shirts Procurement

construct is feasibly implemented if the “catch” part is an exception such as timeout or explicitly
thrown exceptions. However its implementation becomes more involved if, as here, a predicate is
used for invocation since in that case a mechanism is necessary to watch the update of relevant
variables. Note this construct is similar to the “when” construct: the same underlying mechanism
can realise both. As an alternative, one may realise a similar behaviour using either a busy-waiting
or a “sleep” construct, though these alternatives may not be faithful to intended semantics when we
use arbitrary predicates for invocation.

We illustrate the behaviour of RBC and STC in this end-point description. First, RBC’s local
behaviour is as follows.

e The first three actions (session init, order request and acknowledgement) are obviously
implemented;

o RBC sets a timer and waits for T time-units to receive the PO confirmation from STC;

o If the time-out is triggered, RBC will send an abort to STC, and then wait for the abort
confirmation or for the PO confirmation.

The local behaviour of STC may be illustrated thus.

e As in the RBC part, the first three actions need no description, apart the fact that STC
has a variable for checking whether RBC has requested an abort or not. This variable is
initialised to false;

o At this point STC checks the abort variable, and if it is not true it decides to perform a tau
action and then send the PO confirmation.

o if the abort variable is true it then confirms the abort;

e in parallel with the described thread, there is another thread which just waits for an abort
message from RBC.
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RBC — STC : InitR2S(R2Sch) .
RBC — STC: R2Sch (CreateOrder).
STC — RBC: R2Sch (0rderAck) .
{
XabortRequested @STC := false.
isrc-
if “Xabortrequesteda @STC {
STC — RBC: R2Sch (POConfirmation).
Xcontarrived@RBC := true.0}
else
STC — RBC: R2Sabort (ConfirmAbort).0
}
par
{
Xconfarrived@RBC := false.
TRBC -
if ~Xcontarrived@RBC {
RBC — STC: S2Rabort (Abort) .

XpbortRequested - = true.( }

FIGURE 17. A Global Description of T-Shirts Procurement without
Timer

Note the end-point description makes it explicit how timeout is done and how criss-crossing occurs in
terms of two distributed end-point behaviours. We believe it faithfully realises the global behaviour
described in Figure 15 under the assumption of atomicity of interactions: at the same time, one may
observe that the given end-point description does not automatically get extracted from the global
description. In fact, as far as the initial protocol description goes, the local description arguably
realises a correct behaviour even if we do not stipulate the atomicity assumption for communication
actions (it is notable that CDL [52] does not stipulate such atomicity).

4.4. Criss-Crossing of Actions: A T-Shirts Procurement Protocol (2). The descriptions so
far depend on the explicit use of timer and exception (timeout) which a timer engenders. However
the nondeterminism and criss-crossing of message exchanges themselves may not be directly related
with local use of timers. Indeed, a description of the overall exchange of interactions is possible
without using timers, as we shall discuss below.

The protocol uses two (local) variables, AbortRequested at STC and ConfArrived at RBC, both
initialised to be false. The timing of update of these variables is the key underlying idea of this
protocol. The protocol description follows.

Let us offer an informal illustration of the protocol.

e The initial three interactions remain the same as before, i.e. sending a purchase order
from RBC to STC after a session initiation, then an acknowledgement from STC to RBC.
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o At this stage the interactions are divided into the parallel composition of two behaviours.
In one thread of interaction, we have:

(1) STC will, at some point, check AbortRequested is true (i.e. RBC’s abort request has
arrived) or false (i.e. RBC’s abort request has not arrived).

(2) If AbortRequested is false, then STC will send a PO confirmation message. When
RBC receives it, it will set its ConfArrived to be true, and STC moves to the com-
pletion of PO processing.

(3) If AbortRequested is true, then STC will send a AbortConfirmed message. RBC
receives it, and in both sites the PO process aborts.

In another thread of interaction, we have:

(1) At some point RBC will check ConfArrived.

(2) If it is false (i.e. a PO confirmation has not arrived), then sends AbortRequest-
message to STC.

(3) Ifitis true (i.e. a PO confirmation has arrived), then RBC moves to the completion
of PO processing.

In Figure 17, tsr¢ (resp. Trpc) indicates a T-action in STC (resp. in RBC), which may take an
unspecified amount of time. We can check that this protocol never moves to:

e The situation where STC sends a PO confirmation but an RBC aborts (since, for an RBC
to abort, it needs to obtain AbortConfirm message from STC).

e The situation where RBC receives both a PO-confirmation and AbortConfirm (for the
same reason).

Note however it is possible STC may receive, in one thread, AbortRequest message at time ¢ but, for
some reason, this has not been propagated to anther thread in time, so that, at time ¢ 4¢3, STC sends
a PO-confirmation message to RBC. However this does not contradicts the initial specification (we
also believe this is consistent with the standard business convention).

The end-point projection of this example is not to hard, which we leave to the reader. We
also note Kavanztas [29] presents a different description in CDL using the “when” construct with
distributed predicates.

4.5. Further Note. In this section we have explored various ways to describe two business
protocols (though the presented ones are far from the only ways to describe them). The purpose of
these formal representations of business protocols in the calculi is not only to analyse the behaviours
of these protocols themselves and to reason about them, but also to understand the correspondence
between various constructs and their expressiveness. By having a precise operational semantics, we
can discuss diverse aspects of the constructs needed to represent a large class of communication
behaviours with precision. Further analyses of these and other complex business protocols in these
formalisms would be an important and stimulating future research topic.
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feature CDL formalism
session channels located at input no restriction
session initiation implicit explicit
general co-relation yes by adding “polyadic sync”
typing by-name (informal) by-structure (formal)
type checking no yes
local exception none yes
repetition loop recursion
sequencing imperative prefix
predicate-based invocation yes by adding “when”
EPP implemented proved
global variable lookup yes no
global completion yes no

TABLE 1. Correspondence and Differences

5. Correspondence with CDL

In this section, we briefly outline relationship between CDL and the global/local calculi we have
used in the previous sections. The correspondence/differences are summarised in Table 1.
Some comments:

Channels are one of the fundamental elements in communication-based languages as well
as in security engineering, arising in diverse forms (such as sockets, remote object IDs,
and URLSs). Even though an informal global description may not mention channels (this is
because the names of participants play the role of channels), they become essential when
exception and channel passing are involved. In fact, in standard distributed programming,
we may use multiple channels (often in the shape of transport connections) in one unit of
conversation.

CDL channels are located at the inputting side, representing the ports where the sender
writes to. Formalisms are more general, using channels both for input and for output.
Concerning session initiation, this is done implicitly in CDL. In our calculi, we place the
explicit session initiation which makes the underlying operational and type structure more
explicit and more amenable to analyses. This does not prevent us from using the calculus
to represent practical business protocols since we may regard the session initiation and
the subsequent action to be combined into a single message in implementation.
Co-relation is one of the significant features of CDL. Co-relation can be considered as a
way to collectively treat multiple sessions as one conversation unit. Though we have not
been treated in this work, this feature can be cleanly represented in formal calculi. One
method is to use the so-called polyadic synchronisation.

CDL does not have a proper notion of type checking nor type inference. However it is
equipped with such notions as relationship, roles and participants, whose specifications
are related with each other through XML schemas. These constructs play an important
role as part of documentation. These data will be usable as a basis of typing, using the
so-called by-name approach (as found in Java).

In the current CDL specification, type checking (i.e. verifying if a particular choreogra-
phy is well typed) is not part of the specification. Such type checking may as well be
partly complemented by type inference (i.e. elaborating untyped phrases with appropriate
types). These verifications can be done formally in the calculus, i.e. we can provide an
algorithm which, given an interaction / and a type ¢, checks whether the 7 is a good type
for . Transporting this facility into a CDL development tool will be one of the significant
future topics.
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e As we saw above, exception are indispensable for managing many interesting real applica-
tion situations. One thing missing in WS-CDL would be the ability of handling exceptions
locally, with a standard local scoping rule. This topic may deserve further consideration.

e Repetition of instructions is usually dealt with while loops. In the calculus we use recur-
sion, another mechanism which can faithfully emulate the standard loop operation as well
as many forms of recursive calls. They also enjoy many theoretical features. This does
not mean it is better to replace loops with recursion: when a loop behaviour is intended,
writing it with a loop often leads to a more understandable program.

e Sequencing of interactions can be treated in two different ways, i.e. the way it is done
in CDL and the way it is done in ®-calculus. In CDL, a standard imperative language
construct “;” is adopted. In our formalisms, we are using the simple prefixing opera-
tor. Superficially, the latter construct is less powerful than the former, mainly because it
assumes only very simple operations are allowed before the “.”. On the contrary, when
using ““;” we can combine complex expressions such as those combined by the parallel
operator. Again there is a precise embedding of *“;” into the prefixing in combination with
other constructs, so we lose no generality in using “.” while allowing easier analysis.

e CDL is equipped with the predicate-based invocation mechanism (for which we used
the construct when). This mechanism is powerful for various specifications, but it also
demands a heavy implementation mechanism. Exploration of cases where this construct
becomes indispensable would become important for understanding its status in structured
concurrent programming.

e Various globalised features of CDL are incorporated because they often naturally arise
in business protocols. Their semantic content however may not be precisely understood.
Note globalised behaviour has to be, in effect, realised by interactions among distributed
peers. Therefore, at least at the level of formalisms, the understanding of how a certain
global construct may be realised by interactions is a prerequisite for their proper inclu-
sion in formalisms. Precise appreciation of what high-level global abstraction would be
suitable for describing communication-centred software behaviour, and how they relate
to their local (communication-based) realisation, is an important topic for future study.
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Part 2

A Formal Theory of Structured Global
Programming






6. Introduction to Part 2

Part II develops a theory of end-point projection (EPP), which gives an exact condition and
framework by which we can relate the global description of communication-centric software to its
local description. The theory is intended to offer one of the central formal underpinnings of W3C’s
web service choreography description language, WS-CDL [51]. The development of the theory has
benefitted greatly from the dialogue between the invited scientists of W3C WS-CDL Working Group
and WG’s members: in fact, without this dialogue, this theory may not have been developed, at least
at this moment and in its current shape.

The presented theory may be considered as offering a formal substrate for designing, imple-
menting and using distributed applications written in WS-CDL and related languages, by establish-
ing principles by which applications’ global description and their local description are naturally and
precisely related. In particular, the theory may be usable, in combination with results from other
research threads, as a mathematical underpinning of various tools and infrastructural support for web
services, including those for static and dynamic verification. One such effort is underway, using an
open-source reference implementation of WS-CDL [40].

In the rest of Part 2, Section 7 informally motivates the idea of end-point projection and its
theory, and summarises key technical results and their engineering relevance. Sections 8, 9 and
10 formally introduce the global calculus, centring on its dynamic semantics (reduction) and static
semantics (type disciplines). Section 11 and 12 does the same for the local calculus. Sections 13, 14
and 15 introduces key descriptive principles for the global calculus which form a basis of the theory.
Section 16 establishes the main results of the paper, the exact correspondence in type structures and
dynamics between descriptions in the global calculus and those in the local one, through an end-point
projection. Section 17 discusses extensions. Section 18 positions the presented ideas in a historical
context, compares the present work with existing work, and concludes with further topics. Some of
the auxiliary proofs and definitions are left to Appendix.
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7. Informal Preview

7.1. What is end-point projection? End-point projection, or EPP for short, is a concept fre-
quently discussed throughout the development of CDL in the W3C WS-CDL working group. Its
basic idea is simple, and may be summarised as follows.

Let’s write down a communication-centred concurrent program (in this case a
business protocol) globally, then project it to each end-point so that we can ob-
tain a local description which realises the original global description through
their interaction.

As a simple example, consider an interaction:
(11) Buyer — Seller : B2Sch(QuoteAccept, 100, x).0

which is an interaction between a Buyer and a Seller, the former communicating it accepts
the quote with price 100 pounds (or dollars or whatever currency you like). This simple global
description is projected onto two end-point (local) descriptions:

(12) Buyer[ B2Sch{100).0 |
and
(13) Seller[ B2Sch(x).0 ]

Here description of an “interaction” in (11) (in which both sending and receiving of information are
one thing) is decomposed into its local communication actions (in which a sending action of (12)
and a receiving action of (13) are separate). We can see that, if Buyer does the specified sending and
Seller the receiving, then precisely the interaction as specified in (11) takes place. So we can regard
(12) and (13) as how local agents should behave if we wish realise the global interaction as described
in (11). As such, they can be regarded as local programs implementing original global description,
or alternatively as local monitors which constrain the behaviour of each agent.

7.2. Why EPP matters. Why does EPP matter? First, without EPP, we do not have a clear idea
how a global description can be executed, and, therefore, its computational meaning is not clear: a
central idea of web services, or in general communication-centred programs and services, is that
independently running ! concurrent agents achieve their application goals through their communi-
cation with each other. Thus a global description should be considered as describing behaviour of
distributed communicating processes: the latter is the meaning of the former. In this sense, it is
only when a uniform notion of EPP is given that the computational content of global descriptions is
determined.

Second and relatedly, EPP is an essential basis for diverse engineering applications of global
descriptions. Once we have a clear notion of EPP, it offers, for each end-point, what local behaviour
a given global description specifies: if we wish to monitor whether an independently developed
end-point program behaves in a way specified by a global description, then we can compare the
former with the EPP of the latter. Or if we wish to develop a program referring to a given global
description of their interactions, we can start from the EPP of the latter: and after developing a
fully specified program, or even during the development, a programmer/designer working on each
endpoint program can check whether it conforms to the original global description with respect
to its communication behaviour (such validation, which we may call conformance validation, will
be particularly useful in collaborative program development). Or we can even develop a global
description language which can specify full algorithmic details specification at each-end point in
which case the result of performaing an EPP on a detailed global specification onto all the end-points
offers directly executable distributed programs whose behaviour is by definition conformant to the
original global specification.

'Here “independence” indicates primarily about synchronisation boundaries, but it can also indicate protec-
tion domain (security) boundaries.
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Thirdly, EPP offer a central underpinning for the theoretical understanding of the structures of
global description and their use. Indeed, EPP opens the essential conduit between theories of pro-
cesses and web service engineering, by relating the global description to the equivalent description
in the shape of communicating processes. The established connection enables application of alge-
bras, logics and types of theories of process calculi in the present engineering context. It also (as
our subsequent inquiries make clear) leads to a deep structural analysis of global descriptions. Web
service engineering demands theoretical foundations because it is about interoperability among dis-
parate agents inhabiting distinct protection domains (or, in a more wordily term, organisations with
possibly conflicting interests and complex trust relationships). In such a context, different organ-
isations need a clear shared understanding on how they are to interact with each other in a given
business protocol. As an example, consider a business protocol which is about transaction of stocks
and which need be bound by regulations. We need a clear criteria as to whether each end-point
(organisation) is acting conforming to the protocol. In fact, conformance of the protocol itself to a
regulation should initially be clarified, for which we need clear engineering understanding preferably
backed up by a theoretical basis. We expect many key elements of theories of processes will offer
critical engineering tools in this context.

7.3. Criteria for EPP. An ad-hoc EPP framework may not work: in fact, it never works. This
is for simple reasons. First, we wish to implement EPP as an algorithm which can once and for all
map a large class of global descriptions to their local counterparts. Thus we need a general way to
relate global descriptions to local ones. Second, in relating global description to local description,
we wish to avoid the situation where generated local description by different notions of EPP are not
compatible with each other. This is especially true when a global description serves as a reference
description of software infrastructure in an organisation or a social domain, used as a key reference
for various business decisions, interoperability and infrastructural development (this is in fact one of
the stated goals of WS-CDL [51]).

So we need a general framework for EPP, which can uniformly map a general class of global
descriptions onto their end-point counterparts. But how can we know a given EPP is correctly pro-
jecting a global description to a local description? An informal, but important, engineering criteria
is that the resulting local descriptions have intuitively a clear and direct connection to the original
global description. That is, a designer who specifies software behaviour by a global description
should not have surprises when the real computation is realised by communications among projected
local processes. From the viewpoint of interoperability, it is also important that we have a general
and uniform scheme which can be applied to a large class of global descriptions (note that, assuming
we use a public standard for global descriptions, if we have a sufficiently general and satisfactory
EPP mapping, this gives us a firm basis for interoperability). Apart from these two informal criteria,
the following three are natural formal criteria by which we can measure the effectiveness of an EPP
scheme (which are in fact closely related to the two informal criteria we just noted).

e Mapping preserves types and other well-formedness conditions.

e The projected local description implements all behaviours expected from the original
global description. Concretely, actions expected from a global description should be
faithfully realised by communication among a collection of projected end-points. This
property may be called completeness of EPP.

e In the reverse direction, locally projected communicating processes should not exhibit
observable behaviour not prescribed in global description, as far as its predefined interface
goes.2 Concretely, communications among projected peers should not go beyond actions
stipulated in the original global description. This may be called soundness of EPP.

For these criteria (especially the latter two) to make sense in practice, we should have a precise
way to say, among others, what course of actions (their kinds and structures) are stipulated in a
global description, and what course of interactions (their kinds and structures) are expected from

2L ocal programs may as well need to engage in actions outside of those prescribed even just for implement-
ing those prescribed actions.
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a collection from local descriptions. To do so, we can follow the standard framework in process
algebras [8,22,32,35] and programming language semantics [20,41, 53], defining formal syntax,
well-formedness (type disciplines) and evolution of behaviour (dynamic semantics). By mathemati-
cally defining these ideas, we can now formulate correctness criteria without ambiguity as well as a
means to prove (or refute) whether a framework of an EPP satisfies the given criteria (of course the
use of formal definitions of semantics of process languages go beyond its use in end-point projec-
tions, including a reference for concrete implementation, a formal basis for developing diverse forms
of verification technologies, and deeper inquiries into mathematical properties of these descriptive
frameworks themselves, cf. [36]).

The aim of the rest of the present note is nothing but carrying out the program just outlined:
formalising central notions of global/local languages in their distilled form; presenting formal criteria
for correctness of EPP; and study a general framework of EPP including formal arguments for its
correctness, including three natural descriptive principles under which the presented EPP results in
sound and complete local descriptions. In particular we shall present:

e Formal definition of static and dynamic semantics of the global and local calculi, which
distills respective descriptive paradigms/languages (static semantics specifies a type dis-
cipline for description, dynamic semantics specifies how computation proceeds in a given
description). Type disciplines in respective formalisms act as a basis of the whole techni-
cal development in the paper.

o A theory of end-point projection, which maps a global description to local description, as
well as offering a means to examine its properties. We first present three basic principles
for global descriptions which defines a notion of “well-formedness” of description. Then
we introduce a simple inductive algorithm which maps each well-formed global descrip-
tion onto a collection of local descriptions (one for each end-point), and present formal
arguments that this map is both sound and complete, with respect to static and dynamic
semantics of respective formalisms.

The theoretical development focusses on key elements of global/local formalisms without such fea-
tures as timeout and exception. We believe there are no unsurmountable technical obstacles to extend
the present theory to these additional features.

30



8. Global Calculus (1): Syntax

In this section and the next, we introduce the syntax and dynamic/static semantics of the global
calculus. The dynamic semantics specifies an abstract notion of “computation” underlying a formal-
ism. In the case of Turing Machine, this is a move of a head and read/write of each slot of a tape. In
the case of the A-calculus, this is an application of a lambda term to an argument and a subsequent
substitution (for example, (Ax.fx)3 — f3 indicates that, when the function (Ax.fx) is applied to an
argument 3, the result is another application f3). In the case of a global calculus, this is represented
as a transition from a global description to another global description, carrying out each step of in-
teraction (exchange of a message). Since each participant may own its own local variables, such
transition can also involve collection of local variables of the participants involved.

From an engineering viewpoint, the dynamic semantics pins down a mathematical notion which
designers, implementors and users can refer to when they wish to discuss about dynamic behaviour
of description with rigour. For example, this would allow us to state with precision whether an
implemented program conforms to the description or not. The dynamic semantics is defined using
an intuitive notation,

(6,1) — (c'I)
which says a global description [ in a state ¢ (which is the collection of all local states of the par-
ticipants) will be changed into I’ in a new configuration ¢’. This idea comes from the small-step
semantics given to imperative languages (cf.[41, 53]).

The description of interactions in the global calculus centres on a notion of session, in which
two interacting parties first establish a private connection and do a series of interactions through
that private connection, possibly interleaved with other sessions. More concretely, processes first
exchange fresh session channels for a newly created session, then use them for interactions belonging
to the session (this is equivalent to the more implicit framework where identity tokens in message
content are used for signifying a session). This idea has a natural association with a simple type
discipline, where we represent a structured sequence of interactions between two parties as an type.
Here “types” mean syntactic annotation on descriptions of interactions: this annotation describes an
abstract notion of interface of a service (or a shared service channel), and is inferred by typing rules
for each description following its syntactic structure. For example, consider an interaction:

Buyer — Seller : s(RequestQuote, productName, x).

(14 Seller — Buyer : s(ReplyQuote, productPrice, y)

In (14), a Buyer requests a quote for a product, specifying the product name, through a session
channel s: then, through the same channel, a Seller replies with the quote value (one may consider
ch to be a socket connection). This interaction at s can be abstracted by the following session type:

(15) s T RequestQuote(String). s | ReplyQuote(Int)

The session type in (15) abstracts a sequence of actions performed at ch, specifying the following
abstract behaviour:

First sends (“1”) a string with operation name RequestQuote, then receives

(“l”) an integer with operation name ReplyQuote.
Note this abstraction is given from the Buyer’s viewpoint: we can equally present the abstraction for
the Seller’s action:

(16) s | RequestQuote(String). s T ReplyQuote(Int)

which simply reverses the direction of information flows. Note that, in this way, there is a natural
notion of duality associated with session types.

Section 3 and Section 4 complete the presentation of the global calculus. The first introduces the
formal syntax of the global calculus, with many illustrations. In Section 4 we present the dynamic
semantics of the calculus, followed by its static semantics. We then show a basic relationship be-
tween the dynamic semantics and the static semantics: when a computation happens in a well-typed
description, the result is always well-typed again.
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8.1. Formal Syntax. The formal syntax of the global calculus is given by the standard BNF.
Below symbols 1,1’,... denote terms of the global calculus, also called interactions. Terms describe
a course of information exchange among two ore more parties from a global viewpoint.

I:= A—B:ch(vs§).1 (init)
|A—B:s{op, e, y).I (com)
|x@A:=e.l (assign)
|if e@A then I} else I (ifthenelse)
| L+ (sum)
|| I (par)
[ (vs) I (new)
| x4 (recVar)
| rec XA .1 (rec)
|0 (inaction)

The grammar above uses the following symbols.3

a,b,c,ch, ... range over a collection Ch of service channels (also called session initiating
channels). They may be considered as shared channels of web services.

s,8',... range over a collection S of session channels. Session channels designate commu-
nication channels freshly generated for each session. They can be implemented in various
ways: in TCP, the same concept is realised by so-called connection (also called session).
In web services, they are realised by sending freshly generated identity information as
part of messages.

A,B,C,... range over a collection P of participants. Participants are those who are en-
gaged in communications with others, each equipped with its own local state. Each par-
ticipant may have more than one threads of interactions using multiple channels.
X,¥,2,...range over a collection of variables, which are close to variables in the traditional
programming languages such as Pascal and C, in that their content is updatable.

X,Y,Z, ... range over a collection of term variables, which are used for representing recur-
rence (loop) in combination with recursion rec X./. Note term variables occur annotated
with participants.

e,e',... range over expressions, given by the grammar:

e = x| v| fleg,...,ex).
where f ranges over an appropriate set of function symbols (including standard arith-

metic/boolean operators). Above v,w, ... range over atomic values such as natural num-
bers and booleans.

Each construct in the above grammar is illustrated in the next subsection.

8.2. Illustration of Syntax. The initial two constructs represent communications. First,

A—B:b(Vvs).I

indicates that A invokes a service channel b at B and initiating a new session that will use fresh session
channels §, followed by interaction /. Subsequent communications in / belonging to this session are
done through § (I can have other communications belonging to different sessions). In the main part
of the present study we shall assume A and B are distinct.* As § should be local to the session (i.e.

3As is standard, we assume there is an unbounded supply of distinct symbols in each syntactic category.

“This is a natural constraint if we wish to describe inter-participants interactions, which are often the only
focus of many business protocols. As we shall discuss at the end of the present paper (cf. §17.2), the theoretical
framework of the present study works intact when we allow intra-participant interactions.
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unknown outside), we set each s; € § to be bound in /. Second,
A—B:s(op, e, )

expresses the sending action by A whose message consists of a selected operator op, with the receiver
B. The value of the expression e (which can only use variables located at A) is assigned to the variable
y (which must be located at B). Third, another primitive operation is assignment, which is the typical
basic operation in imperative languages.

x@A :=e.l.

The assignment is a local operation at the specified participant (A above), where a variable at A is
updated with the result of evaluating e, also located at A.
We can use conditional to branch the course of actions:

if e@A then I else I,

which will evaluate e once and, if it evaluates to true, the branch /; will be executed, else branch 7.
Note the condition e is located at A. Or, instead of explicitly selecting one of the branches, we can
choose one nondeterministically:
Lh+b
which either behaves as I; or as /. The summation operator + is commutative and associative, so
that we often write X;I; for the n-fold sum of interactions.
We can also launch two threads of interactions in parallel:

LD

denotes the parallel composition. However, unlike the standard process calculi, there is no com-
munication between [ and I: I;|l; just means two independent threads of interactions. Another
construction:
(vs) I

is the restriction (or hiding) of a session channel, where (Vs) binds free occurrences of s in I. This
is used for designating newly created session channels when a session is initiated. (v5) I stands for
a sequence of restrictions. Since restriction is only added when an outermost initialisation prefix
reduces, it is natural to stipulate:

CONVENTION 1. Henceforth we only consider terms in which restrictions never occur under
prefixes (initiation, communication and assignment) nor do they occur in a summand of a summation.

Interaction which can be repeated unboundedly is realised by recursion. We start from a re-
cursion variable X4 which has an annotation of a participant name (this annotation is later used in
end-point projection: in brief, it indicates the principal participant who determines whether to recur
or not). Then the term

rec XA .1
is the standard recursion construct, where rec XA is called recursor, with X binding its free occur-
rences in I. We assume that whenever X occurs free in I of rec X4 .1, X should always be annotated
with A (the type discipline we present later automatically guarantees this property). This annotation
plays an essential role in our typing later. However, when they are irrelevant (especially in examples),
we often omit these annotations. Finally,
0

is the inaction, representing the lack of actions (it may be considered empty parallel composition or
the empty/inactive choreography).

For expressions, we assume variables, first-order atomic values such as integers, and first-order
operators such as arithmetic and boolean operations. We do not include channels and session chan-
nels as expressions for the present inquiry (cf. Section 18).
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8.3. Examples. We illustrate the syntax through simple examples. These examples will be
used throughout the paper as running examples.

EXAMPLE 1. (Syntax, 1) The following example is from Part I.

{Buyer — Seller : B2Sch(QuoteAccept, 100, x).1;}
(7 +
{Buyer — Seller : B2Sch({QuoteReject, xaportNos ¥) - 12}

This example, as others, uses easy-to-read strings for channel/operator/variable names. Buyer and
Seller are participants (which we write A, B, ... in the formal syntax); B2Sch is a session channel
name (which we write s,5',... in the grammar); and QuoteAccept and QuoteReject are operation
names (which are op,op’, ... in the grammar). Thus, as a whole, (17) can be read as follows:

Through a session channel B2Sch, Buyer selects one of the two options offered

by Seller, QuoteAccept and QuoteReject. If the first option is selected, Buyer

sends the quote “100” which will be stored in x by Seller and proceeds to I;.

In the other case, Seller sends the abort number stored in the variable X pportNo

which will be stored in 'y by the Seller and proceeds to I.
Note the sum + is informally interpreted as internal sum for Buyer (i.e. Buyer initiates this choice)
and as external sum for Seller (i.e. Seller passively waits for one of the branches (operators) to be
chosen by the environment). This reading will become formalised when we consider its end-point
projection.

EXAMPLE 2. (Syntax, 2) A refinement of the description above follows.

if xgquote < 1000 @Buyer then

{ Buyer— Seller : B2Sch{QuoteAccept,100,x, ., I); }
else

{ Buyer— Seller : B2Sch{QuoteReject,XaportNo, s - 1)2 }

18)

The description now specifies the “reason” why each branch is taken. Notice the condition in the
conditional branch, x < 1000, is explicitly located: the description says this judgement takes place
at Buyer. Note also the description is still the external choice for Seller: it is Buyer who selects one
of the options, which Seller waits for passively. The description becomes self-contained by adding
an initial session invocation at a service channel, say ch, and a request for a quote.

Buyer — Seller : ch(v B2Sch,S2Bch) .
Seller — Buyer : S2Bch(Quote, 100, y)..
if xgquote < 1000 @Buyer then
{ Buyer— Seller : B2Sch{QuoteAccept,100,x, ., I); }
else
{ Buyer— Seller : B2Sch{QuoteReject,XaportNo,Ys - )2 }

19)

Initially Buyer invokes Seller to initiate a session with two session channels, B2Sch and S2Bch. The
rest is the same with the previous description.

EXAMPLE 3. (Syntax, 3) A session can have multiple session names for communication. This is
the standard practice in business protocols and other interaction-centric applications, and is essential
to have multiple parallel interactions inside a single session. As an example, suppose that the buyer
wants to start a session at a channel acc in which it communicates acceptance of a quote on a session
name Op and, in parallel, sends its address on a session name Data. This can be expressed as:

Buyer — Seller : ch(vOp, Data) .

{
(20) Buyer — Seller : Op(QuoteAccept, 100, x).0 |

Buyer — Seller : Data(QuoteAccept, Address, y).0

}

Here, two session channels, Op and Data, are communicated at the time of session initiation at
channel ch. Using these two channels, we reach
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Examples of other constructs, such as recursion and hiding, will be given in later sections.

8.4. Comments on Syntax. The syntactic constructs we have presented above only include
the core part of the global calculus. This is to present theory of end-point projection in a simplest
possible form. Below we discuss basic extensions and alternatives of the syntax.

Channel/session passing: Values may as well include channels and session channels. When
session channels are passed around, we need to obey a certain linearity constraint, as
discussed in [24].

Variables and binding: We may as well use logical variables rather than imperative vari-
ables as receptors of communicated values, so that the result of communication is instan-
tiation of values rather than assignment. Even in this case we may include imperative
variables and its assignment, so that we can represent the notion of local states cleanly.

Operators: Operators f(...) in expressions can become more complex. Among others,
WS-CDL includes operators which query current time and other data, which can involve
reference to distributed states.

Mutual exclusion and atomicity: An important role is played by a mutual exclusion oper-
ator. The introduction of a mutex operation would incur issues of deadlock which can be
taken care of with a type system. Introducing mutual exclusion would also imply changing
the operational semantics as we would need to take care of variables access, which may
be blocked by a mutex. We may also introduce a transactional “atomic” statement which
guarantees atomicity (noninterference) of a block from local read and writes by other
threads inside the same participant. This may be implemented using two-phrase lock-
ing or more optimistically using software transaction (however note interactional nature
of concerned descriptions makes rollbacks more subtle than simple imperative programs:
this issue parallels treatment of input/output in software transactional memories studied
by Harris and others).

Exception, timeout and predicate-based invocation: Part I discusses how exception, time-
out and predicate-based invocation (written when e@A do I, which waits for the guard e
to become true and executes /, unlike the conditional) can become useful for representing
advanced forms of interactions.

Loop and other imperative constructs: The standard while operator can be easily encoded
in the formalism. The term:

while e@A do [

is encoded into:

rec X .if e@A then I = X else 0
where I = X is a syntactic operation which attaches the variable X to the leaves (ends) of
abstract syntax trees in I. Similarly the sequencing /;I’ can be encoded using sequencing
(there is a non-trivial interplay with the parallel construct). Considering these features
as explicit syntax will be useful when we need to directly treat practical descriptive lan-
guages such as WS-CDL in an extension of the present theory.
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9. Global Calculus (2): Reduction

9.1. Basic ideas of Reduction. Computation in the global calculus is represented by a step-
by-step transition, each step consisting of:
(1) Execution of a primitive operation, which can be communication, assignment and condi-
tional.
(2) Effects the execution above has on the local state of an involved participant.

To formalise this idea, we use a configuration which is a pair of a state (a collection of the local
states of all participants involved) and an interaction, written (o, I). Formally a stare, ranged over
by 6,0,..., is a function from Var x P to Val, i.e. a variable at each participant is assigned a value
in a store. We shall write G@A to denote the portion of ¢ local to A, and 6[y@A — v] to denote a
new state which is identical with ¢ except that 6’(y,A) is equal to v. The dynamics is then defined in
the form:
(6, 1) — (6, 1)
which says [ in the configuration ¢ performs one-step computation (which can be assignment, in-
teraction, etc.) and becomes I’ with the new configuration ¢’. The relation — is called reduction
or reduction relation.® For example, communication action will change both the state and the term
shape:
(6,A—B:s(send, 3, x).I) — (c[x@Br~ 3],1)

which indicates:

“A sends a message send and a value 3, which is received by B and 3 is as-

signed to a variable x at B as the result, with the residual interaction I”.
Note communication action happens automatically, without first having sending and receiving ac-
tions separately and then having their synchronisation. Assignment is treated similarly.

(0, x@B:=3.1) — (o[x@B— 3], 1)

Since an assignment is located, only x at B is updated, and the next interaction / is unfolded. Interac-
tion can involve choice, where one of the branches is chosen nondeterministically, i.e. we can have
either:

(o, (A—B:s(ok, 3, x).I})+ (A—B:s(no, 0, y).h) — (c[x@B~ 3], 1)
or
(0, (A—B:s(ok, 3, x).})+(A—B:s(no, 0, y).Lb) — (c[y@B— 0], b)
will take place: both are legitimate reductions.
The conditional depends on how an expression evaluates. For example, if x at A stores 0, then
we have
(o, ifx@A=0thenA—B:s{(ok, 3, x).I; else...) — (c[x@Bw 3], I)

But if x at A stores say 1, then the second branch will be selected.
For recursion, we expect a recurring behaviour. For example, the following is a silly behaviour
which just continues to assign 1 to a variable. In this case we may as well have:

(o, rec X8 x@B:=1.X8) — (6[x@B 3], rec X8 x@B := 1.x5)
We shall realise such recurrence through the use of structural rules. Other constructs such as condi-

tionals and choice are standard.
In the following subsection, we illustrate the notion of reduction for each construct one by one.

S5The term “reduction” originally came from the A-calculus, where the sole purpose of computation is to
reduce to a final answer of calculation. While it is not entirely suitable for interaction computation, we use the
term from convention and from our respect to the basic formalism which started semantics studies.
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9.2. Reduction Rules. Reduction relation is defined by having one rule for each construct,
together with associated rules. First we have a rule for session-initiating communication:

(6,A— B:b(v3).I)— (0,(v3) )
where § is a vector of one or more pairwise distinct session channels. The rule says that, after
A communicates with B for session initiation with fresh session channels §, A and B share § locally
(indicated by v-binding), and the next / is unfolded. The state G stays as it is since no communication
of values takes place.

We have already seen an example of reduction representing communication through a session
channel: the formal rule follows.

(INIT)

cHe@A v
(6, A—B:s{op, e, x).I) = (clx@B — ], I)
The premise of the rule above uses the judgement (called evaluation judgement):
chHe@A v

(Comm)

which says:
Expression e is evaluated into the value v in the A-portion of the state G.
For example, if ¢ says x at A stores 3, then we have ¢ - (x+x) @A |} 6. Thus the expression to be
communicated is evaluated in the source part of the state: and the value communicated is assigned
in the farget part of the state.
The formal rule for assignment is given as:

che@A v
(0,x@A :=¢.1) — (c[x@A — ], I)
which updates the state at the participant A and unfolds the next interaction.

The rules for conditional assumes, again using the evaluation judgement, that the conditional
expression evaluates to either tt (for truth) or ff (for falsity). In the former:

ok e@A | tt
(G, if e@A then I else 112) — (0,11)
Symmetrically, when the condition evaluates to the falsity:

ok e@A | ff
(G, if e@A then I else 1]2) — (G, 12)

(ASSIGN)

(IFTRUE)

(IFFALSE)

The rule for summation is standard:

(Sum)

(07 114‘12)—)((;/7 Ii) (i:ljZ)

For parallel composition, the rule is defined just by considering interleaving of two components.
Thus we define:
(0, 1) = (0, I})
(6,51 | L) — (o', I} | 1)
where we reduce the left-hand side. The symmetric rule is defined similarly (which is again sub-
sumed by the use of the structural rules we stipulate later).
For restriction we have:

(PAR)

(o, 1)— (6, 1)
(6,(v8) 1) — (o', (V&) I)
which says restriction does not affect reduction. For recursion, we use the standard unfolding rule.
Ilrec X4.1/Xx4 L
(R (O Hlree XX — (o, 1)
(o, rec XA.I) — (o', I')

(RES)

The rule says that:
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If the unfolding of rec XA I, I[rec XA.1/X4] (which substitutes rec XA .1 for
each free X in I) under & reduces to I' with the resulting state &', then
rec XA 1 itself under & will reach (c', I').

Note the participant annotation plays no role in the rule. As we shall discuss later, we can use the
structural rule instead to obtain essentially the same reduction. Finally the inaction 0 does not have
any reduction. We also use the following rule, which says that when we reduce we take terms up to
a certain equality, following [9, 33].
=1 (6,1)— (o, 7) r=r"

(07 I//) s (G/7 I///)

where the structural equality = is defined by the following rules:

(STRUCT)

1 = 4 I=o 1)
I1+1 = 1
L+ = L+
(Lh+h)+5I = L+ (Lh+1)
10 = I
L\ = b\
(hp) = hi(k|B)

((vs) 1)1, (vs) (Lh|R) (s ¢ fn(h))
In the last rule, fn(I) denotes the free names (including variables, channels and session channels)
occurring in /. The relation = is the least congruence on terms including the above equations. While
the benefit of the use of structural rules in reduction rules is limited in the present context (in com-
parison with standard process calculi), considering terms up to = is often natural and adds clarity in
practice. We may also use a structural rule for recursion,
rec X4.1 = I[rec X4.1/X4]

to dispense with (REC) rule given above. Just as (REC) does, this rule says the recursion and its
unfolding have identical behaviour. The resulting reduction is identical up to =. In Table 18 we
present all the rules.

9.3. Examples of Reduction.

EXAMPLE 4. (Reduction: Communication) Recall the following term from Example 1
@ o def {Buyer — Seller : B2Sch(QuoteAccept, 100, x).1;} +
o= {Buyer — Seller : B2Sch{QuoteReject, xaportNo, ¥) - 12}
We infer the reductions of Iy. There is one reduction for each branch. For the first summand, we note
¢ F 100@Buyer |} 100 and infer, using (COMM):
(22) (o, I) — (o[x@Seller — 100], 1)

Similarly we have the following reduction for the second branch. Assume xpportNg Stores (say) 28
at Buyer in 6, hence 6 - xpporiNg @Buyer | 28.

(23) (6, Op) — (o[y@Seller — 28], I,)
These are the all reductions [y has up to =.

EXAMPLE 5. (Reduction: Conditional) We deduce reduction for the conditional, using Exam-
ple 2. First we reproduce the term.

if xgquote < 1000 @Buyer then
def { Buyer— Seller : B2Sch(QuoteAccept, 100, x).I} }
else
{ Buyer— Seller : B2Sch(QuoteReject, xaportNo: ¥)-15 }

(24) I
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(6, A— B:b(v5).1) — (0,3 1)

(INIT)

cHe@A v
(6, A—B:s(op, e, x).I) = (6[x@B— V], I)

che@A |lv

(Comm) (0,x@A:=¢.l) — (G[x@A — V], I)

(ASSIGN)

ok e@A | tt
(o, if e@Athen I else |1;) — (0,]))

(0, 1) = (d, 1)
(0.1 | ) — (o, I} | I)

(IFTRUE) (PAR)

ok e@A | ff (sum) -
(o, if e@Athenlelse 1) — (o, ) (o, 1+h)— (o, L))

(IFFALSE) (i=1,2)

(.1) = (o', 1)
(©.(v3) 1) = (/. (vi) )
I=r (0,1)— (0, 1) r=r"

(0.7 = (&.17)

(o, I[rec XA.1/X4)) — (o', I')
(o, rec XA.I) — (o', I')

(RES) (REC)

(STRUCT)

FIGURE 18. Reduction Semantics of Global Calculus

If we assume 6 @Buyer(xquote) = 800 then we can infer:
o I (800 < 1000) @Buyer |} tt

25 IFT
(25) (IFTRUE) (o, Ij) — (o, Buyer — Seller : B2Sch(QuoteAccept, 100, x).1})

Further applying (COMM) to the resulting configuration, we conclude:
(6,I)) — (o, Buyer— Seller : B2Sch(QuoteAccept, 100, x).1})
—  (o[x@Seller — 100], I7)
which is the only reduction sequences from (o, 1)) in this case. Assume on the other hand 6@ Buyer (xquote) =
1200. Then we have
o (1200 < 1000) @Buyer | ff

26 IFFALSE
(26) ( ) (0, Ij) — (o, Buyer — Seller : B2Sch(QuoteReject, XaportNo, ) -15)

Hence in this case we have:
(6,1)) — (o, Buyer—Seller : B2Sch(QuoteReject, XaportNo, ¥) -15)
—  (o[y@Seller — 28|, I)
which is again the only possible reduction sequence under the assumption.
EXAMPLE 6. (Reduction: Init, Par and Struct) We next consider Example 3:
Buyer — Seller : acc(vOp, Data) .

27 Jo def { Buyer — Seller : Op{QuoteAccept, 100, x).0 |
Buyer — Seller : Data{QuoteAccept, waddress, ¥) -0
}
Call two components of the parallel composition, J; and J,. Then by (INIT) we obtain:
(28) (o, Jo) — (o, (VOp,Data) (J1 | J2))
By (ComMM) we have: (o, J;) — (c[x@Seller — 100], 0), hence by (PAR) we arrive at:
(29) (0, Ji|)2) — (c[x@Seller — 100], 0|)2)
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For the symmetric case, assume 6@Buyer(waddress) = adr (where adr is a string standing for an
address) Then by (COMM) we have (o, J5) — (c[y@Seller — adr], 0), hence by (PAR) we arrive
at:

(30) (0, Jr | 1) — (o]y@Seller — adr], 0] J;)
Noting J; | J» = J» | J1, we can now apply ((STRUCT)) to obtain:
(31) (o, J1 | J2) — (o[y@Seller — adr], Jy)

Note we also simplified the resulting term. In summary, we have two sequences of reductions up to

(0, Jo) — (o, (VOp,Data)(Ji|)2)) — (c[x@Seller — 100], (vData) J,) — (o', 0)
and

(0, Jo) — (o, (vOp,Data) (J1|)2)) — (c[y@Seller — adr], (vOp) J;) — (o', 0)
where we set 6’ & 6[x@Seller — 100][y@Seller — adr].

EXAMPLE 7. (Reduction: Recursion) Finally we show an example of recursion, taking the
“silly” example rec XZ.(x@B := 1.X®) before. Noting:

def x@B:=1;rec X?.x@B:=1Xx5

(x@B :=1.X8)[rec X®.x@B := 1.x8 /x5

hence we have:
(o, recx8x@B:=1.X8) — (6[x@Br 1], rec X®.x@B :=1.x5)
—  (o[x@B 1], rec X8 x@B := 1.x5)

—

as expected.
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10. Global Calculus (3): Typing

10.1. Session Types. As briefly mentioned at the outset of Section 3, we use session types [24]
as the type structures for the global calculus. In advanced web services and business protocols, the
structures of interaction in which a service/participant is engaged in may not be restricted to one-way
messages or RPC-like request-replies. This is why their type abstraction needs to capture a complex
interaction structure of services, leading to the use of session types. The grammar of types follow.

0
o = Zislopi(ﬁi).(xi ‘ ZiST(in(Gi).OCi ‘ o |OCQ ‘ t ‘ rec t.ol | end

bool | int | ...

Above 0,0, ... range over value types, which in the present case only includes atomic data types.
o, 0, ... are session types. Note session channels s,s’, . .. occur free in session types (this is necessary
because of multiple session channels in a single session, cf. [24]). We take | to be commutative and
associative, with the identity end. Recursive types are regarded as regular trees in the standard way
[41]. Brief illustration of each construct follows.

o Xis | opi(6;).0y is a branching input type at s, indicating possibilities for receiving any
of the operators from {op;} (which should be pairwise distinct) with a value of type ;.

o Xis T opi(0;).q;, a branching output type at s, is the exact dual of the above.

e oy | 0 is a parallel composition of 0 and 0y, abstracting parallel composition of two
sessions. We demand session channels in o) and those in oy are disjoint.

e tis a rype variable, while rec t.o. is a recursive type, where rec t binds free occurrences
of tin a.. A recursive type represents a session with a loop. We assume each recursion is
guarded, i.e., in rec t.o., the type o should be either an input/output type or n-ary parallel
composition of input/output types.

e end is the inaction type, indicating termination of a session. end is often omitted.

Each time a session occurs at a shared service channel, session channels are freshly generated and
exchanged. Thus the interface of a service should indicate a vector of session channels to be ex-
changed, in addition to how they are used. This is represented by abstract session type, or service
type, in which concrete instances of session channels in a session type are abstracted, written:

(8) o
where § is a vector of pairwise distinct session channels which should cover all session channels in
o, and a does not contain free type variables. (§) binds occurrences of session channels in § in o,
which induces the standard alpha-equality.

Before illustrating these types with examples, we introduce a natural notion of duality. The
co-type, or dual, of o, written Q. is given as follows.

E,-si T op,-(G,-) oA = Z,-si l Opi(ei) E,
Lisi L opi(8;).0; = Xisi Topi(6;).0G
recr.oc. = recrt.o
t =t
end = end

For example, the co-type of s | QuoteReq(string).end is s T QuoteReq(string).end, exchanging
input and output. The duality plays an essential role in the subsequent technical development.

10.2. Examples of Session Types.

EXAMPLE 8. (Session Type: basics) Consider the following interaction (cf. Example 1), as-
suming adr and prd are variables of string type, located at both Buyer and Seller.

Buyer — Seller : s;(QuoteReq, prd, prd).
(32) Seller — Buyer : s2(QuoteRep, 100, ).
Buyer — Seller : s;(Purchase, adr, adr).0
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The interface which Seller offers (as far as this interaction goes) can be described by the following
session type:

(33) s1] QuoteReq(string). s> T QuoteRep(int). s7 | Purchase(string). end
the same interaction can be type-abstracted from the viewpoint of Buyer:

34 517 QuoteReq(string). s» | QuoteRep(int). s1 1 Purchase(string). end
which is nothing but the co-type of (33). Now let us add a session initiation to (33):

Buyer — Seller : ch(s;s2).

Buyer — Seller : s;(QuoteReq, prd, prd).
Seller — Buyer : 53 (QuoteRep, 100, ).
Buyer — Seller : s;(QuoteAcc, adr, adr).0

(33)

Then the service type of Seller at channel sh is given as:
(36) (s152) s1] QuoteReq(string). s, T QuoteRep(int). s1 | Purchase(string). end

which says: firstly, two fresh session channels s;s; (in this order) are exchanged; then, using these
two channels, communication of the represented shape takes place. Thus the service type (36) de-
scribes the whole of the behaviour starting from ch, albeit abstractly.

EXAMPLE 9. (Session Type: branching) Let us refine (32) with branching.

Buyer — Seller : 5;(QuoteReq, prd, prd).
Seller — Buyer : s,{QuoteRep, 100, y).
37) Buyer — Seller : s;(Purchase, adr, adr).0
+
Buyer — Seller : s;(Nothanks).0
This can be abstracted, from the viewpoint of Seller:

51| QuoteReq(string). s» T QuoteRep(int).

(38) (s1] Purchase(string).end + s1 | Nothanks().end)

Note the sum + in (38) means the inputting party (here Seller) waits with two options, Purchase and
Nothanks: on the other hand, the co-type of (38) (seen from Buyer’s side) becomes:

511 QuoteReq(string). s» | QuoteRep(int).

(39) (517 Purchase(string).end + s1 T Nothanks().end)

in which the sum + in (38) means that the outputting party (here Buyer) may select one of Purchase
and Nothanks from the two options.

EXAMPLE 10. (Session Type: recursion) Consider the following behaviour, in which B contin-
uously greets A.

(40) rec X2.B— A : s(Greeting, “hello”, x). X8
We can then abstract this behaviour as, from B’s viewpoint:

41) recY.s T Greetings(string).Y
whereas for A the same interaction is abstracted as:

(42) recY.s | Greetings(string).Y

which states that A repeatedly receives greetings. As a more meaningful recursion, consider the
following refinement of (37):

Buyer — Seller : s;{QuoteReq, prd, prd).
Seller — Buyer : s2(QuoteRep, 100, y).
(43) rec X Buver, Buyer — Seller : s;(Purchase, adr, adr).0
J’_
Buyer — Seller : s; (Nothanks). XBuyer
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This behaviour, seen from the viewpoint of Seller, can be abstracted as the following session type:

s1 | QuoteReq(string).
s2 1 QuoteRep(int).
(44) recY. s1 | Purchase(string).end
+
s1 | Nothanks().Y

It may be notable that the following conditional has the same session type as (44).

Buyer — Seller : s;(QuoteReq, prd, prd).
Seller — Buyer : s;(QuoteRep, 100, ).
Buyer if reasonable(y) @Buyer then
@5) rec X ' Buyer — Seller : s;(Purchase, adr, adr).0
else

Buyer — Seller : s;(Nothanks). XBuyer

One can further prefix (45) with a session initiation, for example with Buyer — Seller : ch(s;s2), in
which case we obtain the service type for ch:

s1 | QuoteReq(string).
52 T QuoteRep(int).
(46) (s152) rec?Y. s1 | Purchase(string).end
J’_
s1 | Nothanks().Y

which says that, after initialisation request exchanging two fresh session channels (designated as s
and s,), it first waits for a QuoteReq message at sy, to which it replies with QuoteRep via s», then it
waits for two options Purchase and Nothanks at s;: in the former case it finishes this session while
in the latter it recurs to the initial state, waiting for another QuoteReq message.

10.3. Typing Rules. A typed term is a term annotated with types following a set of typing
rules. There are two kinds of types we use. Session types are assigned to session channels, while
service types are assigned to service channels. A typed term, which we also call typing judgement,
has the shape:

(47) I A

where I assigns service types to located service channels, and A session types to located session
channels. The former is called service typing, the latter session typing (I' can also include other
forms of assignments). The grammar of service/session typings are given by (§ consists of pairwise
distinct session channels):
I = 0 | Ich@A:(5)a | T,x@A:Var(®) | T,X4:A
A = 0 | ASABl:o | AS:L
In a service typing, three forms of assignments are used. First, ch@A : (§)o says:
A service channel ch is located at A, and ch offers a service interface repre-
sented by a service type (5)o.
Here “located at A” means the service is offered by A through ch. In “(5)a”, “(§)” act as a binder,
binding the occurrences of “§” in .. Hence (§)a is taken up to a-convertibility. The next assignment
X@A : Var(0) says:
A variable x located at A may store values of type ©.
Unlike service channels, the same variable (say x) can be located at different participants, so that
Xx@A and x@B are distinct variables. Thus we regard x@A : Var(0) as mapping x@A (a pair of a
channel and a principal) to its type Var(0). The third assignment XA : A says:
When the interaction recurs to X2, it has a session typing A.

Assignment to a term variable becomes necessary when we type recursive behaviour. Each term
variable is assigned a unique principal name.
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CONVENTION 2. We hereafter assume a service typing defines a function following the above
reading. We write I'(ch) for a pair of a principal and a service type assigned to ch; I'(x@A) for a
variable type assigned to x@A; and I'(X) for a pair of a principal and a session typing assigned to X.

Next. a session typing uses the following primary form of assignment, §[A, B] : o, which says:

A vector of session channels §, all belonging to a same session which is be-

tween A and B, has the session type oL when seen from the viewpoint of A.
In the main part of the present study, we assume A # B in §[A,B] : o (we shall demand it in our
typing). We regard §[A, B] : o as mapping § to a direction [A, B] as well as o.. As we shall see later,
this is the same thing as mapping § to the reverse direction [B,A] and the dual @ of a.. We stipulate:

CONVENTION 3. We hereafter assume a session typing defines a function following the above
reading. We write A(S) for a pair of [A, B] and a session type o. Similarly we assume that the domain
of Ais disjoint, i.e. whenever 57,55 € dom(A) s.t. 5] # 53, we have {s7}N{s2} = 0.

As an example of a session typing, given the following interaction:

(48) Buyer — Seller : 5;(Req, prd, prd).Seller — Buyer : s2(Rep, price, price).0
one possible assignment is:

(49) 5152 [Buyer,Seller] : s; | Req(string).s; 7 Rep(int). end

which states, simultaneously:

(1) s1 and s, belong to a same session;
(2) that session is between Buyer and Seller: and
(3) it has the given session type when seen from Buyer’s point of view.
The other form of assignment, §: L, is used when we know the session type at § will never be
abstracted by session initiation (this is known for sure when one or more of channels in § are hidden,
see (G-TRES1,2) later).
We are ready to introduce typing rules. We start from the typing of session initiation.
I, ch@B: (S)oo-I1>A-§[B,A]:o0 A#B
I, ch@B: (5)o-A— B:ch(§).I>A
The conclusion (the lower-half) introduces a session initialisation prefix ch(v ) in the term. Since §
is to be abstracted as session channels belonging to a single session, we demand that, in the premise
(the upper-half), that there is a session type assignment which assigns § to a session type. Since §is
directed from B to A, o designates a session type seen from B’s viewpoint: hence we can safely have
ch@B : (§)ain the service typing of the conclusion (ch@B : (§)a is also assumed in the premise since
ch may have already been used in /, based on the assumption that a service channel can be shared,
just as the standard URL). Both A and B need be mentioned in §[B,A] : o in the premise since a
session is always between two parties: however the information on A should be erased in ch@B : (§)
since ch can be used by multiple users (participants).
We next type communication.

FFI>A-5[AB]:aj THe@A:0; THx@B:6; sc{s} jecJ A#B
IC'FA—B:s(opj, e, x).I>A-5[A,B]: Zjcys 1 op;(8;).0; ’

In (G-TCOMM), our purpose is to type the term in the conclusion,

(50) A—>BZS<Opj, €j, xj>-1j~

To type this, I should contain a session type between A and B such that its session channels contain

s. This session type, O}, is to be combined with the type for the communication in the conclusion.

The remaining session types in ® will remain unchanged. The communicated value e is typed in the

source (A) while the variable x is typed in the target (B), with the same type 6. In the conclusion, we

use a branching type which should include the operator op; whose value type is 6;, and possibly (and
usually) adding other operator names and communicated value types. The rule uses the an auxiliary

(G-TINIT)

(G-TComMm)

44



judgement: I' - e@A : 8 which says e at A has type 0 (the judgement is derived in the standard way,
starting from ' x@A : © when x@A : Var(0) isin ', and e.g. I'F 1@A : int regardless of I" and A).
In (G-TCoOMM), the session type in focus is given with the direction from A to B, i.e. it abstracts
the structure of the interaction in this session from the viewpoint of A. While this is consistent, there
is no reason we should view this session from the viewpoint of A: we may as well regard it from the
viewpoint of a receiver, B. Thus we have the following symmetric variant of (G-TCOMM).

F'FI>A-§[BAl:0; THe@A:0; THx@B:0; sc{§} jeJ A#B
I'-A—B:s(opj, e, x).I>A-5[B,A]: Zjcys | op;(8;).0; '
The typing of the assignment rule follows.
I'Fx@A:0 ThHe@A:6 THIDA
I'Fx:=e@A.I>A
In this rule, there is no change in the session typing A (as well as in the service typing I') since

assignment does not change interaction structure. Note the types of x and e are taken at location A.
For conditionals:

(G-TCOMMINV)

(G-TASSIGN)

I'Fe@A:bool THIDA THL>A
T'ife@Athenl else > A
In the premise of this rule, we demand /; and I has an identical session typing and an identical

service typing. Thus either branch is taken, the type abstraction remains identical. Similarly we type
the summation:

(G-TIF)

'th>A THLE>A

I'eh+L>A
The following rule is worth presenting, which is derivable by applying (G-TCoMM) and (G-TSUM)
repeatedly. We use the notation for the n-fold summation.
FFIJ'I>A~§[A,B] SO FFEJ'@A : 9]' FFXJ'@BIGJ' NS {f} JCK

- EjejA—>B : S(Opj, €j, Xj> .Ij > Anf"[A,B} : EkeKSk T Opk(ek) Ol

In the premise of (G-TBRA), it is implicit from indice symbols that j ranges over J. To type X jcjA —
B : s{opj, e}, xj).1j, each I; needs to have a session type between A and B such that its session
channels contain s. Each of these session types, o.;, can be distinct, but they should have the same
vector of session channels, so that we can combine them into a single type in the conclusion. Other
session types (®) should remain common in all branches in the premise. In the conclusion, we can
combine session types for different branches into a single session type, adding operator names and
communicated value types. Note the value type of ¢; is typed in the source (A) while the variable
x; is typed in the target (B). Note (G-TCoOMM) is a special case of (G-TBRA), when the n-fold
branching is a singleton. The rule has its obvious dual, corresponding to (G-TCOMMINV), which
we omit.

To type parallel composition, we use the standard linearity condition. The the operator e is
well-defined whenever the linearity condition is satisfied and is such that §[A,B] : & € A| @ Ay iff
either

(G-TSum)

(G-TBRA)

(1) 5[A,B]:0q € AL, {S}A,B]: 02 € Ay and =04 | 0p;
(2) 5[A,B]: o€ Ay and {5} Nfsc(Ay) =0, or its symmetric case;
The typing rule follows.
'tho>A THEL>A
't |12|>A1 o Ay
For restriction we have three rules. The first one is when we first hide a session channel in a
session type assignment.

(G-TPAR)

I'HI>A, §1552[A,B]: o
'k (vs)I>A, 515 : L
To understand the rule, note the hiding is introduced after the session initiation takes place (see
(G-INIT) in Section 9.2). Once this is done, there is no possibility that these session channels are

(G-TREs1)
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abstracted by (G-TINIT). Hence the session type o is no longer necessary, so that we replace it with
L. After this, we take off a hidden session channel one by one, and when this is empty, takes it away
(below € denotes the empty vector):

I'HI>A, §1s5: L
'k (vs)I>A, §15: L
Next we treat the typing rule for a term variable.
(G-TVAR)

THIGA e: L

_TRES2 CrivAe:l
(G-TREs2) TF V) IoA

(G-TRES3)

[, XA:AFXA>A

This is one of the two base cases (another is the inaction treated below), introducing a service typing
on the left-hand side of the turnstile. This typing should follow Conventions above, and, moreover, it
should contain the assignment for the term variable of interest (above X), with the same participant
annotation (above A). Following X“ : A we introduce A as the session typing of X4 in the conclusion.
The recursion rule is symmetric to (G-TVAR):

L-X4:ARI>A
TFrecXA.I>A
Here our purpose is to type rec X .1, with the session typing A. For this purpose it suffices that I

has session typing A under the assumption X4 has that same session typing, following the standard
treatment of recursion. Finally the typing rule for the inaction follows.

Vi j {sin{s;}=0

I'H0> Uifi[AhBi]end

The rule assigns pairwise disjoint vectors the empty action types. The typing rules are summarised
in Figure 19.

(G-TREC)

(G-TZERO)

10.4. Properties of Type Discipline. We discuss basic properties of the typing system. Below
we write e.g. I'-I” etc. to indicate a disjoint union.

PROPOSITION 1.
(1) (weakening) T' - I > A implies T-T" - I > A. With § be fresh. T = I > A implies
I' - 1> A-§[A,Blend.
(2) (thinning) Assume fc(I')Nfc(l) =0. Then T-I" = I 1> A impliesT + 1 > A.
(3) (co-type) T+ I > A-5[A, Bowimplies T+ I > A-5[B,AJc

Proof. Standard. For (co-type), note this information is explicitly generated only in (G-TINIT)
and (G-TCoM), which show (by induction hypothesis) such inference is possible. g

Next, we observe free session channels can be grouped in an arbitrary way in the typing rules.

PROPOSITION 2 (grouping of session names).
(1) SupposeT' 11> A, §15[A,B):B. Then there are always o,y 5 such thatT' - 11> A, §;[A,B]:
o, $2[A,B]: 0.
(2) Suppose T F I > A, §1][A,B]: a1, $2[A,B]:0y. Then there is always some B such that
I'E1Ir A §15[A,B]:B.

Proof. (1) is easy by induction on typing rules (for (G-TPAR) using the disjointness in the
premise; for (G-TCOM) and (G-TCOMINV) we construct the assignment for §| or §; depending on
to which s belongs to). (2) is also easy by induction (for (G-TRES1/2/3) we observe o; # L by the
shape of typing, even though we can in fact treat the assignment of the form §: L). g

Proposition 2 says the grouping of free session channels in the session typing is in fact arbitrary: they
become relevant only when they are abstracted by (G-TINIT).

The type discipline has a minimal typing, which is closely related with automatic type inference
ala ML. To formulate minimality, we use the following ordering. Below closed types are those types
without free type variables.
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I, ch@B:(5)a-1>A-§[B,Al:o. A#B
-TINIT
(G ) I', ch@B:(S)aa-A— B:ch(vs).I>A

IHI>A-§[A,Bl:0; The@A:0;, T'Hx@B:0;, sc{s} jeJ A+B

G-TCoMm
( ) I+ A—>BZS<Opj, e, x).I > A~f[A,B}ISTZi€‘/Opi(9,’). (0%
(G-TCoMINY) F'FI>A-§[B,Al:aj ThHe@A:0; T'Fx@B:8; sc{s} je€J A#B
r+ A—>BZS<0PJ'7 e, x}.[ > A~§[B,A}Islzi€‘/0pi(el’). o
I'Fx@A:0 T'He@A:6 THI>A
G-TAsG
( N) [Fxi=e@A I>A
'th>A THLE>A I'ke@A:bool THLHD>A THL>A
G-TSuMm G-TIF
( ) 'c-h+L>A ( ) I'+ife@Athenl else L>A
'th>A THEL>A CFI>A, 51552[14,3]10(
G-TPAR G-TRESs1
( ) FF[1|12|>A1.A2 ( ) FF(VS)IDA,flfziJ_
FFISA, §1s8: L F'FI>A e L
G-TRES2 G-TRES3) ————
( )FF(VS)[DA., §185: L ( ) r}—(VS)[DA
' X:AFI>A I, X:A well-formed
G-TREC) ——— (G-TV d
(G-TREC) Feex toa (O TVAR) “F v Arxoa
(G-TZERO) I" well-formed Vizé jAsin{s;} =0
I 00> ;§i[A;, Bilend

FIGURE 19. Typing Rules for Global Calculus

DEFINITION 1 (inclusion ordering). The inclusion ordering & is the relation over closed types
given as: o € B iff aR P for some R satisfying the following rules, where each rule says that: for
the conclusion to be satisfied, the condition(s) in the premise should be satisfied.

B ~ Eigj/slopi(ei) .(X;J cJ Viel. o € (X;

(INC-IN) S Lopi(0) o € P
U
(INC-PAR) B~ °°/1|0°/20L1 |z12 @@(xé A
(INC-END) erﬁld%

(INC-I50) ~ @@ %(a%a/)

where = is the standard tree isomorphism on recursive types. A relation R_satisfying these conditions
is called a witness of €. It is easy to see that € itself is a witness of itself, defining the largest such.
We then extend € to well-formed session typings by:

ACA AeAN aed

AedN A-5[A,B]: o € A'-5]A,B]: of
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and to the well-formed service typings by:
rcr rer’ aedo
rer [-ch@A: (5o € T'-ch@A : (5o

We also call these extended relations, inclusion ordering.

In brief, o0 € o means that o is the result of cutting off some branches (including both input and
output) from o at zero or more points. This ordering is different from the standard subtyping on
session types [19] we shall introduce in Section 12. The inclusion ordering is also used in our
technical development in Section 16. We observe:

PROPOSITION 3. The relation € is a partial order on types modulo =.

Proof. Standard [19], noting the coinductive definition of € in Definition 1 means that € (or its
witness) can be regarded as a simulation on deterministic trees. See also the corresponding proof for
Proposition 6, §12.1, page 58, on subtyping on session types. (]

CONVENTION 4. Henceforth we always take € as the relation on types modulo =.
DEFINITION 2. We write oLl B for the least upper bound of o and P if it exists.
PROPOSITION 4. If ay » has an upper-bound then they have the least upper bound.

Proof. If the assumption holds, then we can superimpose two (possibly infinite) trees, for which
we can take the union of branches from o ; at each node, which is also a regular tree and which is
surely smaller than any such upper-bound. ]

‘We now establish the existence of minimal typing (which is closely related with the preceding works
on principal types for recursively typed session types [24], cf. [16,26]). Below in (2) we write I' -/
forI' F I > 0.

PROPOSITION 5.
(1) (subsumption) LetT' €I and A€ A'. Then T & I > AimpliesT' - 11> A,
(2) (existence of minimal typing) Let I' - I for some I". Then there exists I'g such that T'g -1
and whenever T = I we have Ty @ I''. Moreover such Ty can be algorithmically calcula-
ble from 1. We call T’y the minimum service typing of /.

Proof. (1) is because the rules which use this information, (G-TCoM) and (G-TCOMINV),
only demands the communication operation the term uses is included in the type. Thus making the
type include more operations is always safe. For (2), we prove the following stronger result:

Claim. Assume:

(a) The free session names in / are grouped into disjoint vectors, each of which, say §, together
with an ordered pair of involved participants, say (A,B), so that it can be used as e.g.
5[A,B] : a.. Write y for the set of the mutually disjoint vectors corresponding to such a
grouping (cf. Proposition 2).
(b) Let I be typable with a session typing which conforms to Y (i.e. its type assignments are
done using the disjoint vectors in V).
(¢) €' extends € by the rule o €’ t for each o and t.
Then we have Iy - I>Aq such that (1) Ay conforms to y; and (2) Whenever I' F 7> A such that Ae
conforms to y, we have I'g € Tand Ag € A. In particular, if a term variable does not occur in /,
then €’ can be replaced by €.

The proof is by induction on the minimal typing rules given in Figure 20, in comparison with the
original typing rules in Figure 19. The former inductively constructs the typings which are minimal
w.r.t. the typing given by the latter. In Figure 20, it is assumed that the subject term (the term to
be type checked) is already type safe. In the figure we write tvar(ct) for the set of type variables in
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[Foin A>A-S5B,Al:B ch¢gfn(T) tvar(B) = {t}
I, ch@B: (5)(Blend/t]) Fmin A™ — B% : ch(v§). 4> A

(G-MTINIT-1)

I, ch@B: (§)otbmin A>A-5[B,A]: B tvar(B) = {t}
I, ch@B: (5)(oUBlend/t]) Fmin AT — BY i ch(VS).A> A

(G-MTINIT-2)

TFmin A>A-§[A,B]:0; THe@A:0; THx@B:6; sc{s} jeJ

G-MTComMm
( ) [ Fpin A™ — B™ : s{opj, e, x).}’lDA‘f[A7B]:Zje{j}sTopj(Gj).Ocj

FFminI>A-§[B,Al:aj T'He@A:0; T'Fx@B:9; sc{s} jelJ
' A—B:s(opj, e, x).1 > A~§[B,A]ISJ,Zie{j}opi(ei). o;

(G-MTCoMINVY)

IFminx@A:0 Tk e@A:0 T IDA
IMFhinxi=e@A.I>A

(G-MTASGN)

Dibmin 1> A1 Tobmin b > A
Ul Fminh +h > AT UA,

(G-MTSum)

T'bmine@A:bool Thpin 1A Thpin b > A

G-MTIF
( ) T min if e@A then I else [ > A LA,

Dibmin 1A Tobminh> A

(G-MTPAR) =
Ul Fmin | L>AjeA

Thmin I A, §155[A,B]: o
Thmin (V) I A, §15: L

(G-MTREs1)

IFmin I>A, §1s52: L
I'Fhin (VS) I>A, §185:1

Thmin [>A, €L
I'Fmin (Vs) I>A

(G-MTRES?2) (G-MTRES3)

Vi.5; ey for appropriate W s.t. W Dyt fresh

G-MTVAR
( ) XAt bmin XA > U, 8ilA;, B« t
(G-MTREC) XAt in [>A
T Fmin Tee X4 . 11> solve(t,A)
(G-MTZERO) Vi.§; €y’ for appropriate ¥’ s.t. W' Dy

'Fmin 0> Uifi[AivBi]end

FIGURE 20. Minimal Typing Rules for Global Calculus

o. We need some care in calculating minimal typing in the presence of recursive types, for which
we follow the preceding studies [18] (cf. [16,26]). In Figure 20, this is treated in (G-MTVAR) and
(G-MTREC), as well as in (G-MTINIT-1). In (G-MTVAR), when we introduce a term variable, we
also introduce a type variable. W' in the premise refers to the disjoint vectors which extends W so that,
after abstracting session channels by initialisation, the result is precisely ¥ mentioned in (a) above. In
(G-MTREC), solve(t,A) essentially solves the equations t = §;[A;, B;] : o; for each §;[A;, B;] : o € A.
When t does appear in §;[A;, B;] : ;, the corresponding component is §;[A;, B;] : rec t.o;. If not, then
we get §;[A;, Bj] : a;[end/t] where a;[end/t] is the result of substituting end for each (free, by bound
name convention) occurrence of t. Note this is simpler than the constraint solving in [16, 26]: this is
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because there is only positive occurrences of type variables. Finally in (G-MTINIT-1), when type
variables occur in B, we simply replace them with end, where Blend/{] is the result of substituting
end for each (free, by bound name convention) occurrence of type variables from f. This substi-
tution is sound when we already know the target term is well-typed (note that, in the original rule
(G-TINIT), o and B can never include a free type variable). (G-MTCoMM) and (G-MTCOMINV)
are chosen appropriately for its use in abstraction. For free session channels, we (arbitrarily) fix
which direction (say from A to B) to use. In the rules (G-MTINIT), (G-MTSUM) and (G-MTIF),
the merge operator L is used, for which we use the following observation:

Claim. o, € B implies o Loy € B.

Using this Claim, the cases for these three rules are immediate. The remaining rules are also direct
from the shape of each pair of the corresponding rules. a

Next we turn to subject reduction. we start from basic lemmas. Below and henceforth we write I'-©
when the typing of ¢ conforms to I'.

LEMMA 1.
(1) (substitution, 1) fT, XA : A+ I > A and T+ I' > Athen T + I[I'/XA] > A,
(2) (substitution, 2) IfT't+0, ['-0(x@A) :0and Tv: 6, then 't 6[x@A — v].

Proof. See Appendix A. O

The subject reduction in the present typing does not preserve session typing, for the obvious reason:
if I reduces to I', it may lose the initial part of interactions, which, if it is at a session channel, will
demand truncation of the corresponding session typing.

THEOREM 1.

(1) (Subject Congruence) If T - 11> AandI =1' thenT - I' > A (up to alpha-renaming).

(2) (Subject Reduction, 1) Assume T' 6. ThenT 11> A and (6,I) — (6/,I') imply T+ &’
and T = I > A for some A,

(3) (Subject Reduction, 2) Assume '+ 6. Then T+ 1 and (c,1) — (6,I') imply T+ 6’ and
r-r.

Proof. See Appendix A. O

10.5. Examples of Typing.

EXAMPLE 11. We conclude the section, by showing how it is possible to type an example:
consider the buyer-seller case with the following interaction described in the global calculus.

Buyer — Seller : B2SCh(s).Buyer — Seller : s[RequestForQuote].
Seller —Buyer : s(QuoteResponse, Vauote, Xquote) -
(Buyer — Seller : s[QuoteReject] +
Buyer — Seller : s|QuoteAcceptance].
Seller — Shipper : S2ShCh(s').
Seller — Shipper : s’ (RequestDelDetails, Buyer, Xciient)-
Shipper — Seller : s'[DeliveryDetails,DD,Xpp].
Seller — Buyer : s[DeliveryDetails,xpp,xpp])

Above there are two sessions: the one between the buyer and the seller, and the one between the
seller and the shipper. Note that both are initialised by a session “init” operation and we have also
included the choice. Another notable thing is that in the last two interactions, the variable xpp is
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involved three times: the first two times it is indeed the same variable located at the seller and as-
signed with the delivery details DD, but the third one is another variable located at the buyer which
just happen to have the same name, but completely distinguished by the semantics of mini-CDL.
But what are the types for channels B25Ch and S2ShCh? It can be verified by the rules in Ap-
pendix that the the interactions above can be typed by A = B2SCh@Seller(s)[Buyer,Seller] :
o+ $2ShCh@Shipper([Seller, Shipper]: o where

o =s ] RequestForQuote().s | QuoteResponse(QuoteType).(s T QuoteReject()+
s 7 QuoteAcceptance().s | OrderConfirmation().
s | DeliveryDetails(DDType))
and o = s’ | RequestDelDetails(PType).s' | DeliveryDetails(DDType).

EXAMPLE 12. In the last example of this section, we give a typing for 20. We would simply
have that T - comm @Seller(B2Sch, Data) : B2Sch | (String) | Data 1 (String).
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11. End-Point Calculus (1): Syntax and Reduction

The end-point calculus, an applied variant of the wt-calculus [34], specifies local behaviours of
end-points and their composition. For example consider the following term in the global calculus
(cf. Example 1):

(51) Buyer — Seller : s(QuoteAccept, 100,x, ., 0).
This global description says that Buyer sends a QuoteAccept message with value 100 to Seller, that
Seller receives it, and that Seller saves this value in its local variable x. The end-point calculus

describes the same situation as combination of local behaviour, located at each end-point. First there
is Buyer’s behaviour:

(52) Buyer[ 5 < QuoteAccept(100).0 |,
where 6 is Buyer’s local state. Similarly we have Seller’s local behaviour:
(53) Seller[ s> QuoteAccept(x).0 |,

where Gy is Seller’s local state. Interaction takes place when (52) and (53) are concurrently com-
posed, as follows.

(54) Seller[ s> QuoteAccept(x).0 |, | Buyer[ 5 <t QuoteAccept(100).0 |5,

Let this term be written M. Then the communication event is represented using the following one-
step reduction:

(55) M —  Seller[0]s . .10) | Buyer[0]g,

Note the state at Seller is updated as a result of communication. In correspondence with the global
calculus, communication in the end-point calculus is organised in the unit of session, where session
initiation is done by communicating fresh channels while ordinary, in-session communication is done
via session channels involving operator selection and value passing, as described above. The formal
syntax and reduction rules of the end-point calculus are presented in the present section.

Since an input and an output are separately described in the end-point calculus, it is possible
that there is a communication mismatch between two interacting parties. For example, instead of
(54), we may have:

(56) Seller[ s> QuoteAccept(x).0 |5, | Buyer[ 5 < QuoteReject.0 |g,

Here Seller is expecting a QuoteAccept message with one integer value, while Buyer is sending a
nullary QuoteReject message. To avoid such a situation, we use type discipline. We use the same
syntax of types as in the global calculus. For example, Seller’s interface at s in (56) is represented by
the following session type:

(57) s@Seller : s | QuoteAccept(int).end
while that of Buyer is abstracted as:
(58) s@Buyer : s T QuoteReject().end

Since two signatures, (57) and (58), are clearly incompatible, we conclude the composition (56) is
not well-typed. The session types for the end-point calculus use a notion of subtyping which plays a
central role in the theory of end-point projection. The session typing for the end-point calculus and
its basic properties are studied in Section 12.

11.1. Formal Syntax. The end-point calculus is an applied form of the m-calculus [35] aug-
mented with the notion of participants and their local state (cf.[3,15,21]). Session initiation uses
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bound name passing, while in-session communication uses variables at a local store, in the spirit of
[15]. The following grammar define processes, ranged over by P,Q,R, .. ..

P = |ch(5).P (init-In)
| ch(vs).P (init-Out)
| s> Xiop;(xi).P; (input)
| S<op(e)P (output)
| x:=eP (assignment)
| ifethen Pelse O (conditional)
| PoQ (internal sum)
| PlO (parallel)
| (vs)P (res)
| X (variable)
| recX.P (recursion)
| 0 (inaction)

As in the global calculus (cf. Section 8), a,b,ch, ... above denote service channels, s,s’,... session
channels, x,y,... variables, and X, ... term variables. The symbol “!” in “!ch(§).P” (the first line)
indicates replication [33], which says that the input channel (here ch) is available for unbounded
number of invocations.

Processes are located in participants. Participants and their composition are called networks
(written N, M, ...), whose grammar is given by:

N := A[P]; (participant)
| N|IM (parallel-nw)
| (vs)N (res-nw)
| (inaction-nw)

Again as in the global calculus, A, B, ... denote participant names, which are often simply called

participants. G, ... denote local states, each mapping a finite set of variables to a finite set of values.®

11.2. Illustration of Syntax. For session initiation, we use a pair of mutually complementary
input and output:

(59) Ich(5).P ch(vs).0

In the context of web services, the process !ch(§).P may be considered as embodying a repeatedly
available service accessible via a certain URL (here denoted by channel ch): after invocation, it offers
interaction described in P through session channels § it has just received. The process ch(v$).Q in
turn may be considered as an invoker of a service located at ch, which communicate fresh session
channels and use them for its subsequent interaction, described in Q. The structure of communication
within a session will later be abstracted by a session type. In practice, session initiation may as well
be combined with ordinary communication.
In-session communications use operator names, analogous to methods in objects.

(60) s> X;0p;(x;).P; s<op(e).0

The input s > X;op;(x;).P; says that it has one or more finite branches (indexed by i) which can
be invoked. Operators op; should be pairwise distinct. When op; is invoked, then it instantiates a
communicated value in its local variable x;, and subsequently behaves as described in P;. Here x; does

6Note the same symbol denotes a distributed state in the global calculus: ¢ in the end-point calculus corre-
sponds to local projection of such a distributed state.
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not bind its occurrences in P. In turn, 5 < op{e).Q invokes an input with operator op, communicating
the result of evaluating an expression e, then behaves as Q.
Another prefix operator is assignment:

(61) x:=e.P

which assigns the result of evaluating e to a local variable x (of the enclosing participant), and then
behaves as P.

There are two constructs which represent internal choice. First, the standard conditional is
written as:

(62) if e then P else Q

where e should evaluate to a boolean value. In this case, once e is evaluated, we can deterministically
choose between P or Q. A more nondeterministic behaviour is embodied by the standard internal
sum:

(63) P®Q

which chooses nondeterministically P or Q and, once chosen, behaves as such. The n-fold composi-
tion by € is written ;P;.

Combining multiple outputs at the same channel but with distinct operator names through the
n-fold internal sum, we can construct an output prefix which is dual to the branching input prefix.
Since such a sum is often useful, we introduce the following notation for denoting it.

(64) s<1X;op;{e;).P;

Above we assume each op; is pairwise distinct. Note neither input branching or output branching
above have mixed choice, i.e. all the components have to be either outputs or inputs (via a common
session channel), but never both. They offer a structured form of choice which is easily imple-
mentable, even though some form of mixed choice is useful for representing complex interaction, as
we discussed in Part I.

The syntax for parallel composition is standard:

(65) PlQ

As in the standard process algebras, and unlike parallel composition in the global calculus, P and
0O may as well be engaged in communication between them. The restriction also uses the standard
syntax:

(66) (vs) P

which indicates s is local to P. In the present paper we do not consider restriction of service channels,
whose addition does not pose any technical problem.

For representing recursive behaviour, we start from a term variable X and, after forming a
process P in which X may occur free, we introduce:

(67) rec X.P

where, in rec X.P, free occurrences of X in P (if any) are bound by rec X. Behaviourally, each free
X in P denotes a recurring point (i.e. it recurs to rec X.P again). In contrast to the global calculus,
cf. Section 8.1, variables need no principal annotation. Finally the inaction:

(68) 0

denotes the lack of action, and is the unit for parallel composition.
Processes are located in a participant as follows:

(69) A[P]s

which says a participant named A is equipped with a behaviour P and a local state 6. Such partici-
pants can be combined by parallel composition:

(70) N|M
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By the typing rules discussed in the next section, in one network, two participants never have the
same participant names. Since a session channel s can be shared between two participants, we also
need restriction:

(71) (Vs) N

Finally for technical convenience we also introduce the inaction for networks, denoting the lack of
network.

(72) €
which acts as the unit of parallel composition of networks.

EXAMPLE 13. Example 1 (page 34) of a global description would be represented in the end-
point formalism as a network of the shape:

(73) BuYer[P}c(Buyer) ‘ Se”er[Q]c(Seller)

where the processes P and Q together realise the behaviour that we expressed in the global calculus.
As for the Buyer, its behaviour would be represented by the following

P = B2SCh< (QuoteAccept(“100”).P; ® QuoteReject(XaAportNo) - P2)
whereas the Seller would behave as:
Q = B2SCh> (QuoteAccept(x).Q; + QuoteReject(y). 02)
We elaborate P and Q in the next example.

EXAMPLE 14. Example 2 (page 34) presents the if-then-else construct, in which case we can
elaborate P and Q above as follows.
P =if (xQuote < 1000)
then B2SCh <1 QuoteAccept(“100”).P1,
else B2SCh <1 QuoteReject(XaportNo) - P2)
Q = B2SCh> [QuoteAccept(x).Q + QuoteReject(y) . 0]

Note that Q has kept the same shape as before: choice because the conditional guard is located where
at the Buyer side, i.e. it is Buyer who chooses between two branches. We can further consider the
result of adding session initiation, which is given as the second description in Example 2, we can
further elaborate P and Q as follows.

P © Ch(vB2SCh,S2BCh).
SzBCh(xQLIOte)'
if (xQuote < 1000)
then B2SCh <1 QuoteAccept(“100”). Py

else B2SCh < QuoteReject(XaportNo) - P2)

0 ¥ 1cn(B2SCh, S2BCh).

S2BCh(100).
B2SChr> [QuoteAccept(x). Q0 + QuoteReject(y) . 0s]

Note an input is compensated with an output and vice versa, similarly a branching with a selection.
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EXAMPLE 15. Example 3 (page 34) presents the use of parallel in-session communications
inside a single session. Using the same skeleton (73) as above, we define P and Q as follows:

pY ch(vOp,Data).

(Op <1 QuoteAcc(100).P; | Data <t QuoteAcc{adr).P,)

0 o Ich(Op,Data).
(Op> QuoteAcc(x).Q; | Datar> QuoteAcc(y).Q»)
in which Buyer offers two parallel outputs while Seller receives them with their dual inputs.
11.3. Reduction Rules. Reduction indicates evolution of processes and networks via commu-

nication and other actions. It is given as a binary relation over networks, written N — M. The first
rule is for initiation of a session via invocation of a shared service channel.

(INIT) — —— — —
A[!ch(3).P | P')s| B[ch(v$).0 | Q']s — (V5) (A[!ch(5).P|P|P']5|B[Q| Q)
In addition to this rule (as well as the next one), we may include intra-participant communication, on
which we discuss Section 17.2. For in-session communication, we have:
chkelv

[s > Xiop;(xi).Fi| P']5| B[S <opj(e) Q| Q' | — A[Pj [ P' |5y | BIQ] Q' e
As before, the rule has its local version, which we omit.

Assignment only affects local store:

(Com) 1

ckelv
Alx:=eP|P'|g — A[P|P]s

(ASSIGN)

](5 [x—v]
In conditional, we first evaluates the guard expression, then, depending on its value, decides which

branch should be chosen.

= tt
(IFTRUE) — ofed
Alif ethen Py else P, |P']; — A[P; | P']
Fe | ff
(IFFALSE) — ofel
Alif ethen Py else P, |P']; — A[P> | P']

The internal sum P @ Q has the following standard reduction.

A[P1®P2|R|c — A[Pj|R]c (i=1,2)
The rule says Py ¢ P, can behave as either Py or Ps.
For parallel composition of processes, we have:
A[P\|R]; — A[P]{|R]y
[P1|P2|R]g — A[P]|P2|R],

(Sum)

(PAR) a

Finally for restriction:

A[P]y — A[P']y
A[(vs) P]g — A[(vs) P
We also list the corresponding contextual rules for networks.

M M M M
=" (RES-NW) ="
M|N — M'|N (vs)M — (vs) M’

(RES)

o

(PAR-NW)

For recursion, we set:
Plrec X.P/X] — P
recX.P — P/
Finally the following rule says we take the reduction up to the structural rules:
M=M M — N N =N
M — N

(REC)

(STRUCT-NW)
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A[lch(3).P | P']g| B[ch(v3).Q | Q'] — (V5) (A[!ch(5).P | P| P'ls| B[Q | Q'])

(INIT)

(Com) ckhelv
Als > Ziop;(xi).Pi| P']| B[S < 0opj(e) Q| Q' o — A[P; [ P']gpy) | BQ| Q']
Feltt M- M
(IFTRUE) — ofed (PAR-NW) —— 2
A[if e then Py else P, |P']; — A[P; | P'], M|N — M'|N
F ff M M
(IFFALSE) — ofel (RES-NW) —— — —
Alif ethen Py else P, |P']; — A[P> | P'] Vs)M — (vs) M’
F AlP A[P' ]
(ASSIGN) ofedv (RES) [Pl = ALP ]

Alxi=eP[Ply — A[P[ P/l A[(vs) Plo — A[(vs) P'],

- A[P1|R]; — A[P]|R]y

Sum ie{l,2 PAR
( )A[Pl ® P Rl — A[P|R]s {12y | ) AlP |P2‘R]G — A[P{ ‘P2|R}G
M=M M ! "=N P X.P/X P
(STRUCT-NW) —N N (REC) [rec X.P/X] —
M— N recX.P — P

FIGURE 21. Reduction Rules of the End-Point Calculus

where = is the least congruence on networks generated from:

PO = P
Po = olp
(PIQIR = PI(QIR)
PP = P
PHQ = Q6P
(P&Q)BR = P®(Q®R)
(vs)0 = 0
(vs1) (vs2) P = (vs2) (Vs1) P
((vs)P)lQ = (vs)(P|Q) (s ¢ n(Q))
and, for networks, we stipulate:
A[Pl; = AlQ], (P=0)
Al(vs) Pl = (vs) (A[P]y)
Me = M
M\N = N|M
(LIM)IN = L|(M|N)
(vs)e = ¢
(vs1) (Vo)) M = (vs2) (Vs1) M
((vs) M)IN = (vs) (M|N) (s & fn(N))

This concludes the presentation of all reduction rules. For reference, in Figure 21 we list all the
reduction rules in one table.

REMARK 1. In the definition of =, the equations for & allows us to write the n-fold sum ®;P;
which reduces as, with C|-] being a reduction context, C[®;P;| — C|P;] for each i.
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12. End-Point Calculus (2): Typing

12.1. Types and Subtyping. As we did for the global calculus, we use session types [24], i.e.
the typing for controlling the flow of operations and data through channels. We use the same set of
types as the global calculus, whose grammar is reproduced below for convenience.

6 = bool | int | ...
o = Yis | 0pi(9j) NeH ‘ Yis T 0pi(9j) NeH ‘ o | (075 ‘ t ‘ rec t.ol | end
Above, as before, a.,, ... are called session types. Again as before we take | to be commutative and

associative, with the identity end. Recursive types are regarded as regular trees in the standard way
[41]. We also use service types, ranged over by v,Y, ..., given by:

Yy = 1Ha@A | ?2(5)o@A
Above, !(§) o0 @A indicates the service located at A which is invoked with fresh session channels §
and offers service of the shape o, while ?(§) o @A indicates the type abstraction for the dual invoca-
tion, i.e. a client of an A’s service which invokes with fresh channels § and engages in interactions
abstracted as o.. Note @A indicates the location of a service in both forms.

As before, § should be a vector of pairwise distinct session channels which should cover all
session channels in o, and o does not contain free type variables. (§) binds occurrences of session
channels in §'in o, which induces the standard alpha-equality. We define the duality as:

1(5) @A = ?(5) @A 25)0@A = (5)a @A
where the notion of duality O of o remains the same.

In the end-point calculus, it is useful to consider a subtyping relation on session types following
[19]. The subtyping is defined only over closed types, i.e. those types in which no free type variables
occur. The relation is written ot < 3. 7 which intuitively indicates that o is more gentle, or dually 3
is less constrained, in behaviour.

We define the subtyping relation using coinduction. A subtyping witness is a relation X which
satisfies all of the following rules, each of which indicates the condition on &, saying: for X to
satisfy the conclusion, it should satisfy the condition(s) given in the premise. In each rule, ~ is the
standard type isomorphism.

B~ Ejgjs l Opj(ej).[sj ID>J a; KB]

Licrs | opi(6;).0; R B
The rule says that for the branching type to be more gentle than the other then it should be the case
that subsequent behaviours of an input are more gentle, and if it offers more options. Dually we have:

BrXicysTopi(8;).B; I1CJ o; RB;

(SuB-IN)

SUB-OUT
( ) Zicrs T opi(6;).0; R B
The remaining rules close the relation under type constructors and ~=.
P~PBi[B ot RP1 o R P P~ aR P /
SUB-PAR SUB-END) ———  (SUB-ISO) —— (o~
(Sup-Par) a0 &P (SUBEND) g SO g p* =)

Together with the last rule, the subtyping rules are equivalent to saying we take two infinite trees
and compare their structures by simulation, cf. [19,42]. We shall write ot < [ if for some subtyping
witness & we have oo < . Note the only difference from the defining rules for defining relations for
& (in Definition 1, page 47) is in the input branching rule.

PROPOSITION 6. =< on types modulo = is a partial order.

Proof. ~ is surely a witness. If R is a witness and R/ is another witness then by the shape of
each rule ®; R/ is surely a witness. For example, if o |0, RYR'B then vy~ v |y, such that o; Ry
(i=1,2) by (PAR), for which y; |y, R’p by (Is0) and by assumption. Applying (PAR) again we have
B~ B1|B> such that ;R B; (i = 1,2). By transitivity of ~ we are done. For anti-symmetry, we show

TThe symbol in [19] is used dually, with the same formal content.
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S == N(="") coincides with ~. Clearly ~C . For the other direction we show .S is a bisimulation
which is by definition and by noting transition is deterministic. (]

DEFINITION 3. We write oV B for the lub of o, and B if it exists.
PROPOSITION 7. If the upper bound of 0  exists (w.r.t. <) then their least upper bound exists.

Proof. By superimposing the trees corresponding to a1 » and taking the union/intersection and
checking the result is again a regular tree. |

12.2. Typing Rules. The typing judgement in the local calculus has the form:
'y P> A
which mentions a participant name to be inhabited by P; and
I'EMp> A

which is for a network. I' (service typing) and A (session typing) above are given by the following
grammar.

r = 0| ,ch:y | T',x@A:Var(0) | I, X : A

A = 0 | AS@A:a | AS:L
As before, we stipulate that both service and session typings define appropriate functions. In par-
ticular, whenever we write e.g. I',I, there are no free channels/session channels/variables shared
between two typings. Some observations:

(1) One basic difference in the grammar above from the one for the global calculus (see
Section 10) is that the session type assignment for the local calculus is given to the vector
of names at a single participant. This is because a session type is now assigned to end-
point behaviour, so that one end of a channel should have one end of a session type, rather
than two sides coming together.

(2) When two sides of a session are compatible, we compose them and leave the assignment
of L to §in the typing. Since L is composable with no other types, this effectively makes
§ unusable in further composition. This is the standard linear typing in the ®-calculus.

(3) In the service typing, ch : !(§)0@A is the same thing as (§)a@A in the global calculus
(hence we often identity these two). It is called server type assignment. ch : ?(5)o0@A
is called client rype assignment. As we stipulate below, the composition of ch : |(5)u@A
and ch : ?(5)@A becomes ch : |(§)o@A, since a service can be usable not only once but
also many times. This is from the standard replicated linear type discipline.

The types control composition of processes and networks through the following partial algebras.
They say, in brief, session types are treated as linearly, while service types are treated as server-client

types.

DEFINITION 4. Write ¥ or ¥’ to indicate v is a server or client type. Then we set:

veoy = ¥
A
vor = ¢

Otherwise Y1 ® ¥, is undefined. Then we write I'j < I", when
(1) T'y(ch) ©T'y(ch) is defined for each ch € fn(I} 2).
(2) T'1(x) =T (x) for each x € fn(I"; 5).
(3) T1(X) =T»(X) foreach X € fn(T' 2).
Finally when I'y < T, we set I'y ®I'; as the union of I'} and I'; except, for each channel ch such that
ch € fn(T'| 2), the type newly assigned to ch is I'1 (ch) © 'y (ch). Similarly we set:
aca = L
acB = ofp  (fc(o)Nfc(B) =0)
Otherwise oi; ® 0l is undefined. As above we define A| ® Ay and A < A.
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We can now introduce the typing rules. The first rule is for typing the inputting side of initiali-

sation.
I'Fq P> S§S@A:q

[,ch:!1(5)0@A 4 lch(5).P> 0
Note that, in the premise, we do not allow those session channels other than the target of initialisation
to be present in the session typing, nor another server typing with ch as a subject in I'. The former
prevents free session channels to be under the replicated input, guaranteeing their linear usage: the
latter prevents another service channel to be under ch. We can further constrain I to have no server
() mode channels: this makes ch uniform receptive in the sense of [46].

The outputting side of initialisation is analogous, except the linearity constraint needs not be
specified.

(TINIT-IN)

[ch:?(5)a@B 4 P> A-§@A: o
T, ch:2(5)0@B 4 ch(v§).P > A
Above A and B can be identical. The fact we allow ch@B: (§)a to occur in the premise means
(together with (Par) rule) an invocation to a service can be done as many times as needed (as far as it
is type correct).
Next we present typing for in-session communication, starting from input (which involves
branching with distinct operators).
KCJ seif FFXJ'IGJ' | B Pj DA‘AT@AZ(XJ'
kg s> Ejopj(xj).Pj >A-§@A: EkeKSklopk(ek) . Ol

(TINIT-OUT)

(TBRANCH)

In the rule above, the typing can have less branches than the real process, so that the process is
prepared to receive (get invoked at) any operation specified in the type. Dually we have:
jeJCK Fl—e:Var(Gi) | D oY PDA~§@AZOCJ'
k4 §<lopj<e>.P > A-S@A: Yicgs T opr(0k) . 0
Here the typing can have more branches than the real process, so that the process invokes with
operators at most those specified in types. Combining (TBRANCH) and (TSEL), an output never
tries to invoke a non-existent option in its matching input.

The rules for assignment is standard.
IF'Fax:0 T'ke:®8 T'H4P>A

'Fpx:=eP>A

(TSEL)

(TASSIGN)

The conditional is also standard.
I'Fe:bool THAP>A TH4QO>A

I'k4ifethen Pelse Q> A
Note the session typings are identical for P and for Q in the premise: this is essentially a linearity
constraint, ensuring a linear name (session channel) is used precisely once in each branch. Practical
ramifications are possible: in particular, we can easily refine the linear typing into the affine one. The
typing of a sum is similar to conditional.

(TIF)

FI—AP|>A FD—A o> A

(TSUM) — oA

The rule for parallel composition reads:
IFFAP>A THAODA) A=A
T'FAP|OQ>AIOA

The introduced _L-types are eliminated by restriction.

kg P> A sissh: L TFaP>Ae: L
Thg (Vs) P> A s1sh: L Lhg(vs) P> A
In (TRES,2), € denotes the empty vector. The next two rules are for term variables and recursion,
and is standard.

(TPAR)

(TRES, 1) (TRES,2)

ILX:Aly P> A

TVAR -
( ) IF'FprecX.Pr> A

S — TREC
[LX:AFsX>A ( )
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The rule for inaction introduces the empty session typing.

TINACT) —
( ) I'H40>0

We may further constrain I" so that it only contains assignments to term variables, imperative vari-
ables and client channels (i.e. of the form ch@A : (§)a). If we add this constraint to this rule as
well as to (TVAR), we have a property that the existence of an input channel typing in I" implies its
existence in the subject process/network.

To start session typing, we need to introduce inaction types (which represent a terminal point of
a session type together with a recursive variable, which is introduced in (T Var)).
I'bkaP>A {5}Nfn(A)=0 I'kaP>A {5}Nfn(A)=0

I'k4 P> A-§@A : end IF'F4 P>AS: L

The next rule links process typing to the typing of a network.
'k P>A THo@A

CFA[P]s>A

(WEAK-end) (WEAK-1)

(TPARTICIPANT)

Composition and inaction rules for networks follow.
IF'ENi>A THENDA AxA
I'ENp [ Na>A OA,

Restriction rules are also a precise copy of the corresponding rules for processes.
MDA Ssissy: L T'FMp>Ae: L

'k (vs)M> A s155: L 'EMp>A

We also have an exact copy of the two weakening rules, listed below for reference:

I'EM>A {§}nfn(A)=0 IrMeA {§}nfn(A)=0
I'FMp>A-§@A: end 'EFM>AS: L

The list of all the typing rules are given in Figure 22

The standard syntactic properties follow. Below in (4), fn(I') denotes all names in I, which
include term variables, standard variables and channels.

(TPAR-NW)

TINACT-NW) ——
( ¢ )FFSDQ)

(TRES-NW, 1)

(TRES-NW,2)

(WEAK-end-NW) (WEAK-L-NW)

PROPOSITION 8.
(1) (weakening) T' = M > A implies T-T" = M > A. With § fresh, T = M > A implies
F'EMp>AS: L
(2) (thinning) Assume fc(I')Nfn(M)=0. Then T-T" = M 1> A impliesT = M 1> A.
(3) (subsumption) If T,ch@A : (§)ot = M > A and o < B then T,ch@A : (5)B - M > A.
Similarly, if T F M > A-§@A:aand oo < B then T = M > A-S@A : B.

Proof. In Appendix B. O

REMARK 2 (subsumption at service channels). The subsumption for the service typing at input
channels does not hold in the present system. However semantically such service typing is in fact
sound. Thus we may as well add the following rule:

I,ch@A: (S)oa-M>A a=<p

I',ch@A: (5)PFM>A
A basic consequence of adding this rule is that we have not only the minimal typing but also the
principal typing, see Remark 3 below.

(SUBS-SERVICE)

The following result says that we can always find a representative typing for a given process, and,
moreover, we can do so effectively. Such a type is minimum among all assignable typings w.r.t. the
subtyping relation, so that we call it the minimal typing of a given term.

CONVENTION 5. A typing I' = M > A is strict if all free identifiers in I and A occur in M. We
also write T' =M for I' = M > 0, similarly I" -4 P stands for I -4 P> 0. Further we write I'g < T
and Ag < A by extending < point-wise at their service/session channels (for variables typing should
coincide).
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T'kpa P> §@A:Q
[,ch:!1(5)0@A 4 lch(5).P> 0

(TINIT-IN)

[, ch:(5)o@B 4 P> A-§@A: o
T, ch: (5)a@B t-4 ch(V§).P > A

(TINIT-OUT)

KCJ sei Fl—szej F"APJ‘I>A~§@AZOLJ'

TBRANCH
( ) Ik SDZjopj(Xj).Pj > A-§S@A : Lpcgsiopk(0r) - 0

JEJCK Tke:Var(6;) g P> A-S@A:q;
I'k45< Opj<€>.P > A-§S@A : Yicks T opr(6r) . 0

(TSEL)

F'Fgx:0 The:0 T'FxaP>A
F'Fpx:=eP>A

(TASSIGN)

IFe:bool THAP>A THLO>A TFyP>A Ty OB A

TIF TSum
(TIF) k4 if ethen Pelse Q> A ( ) T'FAPBO>A
'y P>A; T'H Ay A=A
(TPar) L4 > Ay A0 Ay A xAy
FI—AP|Q|>A1®A2
kg P> A sissh: L CkaP>Aje: L
TRES,1 TRES,2) —m———
( ) Thg (Vs) P> A s185: L ( ) Fhg(vs) P> A
- [LX:Ab4 P> A
TVAR) =—————— TREC) ——F———
( )F,X:AI—AXDA ( )FI—ArecX.P\>A
TINACT) =—————
( ) ', 00
CH4P>A {§}Nfn(A) =0 LA P>A {§}Nfn(A)=10
WEAK-end WEAK- L
( °nd) . P AS@A :end ( ) TraP>AS: L
ko P>A T'H A
(TPARTICIPANT) APl c@
THA[P],>A
F'EN>A TENMDA AN
TPAR-NW
( ) F}—Nl\N2|>A1®A2
F'EMpD A sissH: L 'EMp>Ae: L
(TRES-NW, 1) > 4, 5155 (TRES-NW,2) - B &&=

TF©Vs)MD>A SisH: L ITFMp>A

TINACT-NW) ——
( )er>0

Mo A {§}nfn(A)=0
I'EMp>A-§@A : end

(WEAK-end-NW)

TEM>A {5}Nfn(A)=0
TEM>AS: L

(WEAK-L-NW)

FIGURE 22. Typing Rules for End-Point Calculus
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DEFINITION 5 (Minimal Typing). Assume M is typable. Then I'o = M > Ag is the minimal
typing of M if, whenever I' = M > A is strict, we have I'g < T" and Ag < A.

PROPOSITION 9. (existence of minimal typing) Let I'g = M > Ag be the minimal typing of M.
Then Iy and Ag are algorithmically calculable from M.

Proof. This is the standard result in session typing systems [18]. For reference, Figure 23
gives the derivation rules. The rule uses the lub V (cf. Definition 3) in (MTINIT-OUT), (MTIF),
(MTSUM) and (MTPAR). In (MTINIT-IN), the expression c.[end/] denotes the result of substitut-
ing end for each (free, by bound name convention) occurrence of type variables from f. V denotes
taking the join with respect to the subtyping ordering. < is taken so that an output type o and an
input type B can be coherent in the following way:

al < p! — a<p
(note this means o has more branches than f at each input point). Similarly for the service typing.
Composition ® at service typing then always preserves the input side of the typing, i.e. assuming
ol < B, we have
- wn def /o
1(5ae?2()B = (5o (=< B)
For (MTREC), as we discussed in the proof of Proposition 5 (page 48, Section 10.4), the expression
solve(t,A)

denotes the result of calculating the proper recursive type (or appropriate substitution) which follows
[18] (which is simpler than the standard constraint solving for principal types for recursively typed A~
calculus[16, 26] because of the lack of channel passing). The expression returns, for each component
§; : a; of A, either §; : rec t.o; when t does exist in o; or, if not, §; : o;[end/t]. That the given
system derives the minimal typing is by induction on the typing rules, comparing each rule with the
corresponding one in Figure 22. O

REMARK 3 (principal typing). The minimal typing of a typable network/process is determined
uniquely up to the standard isomorphism on recursive types. However this minimal typing may not
be a principal typing, in the sense that even if we have I - M such that I" is minimal, and if we have
[ < I”, it may not be the case we have I' = M. This is because of the lack of syntactic subtyping at
service (replicated) channels, as discussed in Remark 2, page 61, By adding (SUBS-SERVICE) noted
in Remark 2, each typable term has a principal typing.

‘We next prove the central property of the typing rules, the subject reduction.

LEMMA 2. (substitution)
() T - A[Plg> ATHEx@A:0and Tk v: 6, thenI' = A[Plg,, ., > A
) T, X:Abp P> A andT o Q> A, then T & P[Q/X] > A,

Proof. Standard. See Appendix B. ]
LEMMA 3. (subject congruence) IfI' = M > Aand M =N thenI" = N > A
Proof. Standard. See Appendix B. O
THEOREM 2. (Subject Reduction) IfT+N>Aand N — N' then T N'1> A.
Proof. By Lemmas 2 and 3. See Appendix B. O

DEFINITION 6 (Communication Error). We say M has a communication error if either:
M = Cy[s> Xiop;(x;).P[s<top(.)0] s.t. op & {op;}
or
M = G/[Alst> Ziop;(x).P|Rlo|Bls < 0p()QlS]e] st op & {op;}.
or
M = G/[Als> Ziop; (+%).Pi|Rlo|Bls < opi() 0lSlo] st op & {op;}.
where C[] is a reduction context (i.e. a context whose hole is not under a prefix).
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r }—R“i" P> §@A:o texhaust type variables in .
I, ch:!(5)afend/f| @A TN Ich(5).P > 0

(MTINIT-IN)

CHEPN P> A-5@A:B
T, ch:?(5)(B)@B FT" ch(v3).P > A

(MTINIT-OUTI)

T, ch:?(5)a@B FT" P> A-5@A : B

(MTINIT-OUT2) ——
[, ch:2(5)(awvB)@B " ch(v§).P > A

sef Thx;:0; TH"Pi>A5@A:q;
[ f-min SDEjOpj(Xj).Pj > A~§@A22j€jsk0pj (ej).(Xj

(MTBRANCH)

I'ke:Var(®) TFI"P>A-S@A:q;

(MTSEL) —
r hr;”un SQOpj<€>.P > A~§@A12j€jSTOpj (ej).(Xj

IFsx:0 The:® THFNPEA
F%Z“i“x::e.PDA

(MTASSIGN)

[ie:bool T;HTN P A (i=1,2)
I VI, i if e then Pelse Q > Aj VA,

(MTIF)

L FPin P A (i=1,2)

(MTSuM) -
v, F,Tm PLeP,> A VA

CEPMNPEA THEIN QDA A <A

(MTPAR) :
vl hr;"nn PlIO> A OA
CEMN P A s L CHEMN P> Ae: L

(MTRES,1) — A S15%2 (MTRES,2) — A

CETM (vs) P> A, 155 L CET™ (vs) P> A

= {5 [LX:tEMnps A
(MTVAR) ———— 1] — (MTREC) —— A
CX:tEP X > USiot 'F7'" rec X.P > solve(t,A)

(MTINACT) V= {5i}

0 hr;”un 0> U;$; : end
(MTPARTICIPANT) LN pP>A THo@A (MTPAR-NW) CE™N N> A (i=1,2) A <Ay

I |-min A[P]s> A T Emin NNy > A O A

CEMM M > Ae: L
[ Fmin M > A

CEMN A s A Sissh: L

(MTRES-NW, 1) . 2
CEmn (vs)M > A 5155 L

(MTRES-NW,2)

MTINACT-NW) ——
( ) rEmnep>0Q

FIGURE 23. Minimal Typing Rules for End-Point Calculus
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That is, M has a communication error when it contains an input and an output at a common
channel which however do not match in operator names (we can further add mismatch in types of
evaluation). A basic corollary of Theorem 2 follows.

COROLLARY 1. (Lack of Communication Error) IfT'F N> A and N —* M, then M never
contains a communication error.

Proof. By Lemma 3 and by noting an incompatible redex is not typable. |
Thus once a process/network is well-typed, it never go into a communication mismatch.

12.3. Examples of Typed Terms.

EXAMPLE 16. We can now give a possible end-point version of what we showed in Example 11:
Buyer[B2SCh(s) .s < RequestForQuote. s> QuoteResponse (Xquote) -
s <1 (QuoteReject +
QuoteAccept . s> OrderConfirmation.s<IDeliveryDetails)], |
Seller[B2SCh(s).s> RequestForQuote.s < QuoteResponse (Vauote) -
s> (QuoteReject +
QuoteAccept .s<10rderConfirmation.S2ShCh{s’).
s’ <lRequestDelDetails(Buyer).s<IDeliveryDetails(xpp)
s> DeliveryDetails)]g |

Shipper [S2ShCh(s’).s" > RequestDelDetails(Xc1ient ). 5 <IDeliveryDetails (bD)ly

Itis simple to verify that the typing we gave in the previous section for the global view of this protocol
is just good enough for typing the network above.
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13. Theory of End-Point Projection (1): Connectedness

In preceding sections, We have presented many example specifications both as a global view
in the global calculus and as a local view written in the end-point calculus. In doing so, we always
introduced a global description first, and from that one we recovered the corresponding end-point
processes. From an engineering viewpoint, these two steps — start from a global description, then
extract out of it a local description for each end-point — offer an effective methods for designing and
coding communication-centric programs. It is often simply a pain to design, implement and validate
an application that involves complex interactions among processes and which fogether work cor-
rectly, if we are to solely rely on descriptions of local behaviours. This is why such tools as message
sequence charts and sequence diagrams have been used as a primary way to design communication
behaviour. In fact, the primary concern of the design/requirement of communication behaviour of an
application would in general be how global information exchange among processes will take place
and how these interactions lead to desired effects: the local behaviour of individual components only
matter to realise this global scenario. Thus, in designing and implementing communication-centric
software, one may as well start from a global description of expected behaviour, then translate it into
local descriptions. How this can be done generally and uniformly with a formal foundation is the
theme of this section, studied in the distilled setting of the two calculi of interaction.

Translating a global description to its end-point counterpart, the process called end-point pro-
Jjection, can however be tricky, because we can easily produce a global description which does not
correspond to any reasonable local counterpart. In other words, if you do not follow good principles,
our global description does not in fact describe realisable interaction. But are there general princi-
ples for global descriptions which guarantee any global description be uniformly mapped to correct
end-point behaviour as far as it follows them? Such principles should not be too restrictive, allowing
projection of a large class of global descriptions onto their efficient local realisations.

In the context of the core calculi we presented in this paper, we have identified three simple
descriptive principles, whose technical examination is the purpose of the present section. These are:

o Connectedness, which says a basic local causality principle is obeyed in a global descrip-
tion.

o Well-threadedness, which says a stronger locality principle based on session types.

o Coherence, which specifies, on the basis of well-threadedness, consistency of description
for each “service”.

All these principles are stipulated incrementally on the basis of well-typedness: well-threadedness
does not make sense without an interaction being connected; and coherence can only be defined
for well-threaded interactions. These three conditions not only offer natural disciplines for well-
structured description, but also they offer gradually deeper analysis of operational aspects of global
description. Connectedness uncovers causal relationship among actions, on whose basis well-threadedness
dissects how we can extract atomic chunks of local activities (called threads) from a global interac-
tion, crucially using the underlying type structure. Coherence stipulates the condition under which
these threads can be formed and combined to produce a whole behaviour of each participant. The
resulting participants can now realise, when combined together, all and only interactions prescribed
in the original global description. Thus by way of offering a precise analysis of the conditions for
local projectability of a global description, these three principles let us arrive at the construction of a
formally founded end-point projection. Descriptive principles are by themselves structural analysis
of the operational content of global descriptions, leading to the function which maps them to the
corresponding local descriptions.

13.1. Connectedness. Connectedness dictates a local causality principle in interaction — if
A initiates any action (say sending messages, assignment, ..) as a result of a previous event (e.g.
reception of a message), then that preceding event should take place at A. For example, consider:

(74) A—B:s{op1, e, y1).C—D:5'(op2, €2, y2).0.

Following the dynamic semantics of the global calculus, there is first an execution of the interaction
between A and B and then an interaction between C and D takes place. For implementing such a
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sequence of interactions in a distributed setting, we need a hidden notification message from B to C.
That is. (74) does not describe all of the communication sequences needed to realise the demanded
sequencing. So (74) is an incomplete description of communication behaviour. This is why we wish
to avoid e descriptions violating the local causality principle such as (74).3

To formalise the local causality principle informally discussed above, we need to say which
participant initiates an action in [: this participant should be the place where the preceding event
happens. This notion is defined as follows.

DEFINITION 7 (initiating participants). Given an interaction / in which hiding does not occur,
its initiating participants, denoted top([), is inductively given as follows.

{A} it 1A B ch(vs). 1
(A} it 1A B s(op, e, x).1
A} it 1% it e@A then I, else I
{A} ifx@A:=e.l'

top(l) % {A} if 19 xA
0 if1%"o
top(I’) it 1% ree X4 .1’
top(l}) Utop(L) it 1% 1 |1
top(l) Utop(h) it 1% 1 +1,

If A € top(I), we say A is an initiating participant of I.

REMARK 4. By Convention 1 (cf. page 33), it is natural to restrict concerned interactions to
terms without restriction.

Given /, the function top generates a set of participant. The generated set contains the participants that
initiates the first action of / (note we count “sending” actions, which are session initiation and sending
a message, as “initiating” actions, but we don’t do so for the corresponding receiving actions: as we
shall analyse later in Section 13.2-13.3, this is the most robust option, though there are alternatives).
The annotation for a term variable, A for X“, has now revealed its role, as a signifier of the initiating
participant of the behaviour embodied by X. We discuss how this allows validation of connectedness
in the presence of recursion. We now present the inductive definition of connectedness.

CONVENTION 6 (well-typedness). Henceforth we only consider well-typed terms for both
global and local calculi, unless otherwise specified.

DEFINITION 8 (Strong Connectedness). The collection of strongly connected interactions are
inductively generated as follows (considering only well-typed terms, cf. Convention 6).
(1) A— B:ch(vs).I is strongly connected when I is strongly connected and top(I') = {B}.
(2) A—B:s(op, e, x).1is strongly connected when I is strongly connected and top(I) = {B}.
(3) ife@A then Iy else I is strongly connected when I, I are strongly connected and {A} =
top(I}) = top(Fy).
4) I + L is strongly connected when I, I, are both strongly connected and {A} = top(I}) =
top(h).
(5) rec XA.I' is strongly connected when {A} = top(I').
(6) X4 is always strongly connected.
(7) x@A :=e.l is strongly connected when I is strongly connected and {A} = top(I').
(8) I | I is strongly connected when both I) and I, are strongly connected.
(9) (vs) I is strongly connected when I is strongly connected.
(10) 0 is always strongly connected.

8We can of course insert additional communication missing from (74). But this is precisely we need a
principle dictating when such an insertion is necessary and how this may be done.
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Note strongly connected implies well-typed. Strong connectedness says that, in communication ac-
tions, only the message reception leads to activity (at the receiving participant), and that such activity
should immediately follow the reception of messages. Variants of the notion of connectedness (which
loosen some of the clauses of the definition above) are discussed in the next subsection. Among oth-
ers the following variant allows an identical technical development as the notion presented above
while useful in various examples.

As we shall discuss in the next subsection, there are more looser variants of connectedness
which can be used in its place, allowing all the remaining theoretical development to go through.
Strong connectedness is chosen since it allows a most transparent theoretical development. Further
we can often encode descriptions following looser principles using strongly connected interactions
preserving semantics.

The defining clauses of Definition 8 should be naturally understood. We only illustrate the
treatment of recursion. Given a recursion rec X .1’ and its operational semantics (cf. Section 10.3),
each occurrence of the term variable X can be seen as a link back to the beginning of recursion,
i.e. the recursive term rec X .1’ itself. This view suggests that, for guaranteeing connectedness, we
need to make sure that the action preceding X should be connected to the beginning of the recursion,
i.e. the initiating participant of /. For this to happen, we first annotate X with A, by which we can
statically check its preceding event happens to A; then we demand I’, the body of recursion, does
indeed start from A. This justifies the participant annotation on recursion variables.

Below and henceforth we assume well-typedness (i.e. we assume I 5 are well-typed, I} is typed
under a base including Y2, and that substitution[l, /Y] is well-typed).

LEMMA 4 (Substitution). Let I} and I be strongly connected and top(lp) = {B}. Then I[I;/Y?)
is strongly connected and top(Iy) = top(I1 [, /Y E]).

Proof. By induction on the structure of /;.

e Induction base. We do case analysis of 1.
— 0. Immediate.
— XA, Immediate if X # ¥; by induction if X4 = Y5,
e Inductive cases. We again do case analysis of 1.
— A — B:ch(v$).1. By induction hypothesis, I[I>/Y 5] is strongly connected and
top(I[l»/Y®]) = top(I). Hence I1 [I>/Y 8] is strongly connected. Since top(f;[l>/Y5]) =
{A} = top(I}) we are done.
- A—B:slop, e, y).I, x@A:=e.I,1|I',ife@Athen] else L, I + I, (vs) I. All
immediate from induction hypothesis.
— rec X“.1. By the bound name convention we can assume X # ¥. Hence (rec X4 .1)[l,/Y5] =
rec X4 .(I[l,/Y®]). Then we use induction hypothesis. O

LEMMA 5 (Subject Congruence: Strong Connectedness). Let I} and I, be two interactions. If
Iy = b and I} is strongly connected then I, is strongly connected.

Proof. We can show that this holds for all cases:

o (Vs)I|I'=(vs) (I|I') (if s; & fn(I')). Trivial.
o (vs) (vs') I=(vs') (vs) I. Trivial. O

THEOREM 3 (Subject Reduction: Strong Connectedness). Let I be strongly connected and G
be well-typed. Then (6,1) — (o', I') implies I' is strongly connected.

Proof. By induction on the reduction rules.

o (INIT). In this case we have that (6,A — B: ch(v§).I') — (o, (v§) I") and by definition of
strong connectedness we have that it is connected whenever I” is strongly connected and
top(I”) = B. Moreover, (v§) I” is strongly connected whenever I” is strongly connected
which concludes this case.
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e (CoMM). By applying the rule, we get (6,A— B : s(op, e, x).1) — (¢’,I) if and only if
6 F e@A | v. By definition of strong connectedness / is strongly connected.

o (ASSIGN). This rule states that (6,x@A :=e.I') — (¢’,I'). By definition of strong con-
nectedness we have that I’ is strongly connected.

e (IFTRUE) and (IFFALSE). We have that (G,if e@A then I} else I) — (c,1) and by defi-
nition of strong connectedness we have that / = J; is strongly connected.

e (PAR). We have (0,]; | ) — (0,1} | L) inferred from (c,1}) — (0’,1]). By definition
of strong connectedness I; and I are strongly connected. By induction hypothesis /] is
strongly connected. Again by the definition of strong connectedness I’ = I] | I is strongly
connected.

e (RES). Immediate from induction hypothesis and definition of strong connectedness, as
above.

e (REC). We have (6,rec X.I) — I’ from (o,1[(rec X.I)/X] —I'. By Lemma4, I[(rec X.I) /X]
is strongly connected. By induction hypothesis so is I’, done.

e (STRUCT). By Lemma 5. O

Strong connectedness (as well as its variants) imposes a strong structural constraint on the shape
of interactions. One such consequence is the following observation. Intuitively it says that, in each
thread of interactions, there is always one single participant ready to perform any operation that is not
an input; while the remaining participants are waiting for input. At any stage of a thread of activity,
there is only one participant performing any operation but and input. On the contrary, the rest of the
other participant are all performing an input.

DEFINITION 9 (Input-Output Form). Let I' 11> A, assume that I structurally equivalent to
Y;A—B:s{op;, e;, x;).1;or A— B:ch(vs).I' and consider the tree generated by unfolding recursion
occurrences. 1 is in input-output form whenever for all C # A, C occurs in each path (towards the
leaves) first as a receiver, then zero or more ifthenelse, assignments and then as an output.

LEMMA 6. IfI is structurally equivalent to ¥;A— B : s(op;, e;, x;) .l or A — B: ch(vs).I' and,
moreover, it it is strongly connected, then I is always in input-output form.

Proof.Direct from the definition of strong connectedness.
We shall use this observation during our next analysis, in which we extract true units of activity from
a global description.

13.2. Further Examination of Connectedness (1): Input and Output Asymmetry. In strong
connectedness, we regard only a sending action to be “initiating”. Some observations on this point
follows.

First, for session initiation actions, this is a natural choice. The typing of the end-point calculus
is based on the idea that a service channel should always be available: in such a setting, the only
feasible choice for guaranteeing the sequencing as specified in a global description is to use only a
sending party as the one who does an action.

Second, for in-session communication actions, we can indeed swap the inputting party and
outputting party as an “initiator” of sequencing, at least theoretically. For example, compare the
following two interactions. The first one is strongly connected:

xX@A :=3.
(75) A—B:s{op).
while the second one uses the reverse sequencing.

x@A :=3.
(76) B—A:s{op).

By a close look at (75), we observe the following assumption:
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In the second action, B should already be ready to receive at s; while A will
Jjust at this second step does the sending action.

Note that, in this assumption, we are not demanding a strict sequencing in the inputting side: rather
it is in the outputting party which takes responsibility for the timing of this communication action.
It is not feasible to demand both parties should make ready their complementary actions at the same
time.

If we are to allow (76) and to have local processes obey the described sequencing, the assump-
tion would be:

In the second action, A should already be ready to send (or have sent) at s;
while B will just at this second step become ready to receive an action.

Note this argument for “sequencing by input” holds even in the context of asynchronous commu-
nication (either the pure one or the one with arrival order nondeterminism). However (76) is not a
good discipline, simply because, when a participant is sending, it should first create a datum: and
this may as well be done as the result of the preceding event at the sender side, not at the receiver’s
side. From this viewpoint, (76) neglects a hidden causality principle for message creation, and may
not be a practical choice.

These arguments suggest our assumption that it is a sender rather than a receiver who realises
a sequencing is a natural idea. We next discuss two basic variants of connectedness based on this
understanding of sequencing.

13.3. Further Examination of Connectedness (2): Variants of Connectedness.

r-Strong Connectedness. Strong connectedness is robust with respect to asynchrony of mes-
sages, i.e.even if we assume all messages are sent asynchronously in end-point processes, the princi-
ple still guarantees strict sequencing. Strong connectedness however is often too strict. For example,
consider the following description:

Buyer — Seller : QuoteCh(vs).
(77) Buyer — Seller : s(RequestQuote, productName, x).
Seller — Buyer : s(ReplyQuote, productPrice, y).0

Here a Buyer requests a Seller to start a session through a service channel QuoteCh, exchanging a
fresh session channel s. Through s, the Buyer request a quote with a product name. The Seller then
replies with the corresponding product price.9

Sending multiple consecutive messages from one party to another in a session is often found in
practice (in both business and security protocols). Further (77) may not violate the essential idea of
strong connectedness both logically and in implementation: first, it is still a reception of a message
which acts as a trigger of an event in a different participant. Second, we can always send such
consecutive messages in one go, so that it still works in the infrastructure which implements each
message flow by asynchronous messaging (note if we send these consecutive messages separately, we
need to guarantee the order of messages in some way, for which purpose we may use a widely used
transport level protocol such as TCP). We call a refinement of strong connectedness which allows
such consecutive interactions from the same sender to the same receiver, strong connectedness
relative to repetition, or r-strong connectedness. We give its formal definition below for reference.

DEFINITION 10. We say [ starts from an action from A to B when [ is prefixed with a session
initiation from A to B or a communication from A to B.

DEFINITION 11 (r-strong connectedness). labeldef:r:strongconnectedness The set of r-strong
connected interactions are inductively generated as follows.

(1) A — B: ch(vs).I' is r-strongly connected when I’ is r-strongly connected and either
top(I') = {B} or I starts from an action from A to B.

9In practice, one may as well describe the initial “session initiation” action and the first RequestQuote action
as one action, as in WS-CDL. One may as well consider (77) as a representation of this idiom in a formal setting.
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(2) A— B : s{op, e, x).1 is r-strongly connected when [ is r-strongly connected and either
top(l;) = {B} or I is prefixed by an action from A to B.

For other terms we use the same clauses as in Definition 8, replacing “strong connectedness” with
“r-strong connectedness”.

One may note all relative strong connected interactions can be encoded into strong connected inter-
actions. For example, (78) can be translated into:

Buyer — Seller : QuoteCh(vs).

Seller — Buyer : s(Ack).

Buyer — Seller : s(RequestQuote, productName, x).

Seller — Buyer : s(ReplyQuote, productPrice, y).0

(78)

Thus we only have to add one ack between two consecutive actions in the same directions. For this
reason, in all technical developments which depend on strong connectedness, we can equally use
r-strong connectedness without any change in essential arguments. In particular, the same soundness
and completeness results for the endpoint projection hold.

Connectedness. We can further loosen relative strong connectedness. For one thing, one may
consider the following description is a natural one.

Broker — Seller : SellerCh(vs).
Broker — Buyer : BuyerCh(v f')s').

(79) Broker — Seller : s(RequestQuote, productName, x).
Broker — Buyer : s'(RequestQuote, productName, y).
Seller — Broker : s(ReplyQuote, productPrice, 7)......

Here Broker does four consecutive actions which are targeted to two different participants. Further
this global description specifies, in the fifth line, that a Seller replies to a Buyer even though the
immediately preceding action goes to the Buyer. However, it is natural and easy to consider that
Seller can send its message after the third line, and this is received by Broker in the fifth line. The
description still obeys a locality principle, which is directly realisable in synchronous communica-
tion. It is also easy to realise this idea in asynchronous communication as far as message sending
order for each target is preserved (if message order is not preserved even for the same participant,
we may still be able to group messages and send them again in one go up to a permutation, even
though this becomes complicated if there is a branching, which is somewhat similar to permutation
of instructions in pipelining in modern CPUs).

This principle, which we simply call connectedness, can be formalised by accumulating po-
tential initiating participants one by one. For example, in the first line, it may well be the case
that Broker is the only potential initiating participant. After the first line, Seller joins. After the
second line, Buyer further joins. So in the fifth line, Seller can indeed invoke an interaction. Sim-
ply connected interactions again allow the parallel technical development, even though operational
correspondence needs adjustment.

This relaxed variant of connectedness has one issue in that sequencing in a global action may
show false dependency when projected onto local behaviour. This means, among others, connected
but not r-strong connected descriptions are in general not well-threaded in the sense we shall discuss
later. In spite this observation, we strongly believe this relaxed version of connectedness will have
a basic role as a structuring principle of global descriptions, on which we are intending to explore
elsewhere.

Other Constructs. By introducing other syntactic constructs such as join operation, the notion
of connectedness can further be refined. As far as such a variant imposes a reasonable constraint fol-
lowing a locality principle of actions, we believe the corresponding principle can be used as a sound
substrate for the essentially equivalent technical development we shall discuss in the subsequent
subsections.
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14. Theory of End-Point Projection (2): Well-Threadedness

14.1. Service Channel Principle. With strong connectedness, each interaction is a direct con-
sequence of the preceding local event. On this basis, a finer analysis of interaction is possible, which
allows us to extract a unit of behaviour acting in a global description. This unit is called thread,
which plays a pivotal role in the present theory of endpoint projection.

Before introducing the notion of threads, we first illustrate one subtle point in the way service
channels (which act as initiating points of sessions) are represented in the end-point calculus using
an example. Consider the following global description:

A — B:chg(vs).
B — A:chy(vi).

A—B:t{op1, vi, X).

B—A :s(opa, v2, y).0

(80)

First we have A asking B for service (session) chp, then B asking A for service chy, then A replying
to B with a value on session name ¢ (belonging to session chy) and finally B sending to A a value
using session name s (belonging to chp). Now consider the following naive implementation of the
interaction above as communicating local processes, focussing on A.

(81) Al chp(vs).lcha(r) .1 <op1(vi).s>0p2(y).0 I,

The local description (81) directly translates A’s portion of (80), where A first asks B for service via
chp, then waits for somebody (here B) to ask for its own service chy, then sends a value to B over
t, and finally waits for a value to be sent over s. Is this a faithful way to represent the behavioural
content of (81)?

Suppose another client wishes to use a service available at chy. The projected behaviour (81)
indicates that this service at chy becomes available only when A finishes an interaction at chy, which
makes availability of service at Chy dependent on A’s action (the issue becomes worse if A waits for
B’s reply before offering chy).

Generally, in our formalism and in web-service languages such as WS-CDL, a channel used for
initiating protocols (service channels in our formalism, initial channels for starting choreographies/sub-
choreographies in WS-CDL, which may as well be public URLSs) are intended to be repeatedly in-
vokable and be always available to those who know the port names. In fact, in the standard practice
of web services, a service is embodied by a shared channels in the form of URLs or URIs through
which many users can throw their requests at any time (such availability at shared ports is maintained
as part of the standard notion of “service” in a service-based framework going beyond web service).
This is why the construction of services as found in (81) looks unnatural: a service channel should
always be available to clients who know its URL. This may be called service channel principle.

In the engineering context, a basic form of service channel principle can be found in RPC and
RMI, and its web-service embodiment such as SOAP. In the context of the m-calculus, this notion
is representable as a replicated input who is “receptive” (or “input ready”). We can easily enforce a
more refined discipline so that we can guarantee input service channels to be never under prefix in
the typing for the end-point calculus. If we do so, (81) becomes untypable.

We now present the local representation of (80) which indeed obeys the service channel princi-
ple. First we have the following local code for A:

(82) Al lcha(t)F<aop1(v1).0 | chp(vs).s>opa(y).0 g

A
For B we have:

(83) B[ !chp(s).cha(Vt).t1>o0p1{x).5<0p2(v2).0 ]

B
By tracing reductions of the parallel composition of (82) and (83), we can check the interaction does
proceed faithfully following (80).
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14.2. Motivation: False Causality in Global Description. We are now ready to illustrate the
notions of threads and well-threadedness. Consider the following global description:
A — B:chp(vs).
B — C:che(vt).
C—A:chy(Vu).
A—B:s{op, v, x).1.
Note the description is strongly connected. However we claim this description is not well-structured,
and is impossible to be faithfully realised as reasonable end-point processes.

Let us examine the behaviour of A described in (84). Following the service channel principle,
we can observe the behaviour of A has two different chunks of code, which we (first informally) call
threads. The first thread starts a fresh session by invoking chp in B, and sends a value to B over s.
The other thread is the one which provides the service via chy (Which may be realised in 7). Thus the
local behaviour may be represented as:

(85) Al 'cha(vt).Py | chp(vs).5<10p(v).Qa s,
In the same way, we may consider the following local implementation of B.
(86) B[ chp(s).chc(vi).11>o0p(x).Pp ]g,
Finally, let us consider C’s end-point view:

87) C[ che(t).cha(Vu).Pe g,

Let us now see how these process interact. After B asks C for service ch¢, the process s> op(x) . Pg is
free to react with the term 5 < op(v).P42 in A, even before C has interacted with A’s other component.

Can we change the local behaviours (85, 86, 87) so that it can precisely represent the original
global behaviour (84)? We reason as follows.

(84)

(1) The service channel principle says that the channel chy is replicated and is ready to receive
an invocation.

(2) Now the session channel s is initiated by a thread at A which is not under c/4 (since if it
is under chy, how can it be the initial move?).

(3) But for an action at s to take place immediately after invocation at chy, it should be under
chy, a contradiction.

Thus we conclude it is impossible to impose the global sequencing stipulated (84) by well-typed
local behaviours. This means (84) describes a false dependency (sequentialisation) among actions
which cannot be realised by well-typed local interactions. This examples motivates the main theme of
this section, the descriptive principle called well-threadedness, which automatically prevents such
false dependency from appearing in global description. We introduce this notion formally in the next
two subsections.

14.3. Annotating Interactions with Threads. Let us come back to the first global description
(80), which we found to be realisable by end-point processes given in (82) and (83). Let us analyse
these few lines of global description (80) informally, reproduced below.

(1) A — B:chp(vs).

(2) B — A:chy(vt).

(3) A—B:t{op1, vi, X).
4) B—A:s{opg, v2, ¥).
(5) 0

The initial interaction in Line (1) is initiated by A, which is an output (session initiation) at B’s service
channel chp: dually the interaction is an input (reception of a session initiation) for B at chp. Then
in Line (2), B reacts by an interaction, again with A, but which is now an output for B and which is
a session initiation at A’s service channel chy. Dually it is an input action for A, receiving a session
initiation at its own chy. For A, this input is done independently from the initial output action in (1).
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At this point we realise that, in (2) above, because B’s output action is a reaction to its own
previous input action, the former and the latter should be in the same “code”: we call such a causally
connected sequence of actions of the same participant, a thread. Up to (2), we have the following
three threads.

Thread 1: which is in A, containing its invocation at chp, opening a channel s.

Thread 2: which is in B, containing its reception of the invocation above (opening s) and its
subsequent invocation at chy (opening ?).

Thread 3: which is in A, containing a reception of invocation at ch (opening f).

Note Thread 1 and Thread 3 are separate threads: whenever a new invocation of a service (or a new
session initiation) is done, this creates a new thread at the receiving, or service, side.

We continue our analysis. In Line (3), the output of A is reaction to its previous input, so it is in
the same thread as the latter, i.e. Thread 3. Since it uses the session channel ¢ opened by A in Thread
3 (in Line (2)), this action should be in Thread 3. The same interaction at the third line is an input
for B, which should be Thread 2, because it uses ¢ opened in the initial action of Thread 2. In Line
(4), B reacts by an output action at s. Since this is opened in its Thread 2, we know this action by B
should be in Thread 2. Similarly, the dual input action by A should be in Thread 1 since s is opened
in Thread 1 for A. In Line (5), we have no more interaction, concluding the analysis.

As a summary, there are three threads as a whole, two for A and one for B. In A, we have one
thread (Thread 1) starting from an output and another (Thread 3) which is a “service” starting from
input at service channel chy: this is precisely the processes given in (82), reproduced below:

Al leha(t).F<top1(v1).0 | chg(VVs).s>opa(y).0 ]

GCa

Similarly there is one service in B, Thread 2, as given in (83), reproduced below:

B[ !chp(s).cha(vt).11>0p1{x).5<G0op2(v2).0 ]s

Thus extracting “threads” (in an informal sense) from a global description has led to obtaining local
behaviours which faithfully realise it. The analysis of local causality based on threads based on
session types is the main focus of the following discussion. We first start from annotating a global
interaction with a notion of threads.

DEFINITION 12 (Annotated Interaction). Thread annotated interactions, or simply annotated
interactions, written 4,4’ , ..., are given by the following grammar
a4 = A" —B2:ch(5).4

| A" —B%:s(op, e, y).4
| x@A":=e.4
| ife@A” then 4, else A
| 4+ 2
| Al
X

| rec"x*.a

0

where each 7; is a natural number. We call T,v',... occurring in an annotated interaction, threads.
Further the grammar of extended annotated interactions, E,E, ..., are given as:

E == 4 | E|E | (vs)E

Hereafter we let A, 4',... range over extended annotations by abuse of notations, and simply call
them annotated interactions.

REMARK 5. If parallel composition is under prefix, both should anyway share the same initi-
ating participant: thus only top-level threads may have different threads, which extended annotated
threads represent. For restriction, note it can only occur outside of prefixes by Convention 1.
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An annotated interaction annotates each node of an abstract syntax tree of a term with threads, which
are given as natural numbers. For example, (80) is annotated as, following our previous analysis:
Al — B%: chp(s).
B2 — A3 :chy(r).
A3 B?:1{opy, v, x).
B*— A" :s(opa, va, ¥).0
But we can also annotate the same global interaction with an inconsistent annotation:
Al — Bl chp(s).
B* — Al chy(1).

which does not make sense.

14.4. Well-Threadedness. As we have just seen, a thread annotation may or may not make
sense. How can we find a consistent way to annotate an interaction with threads? By our previous
analysis, we need to stipulate whether the causality specified globally can be precisely realisable
locally.

We fix some terminology. Regarding each 4 as an abstract syntax tree, it has a constructor at its
root (say prefix or parallel composition), which is annotated by either one thread or, if it is initiation
or communication, an ordered pair of threads (the first for sender the second the receiver). Above
the constructor, it has its direct subtree(s), each of which is another such abstract syntax tree. Each
(possibly indirect) subtree of A4 is dominated by each of its (direct and indirect) proper subtrees.

DEFINITION 13 (Basic Terminology for Threads).

(1) If the root of 4 is initialisation/communication from B to C and is annotated by (71,7;),
then T; (resp. Tp) is the active thread of A by B (resp. the passive thread of A by C). If
the root of 4 is other constructors, then its annotation T is both its active thread and its
passive thread.

(2) If 4’ occurs as a proper subtree of 4, then (the root of) 4 is a predecessor of (the root
of) 4’. Symmetrically we define successor. A direct predecessor/successor is a prede-
cessor/successor which does not have no intermediate predecessor/successor.

Note if the root of 4 is a predecessor of that of A’, then the former’s execution should indeed
temporarily precedes that of the latter.

DEFINITION 14 (Consistent Thread Annotation). An annotated strongly connected interaction
A is globally consistent if the following conditions hold for each of its subtrees, say 4’

(G1) Distinctness/Freshness Condition: If Tis by A at some node and by B at another node
then A and B always coincide. Further If 4’ starts with an initialisation, then its passive
thread should be fresh w.r.t. all of its predecessors (if any).

(G2) Session Consistency: If 4’ starts with a communication between B and C via (say) s
and another subtree A" of A4 starts with a communication via s or an initialisation which
opens s, then the thread by B (resp. by C) of A’ should coincide with the thread by B
(resp. by C) of 4",

(G3) Causal Consistency: If 4" is the direct successor of 4’, then the active thread of 4"
should coincide with the passive thread of 4.

A thread annotated interaction is locally consistent if it is globally consistent and if the following
conditions hold for each of its (possibly indirect) subtrees 4.
(L) Local Causal Consistency: Suppose 4’ is a supertree of 4 and 4 is an initialisation or
a communication, similarly for A'. If both contain T and, moreover, 4 is the first such
subtree of .4, then if T is passive by (say) B then T is active by B and vice versa.

(G1) says that a thread should always belong to one participant, and that a fresh thread starts
when a service is invoked. (G2) says two distinct interactions in the same session (which are, by
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typing, always between the same pair of participants) should be given the same threads w.r.t. each
participant, note if A is present this gives a grouping of free session channels which will later be
abstracted by an initialisation action: note also, by Proposition 2, the grouping of session channels
in A is arbitrary). (G3) says if A has an input annotated as a (passive) thread then its immediately
following output should be annotated by the same (but this time active) thread.'?

(L) is a significant condition which is about local causality. It says that, within the same
thread going through an interaction, a participant acts in a strictly alternating fashion in initialisa-
tion/communication actions.!! To illustrate this condition, let us go back to our initial example:

A — B:chp(s).

B—A:chy(t).

A—B:t{op1, vi, x).

B—A :s(op2, v2, y).0.
‘We notice that it works just because for each session, each flow of information from one participant to
another is always followed, if any, by an opposite flow of information, e.g. A starts session chp with
name s then B replies to A on s. If not, the causality depicted in the global description can never be
realised locally. Thus (L) embodies the condition which is the key to local realisability of causality
in a global description. Somewhat surprisingly, global consistency implies local consistency. 12

PROPOSITION 10. If A4 is globally consistent, then it is also locally consistent.

Proof. (outline) Suppose there are two separate inputs by B annotated by the same thread T and
for which there are no intermediate actions annotated by T (that is, we have two consecutive inputs
within the same thread which are temporarily separated). But this is impossible since immediately
after the first passive 7T, this should lead to its active occurrence in the direct subtree, which contra-
dicts our assumption. Symmetrically suppose there are two separate outputs by B annotated by the
same thread T and for which there are no intermediate actions annotated by 7 (that is, we have two
consecutive outputs within the same thread which are temporarily separated). But this is impossible
since immediately before the second active 7T, this should be preceded by its passive occurrence in
the direct supertree. O

DEFINITION 15. We say A4 is consistent if it is globally consistent or, equivalently, if it is locally
consistent.

We can now define well-threadedness. Below we say A4 is an annotation of I when the result of
stripping off annotations from A4 coincides with /.

DEFINITION 16 (Well-Threaded Interactions). A strongly connected term [ is well-threaded
when there is an annotation A4 of I which is consistent.

Note well-threadedness implies strong connectedness (hence well-typedness). In the next subsection
we introduce the type discipline which type all and only well-threaded interactions, via consistent
global and local annotation.

REMARK 6 (Annotations following Session Typing). It is natural to consider a consistent an-
notation which conforms to the grouping of session channels by the session typing. Suppose I' = 1>A
and A is an annotation of 1. Then we may demand, in addition to (G1..3), the following extension of
(G2): whenever two communication actions by the same participant occur via respectively s; and s,
and if s; and s, belong to the same type assignment in A, then these two actions should be given the
same thread.

101f we are to work with r-strong connectedness in Section 13.3, then (G3) should be refined so that if two
consecutive A to B actions are given they should be annotated by the same threads.

If we are to work with r-strong connectedness in Section 13.3, then (L) should be refined so that we treat
consecutive A to B actions as a single chunk.

127This result is related with what is called “switching condition” in game-based semantics.
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14.5. Examples of Well-Threaded Interactions. It is important to understand now what is
the connection between an interaction and its annotation. In order to give a sound and deterministic
correspondence, we define a function which annotates interactions. We now try to explain the rules
of the typing system. Consider the following interaction

A — B:chp(s).
B—A:s(op, e, x).
(A—C:che(r) |A—B:s(op, e, x))

If we now consider its implementation in the local calculus according to our discussion above, we
would get for some ¢

Alchp(s).st>op(x). (chc(t) | s<tople) )]s,
B[!chp(s).s<ople).st>op(x)]s,
C[!chc(2) ]GC

If we now start talking about threads we notice that going through each action we must take a choice

whether to start a new thread or continue a previous one. According to the translation we gave into
the end-point calculus we can think about the following annotation:

A' — B%: chp(s).
B> Al :s(op, e, x).
(A" = C :che(r) |" A= B? : s(op, e, x))

‘We now show another case where we also include recursion and the if then else construct. Consider
the following interaction

A — B:chp(s).
rec X2 B—A:s(op, e, x). X2

Without going into the details of a possible end-point representation, it is clear that here is a problem
with the notion of well-threadedness. In fact, after A starts the session chp, B continuously sends e
to A on session name s. This goes against our notion of well-threadedness. We can add a further
interaction between A and B to remedy this issue:

A — B:chp(s).
rec X2 . B—A:s(op, e, x).
A—B:s(op, ¢, y).x8
The following annotated interaction, which is well-threaded, is an example of parallel composition.
A' =B chp(s1,52).
(B2 = C?:che(t).CP— B2 :1(.. )B?—A 151 () |2
B2 = C*ichp(f).C* =B 1(.. )B* = Al 155(..))
Note that, after the thread 2 is passive in the initial action, this in turn becomes active in both com-

ponents of parallel composition. In this way, a prefixed parallel composition should always have the
common initiating thread. For a top-level parallel composition, this does not have to be:

C—B* it )BP—A () |
B2 = C* i chp(f').C*—B*:1(.. )B> = A 155(..))

which is the result of reducing one interaction from the previous one and which is still well-threaded.
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0,1 : SU{s}, 1 : {§}F A topT(4) =1,
0,17:5,1:0FAY" — B% :ch(5).4

(WT-INIT)

0,1:8,:$HFHA tOpT(ﬂ) =T seSiNS

WT-ComMm
( ) 0,71 :81,72: 8 FAT" —B% :s(op, e, x). 4

OF A4 topT(2)=1
OFx@A":=e¢.4

(WT-ASSIGN)

OF 4 topT(4)=1

WT-IFTHENELSE
( ) OF if e@A™ then 4, else 4,

O+ topT(4) =1
OF A4 4+ 4,

(WT-Sum)

OF 4 topT(4)=1 (i=1,2)

WT-PAR
( ) Or 4 | 2
OF E
WT-PAR-EXT) ————
( ) OFE | B

0,7 :S1W{s}, 1 : S W{s}FE
0,7 :51,T2: S F ((vs) )E

(WT-RES-EXT)

O well-formed 0,X:0F A4 topT(A4)=1

WT-VAR WT-REC
( ) 0,X:0F x4 ( ) ®Frec™X4. 4

® well-formed

(WT-ZERO) or ot

FIGURE 24. Typing Rules for checking Well-Threadedness.

14.6. Type Disciplines for Well-Threadedness (1). Given a well-typed, strongly connected
annotated interaction, its well-threadedness can be compositionally checked using a typing system.
We first present the typing system which checks (G1-G3). Then we refine it so that it can validate
(L). Henceforth let S,5, ... range over the finite sets of session channels.

O == 0.1:5 | 6,X:06 | 0
We assume O defines a function (with its domain the threads and term variables). ®1,®; indicates
their union s.t. dom(®;)Ndom(®,) = 0. We say O is well-formed iff each session channel is
assigned to at most two threads, i.e. iff whenever 7 : S € © such that s € S, there is at most one v 41
such that T : §’ € © such thats € §'.

The typing judgement has the form @ - 4, where ® records free session channels used in each
thread in A4 and is (inductively) well-formed.

DEFINITION 17 (Type Discipline for Well-Threadedness). For an annotated strongly connected
(hence well-typed) interaction 4, © - A is derived by the rules in Figure 24, where for convenience
we annotate each inaction 0 with a thread, writing 0%. The notation topT(A) returns the active
thread of A for A which should be a non-extended annotated interaction in the sense of Definition
12 with 0 annotated as above (for which we set topT(0%) = 1).
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In the typing, well-formedness is inductively guaranteed so that, for well-threaded interactions, the
required shape of the typing in the premise of (WT-INIT) and (WT-COMM) is always satisfied.
In (WT-INIT), we place T : 0 so that no further threads can use T;. The two rules for parallel
composition, (WT-PAR) and (WT-PAR-EXT), are in precise correspondence with the grammar of
annotated interactions (cf. Definition 12: note however we shall still be writing 4 etc. from now
on for extended annotated interactions). Only in (WT-PAR) we demand the initial active threads of
the two components to be identical. The hiding (WT-PAR-EXT) is also only for extended annotated
interactions. A basic property of the typing system follows.

THEOREM 4 (Soundness of WT-typing). An extended annotated strongly connected interaction
A is well-threaded if ® = 4 for some ©.

Remark. Below and henceforth (IH) stands for induction hypothesis.

Proof. We prove the following stronger result, where we say a thread in A4 is complete if it
occurs as a passive thread in session initialisation. It is incomplete if not.

Claim. If ® - 4 then (1) @ is well-formed; (2) 4 is consistent and each incomplete thread T in
A uses s iff T: s is in @; and (3) for each complete thread, say T, ® contains T : 0.

For (WT-INIT), (1) and (2) are direct from (IH). (3) is by (IH) and the shape of the rule, noting T, got
completed. For (WT-CoMM), (1) and (3) are direct from (IH). (2) is ensured by (IH) and the con-
dition in the premise. For each of (WT-ASSIGN), (WT-IFTHENELSE), (WT-SUM), (WT-PAR),
(WT-EXT-PAR) and (WT-EXT-RES), all of (1..3) are direct from (IH) and, for (G3) of (2), by
the corresponding condition in the premise. Finally (WT-VAR) and (WT-ZERO) are obvious. For
(WT-REC), (1) is direct, (2) is by (IH) with (G3) being obvious, and (3) is again by (IH). O

Below we define 4 = 4, (6,4) — (0, 4') etc. exactly following the corresponding relations
on unannotated interactions (cf. §11.3, Figure 21, page 57), except we demand top-level parallel
compositions (i.e. those which are not under prefixes) are not annotated and, when a reduction
creates a new top level parallel composition, its label should be taken off.

THEOREM 5 (Subject Reduction: Well-Threadedness). Below A, ... include extended anno-
tated interactions.

(1) IfOFAand A= A then O E.
(2) IfI1=T1 and I has a consistent annotation then I' also has a consistent annotation.
(3) If®F A and (6,4) — (6/,2') then @+ 4'.

Proof. (1) is easy rule induction (on the generation rules for =). (2) is by (1), noting if I = I’
and 4 is a consistent annotation of I then the same derivation witnessing I = I’ leads to 4’ such that
4= 4'. (3) is by rule induction on reduction rules. All are easy except we use, for induction for
the reduction of recursion: © + rec X.I implies ® I [[(rec X.I)/X] [because: if ® |- rec X.I, then
0,X : ® I, hence by using induction on / and thinning we are done]. g

To capture local consistency directly in the typing system, we refine the type discipline given in
Figure 24. The refined system also offers a simple, inductive justification of Proposition 10. We first
augment the typing ® as follows:

O == 01:(,5) | 01:(,) | 6,X:06 | 0

Above we add, for each thread, the direction of the latest action in that thread. The judgement has the
same form except we use this refined typing. The operation ®; ® ®; now combines the information
on the direction, so that it is defined iff the directions coincide for each common thread: if this fails
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for any thread, the composition is undefined. We then replace (WT-Init) and (WT-Comm) as follows:
0,71:(|,SWS}), 1 : (1,82 topT(A)=1, S C{5}
0,7 : (1,5) FAY™ — B%2 : ch(s).4

0,7 :(1,81), 1 : (1,8) 4 topT(4)=12 J#0
0,7 : (1,51 U{s}), 12 : (|,S2U{s}) F AT —B% : 5(op, e, x). 4
In both, the condition on the direction at T, is non-trivial. After giving activity to another thread,
when it comes back inside A4, the thread T, always starts as an input. The remaining rules stay in the
same shape (except we use the refined typings).

It is easy to check that the typability in this refined system directly entails (not only global con-
sistency, by Theorem 4, but also) local consistency, by guaranteeing strict alternation in the direction
of interactions for each thread. We can further show inductively that this refined system type checks
precisely the same terms as the original system, establishing Proposition 10.

(WT-INIT)

(WT-ComMm)

14.7. Type Disciplines for Well-Threadedness (2). We next consider the existence of “rep-
resentative annotation” for a well-threaded interaction. We say a consistent annotation Ay on [ is
minimal if, up to renaming, any consistent annotation A4 of I arises by collapsing the annotations in
Ay. For example (and as a simplest possible case), consider the following well-threaded interaction.

(B—C:chc(t).C—B:t{..)B—A:s1{...) |
B—C:chp(t).C—B:t{..)B—A:5(...))
Then its minimal annotation is, up to injective renaming:
(B' = C3:che(t).CP—B' :1(..)B' =A% :51(..) |
B2 —C*chl(f).C* =B :1(.. )B* — Al 1 55(..))
By collapsing labels, we can reach:
(B> = C3:che(t).CP—B*:1(.. ) B> =A% :51(..) |
B = C*ichp(f).C* =Bt ( )BP — Al i 5(..)
We can further collapse labels while being consistent:
(B> = C3:che(t).CP—B*: (.. )B*—A' :51(..)) |
B2 = C*ichp(f).C* =B t( )BP — Al i 5(..)
Formally the notion of minimal annotations is defined as follows.
DEFINITION 18 (Minimal Consistent Annotation). Let / be well-threaded. Then its consistent

annotation Ay is minimal if for each consistent annotation A4 of I, there is a possibly non-injective
substitution ¢ of thread labels such that 4 = 4;c.

The type discipline which inductively constructs a minimal annotated interaction of [ iff I is well-
threaded, is given in Figure 25. We again use annotated inaction for convenience, this time with a
participant name too, writing 0‘? The sequent has the shape ® F™" 4 where the typing @ is a finite
sequence of assignments each of the form T : (A, S) where A is a participant and S is a set of session
names. We demand © to be well-formed in the sense that:

(1) O induces a finite map from threads to such pairs, in the obvious sense. In this case we
write e.g. ®(T) = (A,S) when the function induced by ® maps A to S.
(2) For each 7, if ®(1) = (A,S) and s € S, then there is at most one T’ # T such that ©(t') =
(A’,S') and s € S’. Moreover in this case A # A’.
(This well-formedness is automatically ensured inductively in the typing rules in Figure 25.)
These rules refine the rules in Figure 24 and inductively solve simple equational constraints.
This constraint is distilled in the operator com(®; ; ®;) used in these rules. This operator is defined
as follows.
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0,7:(B,S)F™" 4 topT(4)=1, S,C{§}
com(t1:(A,{§}); @) = 11:(A,5),006 (11 fresh)

(WT-MINIT) 00,71 : (A,5\{5}),72: (B,0) F™n AT — B : ch(3).(A0)

0,7, : (B,S)F™" 4 topT(4) =1,
com(ty: (A, {5}); @) = 11:(A,5),0'c (1 fresh)
T, :(A,S8),72 : (B,S),0 Fmin AT — B : 5(op, e, x).(40)

(WT-MCoMM)

OF™" g topT(4)=r1

WT-MASSIGN -
( ) OFMN x@AT:=¢.4

O;FMM 2, topT(A) =1 com(®;;0,) = (0;UB,)c

(WT-MIFTHENELSE) —
(01 UB,)c M if e@AT then 4,6 else 46

T:(A,S;),0; F™" 4, topT(4) =1 dom(®;)Ndom(®,)=0
com(t: (A,51US;);0;UBy) =1:(A,S5),(0;UB,)o
(@1 U@Z)G f-min (ﬂl +7T ﬂz)c

(WT-MSuM)

T:(A,S),0; F™" 4 topT(4) =1 dom(®;)Ndom(©,) =10
com(t: (A,51US;);0;UBy) =1:(A,5),(0;UB,)c

WT-MPAR .
( ) 1 (ALS),(©;U,)0 - (4, [F Ay)o

0, F™" Z;  dom(®;)Ndom(©,) =0

(WT-MPAR-EXT) -
QLU FMNE | E

kmin E _
(WT-MRES-EXT) ———— (WT-MZERO) ————————
®/s F-min £ T: (A,0) Fmin 04

- OF™N g topT(4) =1

WT-MVAR) —MM— WT-MREC -
( ) T:(A,0) Fmin x4 ( ) @ Fmin rec TX4.4

FIGURE 25. Typing Rules for Inferring Minimal Consistent Annotations.

DEFINITION 19 (Collapsing Operator). Given well-formed © ,, a partial operator com(@ ; @)
which, when defined, returns another well-formed typing, is given inductively as follows.

e com(0; ) is always defined with the value ©.
e Given T: (A,S) and @, we calculate a substitution (a finite map from thread labels to its
subset) ¢ and a finite set of session channels 7" as follows.
Step 0: First we set 6 to be empty (acting as the identity) and 7T to be S.
Step 1: Find all T} : (A,S}) in @G such that T NS} #£ 0.
Step 2: Given the set {7; : (4,S})} obtained in Step 1, set new G as the union of the
original ¢ and the map |J;T} — 7; and new T as the union of T and |J;S}; If the
results are the same as the original values, we are done. If not, we go back to Step 1
with the new ¢ and T'.
We can check that the procedure above always terminates. If ¢ in the resulting c is well-
formed, then com(t : (A,S); ®) is defined and has the value T : (A,T),(©G)/t (where
(®0) /7 takes off the T-component from ®). If not, it is undefined.
e com(®,T: (A,S); ®;) is defined with value @3 if and only if com(t: (4,S);®,) is
defined with value ®), and com(®; ; @) is defined with value ©s.
If com(@®y ; ®;) is defined and has the value @3, we write com(0Q; ; ®,) = 3.
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Equivalently, in Step 2 above, com(T: (4,5); ®) finds the minimum {7;} from dom(®) such that
each T; is assigned (A,T;) where T; intersects non-trivially either with S or with another T} in ©(t;)
with T; € {1;}; and those outside of {t;} do not intersect with S.

Thus com(®; ; ®;) combines @ and ®, so that if the same participant uses some common
session channel in two assignments then they are collapsed into one assignment by taking the union.
This notion of common-ness is taken hereditarily so that all threads of a certain participant which are
assigned transitively common session channels are eventually collapsed. We are using the following
notation in the rules.

NOTATION 1. Let com(@®1;@;) = @3. Since O3 is the result of collapsing assignments in
0 2, we write this result as (01 U ®,)c by which we mean the result of collapsing thread labels and
assigning to the resulting thread labels the unions of the corresponding session channel sets.

Given a strongly connected (hence well-typed) / which we assume to conform to the standard bound
name convention, we can use the rules in Figure 25 to generate 4 which annotates / by (1) first
labelling each inaction 0 and term variable X with distinct thread labels (all occurrences of the
same term variable are given the same thread label) and (2) inductively inferring the thread labels
of a term from its subterm(s) following the rules in Figure 25, assuming it is defined. Except for
choosing fresh thread labels in the base cases as well as in (WT-MINIT) and (WT-MCOMM), each
induction automatically generates a unique annotated term if ever, so that the resulting term (if any)
is also unique. Write this partial function MinAnn and the resulting term (when defined) MinAnn(1).

PROPOSITION 11 (Existence of Minimal Consistent Annotation). Let I be strongly connected.

(1) IfMinAnn(I) is defined, then it gives a minimal consistent annotation of I in the sense of
Definition 18.

(2) IfI is well-threaded, then MinAnn(I) is always defined.

(3) 1 is well-threaded iff MinAnn(I) is defined.

Proof. For (1), we show by induction on A that typability in Figure 25 means typability in
Figure 24 with the corresponding typings modulo vacuous lacking paired type assignments needed
for the well-formedness for the original typing system. All are easy induction. For (2), we directly
check that satisfaction of the conditions (G1/2/3) means typability in Figure 25. (3) is immediate
from (1) and (2). O
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15. Theory of End-Point Projection (3): Coherence

15.1. Mergeability of Threads. By connectedness and well-threadedness, we have shown how
we can analyse the structure of a global interaction as a collection of different threads that compose
it. In other words, these threads will become, in the end-point calculus, as constituents of processes
which interact with each others and realise the original behaviour in the global description. In the
present section, which offers the last step of our ongoing analysis, we explore how we can consis-
tently construct concrete processes based on these threads. This concern immediately leads to the
final well-structuring principle for global description on the top of strong connectedness and well-
threadedness.

We first observe it is often necessary to merge threads to obtain the endpoint behaviour which
realises a global interaction. For instance, consider the following parallel composition of two inter-
actions.

A—B:ch(vs).B—A:s(op, e, x).A—B:s{op1, e1, x1) |
A—B:ch(s).B—A:s(op, e, x) . A—B:5 (opy, e, x3)

If we annotate this interaction we know that “B” will be marked with two threads, each corresponding
to one of the two ch invocations. When we make the end-point processes, we need to merge these
two threads into one process, since we naturally demand there is only one service offered at ch. The
merging becomes necessary because these two threads show different behaviours:

(88)

e In one, A chooses the option op; which B offers; while
o in the other, B chooses the option op, which B also offers.

We can project these two threads into two end-point processes:

(1) 'ch(s).s<top{e).s>op;(x1)

(2) 'ch(s).s<top{e).st>o0pa(x2)
In spite of having two behaviours for the same “service”, or behaviour, we can consistently integrate
these two threads into a single behaviour, using a branching input:

(89) B [!ch(s).s<tope).st> (op1(x1) + op2(x2))]g,

Indeed, this combined behaviour does act as prescribed in the global description, when the following
two output threads at A invokes B via ch are given.

(90) A [ch(vs).st>op{x).5<top1{e1).0 | c_h(VS/).s/l>op(x>.§<lop2<e2>.0]cA

We can easily observe the composition of A and B does indeed induce the original global behaviour.
Similarly we can easily extract threads for B and combine them into a consistent whole.

A—B:ch(vs).B—A:s{op, e, x). A—B:s{op1, e1, x1) +

oD A—B:ch(s).B—A:s'(op, e, x) . A—B: 5 (opa, e, x3)

Similarly for

if ¢ @A then A— B:ch(vs).B—A:s(op, e, x).A—B:s(op1, e], x1)

©2) else A— B:ch(s').B—A:s'(op, e, x) .A—B:s'(op2, 2, x2).

These three cases — parallel composition, sum, and conditional — are the central cases from which
the need to merge threads arises.

However there are cases when we cannot merge two related threads coming from a single global
description. Consider the following interaction, again focussing on B’s behaviour.
A—B:ch(vs).B—A:s{op, e, x) |
A—B:ch(vs').B— C:ch (Vt)...

How can we project this description to the end-point behaviour of B? When B is invoked for service
ch, on one thread it replies to the invoker (A), while on the other one does something completely dif-
ferent. In fact, we obtain the following two slices (instances) of B’s behaviour from this description:
(1) !'ch(s).5<op(e) and
(2) !ch(s).cH (vt)...

93)
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which can hardly be merged consistently,13

Thus we need a formal notion by which we can judge whether two or more end-point behaviours
are consistently mergeable or not. In the above example, it should tells us if the descriptions of
two different invocations for a service ch, when transformed into end-point processes, are in fact
mergeable to yield a single coherent behaviour. We call this relation mergeability.

DEFINITION 20 (Mergeability).  Mergeability relation, denoted 1<, is the smallest reflexive
and symmetric relation on typed processes which is closed under the following rules.
P;a Q; foreach i € JNK and op; # opy for each j € J\K,k € K\J
s> Xjopj(x;).Pia s> Xgopy(xi) . Ok

MGBL-IN

P,'l><]Q,' (i = 1727..,11)
C[P1]..[Pa) > C[Q1]--[Qn]

MGBL-CONG

MGBL-ZERO

Pra0 0 P

P=P PxQ 0=0

Pr<Q
In the second rule we assume C[Py]..[P,] and C[Q]]..[Qn] are both typed. In the third and forth rules
we assume P has the empty session typing (i.e. it has no free session names). When P < Q, we say
P and Q are mergeable.

MGBL-STRUCT

Observe that the only non-trivial clause is for the branching input: it says that, for each common
branch, the behaviour should be essentially identical (up to >< on subexpressions). Intuitively, the
relation >a checks that two given processes are more or less identical. This “more or less identical”
means that, in brief, their behaviours do not contradict when they come to the same course of interac-
tions, i.e. when the same branch is selected by the interacting party. Thus the rules above say that we
can allow differences in branches which do not overlap, but we do demand each pair of behaviours
with the same operation to be identical.

The last two rules say (under the condition noted below) that P and 0 can be merged, assuming
they contain no open sessions. This becomes necessary when a given global description has (for
example) a sum in which a session invocation on a specific channel occurs only in one branch, which
is a natural behaviour. As a simplest case, consider:

0 + (A'=B%:ch(vs).B>—A:s(op, e, y).0)
in which case we have the empty process on the right-hand side for each thread; but, on the right, the
thread 1 is projected onto a behaviour in A which starts from an output, and the thread 2 is projected
onto a replicated process (service) at ch located in B. Since we want these to be mergeable, we allow
these two to be merged.

If two end-point behaviours are mergeable in the above technical sense, we can merge them and
obtain a single process which simulates both of the two behaviours, by combining missing branches
from the both. For instance, the process

s> go(x). P
and the process
s> stop(x).Q
are mergeable, and the result of merging is simply:

s> go(x).P + stop(x).Q

30observe the result of directly combining two threads:
Lch(s).(3 <lop(e) Dk (vi)...)

does not conform to either of the two components of the parallel composition in the global descriptions.
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. Below we present the formal definition of merge operation.

DEFINITION 21 (Merge operator). PU Q is a partial commutative binary operator on typed
processes which is well-defined iff P > Q satisfying:

def

Ich(s).PU!ch(s).Q Ich(s).(PLQ)

Y h(s).(PUQ)

Zicinkopi(yi) -(PiUQ;) +
s> Zicjopi(yi) - PiUs>Zicgopi(vi) . Qi = s> | Ziepgori(vi)-Pi +
Liex\sopi(vi) - Qi

ch(s).PUch(s).Q

x:=e.PUx:=e.Q =4 x:=e.(PUQ)
if e then Py else P, L ife then Q; else Q> = ife then (P U Q) else (P,UQ»)
(P P)UPs [P (PP | (PUP)
s<dople).PUs<t®ople).0 Y q @ople).(PLQ)
(Prep)u@ o) ¢ (PUo)BPRE0)
recX.PlirecX.Q “ recX.(PLIQ)
xux ¥ x
puo Y p
our ¥ p
puo ¥ R (PUQ=RP=P,0=0)

where, in the right-hand side of each rule, we safely assume each application of the operator to, say,
P and Q, we always have P 1< Q.

The merge operator merges two end-point behaviours. In order for this merging to be successful, this
partial operation requires, for its definedness, that two processes are related by 0. This guarantees
the definedness of the right-hand side expression. By the last rule, LI is defined up to =, which is
consistent with > being defined up to =.

As before, the most significant rule in the above definition is the one for the branching input.
They inspect the two operands which must start with

s> Xiopi(y;)
Then, if the operation op; appears in both terms, then the terms after the prefix (7; and /) are merged

as well, which are ensured to be mergeable by the assumption. In the other cases, a new branch is
added to the summation X.

15.2. Thread Projection and Coherence. Given a consistently thread annotated interaction,
we can project each of its threads onto an end-point process. This thread projection is a partial
operation again by its use of the merge operator. Before defining the thread projection, we add a
further annotation to each recursion and each recursion variable. Given rec *X4.4 in an annotated
interaction, let {t;} be the set of threads occurring in, but not initiated in, 4. Then we further annotate
this recursion as rec “{%} X and each free X4 in 4 as Xé ) The added information is used for taking
off unnecessary recursion from endpoint processes.e '

CONVENTION 7 (annotated interactions). Henceforth A4,... range over extended annotated
interactions (cf. Definition 12). Annotated interaction means extended annotated interaction.
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DEFINITION 22 (Thread Projection). Let A be consistently annotated with additional anno-
tation as noted above. Then the partial operation TP(A4, ) is given as follows, assuming in each
line T1,%p and v are pairwise distinct and the L. h.s. is undefined iff Ll on the r.h.s. (if any) is undefined.

b(vs).TP(4, 1) ift=1
TP(A™ — B2 :b5. 4, 1) = 16(5).TP(A4, ©) ift=1
TP(4, 1) otherwise

5<ople).TP(4, 1) ift=1
sopi(xi). TP(4, 1) ift=1
TP(A4, 1) otherwise

TP(A™ —B™ : s{opj, e;, xi). 4, T) =

v 1
TP(A +" A&, 1) - TP(4;, T)UTP(A, t)  otherwise

ife then TP(A, ') else TP(A, v') ift=1

def { TP(A4, )@ TP(A, v) ift=1
TP(ife@A" then 4, else &, 1) = {

TP(A;, T)UTP(A, 1) otherwise
v def x:=e.TP(4, ©) ift="7
TP(x@A" :=¢.4, 1) - TP(4, 1) otherwise
T def / /
TP(ﬂll )’42’ T) - TP(/qb T)lTP(ﬂ27 T)
TP(EIT, ©) € TP(E, ¥)[TP(E, 7).

{7t} yA d:ef rec XTP(.Q[, T) l:fT S {fl}
TP(rec X% A, 1) { TP(4, 1) otherwise

4 def X ifrel{t}
TP(X‘E:{’E,'}7 7) - { 0 otherwise

TP(0, 1) = 0

If TP(A, 1) is undefined, we set TP(4, t)=1.

Some observation:
(1) For each of the initialisation and communication, we have three cases:
(a) When the concerned thread coincides with its active thread, in which case we obtain
the corresponding output prefix;
(b) When the concerned thread coincides with its passive thread, in which case we ob-
tain the corresponding input prefix; and
(c) three, when neither applies, in which case we simply obtain the projection of the
remaining body, which is, by Lemma 6, always in the input/output form.
(2) For assignment, parallel composition, conditional and ifthenelse, each of which is anno-
tated with a single thread, we have two cases:
(a) When the projecting thread coincides with the thread of the interaction, we simply
carry over these constructors to endpoint processes;
(b) If not, we simply merge these threads (or identity in the case of assignment).
(3) Other cases are defined compositionally.

The definition of thread projection already demands that, if we ever wish it to be well-defined, the
behaviours inside a thread should be built consistently, i.e. whenever we use LI the operator should
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be defined. The notion of coherence includes this well-definedness, and extends it to inter-thread
consistency.

The need to consider inter-thread consistency arises because the description of the behaviour of
a service (replicated input) can be distributed over more than one places in one global description.
In this case, we should combine the result of projecting multiple threads into one code, for which we
use the merge operation again.

As an example, recall the projections we have seen in (93), page 83, which we reproduce below
with annotations.

(94) A® = B':ch(vs).B' A :s(op, e, x) | A°— B?:ch(vs').BZ —C:ch (vi)...

Call this interaction 4. Then we have:

TP(A, 0) % h(vs)s>op(x).0 | ch(vs)...
TP, 1) % 1en(s).5<a0ple)

TP, 2) ¥ (). A (vo)...

TP(A, 3) ¥ ).

Clearly ! ch(s).5 <top(e) and !ch(s').ch’ (v1)... are not mergeable. The point of coherence is that, if
there are multiple threads which constitute parts of the behaviour of a permanent service, then they
should be mergeable.

Since each channel ch uniquely defines a service, we can collect all threads contributing to the
behaviour of this service by taking the passive thread of each session initialisation interaction via ch.
Formally we set:

DEFINITION 23 (threads-per-channels). The map tpc(4, ch) is defined as follows, assuming
ch' # ch.

tpc(A™ — B% ch(vs). A, ch) = (1) Utpc(a, ch)
tpc(A™ — B2 el (vs). A, ch) & tpe(A, ch)
tpc(A™ —B™ : s(op, x, .)A', ch) def tpe(A4', ch)
tpc(x@A" :=e.. 4, ch) L tpe(A, ch)
tpc(if e@A" then 4] else 4, ch) % tpe(A], ch)Utpe( ), ch)
tpc(A] + 4, ch) T tpe(4a], ch) Utpe(4, ch)
tpe(A) | A, ch) & tpe(a], ch) Utpe(4, ch)
tpc(rec X2.4', ch) L tpe(A, ch)
tpe(X4, ch) def 0

tpc(0, ch) def 0

That is, if T1,Ts € tpc(A4, ch), then these two threads are parts of the behaviour of the same service.
If two input threads are for the same service channel, then they are equivalent. Below channels(4)
indicates the set of service channels occurring in 4.

DEFINITION 24. Given a well-threaded annotated interaction A4, for all T € A, we define the
equivalence class [t1]* C N as

2 = tpc(A4, ch) if Ach € channels(A) such that T € tpc(A4, ch)
{1} otherwise.

Given T 5 in A, we write Ty =g Ty if there exists T € A such that 1,7, € [‘C]’q.
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DEFINITION 25 (Coherence). Given a well-threaded, consistently annotated interaction A4, we
say that A4 is coherent if the following two conditions hold:
(1) For each thread T in 4, TP(A4, 1) is well-defined.
(2) For each pair of threads T,T; in 4 with T =4 T, we have TP(4, 1)< TP(4, 12).
We say a well-threaded non-annotated interaction / is coherent if I has an annotation which is
coherent in the above sense.

EXAMPLE 17. (thread projection and coherence)

(1) The interactions (88) in page 83, (91) in page 83 and (92) in page 83 are all coherent, but
(93) in page 83 is not.

(2) The following annotated global description already appeared in Section 15.1 (below and
henceforth we often write / etc. for annotated interactions).

J A (A" = B*: ch(vs).B> —A' : 5(op, e, y).0)

The description / says that there are two possible paths in interactions: in one path, noth-
ing will happen. On the other, A and B will initiate a session, for which there is one
interaction, and the session completes there. Then the projection of I onto 1 and 2 are,
referring to Definition 22:

TP, 1) ¥ 0@ (e(vs)s(»).0)
TP, 2) % 0U (lc(s)Sople).0)
Note the r.h.s. of the second simply becomes !c(s).50p(e).0 itself. Since there is a unique

thread for a service at ch, we conclude [ is coherent.
(3) As aslightly more complex example, consider:

r ©f Al B2 ch(vs).B2—Al :s{op1, “helld”, y1).0 +
A3 = B*:ch(vs).B>— Al : s(opa, “goodbye” | y;).0 +
A% = O (vs).CO— A% ¢ (opy, “hi”, x).0

In this case, the projections become:

TP, 1) % (Gh(vs).sopi(y1).0) B0 @ 0

(
TP, 3) % 0@ (ch(vs).sopi(y1).0) @ 0
TP(I', 5) def 0L 0UCcH(vs).sopa(yn).0)
TP, 2) % (lch(s)Sop1(“helld”).0) L O L 0
TP(I', 4) def 0 Ui (!ch(s).5op2(“goodbye").0) LI 0
TP, 6) © 0u (1ck(s) Topy(“hi").0) L 0

Immediately each of TP(I’, i) (1 <i < 6) is defined. Since we have tpc(I’, ch) = {2,4}
and tpc(I’, ch') = {6}, in order for I’ to be coherent, we should have TP(I’, 2)
TP(I', 4) which is possible iff op; # op>.

A further example can be found in Section 16.7

15.3. Subject Reduction for Coherence. Below 4 = 4’ is defined precisely following = on
unannotated interactions.

PROPOSITION 12 (subject congruence for coherence).

(1) U is partially symmetric and associative, and has the identity 0, all up to =. lL.e.: PUQ is
defined iff QU P is defined and when they are so, we have PLUQ = QUP; (PUQ)UR is
defined iff P (QUR) is defined and, when they are so, we have (PLUQ)UR=PL(QUR);
and for each P we have P110 = P.
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(2) Suppose I is coherent. Let A be its consistent annotation and T be its thread. Then A=A’
implies TP(4, 1) =TP(4/, 7).
(3) Suppose I is coherent. Then I =I' implies I is coherent.

Proof. (1) is immediate from the definition, noting, by the first rule in Definition 21 as well as
Definition 20, if (P Q) UR is defined then they do not have any conflicting branch among the three,
which is the same thing as PLI (QLR) being defined. For (2), we use rule induction on the generation
of =. As one typical case, suppose A = 4’ from the associativity of |, i.e.

(A1) A = A|(A] 43).
If 7 is the top thread, then we observe:
(TP(A1, 9)[TP(Az, 1)[TP(A3, 1) = TP(A, 9)|(TP(A, 1)[TP(A, 1))

hence done. If T is not a top thread, then | is interpreted as LI which is associative by (the annotated
analogue of) (1), hence done. For (3), by (2) we only have to consider mergeability of threads. For
this purpose we observe that, in the definition of mergeability P < Q in Definition 20, we can first
apply = to P and Q using the last rule in Definition 20, and then validate their mergeability via the
rules except that last one. Thus if / = I’ and the thread projection of I for each thread is defined, then
that of I’ is defined: similarly, if we have e.g. tpc(I, ch) = {t,72} then TP(I, 1;)><x TP(I, 1p) iff
TP, ©) =< TP, 1). O

Next we observe:
LEMMA 7 (substitution lemma for coherence). Ifrec X.I is coherent then so is I[(rec X .1)/X].
Proof. (outline) We consider a consistent annotation of rec X./ which we write
a4 Y recx2. .a.
‘We then consider
a" < a4 /xds).
where, to be exact, each substituting A4’ should be given, for its passive initial thread, a fresh thread
number, though we leave this point implicit since this does not affect the following argument. Con-
sider a thread t; in T. Then either (1) it starts from a positive position in A4 or (2) from a passive
position in communication. If TP(4’, 1;) = rec X.P then by induction we can check
TP(4", v;)) = PlrecX.P/X].
including its definedness. In the both (1) and (2), this thread is not to be merged with any other
threads, hence done. On the other hand, for ' which is not in ¥ but which occurs in 1, this should
be a passive complete thread inside / (for the meaning of “complete”, see the proof of Theorem 4,
page 79). Note the annotation 7 : % in rec X“;.4 makes the thread projection of 4" to t” turns this
substituted term to 0, just as each Xﬁf is done so in the thread projection of 4’ to ©”. Thus, letting
TP(4', v)=!ch(35).P, we obtain:
TP(A", 7)) = Ich(s).P
that is the T'-projection of 4’ and the T-projection of A" coincide. Note the same reasoning holds

for any other thread in 4’ which should be merged with 7', hence mergeability does not change, as
required. O

Below we assume, as noted just before Theorem 5, 79, that all and only top-level parallel com-
positions are unannotated and that reduction takes off the annotations of newly formed top-level
parallel compositions if any.

THEOREM 6 (Coherence: subject reduction). If 4 is coherent and (6,4) — (¢, 4’), then A’
is also coherent.
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Proof. We check how the collection of threads together with the associated thread projections
is transformed from A4 to A4’. Let this collection be @ and @', respectively. By abuse of designation
we say that these sets are coherent. We then show the following claim by rule induction on reduction
rules.

Claim.If ® is coherent, then @’ is also coherent. Moreover @' is either the result of truncating
some of threads from ®, as well as adding zero or more collections of the fresh complete threads,
each collection being multiple copies of a complete thread existing in P.

Above the copies can be created due to recursion. Assume P from A4 is coherent. For (INIT), we first
take off, from @, the head of one complete thread at ch (so that it is not a target of merging anymore)
and truncates one active thread, otherwise using the same threads as ®. The originally passive thread,
say Tp, is now an active thread, whereas the originally active thread, say Ty, is now a passive thread,
both of which are put in ®'. If | demands intra-thread merging through its own thread projection,
then so does it originally in ®. Otherwise merging in @’ remains the same as ®, hence done. For
(CoM), we truncate two non-complete threads, one active and the other passive, from ®. Again the
originally active thread, say T, is now passive, whereas the originally passive thread, say 75, is now
active. There is no change in inter-thread merging, so we again know @’ is coherent. (ASSIGN)
truncates a single active thread in @, while both (IFTRUE/FALSE) and (SUM) simply cut off some
of the threads from @ to make @'. For (PAR), assume

a = 4%

Accordingly we can set
d® = P UD

where @ and ®, respectively come from 4; and 4. Now assume 4; reduces to A4/, with the new
threads CD’I. By assumption, we know CID’l may truncate some threads and may add copies of existing
threads with fresh thread numbers. Since neither affect mergeability we are done (note intra-thread
mergeability remains the same by the definition of the projection of a top-level parallel composition).
(RES) does not change threads (i.e. ® = ®'). (REC) is by (IH) and by Lemma 7, possibly adding
collections of fresh copies of complete threads. Finally (STRUCT) is immediate from Proposition
12. O

Finally, since = is decidable, so is mergeability, by which we know:

PROPOSITION 13 (Coherence Validation). Given a consistently annotated A, there is an algo-
rithm which returns true if A is coherent, false if not.

Since typability, connectedness and well-threadedness are also calculable, this shows that we can
algorithmically check whether a given untyped interaction is coherent or not. Since complexity of
checking typability/connectedness/well-threadedness is each linear, the complexity of this validation
is linear if validation of mergeability can be done so. We believe this is possible by taking certain
normal forms.
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16. Main Results: EPP Theorem and its Consequences

16.1. The Projection. In this section we introduce the formal definition of endpoint projection
and establish its properties. Below and henceforth we say [ is restriction-free whenever it contains no
terms of the form (v s) I’ as its subterm. Recall also being coherent entails being well-typed, strongly
connected and well-threaded.

DEFINITION 26 (End-Point Projection). Let I be a coherent interaction such that I = ((vs) )I'
where I is restriction-free. Let 4 be a consistent annotation of I'. Then the end point projection of
A under o, denoted EPP((V5) 4, ©), is given as the following network.

(Vs~) HAepart(I)A[H[‘r] |_| TP(ﬂ, T/)]G@A
velt

where part(I) denotes the set of participants mentioned in I.

At the end of the section, we shall illustrate how the constructions involved in Definition 26 works
step by step using a mapping of a concrete, non-trivial global description.

The mapping given in Definition 26 is defined after choosing a specific annotation of an interac-
tion. The following result shows the map in fact does not depend on a specific (consistent) annotation
chosen, as far as a global description has no incomplete threads, i.e. it does no free session channels
(which is what programmers/designers usually produce).

PROPOSITION 14 (Invariance under Annotations). Given a coherentT' - 1 > 0 and '+ G, let
A  be consistent annotations of I and T' = . Then we have EPP(4,, 6) =EPP(4,, o).

Proof. Let I be coherent and, without loss of generality, / be restriction free. Let 4 be a min-
imal consistent annotation of I (whose existence is guaranteed by Proposition 11, 82). Let 4’ be a
possibly different consistent annotation of /. By the definition of minimality (cf. Definition 18) and
by construction, there is a surjective map ¢ from the threads in 4y to 4. Let T be a thread in 4" and
let T1,..,T, with n > 2 be threads in 4 such that o(t;) = t. First T cannot be a complete thread (for
the notion of complete threads see the proof of Theorem 4, 79) since if so, T in / should start from
a unique service channel, hence cannot be given multiple thread labels. Hence T is incomplete. Be-
cause / has no free session, this means each 7; is an active thread starting from a session initialisation.
Now the initial action of such a thread cannot be under a different prefix since if so that prefix (its
passive part) should have the same thread label. Hence each 7; is the initial active thread of a prime
interaction (an interaction is prime if it cannot be decomposed into a non-trivial top-level parallel
composition). That is each T; is in A/ such that 4" = (I1;4;)|4”. Noting 4 has precisely the same
syntactic structure, we infer:

TP, 1) & mTPA, 1)
= Igr)—TP(4, 1)
that is the projection of 4" onto T and the projections of 4 onto {t;} coincide. ]

16.2. Need for Pruning. The main results of the present paper we shall establish later says
that the dynamics of a given (coherent) global description is exactly preserved and reflected by its
endpoint counterpart, via the EPP mapping introduced above. To state this result accurately, we need
a preparation. Consider the following very simple global description.

(95) A— B:b(vs).0.

If we EPP this interaction with environment &, we obtain the following network:
(96) A[ch(vs).0]s04 | Blch(s).0lsep

Now (95) reduces as:

o7 (6,A—B:b(vs).0) — (0,0)

while (96) reduces as

(98) A[ch(v5)0]gay | Blch(s)0lgap —  A[0g, | Blch(s)0]5ap
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Note (97) results in the empty configuration, while in (97) the service at ch still remains, because
it is replicated. Note there is a discrepancy between two reductions: before reduction, the end-
point behaviour is indeed the EPP of the global description, while after reduction, the former is no
longer the EPP of the latter. However, as far as “active” behaviour (i.e. those who induce immediate
reduction) goes, there is a precise match: that is, as far as we take off the replicated service as a
garbage (since it is no longer of the use from inside this configuration), there is an exact match.

As another, and more subtle, example, consider the following interaction:

A—B:b(vs).B—A:s(ack).A—B:s(go).0 +
A — B:b(vs).B—A:s(ack).A— B : s(stop).0

The projection of this interaction is, omitting trailing inactions:

99)

A[ch(vs).st> acks < go @ ch(Vs).s1> acks <Istopls@s |

(100) Blch(s).5 < ack.(s>oks > stop]sep

After one step which takes the left branch, (99) reduces to the following configuration:
(101) A— B:b(vs).B—A:s{ack).A—B:s(go).0

The corresponding reduction for (100) leads to:

(102) Alch(vs).st>acks <go]s@u | Blch(s).5 <ack.(s> gos> stoplsep
Now take the EPP of (101):

(103) A[ch(vs).sD>acks <1 go]s@a | Blch(s).5<ack.sD> gols@p

There is again a discrepancy between (103) and (102): the former (or its original, (101) has lost one
branch, while (102) keeps it. But again we realise this lost branch is inessential from the viewpoint
of the internal dynamics of the resulting configuration: the branch “stop” is never used in (101).

In summary, a global interaction can lose information during reduction which is still kept in the
corresponding reduction in its EPP, due to persistent behaviour at service channels. This motivates
the introduction of the following asymmetric relation that we shall use to state a property of the
end-point projection. Below we write ! R when R is a n-fold composition of replications.

DEFINITION 27 (Pruning). Assume we have I' -4 P > A, I'TY 4 Q > A and, moreover,
I 4 P> Ais a minimal typing. If further we have Q = Q¢|!R where T - Qg > A, I 4 R and
P11 Qp, then we write: I' F4 P < Q > Aor P < Q for short, and say P prunes Q under I'; A.

Writing simply P < Q does not in fact lose any precision since we can then always reconstruct
appropriate typings. P < Q indicates P is the result of cutting off “unnecessary branches” of Q, in
the light of P’s own typing. < isin fact a typed strong bisimulation in the sense that P < O means
they have precisely the same observable behaviours except for the visible input actions at pruned
inputs, either branches or replicated channels. Thus in particular it satisfies the following condition.

LEMMA 8 (pruning lemma).
(1) < is a strong reduction bisimulation in the sense that: (a) If M < N and M — M’ then
M — N’ such that M' < N'; and (b) If M < N and M — N’ then M — M’ such that
M <N
(2) < istransitive, i.e. M < N and N < R imply M < R.

Proof. (1) is because, if M < N, the branches pruned from M can only be among those which
are never used by M, hence do not contribute to the reduction. (2) is by noting: if we prune R to
make N following the minimal typing of N, and prune N to make M following the minimum typing
of M, then we can surely take off all branches and replicated inputs from R in the light of the minimal
typing of M, and obtains M itself. (]

As we just observed, < satisfies the much stronger property of being indeed a strong bisimulation
w.r.t. all typed transitions under the minimal typing of the left-hand processes.
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16.3. EPP Theorem and its Consequences. We are now ready to state the main results of
this paper. Below we write I' - ¢ when the stored values in ¢ follow the typing in I" in the obvious
sense. In (1) below, L(A) denotes the result of replacing each occurrence of type assignment in A,
say S[A,B] : o, with §: L. In (2), = denotes the equality induced by the unfolding/foldings of
process recursion (note they do not change behaviour up to strong bisimilarity).

THEOREM 7 (End-Point Projection).  Assume A is well-typed, strongly connected, well-
threaded and coherent. Assume further I' = A > A and '\ 6. Then the following three properties
hold.

(1) (type preservation) If T - 4 > A is the minimal typing of 4, thenT - EPP(4, ) > L(A).

(2) (soundness) if EPP(4, G) — N then there exists A' such that (6, 4) — (o', A') such
that EPP(4’, 6') < = N.

(3) (completeness) If (6, 1) — (o', I') then EPP(I, &) — N such that EPP(I'; ¢') < N.

COROLLARY 2. Assume A is coherent. Assume further I' = A4 > A and T't- . Then the
Jfollowing three properties hold. In (2) below, < e is given as the transitive closure of < U = .

(1) (error-freedom) EPP(A4, G) does not have a communication error (cf. §12.2).

(2) (soundness for multi-step reduction) if EPP(A, ©) —" N then there exists A' such that
(0, 4) =" (0/, A') and EPP(A/, 0') < = N.

(3) (completeness for multi-step reduction) if (o, 4) —" (¢’, A’) then EPP(A4, 6) -»" N
such that EPP(I', ¢') < N;

Proof. (1) is immediate from Theorem 7 (1) and Corollary 1 (page 65). (2) and (3) are by
Lemma 8 (1,2) and Theorem 7 (2, 3), combined with the standard tiling argument and induction on
n. For example, for (2), the case when n = 1 is Theorem 7 (2). Suppose the statement holds up to n
reductions and assume EPP(4, ) —"*! N. By definition this means EPP(4, 6) —" Ny — N for
some Np. Hence by (IH) there exists 4], such that (6, A4) —" (o, 4))) and EPP(4)), () < recNo.
By Nyp — N and since < ... immediately satisfies the same simulation property as < , EPP(ﬂ(’), o)—
N" such that N < ,.N". By Theorem 7 (2) again we have (c},,.4)) — (o', 4’) such that EPP(4’, ¢’) < N”.
By the transitive of < ggc we have EPP(4/, ¢’) < N’ as required. O

Several observations on these results follow.

REMARK 7.

(1) Corollary 2 (1) indicates, among others, once we can type check a global description
and ensures it is coherent, then its endpoint projections do not have type errors in their
mutual interactions. This gives a basic form of a guarantee of “good” properties at runtime
through the static validation of global descriptions. Potential properties for validation
would include deadlock freedom, livelock freedom, and various security properties.

(2) Corollary 2 (2-3) says that all and only interactions in which endpoint processes will be
engaged, however many steps they would take, are precisely in correspondence with those
specified by the original global description.

(3) In both Theorem 7 (2-3) and Corollary 2 (2-3), we can strengthen the reduction-based
simulation in Theorem 7 and Corollary 2 by annotating reduction with associated con-
structors, e.g.

(6, A—B: s(op, v, x).0') P (e, 1)

similarly for the end-point calculus. This makes explicit how each action in the original
global description corresponds to the action in its end point projection.

The rest of this section is devoted to the proof of Theorem 7. We prove its three clauses one by one.
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16.4. Proof of Theorem 7: (1) Type Preservation. The type preservation is proved in the
following three steps, after introducing an inference system for a single thread of an annotated inter-
action, written I'; Ffjﬁnl >A;.

(a) We relate the original minimal global typing with this per-thread global typing, i.e. we
show I' - i[> A iff T' = U and A = LIA; where {t;} exhausts the threads in /.
(b) We then relate this per-thread global typing with the minimal typing of thread projections,
establishing: T’; Ff;]inIDA,- iff Tj Fin TP(Z, T;) > A for each 1;, where A’ is the result of
replacing each §[A,B] : ovin A with §: L.
(c) Finally we relate the minimal typing of mergeable processes with the minimal typing of
the result of merging them, by showing a general statement: L;I'; Fpin L P; > L A; with
P; > Pj for each i, j € I.
We start our inquiry from the following observation which relates the lub in the inclusion ordering
(of the global typing) and the lub in the session subtyping (of the endpoint typing).

DEFINITION 28 (equi-input subtyping). We define the relation oo C B over closed types by
setting o C B iff aR B for a witnessing relation R_satisfying the same rules as in Definition 1 for €
(in §10.4, page 47) except for replacing (INC-IN) with the following rule:

B =~ Zicsslopi(8;).0f Viel o; € o
Zicsslopi(8;).a; € B

(EQ-IN)

We call C equi-input subtyping.

PROPOSITION 15 (Equi-input Subtyping).

(1) Cis a partial order on types modulo ~.

(2) o C B implies both o € B and o < .

(3) If a1 2 have an upper bound w.r.t. C, then they also have the least upper bound. Then
they also have the lub w.r.t. € and = and all these three lubs coincide.

Proof. (1) is standard and is essentially identical to the proof of Proposition 6. (2) is by noting,
for both € and =, the only difference is in the input rule. For (3) the existence of a lub given an
upper bound is as in Propositions 4 and 7. For the latter part, by (2) we know that an upper bound of
oy w.r.t. £ is, their upper bound w.r.t. € and <. Now take the lub w.r.t. C, say [, which has the
same input branches as both o » and the join of their output branches. Take an upper bound of o »
w.r.t. €, say B’. Then it also adds input branches, hence surely B € B’. Next take an upper bound of
0 » W.rt. €, say B”. Then it may take off some input branches of o) ». Hence B € ", as required.C]

As noted, to carry out Step (a), we use an additional typing system which, given an annotated
global description and its thread, a minimal typing which is specific to that thread. The sequent of
this system is written:

" a-A

where 4 is an (extended) annotated interaction, 7 is its thread, and I'/A are as given in §12.1 (for A
we use a slightly refined types which associate participant information to session types, as in §[B] : a,
so that we can directly reconstruct global types from a set of these types). The typing rules are given
in Figure 26, where we omit the obvious inverse communication rules. For y in (GT-MTZERO)
and (GT-MTVAF) (v is the set of mutually disjoint vectors of session channels), see the proof of
Proposition 5, page 48 (as noted there, when terms treated are subterms of a term without free session
channels, then these groupings are uniquely determined). The typing is done by fixing (distinct)
y at each type variable/inaction in 4 from which the typing starts. In (GT-MTINIT-S1/2-A/P)
and (GT-MTINIT-O), S denotes “self” while O denotes “others”, a denotes active and p denotes
passive, similarly for communication rules (here “self” denotes the typing of the target thread when
it is involved in interaction, the latter otherwise). The treatment of recursion and recursive variables
follow the minimal typing system given in Figures 20, illustrated in §10.4, page 46.
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FFA>A-§5A]:B t=1 chgfn(l) tvar(B)={t}
T, ch@B: (5)(Blend/t]) F* A% — B% : ch(v3§). 41> A

(GT-MTINIT-S1A)

CHA>A-§B]:Bp t=1 chgf(l) tvar(B)={t}
T, ch@B: (5)(Blend/]) FT AT — B% : ch(V§). 4> A

(GT-MTINIT-S1P)

[, ch@B: (5)a-"A>A-5[A]:B t=1 chgf(l) tvar(B)={t}
T, ch@B: (5)(aUBlend/T]) F* A% — B% : ch(V§). 4> A

(GT-MTINIT-S2A)

[, ch@B: (5)oF"A>A-§[B]:B t=12 chgfn() tvar(B) = {t}
[, ch@B: (5)(alBlend/f]) FT AT — B% : ch(V35). 4> A

(GT-MTINIT-S2pP)

I"4ac-A {§infc(A)=0 t¢ {1,100}

GT-MTINIT-O
( ) T A% — BY : ch(V§). A A

FF A>A-5[Al:0; The@A:0; THx@B:0;, sc{s} t1=1
CFYA%™ —B% :5(opj, e, x). A>A-5[A] : s Top;(8;). 0

(GT-MTCOMM-SA)

TH A>A-§B]:a; THe@A:0; THx@B:0; sc{§} 1=1
'F*AY —B% :s(opj, e, x). A>A-§[B] :5s | op;(0;).0;

(GT-MTCOMM-SP)

F'F"A>A THe@A:6; THx@B:0; sdfc(A) t¢{t,0}
[T A% — B% : s(opj, e, x). A>A

(GT-MTCoMM-0O)

I'Fx@A:0 TFe@A:0 THF 4>A
IV :=e@A. 4> A

(GT-MTASGN)

N a>A TTF2>A
MUl F* 21 4% 2> A UA,

(GT-MTSuUM)

I'Fe@A:bool TH'Z1>A; TH Z>A,
[ HTif ¥ @A then 4 else 4, > Aj LAy

(GT-MTIF)

P 2>A ToFP Ay, fsc(Ap) Nfsc(Ay) =0
DU T4 Y DA eA,

(GT-MTPAR)

T 4> A, §155[A,B]:o TH A A, §is5: L
GT-MTRES2
THE(vs) A A, §15: L ( )FH(Vs)ﬂt>A, 515 L

(GT-MTRES1)

' A A e: L
' (vs) A A

Y ={5§} tfresh
‘P,XA tET XA Uifi[AbBi} it

(GT-MTRES3) (GT-MTVAR)
C-X4:tH 4 A

GT-MTREC
( ) I rec X4. 41> solve(t,A)

¥ = {5}

GT-MTZERO
( ) Fl—TODUifi[Ai,Bi]end

FIGURE 26. Threaded Minimal Typing Rules for Global Calculus
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Below, when we write e.g. I' i A>A, we assume the thread annotation in A4 conforms to the
grouping of session names in A (cf. Proposition 2). The calculation LJ;A; is done in the obvious way,
e.g. if we merge §[B] : o and $[A] :  then we get S[A — B] : oL B.

PROPOSITION 16 (Threaded Typing for Interaction). Let {T;} exhausts the threads in 4. Then
I'Fin A A iff T = UL and A = UA; such that, for each t;, we have T'; Prcrl]in'qDAi'

Proof. Let ' Fin A A and I Ff;]inﬂle,-. By structural induction of A4, we first show that
I €I’ and A; € A, following the typing of A inductively in both Figures 20 and 26. For ini-
tialisation, there are two cases in the original minimal typing, while there are four cases in the
threaded typing. (GT-MTINIT-S1/2, A/P) correspond to (GT-MTINIT-1/2) and (IH). The case
when (GT-MTINIT-O) is inferred corresponding to (GT-MTINIT-1) is by induction and by noting
€ includes the subset relation. The case it corresponds to (GT-MTINIT-2), is immediate by induc-
tion. The case for communication is the same as the case of initialisation. The cases for assignment,
restrictions and inaction are trivial since typings do not change in each case. Finally the conditional,
sum and parallel composition are immediate from induction hypothesis and € being closed under L.

Next we show the types inferred simultaneously for each t; in I Ff];in A A; fully covers
those inferred in I" b, A> A, again by induction. This only matters in (GT-MTINIT-S1/2) and
(GT-MTINIT-O), as well as (GT-MTCOM-S) and (GT-MTCOM-O), where the shape of typing
differ. In each case, the non-threaded inference I' - ,;, 4> A is covered in one of the (GT-MTINIT-S 1/2)
and (GT-MTCoM-S), hence done.

These two results together show I" and A in I -,;, A > A coincide with the merging of I'; and A;
for each threaded inference I'; Ff];inﬂDAu, O
Next we proceed to the step (b) outlined at the outset of §16.4, page 16.4. Our purpose is to relate
each threaded typing of a global description and the minimal typing of the corresponding thread
projection, bridging the global typing and the endpoint typing. For this purpose we use the following
observation. As always we consider typings under a specific grouping of session channels (which is
uniquely determined if a term is a subterm of a complete term).

LEMMA 9. Assume Py 5 are not replicated processes and Py <A P. Let I Fin P> A (i=1,2)
and P| U P, is typable, all under the same grouping of session names. Then T'y U FinP U Py >
A UA,.

Proof. By induction on the generation rules of LI in Definition 21 and its corresponding rule
in Definition 20. The only non-trivial case is the merging of input branch. Let P > Q such that
P =s1>Xicjopi(y;).P;and Q = Us> Xicgop;i(yi) - Qi Then their merge is defined as:

Ticsnkopi(vi) (PiLU Qi) +
s> Zicsopi(vi) - PUs > Zicgopi(yi) . Qi & s> Zienkopi(yi) - Pi +
Liex\sopi(vi) - Qi
which corresponds to MGBL-IN in Definition 20. Safely neglecting the invariant part (which has no
effect on the argument), we set:
(1) Ay =5:%is | opi(8;). 04
(2) A2 =3: st l Opj(ej) B]
By assumption P; < Q; and, by induction hypothesis, P; LI Q; for i € INJ has the type o; LI B;. Hence
we know PLIQ has the type Ay LIA;. In Ty 5, we may be assuming interactions with services, which
are treated similarly (using the rule for session invocation in Definition 21). g

PROPOSITION 17 (Thread Projection and Thread Typing). Assume I is coherent and A is its
consistent annotation. Then T 7. A A; implies T - min TP(A, 1;)>A] where I, changes the polar-
ity of service channel typings as needed and A' is the result of taking off information on participants
from type assignments in A (e.g. 5[B] : oL becomes §: @).

Proof. By induction on coherent 4, we relate the result of typing I'; Ff{ﬂnﬂDAi in Figure 26,
on the one hand, and the result of taking TP(A4, 7;) by Definition 22 (page 86) and typing it by the
minimum typing in Figure 23 (page 64), using Lemma 9.
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For (GT-MTINIT-S1A), consider the case when T = T;. By assumption we have
4> A-5[A]: B
which, by induction hypothesis, implies:
' FminTP(A4, T)bA -5:B
Hence we have, using (MTINIT-OUT1):
T, ch@B: (5)(B[end/T]) Fminc>hA™ — B® : ch(V§). 4> A

as required. Similarly (GT-MTINIT-S1P) is reasoned using (MTINIT-IN).
For (GT-MTINIT-S2A), by assumption we have

T, ch@B: (5o "4 A-5A] : B
which entails, by induction hypothesis,
[, ch@B: (5)a-TP(A, 1)>A-5:
‘We now consider the typing for the thread projection of
4 =A™ — B% : ch(v§). 4.

We first observe:
Claim. o and f has an upper bound w.r.t. C in Definition 28.

This is because, if not, when we put the session initialisation A™ — B™ : ch(v§), the thread T, at
ch and another passive thread at ch which contributed to ch@B : (§)a in the preceding derivation
(there is at least one by the existence of ch in the base) cannot be merged, since for them to merge
they should have exactly the same outputs after each common sequence of actions which come out
as inputs for its dual interactions.

By the above Claim and by Proposition 15 (3) we know LI} = oV B, hence we have

T, ch@B: (5)(aLiBlend/T]) - TP(A', 1) >4

as required. (GT-MTINIT-S2P) is reasoned by the essentially identical argument. (GT-MTINIT-O),
(GT-MTCOMM-SA), (GT-MTCOMM-SP), and (GT-MTCOM-O) are easy from (IH). For example,
for (GT-MTCoM-O), the thread projection ignores the prefix, which is precisely what Definition 22
does.

For (GT-MTSUM), by assumption we have

I I—T,‘41|>A2 I I—T,‘42|>A2

where the summand, hence the top threads of 4 5, have the thread 7. We should consider two cases,
one when t’ = 1 (in which case the thread projection does @ to the thread projection of the summands)
and T’ # T (in which case the thread projection does LI). In the former case, the minimal endpoint
typing has the service typing I'y VI, and the session typing A V A;. First, for the former, since I" has
only output service typings (and assignments to term variables which are trivially identical) the same
reasoning as Claim above shows I'} VI, =T'j LIT>. For session typings, consider the interacting
(dual) behaviour which, since they are using the common session channels, should have the same
thread. Since they should be mergeable, they should offer the same set of output branches at each
common reachable point in the course of interactions, hence, dually, the corresponding types in Ay
and A have the same inputs at each such point. Hence again we have A V Ay = Aj LIA, hence by
(IH) we are done. The case when T’ # T is immediate from Lemma 9 and (IH).

For the remaining cases, (GT-MTIF) is reasoned as (GT-MTSUM), the rules (GT-MTPAR),
(GT-MTRES1/2/3), and (GT-MTREC) are immediate from (IH), and both (GT-MTVAR) and
(GT-MTZERO) are vacuous by identical shape of the corresponding typing rules. g

Finally we note:
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PROPOSITION 18 (Typing for Merged Threads). Let A be coherent and assume that, for some
ch, we have {t;} = tpc(A4, ch). Then T'; Fnin TP(A, T;)>A; for each t; € {t;} implies | ;i Fmin
I—Ii Tp(ﬂ, ’C,’) > I—IiAi'

Proof. Immediate from Lemma 9 (note the order of merging does not matter by Proposition 12
(commutativity and associativity of LJ). ]

We now prove Theorem 7 (1). Take the consistent annotation 4 and assume {t;} is the threads of
A (which we assume does not include free term variables for simplicity). Since I' ™" 4 > A, we
have:

(104) e A A
for each T; € {1;} for which, by Proposition 16, we have (1) L;I'; =T and (2) LJ;A; = A. By Proposi-
tion 17, we also have, for each 1; € {1;}:

(105) L FM0 TP(A, 1) > A
Now consider 4 contains T > 3 as the threads for a server at ch and consider
(106) Lk A A (i=1,2,3)
as well as
(107) L FMn TP, 1) > A (i=1,2,3)
By Proposition 18 we have
(108) L] Fm™ | TP, w> || A
i€{1,2,3} i€{1,2,3} ie{1,2,3}
gives the replicated input at ch. Now
(109) |_| I;
ic{1,2,3}

gives the service typing at ch and zero or more client typings, in addition to assignment to variables,
as required.

16.5. Proof of Theorem 7: (2) Soundness. For soundness, we observe:

LEMMA 10. Assume Py > Py and let P P\ UPy. Then Py < P (i=1,2).
Proof. Immediate by the construction, noting < is compatible. a
Let 4 be coherent and assume A4 has the threads 7 = {1;}. Let their thread projections be P; oef
TP(A4, 1;) for each 1; € T, which as a whole gives the indexed family of processes, {P;}. Each
P; (which is to be strict an indice i together with the associated process P;) is either a replicated
input with a service channel as a subject; or else. If it is a replicated input, then it needs be merged
with other replicated inputs at the same service channel, which should be merged. If not, it is never
merged with other threads. We can now form a partition (a quotient set) of thread projections W:
(1) ¥ partitions the family {P;}: i.e. if S1,5 € ¥ and S; # S, then S} NS, = 0; and that
Uw={P}.
(2) If S€ ¥ and P;, P; € ¥ such that i # j, then P; and P; are (replicated processes with the
same service channel and hence are) to be merged in the endpoint projection.

Given W, the endpoint projection of A4 is given as the result of merging processes in each S € ¥ (let
the result be Pg) and placing them in each participant, i.e. with P being the set of participants, and
Y(A) (for each A € P) being the subsets of W to belong to A:

(110) EPP(4, o) & (v7)(IycpATsewu)Pslo,)
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Note reduction is never affected by participants information as far as projected processes go (since
redexes are always inter-participants or involves only a single participant). Thus for legibility we
neglect participant information from (110) and consider the initial configuration:

(111) EPP(4, 0) & wi)(Ilgew | | P, o)

Pes
where ¢ aggregates all local stores, assuming all local variables are distinct, without loss of general-
ity. Since we can easily regroup processes and state into participants, and this grouping never affects
dynamics, this does not lose generality.

We show soundness using the reduction rules from Figure 21, page 57, adapted to the shape
of (111). These rules are based on (INIT), (COM), (ASSIGN), (IFTRUE), (IFFALSE), (SUM) and
(REC), directly closing them on = and reduction contexts. Calling these adapted rules with the same
names as the corresponding ones in Figure 21, we list these rules in the following (note that, as noted
above, we are assuming variables are globally distinct, so that there is no need to local assignments).
Below ([ ] denotes a reduction context, i.e. a context whose hole is not under any prefix (thus we
can always set C[P], = (v3)(P|R) for some R and ).

P=C[1ch(5).0 | ch(V$).R] P’ =C,[1ch(5).0 | (v§)(QIR)]

() (P.o) — (P.0)

P=C/[s>Xiop;(x;).Q; | s<iop;(e)R] P'=C,[Q|R] otelV
(Con) 7o) = (Pol V)

P=C/x:=e.Q] P'=C/JQ] oFelV

(AssiGr) (P.o) — (Pooxr V)
IFT P=Cifethen Py else P,] P =C/[P|]] oFeltt
(IFTRUE) (P.o) — (P.0)

P=C/[PioP)] P =ClP]
(SUM) (P,IG) i (P/,G) !
(REC) P=C/recX.Q] (C/[Q](rec X.Q0)/X]], 6) — (P, o)

(Po) — (P,0)

We omit (IFFALSE) (which follows (IFTRUE)) and the symmetric case of (SUM). We can easily
check these rules give the same reduction relation as those in Figure 21 when we incorporate par-
ticipants. In the following we reason by induction on the height of derivation of these reduction
rules, neglecting those used for inferring = (the induction on reduction rules are only non-trivial for
recursion, since all other cases are the base cases).

In all of the following cases, we set:

A= (vi)y<i<n A
where each 4; is prime, i.e. is not itself a non-trivial parallel composition. For simplicity we safely
neglect (v7) from now on (since the hiding does not affect reduction) and consider only Iy<;<, 4;.

Note in this case the endpoint projection can
We start from (INIT). Then the redex is a pair, which is given by an input:
def . - -
S | 1eh(5).0i = 1ch(5). || @i ({!ch(35).0i} € P)

Ich(5).0 =
0<i<n 0<i<n

and an output:
ch(V3)R € {ch(V$R} ({ch(v§)R} € P)
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Thus we can write down the reduction up to =:
(112) (1ch(s).Q | HVSIR| S, 6) — (1ch(s).Q | (V$)(QIR) | . )

Note we are neglecting participants for legibility, as stipulated above.

Now ch(v §)R come from the thread T. Then 7T should be the active top-level thread (since if not
R cannot be an output, by wellthreadedness: cf. (G3) of Definition 14, page 75). Hence there is a
complete interaction in A4, say Ay, which starts from T and its dual passive thread, say t’. Since T is
a passive thread starting from initialisation via ch, its thread projection is in {!ch(§).Q;}, which we
let (w.l.0.g.) !ch(§).Qp. Hence we can write

Ay=A" — BY : ch(v3). 4)
which induces the following reduction:
(113) (4, 0) — (v§)(A|Mi<i<x 4, ©)
Let the term on the right-hand side above, without including (v§), be 2’. Note A’ has the same set

T of threads as that of 4 (it is possible T no longer occurs in A’, in which case we safely stipulate it
exists as 0%). Consider all the thread projections from 2’. By (113) we have:
vt € (T\{7,7}). TP(4, ©) =TP(4, ).
For T and T we have:
TP(Z', 7)=Q and TP(Z, 7)=R.
Note Q is no longer a replicated process at ch or any service channel, since it cannot be a passive
input anymore. R is not a replicated process at a service channel either since if it should have given a
fresh thread in 4’, not T (by (G1), freshness, Definition 14). Thus we can construct ¥’ for .4’ as we
constructed W for A4 as the same collection of sets of processes except
(1) We replace {ch(v3)R} € ¥ with {R} € V.
(2) We lose !ch(5).Qo from {!ch($).0;} € ¥, obtaining {!ch(5).Qi}1<i<n €'Y, and instead
add {Qp} € V.

(3) Otherwise ¥’ remains identical as .
/

We thus obtain the following endpoint projection of ((v§).4
stipulated):
(114) L] ten(s).0i | (v5)(QolR) | S

1<i<n

,0) as (neglecting participants as we

together with 6. We now compare (114) with the right-hand side of (112), the result of reducing the
EPP of 4. By Lemma 10 we have | || <;<,!ch(5).0; < [p<i<n!ch(5).Q; as well as Qg < | |p<i<n Ois
hence we are done. o o o

For (CoM), the reduction of the endpoint projection of A4 can be written as:

(115) (sZiopi(yi)-Qi | S0pj(e).R| S, 6) — (Q; [ RS, ©)
Again the thread, say 7, for Sop (e).R | S for which we have {Sop;(e).R} € ¥, cannot start from an
intermediate node, so it is a top-level active thread. Then the thread corresponding to s¥;op;(y;).Q;
should be its dual. Let the prime interaction starting from these two threads be 4y. Then we can
write:

/q() EA—>B : S<0p7 €, y> ’q(/)
by which we in fact know the sum we assumed in (115) is a singleton,14 i.e. we can restrict our
attention to:

(116) (sop(y).Q [ sop;(e).R | S, 6) — (Q|R]S, 0)
14Only in a top-level immediate in-session communication, the direct endpoint projection of its passive
thread becomes a singleton sum (note there can be no other ways). By sums and conditionals, non-trivial sums

arise, as is usually the case in endpoint projections of meaningful protocols. Concrete examples are given in
§16.7 and 16.8.
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Now A4 has the following reduction:
(117) (4, 0) — (A|Mi<i<n i, ©)
where, by construction, we have TP(4, 1) = Q and TP(4), 1) = R, which are not to be merged
with other threads (since again they cannot start from a passive service initialisation), otherwise
remaining the same as 4. Thus in this case we have the precise correspondence, i.e. the result of
reducing EPP(4, o) is precisely EPP(4’, ) up to =.

For (ASSIGN), we have the reduction of the shape:

(118) (x:=e.Q|R, 6) — (Q|R, o)

which means x := e.Q comes from the initiating active (and passive) thread, say 7, of an interaction
of the form:

2, = xX=ed)
Hence (118) is precisely matched by the global reduction:
(119) (4, 0) = (AMi<i<n A, o)

By observing TP(A'y, t) = Q and for each T; € 7 such that T; # T we have TP(4, ;) =TP(4, 1),
we are done.
For (IFTRUE), we can write the reduction as:

(120) (if e then P; else P3|R, 6) — (P1|R, O)
when e evaluates to true in 6. Since {if e then Pj else P,} € W (i.e this is a singleton thread) we know
there is a prime A of the following shape:

4 € ife@Athen 7, else 4),

Thus we have the global reduction:
(121) (4, 0) = (Ay[Mi<i<a 4, ©)
Note we have lost ﬂéf. If we write T for the corresponding initial active (and passive) thread of

4, then we have, by TP(4y, T) =if e then P; else P, and by the definition of thread projection for
conditional:

(122) TP(A),, 1) = P

Now suppose T1,.., Ty occur in Ayr. For simplicity let us just consider Ty and consider its thread
projection at Ay (it can occur in other 4; with i # 0 but they remain invariant hence simply later
added in parallel). In A4y we had:

TP(A, 1) = TP(Ay, T1)UTP(Ayy, T1)

hence the thread projection of T in ﬂét is < -smaller than that of T in Ay, that is, for such 7;:

TP(Z, 1) < TP(4, 1))
Since the projection of other threads remain identical, we know:

v, e T\{t}. TP(4', ©) < TP(4, ©)
By (122) we are done. (IFFALSE) is the same as (IFTRUE).
For (SUM), the original reduction is

(123) (Pr& Py, 6) — (P, 0)

which means we can set
def

Ay = ,"461 + ’qér
Corresponding to e (122) in the case of (IFTRUE) above, we have
TP(%h T) = P]

The rest is identical with the reasoning for (IFTRUE).
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Finally for (REC), we have the reduction:

(124) (rec X.Py | Ij<j<precX.P;|R, o) — (S,0)

from

(125) (Po[rec X.Py/X] | ITj<i<mrec X.P; | R, ©) — (S, 0)

where we specity all recursion terms coming from the same recursion in the global process, say:
Ay = recX.4)

By (125) we know, writing P} dﬁfP,-[rec X.P/X]:

(126) (Mo<i<mP{ |R, ©) — (S, 0")

since if there is a reduction of a folded version, it is mechanical to check that its unfolded version
also has the corresponding reduction. Further we can easily check that the latter is inferred by no
more inference steps than the folded version.

Now we observe, assuming each Pi’ comes from the projection at T;, we observe, for such 7;:

£ ¥ TP(@[rec X ) /X], 1)
The unfolding can increase fresh passive threads if 4’( contains initialisation, which will be trans-
lated into replicated processes but these do not change the resulting processes (because an exact copy
of such a passive thread already exists in 4, and noting PLI (PLIR) = PLR). By induction we know

(127 (E,6) — (F,0)
such that

S < = EPP(E’, ©).
By (127) we also have:

(A,0) — (2.0
hence we are done. This concludes all cases.

16.6. Proof of Theorem 7: (3) Completeness. Completeness is by induction on the derivation
of reduction in the global calculus. As before, we consider adapted reduction rules which are taken
modulo structural equality and reduction contexts, which are equivalent to the reduction rules in Fig-
ure 18 (page 39). We list these adapted rules in the following, using the same names as the original
rules in Figure 18. As before, we assume all variables are distinct, including across participants, so
that we can write e.g. 6 ¢ | V instead of 6 ¢@A || V. We again write C,[ ] for a reduction context
in the grammar of interactions.
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[=CA— B:b(v3).Io) I'=C(V3) )

i 1) = .1

(con) =R L] el
o = ey
(IFTRUE) © = Crfif e then foy f('ij)foi]) ((I;IE/)Cr[IOt] oheltt
(sum) L=C e o ise(f;j’},) I' =Gl

(REC) I=C/rec X.I)] (o, C/[I[(rec X.Iy)/X]]) — (o', I')

(6,I) — (o',I)

We omit (IFFALSE) and the symmetric case. Note the rules (PAR) and (RES) are no longer necessary
since they are absorbed in the above rules. Up to the application of the rules of =, all rules above
except (REC) are the base cases. In the following reasoning, we use the obvious annotated version
of these rules (which preserve thread labels across reduction, except when a new top-level parallel
composition arises as a result of reduction, we take off its label).

In the following, by induction on the height of derivations, we show if

(0,4) = (", )

then
EPP(I, o) — (P/7G/)
where
(128) EPP(A', ¢') = (P),0’) such that P’ < =, P}

Above, as in the proof of soundness, we neglect participants information in the endpoint processes,
and aggregate the local states into ¢, assuming all local variables are distinct. For simplicity we also
abbreviate (128) to:

(129) (P,6') < = EPPA, o)
We set
a4 = (V f)nog i<n ﬂi

where each 4; is a prime interaction (i.e. an interaction which does not contain a non-trivial top-level
parallel composition). Henceforth we safely neglect (V7). As before, we let 7 to be the set of threads
and W to be the partition of the family of thread projections w.r.t these threads. We write S, 5", ... for
the elements of P

For (INIT), we can set:

2y A~ eBYCch(vS) .4
and consider the reduction:
(130) (4,0) — ((v8§)A)|T <<, ©)

The endpoint projection of (A4, G) contains a pair of an input and an output corresponding to the
redex of this reduction:

1ch(5).0 % Lgcicnlch(5).0i = 1ch(5). Upcicn Qi ({1ch(5).0i}o<icn € P)
and an output:
ch(VE)Re {ch(V§)R}  ({ch(v5)R} €P)
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Then we can write down 4 as !ch(5.Q | ch(v$).R | S. Thus we have a reduction:
(131) (1ch().Q | H(VHIR| S, 6) — (1ch(3).Q | (V$)(QIR) | . o)
By the exactly identical reasoning as in the corresponding case in the proof of soundness, the residual
in (130) and that in e (131) are related in the way:
EPP((v3) A|Mi<i<n A, ©) < (lch(5).Q | (V9)(QIR) | S, o)

hence as required.
For (COMM), assume without loss of generality we have

Ay & Am g : s{op, e, x). 4
and consider the reduction:
(67 ,52[) - (0/7 ’q(l)lnlﬁiﬁn’qi)
where ¢’ = G[x@A — V| with:
C@AFe|V.
The thread projection of Ay to T has the form 5op(e).R (when the branching is a singleton we omit
the symbol X, similarly henceforth) such that {Sop;(e).R} € ¥, while the one onto T; has the form

sop(y).Q. Without loss of generality (cf. Proposition 11) we regard 1,1 is used only in Ay. Thus we
can set:

EPP(4, o) = (sop(y)-Q |5opj(e).R|S, o)
hence we have:
(132) EPP(4, o) — (Q[R]S, d)
(in (132), the update of the store is safely done due to our stipulation that all local variables are
distinct.) By the same reasoning as in the corresponding case in the proof of soundness, we know
EPP(A|Mi<i<, A, sigma’) < (Q|R]S, )
as required.
For (ASSIGN), we can set
) & @A =ea)
‘We consider the reduction:
(133) (0,4) — (¢, A)|Mi<i<, )0
with appropriate 6’. The thread projection onto T has the shape x := e. TP(4), 7), hence we have
the reduction:
(134) (x@A :=e.TP(4), 1) | R, 6) — (TP(A), T)|R, o)

As in the corresponding case in the proof of soundness, (134) shows that all thread projections of 4’
except at T remain invariant from that of A4, whose aggregate is R; and the projection onto T precisely
matches that of the residual of (133), hence as required.

For (IFTRUE), we can set

2 € it @Athen 4, else A,
with which we have the reduction:
(135) (4, 6) = (Ay|Mi<i<n 4, ©)
Observing

TP(A, 1) & ifethen TP(A,, 1) else TP(Ayy, T)
we have the reduction for the endpoint projection:

(136) (ifthenelseeTP (A, T)TP(Ays, 1) [R,6) — (TP(Ay, 1)|R, 0)
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where e evaluates to true in 6. By the reasoning for the corresponding case in the soundness proof,
R in (136) may contain replicated inputs which are the result of merging complete threads from ﬂléf.
Thus we obtain:
EPP(Ay Mi<i<u i, ©) < (TP(Ay, 1) |R, ©)
as required.
(IFFALSE) and (SUM) are similarly reasoned.

For (REC), let:
def

Ay = recX.A4.
Further assume we have:
(137) (4, 0) — (A M<i<a i, o)
The reduction (137) comes from, by the recursion rule above:
(138) (A)[(ree X.4))/X],0) — (47, o)
Now the endpoint projections of Ay has the form:
(139) EPP(4, o) & ((IP)|R, o)

where R is a collection of replicated processes and each Pi’ is not replicated and has the shape:

P Y recx.p.
We then consider the endpoint projection of the unfolding of Ay:

(140) EPP(A)[(rec X.4))/X], ) & ((A[P/X])|R, o)

Note the right-hand side of (140) is the n-times unfoldings of (139). Thus by induction hypothesis
and applying the recursion rule in the endpoint processes n-times we obtain:

(141) EPP(4, o) — EPP(A( Il <i<,4;, o)

as required. This exhausts all cases, establishing completeness.
This concludes the proof of Theorem 7.

16.7. An Example of Endpoint Projection. In the following we present an example of the
endpoint projection to illustrate the formal notion introduced in the preceding sections. We use a
fairly large toy example involving five participants. First, we explain the example in English; then
we introduce the description in the global calculus; finally we project the description to endpoint
processes.

Global Description in English. The example is an extension of the buyer-seller example intro-

duced in section 2. The participants involved in this protocol are

(1) Buyer (B)

(2) Seller ()

(3) Vendor (V)

(4) CreditChecker (CC)

(5) RoyalMail (RM)
The protocol proceeds as follows:

(1) Buyer requests a service chcce for company check to the credit checker CreditChecker by
sending its name.
(2) At this point CreditChecker can either give a positive or negative answer.
(3) If the answer is positive:
(a) Buyer asks Seller for a quote about product prod;
(b) Seller then asks Vendor for service chy
(c) Seller starts recursion and asks Vendor for a quote about product prod;
(d) Vendor replies with a quote quote;
(e) Seller forwards quote to Buyer increasing it by 10 units (quote+10);
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(f) if the quote is reasonable (reasonable(quote + 10)) then:
(i) Buyer sends Seller a confirmation (quoteOK) together with the credit (cred);
(ii) Seller then contacts CreditChecker for checking the credit;
(iii) If the credit is good then:
(A) Seller contacts Shipper (service chgy);
(B) Seller sends the delivery address;
(C) Shipper sends a confirmation;
(D) Seller forwards confirmation to Buyer;
(iv) If the credit is bad:
(A) CreditChecker tells Buyer;
(B) Buyer tells Seller terminating the protocol;
(g) if the quote is not reasonable the protocol goes back to point 3c;
(4) If the answer is negative then the protocol terminates.

Global Description in the Calculus. The global description consists of several components for
readability. We directly give annotated interaction. The main description is:

1. B'—=CC?:chees.CC*— B! : s(ack).

2. B'—(CC?: s(companyCheck, sellerName, compName).
3. {

4. CC?*— B! : s(good) . Iooq

5. +

6. CC?—B': s(bad).0

7. }

where Iyo0q in Line 4 is:

1. B! —83:chgt.S>—B':r(ack).

2. B'— 83 :t{quoteReq, prod, prod).

3. 3= Vv4ichyr.

4. V¥ :r(ack).

5. reeX3.{

6. §3 —V*: r(quoteReq, prod, prod).
7. V4 - 83 : r(quoteRes, quote, quote).
8. §3 — B! : t{quoteRes, quote + 10, quote).
9. if reasonable(quote) @B then

10. B! —§3 : t{quoteOK, cred, cred).
11. $3 — CC? : cheeu.

12. CC5— 83 : ufack).

13. §3 —CC : u{personalCreditCheck, cred:adr, cred:adr).
14. {

15. CC> — 5% : u(good) . Iy

16. +

17. CC>— 83 : u(bad).

18. §3 — B! : t(yourCreditlsBad) .0
19.

20. else B! — 83 : t{quoteNotOK) . X3
20}
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AN o .
where Igood in Line 15 is:

$3 S RO : chpp.
R0 — 83 : plack).
§3 — RS : p(deliv, adr, adr).
R — 83 : p(conf).
5. $3—B':t{conf).0
We can check these descriptions are typable, strongly connected, well-threaded and coherent. For
connectedness, the descritption given above uses a lot of acks. As we discussed in the long version,
many of these acks are in fact unnecessary by using a relaxed notion of connectedness.

e

End-Point Projection of the Global Interaction. Following the definition of EPP in the paper,
we first project the global description onto each thread. The first one is Buyer’s only thread.

TP(I, 1) = chce(vs).st> ack().s <t companyCheck(sellerName) .
{ s> good().chg(vt).t > ack().f <l quoteReq(prod) .
rec X . t > quoteRes(quote) .
if reasonable{quote } then 7 <1 quoteOK({cred) .
{t > yourCreditlsBad ()
+
1> conf()}
else 7 < quoteNoteOK() . X
+
st>bad().0 }

Note this thread starts before the recursion and go through inside the (global) recursion. Thus the
projected endpoint behaviour also contains recursion.
The next projection is onto the first thread of CreditChecker (note this participant has two

threads, 2 and 5).
TP(I, 2) =!chee(s).5<1ack().s>companyCheck(compName) .
{5<good().
2]
s<gbad().0 }

Note no recursion is involved in this thread projection, simply because the thread 2 does not occur

inside the recursion.
Next we jump to Thread 5, which is another component of CreditChecker.

TP(I, 5) =!chec(u).u <t ack() . ur> personalCreditCheck(cred:adr)
(7 < good()
+
7 < bad()

Note the process does not include the recursion either. This is because it is inside a recursion and it
initiates a new thread there. As a result the code is identical with the projection onto Thread 2.
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‘We now move to the projection onto the unique thread of Seller, which is Thread 3.
TP(1, 3) = !chg(t).7 < ack().t > quoteReq(prod) . chy (Vr) .t > ack() .
rec X . 7 < quoteReq(prod) . r > quoteRes(quote) .
f <t quoteRes(quote + 10).
{ 1> quoteOK(cred) .chcC(Vu) .ut> ack().
u < personalCreditCheck(cred:adr) .
{ur>good().chg(v p).pr>ack()
P <deliv(adr). p> conf ()7 < conf ()
+
ut>bad().7 < CreditlsBad() }

+

t > quoteNoteOK() . X
As before, this thread starts outside of the recursion in the global description and is also used inside,
so that both the recursion and the recursion variable are used as they are, leading to the recursive
behaviour of the process. Note how the use of session functions as a way to handle recursion appro-
priately in EPP.

The projection onto the unique thread of Vendor follows.
TP(1, 4) =!chy(r).f <ack().
rec X .r > quoteReq(prod) .7 < QuoteRes(quote) . X
Finally we end with the projection onto Thread 6, giving the simple behaviour of RoyalMail.
TP(I, 6) =!chg(p).P <ack().pr> deliv(adr).p < conf()

As before, Thread 6 does noon contain recursion since it is fully inside the (global) recursion, initi-
ating a thread there.

As noted, there are two threads (2 and 5) that belong to the same class of equivalence i.e. they
are part of the same service channel chcc. This means that we must merge the two threads in the final
EPP. By applying the merge operator, and noting they are evidently mergeable, we get the following
process:

!Chcc(u) u< ack(} .
personalCreditCheck(cred:adr) . (7 < good() & bad())
u > +
companyCheck(compName) . (z <t good() ¢ bad())

By which we have arrived at the endpoint behaviours of all participants realising the original global
description.

The projection works because of the linear usage of channels inside each session and service
channel principle, as well as the three well-structuredness conditions. We believe many business
protocols conform to these conditions (modulo relaxation of connectedness we discussed in the long
version). How these conditions can be extended in disciplined ways to allow more “untamed” pro-
tocols (such as those involving exceptions) to be treated in the theory, is an interesting subject of
further studies.

16.8. Another EPP Example. We now consider a slight modification of the interaction con-
sidered throughout the whole paper, i.e. where we have the strong connectedness property
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Buyer — Seller : B2SCh(s).Seller — Buyer : s[AckSession].
Buyer — Seller : s[RequestForQuote].
Seller —Buyer : s(QuoteResponse, Vv, quote,Xquote) -
(Buyer — Seller : s[QuoteReject] +
Buyer — Seller : s[QuoteAccept].

Seller —Buyer : s{OrderConfirmation).Buyer —Seller : s(AckConfirmation).
Seller — Shipper : $2ShCh(s’). Shipper — Seller : s[AckSession].
Seller — Shipper : s'(RequestDelDetails, Buyer, Xclient)-

Shipper — Seller :s'[DeliveryDetails,DD,xpp].
Seller — Buyer : s[DeliveryDetails,xpp,xpp])

Note that we basically added few more interactions, just to keep the whole interaction strongly con-
nected. By this we can then give the encoding

Buyer{B2SCh-nj(s).s[> AckSession-n.
s <{RequestForQuote - n3.s> QuoteResponse - ny (Xquote) -
s <1 (QuoteReject - ns |
QuoteAccept -ng.s>OrderConfirmation-ny.s>AckConfirmation-ng.
s<IDeliveryDetails-mj2)}, |
Seller{B2SCh-nj(s).st>RequestForQuote -n3.s <{AckSession-ny.
s <\QuoteResponse - n4 (Vauote) -
s> (QuoteReject -ns +
QuoteAccept -ng.s<IOrderConfirmation-n;.s<{AckConfirmation-ng.
S2ShCh-ng{s’) . s> AckSession-nj3.
s’ <lRequestDelDetails -njg(Buyer).s<IDeliveryDetails -nyj(xpp)
s> DeliveryDetails -niz)}p |
Shipper{S2ShCh-ng(s’).s<1AckSession-n3.

s’ > RequestDelDetails - njg(Xc1ient ) .5 <IDeliveryDetails -ny (DD)}Y
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17. Extension and Applications

17.1. Local variable declaration. We consider extensions and applications of the theory of
EPP. First, we augment the syntax of global/local calculi with one useful construct, local variable
declaration:

newvar Xx@A :=e in/ newvar x:=e in P

This construct is indispensable especially for repeatedly invocable behaviours, i.e. those of services.
Suppose a bookseller is invoked by two buyers simultaneously, each asking a quote for a different
book. If these two threads share a variable, these two requests will get confused. The use of local
variable declaration can avoid such confusion. The dynamics and typing of this construct are standard
[41]. For endpoint projection, it is treated just as assignment.

17.2. Intra-Participant Interaction. In §10.1, we demanded that, in the grammar of service
typing, A # B in §[A, B]. This means well-typed global terms never have an intra-participant interac-
tion. This is a natural assumption in a business protocol which primarily specifies inter-organisational
interactions: however it can be restrictive in other contexts. Under connectedness (whose definition
does not change), we can easily adapt the EPP theory to the inclusion of intra-participant interac-
tions. First, the typing rules in Table 19, page 47, takes off (TCOMINV) and refines (TCOM) so that
the typing $[A, B] : o always reflects the direction of the interaction just inferred. This allows us to
treat the case when A and B are equal (we demand interacting parties have distinct threads). The
key change is in well-threadedness. When A = B, the condition (G2) (session consistency) in the
definition of wellthreadedness is problematic since we do not know which of the two threads should
be given to which participant. However stipulating the local causality condition, (L) in Definition 14
(page 75) solves this ambiguity. We reproduce this condition below.

Local Causal Consistency: If there is a downward sequence of actions which starts from an active
thread © and ends with an action in which T occurs for the first time (i.e. T occurs in no intermediate
actions in the sequence), then the latter T occurs passively.

Note that, by Proposition 10, this condition is a consequence of (G1-3) in the theory without intra-
participant interaction so that we are not adding any extra constraint to inter-participant interactions.

17.3. Name Passing. An extension which is technically significant and practically useful is
the introduction of channel passing. Channel passing is often essential in business protocols. As an
example, consider the following refinement of Buyer-Seller Protocol.

Buyer wants to buy a hardware from Seller, but Buyer knows no Seller’s ad-
dress on the net, i.e. it does not know Seller’s service channel. The only thing
Buyer knows is a service channel hardware of a DirectoryService, which will
send back the address of a Seller to Buyer which in turn interacts with that
Seller through the obtained channel.

In such a situation, Buyer has no prior knowledge of not only the seller’s channel but also the par-
ticipant itself. In a global description including its typing, participant names play a basic role. Can
we leave the name of a participant and its channels unknown and still have a consistent EPP theory?
This has been an open problem left in WS-CDL’s current specification (which allows channel passing
only for a fixed participant). Below we restrict our attention to service channel passing, excluding
session name passing (which poses an additional technical issue [24]).

First, at the level of he endpoint calculus, it suffices to use the channel passing in the standard
m-calculus.

DirectoryService(s).s(y).3(t).P

which describes the initial behaviour of Buyer. Note y is an imperative variable, so that y(r).P first
reads the content of y then uses it for communication. The typing rules are extended accordingly.
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In the global calculus, we introduce a syntactic variable Y, called a participant placeholder, for
denoting anonymous participants. For example we can write:

A—Y:x5.1 Y—Y :s(op, e y).1
The newly added A — Y : x§./ intuitively says:

A starts a session with session names § on the service channel stored in x at
the location A.

The participant at which the service is offered is left unknown by placing a placeholder Y. However
this will be instantiated once the variable x at A is inspected. For example, if x is evaluated to ch@B
in the store, the interaction takes place asin A — B : chs. 1.

As an example, we present the buyer-seller-directory scenario discussed above:

Buyer — Directory : hardwares .
Directory — Buyer : s(sell, hware @amazon.co.uk, x).

(Buyer — Y :xs'.Y — Buyer : s’ (OK, data, y) |

2999

Buyer — Directory : s(more, ", z).

Directory — Buyer : s(sell, hardware @pcworld.co.uk, x) .
Buyer — Y’ : xs” .Y’ —Buyer : s” (OK, data, y))

Note that, depending on the channel sent from Directory, ¥ and Y’ are assigned to different partici-
pants.
The dynamics of the global calculus adds the rule which infers:

(6, A=Y :x5.1) — (0,(v3) I[B/Y])
whenever we have @A (x) = ch@B.

For types, we first extend the basic types 6 with (§)o.. We then add, with the obvious extension
to the syntax of types:
I'-x@w; : (5)a FFI>A-§S[Wo, W] o
F'EW =Wy x5.I>A
Other typing rules can be extended to deal with terms containing the participant variable Y in the
same manner.

Finally, for the EPP theory, we need no change in the notion of connectedness. For well-
threadedness, we first annotate placeholders regarding, e.g. A — Y : x§.1 as the start of a new thread
for Y, so we annotate it as A" — Y™ : x§.1 with T, fresh. The definition of well-threadedness remains
the same. Coherence however needs additional consideration. The variable x@A can store different
channels from different participants. For this purpose we use a typing system which records a possi-
ble set of assignment, in the shape x@W) : C where C is a set of channels which may be instantiated
into C. If some concrete channel is in C, the behaviour of that channel becomes constrained by co-
herence. This set C is inferred, starting from some fixed set, by adding ch (as in x@W; : CU{ch@B})
when we infer, e.g. W — W, : s(opj, ch@B, x) .1, where W; can be either of participants or place-
holders.

We give a flavour of how this extension works by the end-point projection of the example above.
We first consider the annotated interaction for placeholders.

Buyer! — Y3 : xs'.Y? —Buyer' : ¥ (OK, data, y)

In the projection of this thread, we have placed a hole — which should be substituted with the appro-
priate service channels.

TP(4, 3)=!_(s').5 <OK(data)
Thus, checking coherence consists in updating the definition of the function threads which induces
the thread equivalence classes. But what equivalence classes should threads 3 and 4 belong to? We
can use the prediction of all the possible values x can assume at runtime, i.e. hware @amazon.co.uk
and hardware @pcworld.co.uk. We have to make sure that thread 3 belongs to both tpc(A4, hware) and
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tpc(A4, hardware). Then, if we are end-point projecting in amazon.co.uk we will substitute hware
to _ in both thread projections, and if we are end-point projecting pcworld.co.uk we will substitute
hardware instead.

17.4. Conformance. By relating global descriptions to their local counterpart, the presented
theory allows us to make the best of the rich results from the study of process calculi. One such
application is conformance checking (and its dynamic variant, runtime monitoring), discussed in
Section 6. Our purpose is to have a formal criteria to say the communication behvaiour of a program
P conforms to a global specification /.

In process algebras, conformance checking verifies whether the behaviour of a process follows
that of a specification, the latter also given as (or representable as) a process. As a theoretical basis
of the notion of conformance, we can use behavioural theories such as (inverse of) simulation or
bisimulation. In the present context, our purpose is to verify whether an implemented system, say
P, conforms to a well-typed description in the global calculus. Through the use of the end-point
projection, we can reduce this problem to the conformance between endpoint processes, allowing us
to use the standard theory. We illustrate one basic instance in the following.

The conformance checking we consider starts from the use of type information. Let / be a
global description and A be a participant whose behaviour we are interested in. Let S be an EPP of [
onto A. Let P be a program which is supposedly implements the specification / at the participant A.
Since the end-point projection generates a process whose typing coincides with that of the original
global description, we can first check whether P can be typed under the minimal typing associated
with S. If we cannot, then P does not conform to /.

Once we know the typing of P conforms to that of S, we can proceed to validation of behavioural
conformance. As an example, let P be given by:

QuoteCh(Vvs).s > Quote(x) .
if (x < 100) then 5 <1 Accept() else 5 <1 Reject()
which may be used in the following configuration:
Buyer[P] | Seller[ ! QuoteCh(s) .5 <1 Quote(300).
s> (Accept() + Reject() + Restart())]

Suppose we wish to check whether this P, as the behaviour of Buyer, conforms to a global specifica-
tion given as follows.

Buyer — Seller : QuoteCh:s.
Seller — Buyer : s(Quote, 300, x).
Buyer — Seller : s{(Accept) + Buyer — Seller : s(Reject)
We have already seen the end point projection of the specification above is given as follows.

Buyer| QuoteCh(Vs) . s> Quote(x) .
(5<aAccept() 5 < Reject() )| |

Seller[ ! QuoteCh(s) .5 <1 Quote(300) .
s> (Accept() + Reject())]

Let the endpoint process inhabiting Buyer above to be S. First, we can check the typability quite
easily, in the sense that P is typable under the minimal typing of S. For example, the minimal type
for the channel QuoteCh in S is given as

sT Quote(int) s | ( Accept(null) + Reject(null))

Call this type o.. Then a is not the minimal type of P at the same channel, but it is indeed a type
assignable to ch.
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Second, on the basis of well-typedness, we check the conformance of behaviour using a typed
transition relation. The transition we consider has the sequent of the form:
(T (Q.0)>4) = (IF(Q.0)>4)
Following the framework in [6, 55], Lis typed in the sense that we only consider those actions
deemed possible by I" and A. In particular, if I" or A specifies input branches which are less than Q,

then inputs at the extra branches do not take place. We write :l> for the standard weak transition
abstracting the silent transition. We can then define the following conformance relation (we include
typability: as always we fix an appropriate grouping of free session channels if any).

We say a type relation &_over typed terms in the endpoint calculus is a weak
conformance iff, whenever I' - PyR Sy > A, we have: (1) I" and A are the

minimal typings of S; and (2) (' Py 1> A) —— (I P} > A') implies (I'

So>A) == (I + ) 1> A') such that T'+ P4R S > A. If T'F PyR.S, for some
weak conformance X, we say Py conforms to Sy.

Thus (apart from typability) the conformance of Py to Sy says that all visible behaviours of Py are
within what is specified in Sg. We can indeed check that, for P and S above, P conforms to S in this
sense. Thus this conformance is about safety: depending on the application needs, we may as well
use a more stringent notion of conformance.

In summary, let 7 be a global description consisting of the participant A as well as other partici-
pants. Suppose P is a program which implements A’s behaviour. Then we can check the conformance
of P against the specification / by projecting / to A, which we call S, and check P conforms to S,
using the conformance relation noted above. The conformance of P to S may be checked through
either hand-calculation (coinduction), model checking, mechanical syntactic approximation, or run-
time monitoring.
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18. Related Work

18.1. Global Descriptions of Communication Behaviour (1). As far as we know, this work
is the first to present the typed calculus based on global description of communication behaviour,
integrated with the theory of endpoint projection. Global methods for describing communication
behaviour have been practiced in several different engineering scenes in addition to WS-CDL (for
which this work is intended to serve as its theoretical underpinning). Representative examples in-
clude the standard notation for cryptographic protocols [37], message sequence charts (MSC) [28],
and UML sequence diagrams [38]. These notations are intended to offer a useful aid at the de-
sign/specification stage, and do not offer full-fledged programming language, lacking in e.g. standard
control structures and/or value passing.

18.2. Global Descriptions of Communication Behaviour (2). DiCons (which stands for “Dis-
tributed Consensus”), which is independently conceived and predates WS-CDL, is a notation for
global description and programming of Internet applications introduced and studied by Baeton and
others [4], and would be the first fully expressive language for representing interactions based on
a global method. DiCons chooses to use programming primitives close to user’s experience in the
web, such as web server invocation, email, and web form filing, rather than general communication
primitives. Its semantics is given by either MSCs or direct operational semantics. DiCons does not
use session types or other channel-based typing. An analogue of the theory of endpoint projection
has not been developed in the context of DiCons.

18.3. Global Descriptions of Communication Behaviour (3). Petri-nets may also be viewed
as offering a global description, though again they are more useful as a specification/analytical tool.
As an example, a study by van der Aalst [49] presents an analysis of a business protocol showing how
a description of an inter-participant business protocol can be implemented inside each participant
without losing causal constraint, all represented in Petri Nets. While quite different in the formal
apparatus and motivations, it shares a technical interest with our analysis in Section 14 as a causality
analysis of interactions. The current lack of notions of types in Petri nets may make it hard to carry
out the analogue of the full constructions as done in the present paper (which heavily rely on types).

18.4. Type Disciplines for Concurrent Programming Languages. The present work shares
with many recent works its direction towards well-structured communication-centred programming
using types. Pict [43] is the programming language based on the mt-calculus, with rich type disciplines
including linear and polymorphic types (which come from the studies on types for the m-calculus
discussed in the next paragraph). Polyphonic Cf [5] uses a type discipline for safe and sophisticated
object synchronisation. Compagnoni, Dezani, Gay, Vasconcelos and others have studied interplay
of session type disciplines with different programming constructs and program properties [12, 18,
19,24,48,50]. The EPP theory offers a passage through which these studies (all based on endpoint
languages and calculi) can be reflected onto global descriptions, as we have demonstrated for session
types in the present work. In the context of session types, the present work extends the session
structure with multiple session names which is useful for having parallel communications inside a
session.

18.5. Theories of Types for the m-Calculus. Many theories of types for the ®-calculus are
studied. In addition to the study of session types mentioned above, these include input/output types
[34,42], linear types [23,30], various kinds of behavioural types which among others include causal-
ity [3,6,7,25,27,46,47, 55] and combination of behavioural types and model checking for advanced
behavioural analysis [17,44], to name a few. Among others, behavioural types offer an advanced
analyses for such phenomena as deadlock freedom. We are currently studying how these advanced
type-based validation techniques on the basis of the present simple session type discipline will lead to
effective validation techniques. Again these theories would become applicable to global descriptions
through the link established by the EPP theory.
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18.6. Process Calculus-based Analysis of Web Service. Gordon, Fournet, Bhargavan and
Corin studied security-related aspects of web services in their series of works (whose origin lies in
the the spi-calculus [2] and the applied ®-calculus [1]). In their recent work [10], the authors have
implemented part of WS-Security libraries using a dialect of ML, and have shown how annotated
application-level usage of these security libraries in web services can be analysed with respect to
their security properties by translation into the m-calculus [11]. The benefits of such a tool can be
reflected onto the global descriptions through the theory of EPP, by applying the tool to projections.

Laneve and Padovani [31] give a model of orchestrations of web services using an extensions of
m-calculus to join patterns. They propose a typing system for guaranteeing a notion of smoothness
i.e. a constraint on input join patterns such that their subjects (channels) are co-located in order to
avoid a classical global consensus problem during communication. Reflecting the centralised nature
of orchestration (cf. footnote 1), neither a global calculus nor endpoint projection is considered.

A bisimulation-based correspondence between choreography and orchestration in the context of
web services has been studied in [14] by Busi and others, where a notion of state variables is used in
the semantics of the orchestration model. They operationally relate choreographies to orchestration.
Neither strong type systems nor disciplines for end-point projection are studied in their work.

To provide a formal foundation of WS-CDL based on process calculi has been studied since
the inception of WS-CDL. For example, Kavantzas suggested the use of fusion calculi [39, 54] for
such a foundation (fusion calculi are formally equivalent to the ®-calculus and other representative
name passing process calculi). While we could have used any name passing calculi with enough
expressive power, including the m-calculus and fusion calculi, as formalisms for endpoint processes,
our choice of an imperative refinement of the ®-calculus in the p resent paper has the merit in that
we can have a direct, transparent correspondence between the presented global formalism and the
endpoint formalism. A semantic preserving encoding of this applied version of the mt-calculi into the
pure T-calculus (or other pure name passing calculi, including fusion calculi) is an interesting topic
for future study.
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APPENDIX A

Subject Reduction for the global calculus type system

This appendix establishes the subject reduction of the typing system for the global calculus,
Theorem 1. Moreover, we will go through some intermediate results. We first note:

Lemma 1.

(1) (substitution, ) IfT,X : A+ I> A andT - I' > Athen T + I[I'/X] > A'.
(2) (substitution, 2) f T'F 6, ' o(x@A):0and'Fv: 6, then I'F G[x@A — v].
Proof.

(1) The proof is direct from the typing rules.
(2) Itis immediate from the typing rules.

We prove main theorem for this section.

Theorem 1.

(1) (Subject Congruence) If T - I>AandI=1I'thenT - I' > =¢ A.
(2) (Subject Reduction, 1) Assume I' 6. Then T - I > A and (6,1) — (¢’,I’) imply '+ ¢
and T + I > A’ for some A
(3) (Subject Reduction, 2) Assume I' - 6. Then I’/ and (0,/) — (¢’,1') imply T’ ¢’ and
r-r.
Proof.

(1) We shall prove this by induction on the structural congruence rules.
e The proof is trivial for all cases that define | and + to be commutative monoids.
e When (vs) 1|1’ =(vs) (I|1') whenever s & fn(I'), suppose that T (vs) I | I' > A.
Now, by rule (TPAR), we have that A = A e A, such that '+ (vs) /1> Aj and T' -
I' > Ay. According to which rule we can apply for getting T' - (V) 11> Ay, we have
three cases: (TRES-1), (TRES-2) and (TRES-3). We only analyse the first one as
the other two are very similar. If we apply (TRES-1) then we have that there exists
aA’suchthat Aj = A/, §15>: Land 1> A §55[A, B] : o.. Now, applying again
rule (TPAR), we have that T 1 | I'> A/, §1s5[A,B] : o @ A, if we can prove that
A, §155[A,B]: 0 @ A is defined. Butas A’; §15 : L @A, is defined then linearity is
also respected when adding s because of the assumption s & fn(I') and so s & fn(A;).
The proof concludes by applying the rule (TRES-1) again.
(2) In order to prove this, we shall prove a stronger resulti.e. I' - I > A and (0,1) — (6/,1)
imply ' - I > A’ and one of the following statements is true:
e A=A
e A=A(,5[A,B]:acand A" = Ay, 5[A,B] : o fora — o
With o0 — o we refer to a reduction on types, e.g. s T op(8).00 — o.. Note that we also
have fsc(A) C fsc(A'). The proof proceeds by induction on the depth of the derivation of
(o,I) — (0/,1').
Basic cases.
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e (CoMM). By hypothesis, we have (6,A— B :s(op, e, x).I) — (¢/,]) and A —B:
s{op, e, x).1>A. Now, the only applicable rules are (TCOMM) and (TCOMMINV).
The cases are similar, so we shall inspect only the first one. We then have that
A=A ~§[A,B} :ng_]S T Opj(ej) SO and TF 1> Ay ~§[A,B} S

e (INIT). We have (6,A — B:ch(vS$).I) — (o, (v3) I;). By applying the rule (TINIT),
we have that I, ch@B: (S)aa-A — B: ch(§).I>Afor T =T", ch@B: (5)o. and
I, ch@B: (§)ou - I1>A-§[B,A] : a. Now, by applying rule (TRES-1) repeatedly,
we have I, ch@B : (§)ouk (v§) It>A-€:L and by rule (TRES-3), we can get
I, ch@B: (5ot (v§) I>A.

e (REC). We have (o,rec X.I) — (o,I[rec X.I/X]) and I' - rec X ./ > A. The only
applicable rule is (TREC), which implies I"- X : A1 : A. But, by Lemma 1, we have
that '+ Irec X .1/X] > A.

e (IFTT). From this semantics rule it follows that (c,if e@A then I else I,) — (0,1;)
and from the hypothesis I' - if e@A then I} else I > A. Applying rule (TIF) we have
'L >A.

e (IFFF). Similar to previous case.

e (SuM). Similar to previous case.

e (ASSIGN). We have that (6,x@A :=e.I) — (6/,]) and [+ x@A :=¢.I1> A. Now,
applying the rule (TASSIGN) we get ' 7> A.

Inductive cases.

e (PAR). By this rule, as we assume (6,1 | L) — (6',1] | L), we get (6,1}) — (0, 17).
Moreover, there exist A; and Ay such that A=AjeA, and ' 1} | L > A, and
such that, applying rule (TPAR), I' -1, > A; and I' - I, > A;. Now, by induction
hypothesis, it follows that there exists A} such that ' I{ > A]. If A} = A} then the
proof is trivial. Instead, if A = A”,5[A,B] : avand A} = A" 5[A,B] : o with o0 — o
then it is possible to prove that — preserves linearity i.e. o respects linearity when
merged with the type of A;.

e (STRUCT). It follows from first point of this theorem.

e (RES). In this case we have

(0,1) = (¢/.1')
(0,(v8) 1) = (o', (v3) I')
There are three possible cases for typing restriction, but we only analyze rule (TRES-
1) as the other cases are similar. By applying this rule we must have ' (vs) I>A =
Ay, §15, : L if and only if

1Ay, S"1S§2[A7B} o

Now, as (6,1) — (¢’,I'), by induction hypothesis, we have that '+ /> A” and three
possible cases:
(@) A =Ay,5155,[A,B] : of. If we now apply again rule (TRES-1), we get that
'+ (VS) I'> A58 L.
(b) Ay =A,,§[C,D]: o and A” = Ay,5[C,D]: &, 5155, |A, B] : o.. Now, applying
again rule (TRES-1), we get that T (vs) I' > Ay, §[C, D] : o515 : L.
(€) A" =Ay,5155[A,B] : o and we trivially get T (vs) I' > A58, : L.
(3) Easy to prove from the previous point.
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APPENDIX B

Subject Reduction for the end-point calculus type system

In here, we give the proofs for the end-point calculus type discipline. Mainly we give proofs for
Theorem 2.

Proposition 8.

(1) (well-formedness) I' = M > A implies I" and A are well-formed.

(2) (weakening, 1) Assume I'"-T"is well-formed. Then I" = M > A implies [T = M > A.

(3) (weakening, 2) Let A be well-formed and § are fresh. Then I' - M > A implies I" -
Mp>AS: L.

(4) (thinning) Assume fc(I')Nfn(M) =0. Then"I" = M > Aimplies " - M > A.

(5) (subsumption, 1) If I',ch@A : (§)o. = M > Aand ot < B then [, ch@A : (5)B - M > A

(6) (subsumption, 2) If ' - M > A-§@A:aand o <PBthenT - M > A-S@A : B.

Proof.

(1) By induction on the typing rules. The proof is similar to the global case.

(2) This proof proceeds by induction on the typing rules. Before this we need to prove that
the result holds also for processes i.e. ' 4 P > A implies I-I" 4 P 1> A. Also in this
case, the proof proceeds by induction on the typing rules and is straighforward. We are
now able to prove the result for any network.

o (TPARTICIPANT). In this rule we have thatI" = A[P] ;> Aif and only if ' 4 P> A.
By what we proved above, we have that I'-T” 4 P > A and then, again by rule
(TPARTICIPANT) we have I'- I + A[P] 1> A.

e (TPAR-NW). We have that ' - Ny | Ny > A; © A if and only if ' Ny > Ay and
' N, > A;. By induction hypothesis we get I'-T" = Ny > Ap and T'- TV = Np > Ay
and by rule (TPAR-NW) again we get T-T" = Ny | N > A © Ay

e (TRES-NW,1),(TRES-NW,2),(WEAK-end-NW) and (WEAK-_L-NW). Similar to
previous case.

(3) The proof proceeds by induction on the typing rule. As in the previous proof, we need to
prove something similar for the processes P.

(4) By induction on the typing rules.

(5) By induction on the typing rules, the results is a direct consequence of the rules typing
communication.

(6) By induction on the typing rules. Similar to previous case.

We then give the proof of Proposition 9.

Proposition 9. (existence of minimal typing) Let I'y be the minimal service typing of M. Then, if
I' = M > Athen we have Ty = M > Ag such that " = M 1> A’ and A’ using the same vectors of free
session channels as A implies I'g < I and Ay < A". Proof. (outline) By typing, we know M has all
session channels abstracted by initialisation actions. For this reason we already know the grouping of
bound session channels in M, determining uniquely vectors used in the introduction of end-types (for
L types an arbitrary grouping of session channels is enough). Starting from them, we can inductively
construct minimum typings following the syntax of M. The second clause is its simple generalisation
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(note grouping of free session channels should be given beforehand to construct a typing).
And then proof of Lemma 2.

Lemma 2.
(1) KT A[P]g> A THx@A:0andT'Fv: 0, thenI" = A[P]g,, > A
(2 UT,X:AkFp P> ANandT 4 Q> A, then T F P[Q/X] > A.

Proof.
(1) Trivial, from typing rules.

(2) This proof is similar to the global case i.e. by induction on the typing rules.

Below the proof for Lemma 3

Lemma 3. (subject congruence) ' - M > Aand M =N thenI' - N > A.
Proof. By rule induction of the generation rules of =.

Finally the main theorem for this section.

Theorem 2. If T~ N>Aand N — N’ then T+ N' 1> A.
Proof. Standard, using Lemma 2.
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APPENDIX C

Alternative Inference Algorithm for Well-threadedness

In the following we show there is a simple algorithm which can inductively infer a consistent
annotation of an interaction, if any: and informs a failure of doing so if it is not. We use the following
notations.

(1) ¢ indicates a sequence1 of thread assignments, where a session assignment is of the form
(1,A,§) (which intuitively indicates communications done via any of § by A should be in
the thread 7).

(2) We write ¢-{' etc. for the concatenation of two strings, and (T,A,§) € £ when (1,A,3)
occurs in £.

DEFINITION 29 (Annotating Function). The annotating function (I, €) is a partial function
which maps a pair of (1) a thread assignment and (2) a well-typed, strongly-connected interaction
which has at most one initiating participant to the corresponding annotated interaction, defined in-
ductively as follows. In the first line we choose a fresh T, by incrementing the maximum thread in

L.

YA —B:ch(v§).1, 0-(11,A,D) A% B2 ch(v$).(I, 0 (t1,A, ) (12, B,5))
(1 fresh)
YA—B:s(op, e, x), (-(t,A) € AM—B :5(0p, e, x) A, £-(t1,A,1) (72, B, 71572))
((t2,B,FsF2) € £, and T1 # Tp)
Yx@A:=e.I, -(1,A)) & x@AT:=e.y(1, -(1,A,D)
def
Y(Il |IZ> €'<T7A7i>) é (Y(Il> £'<17A7f>) |T Y(IZ> (<T7A7i>))
Y(if e@A then I else I, £-(T,A,7)) % ife@A® then y(Iy, (-(t,A,D)) else y(b, (- (T, A,7))
Y +h, CEAD) S, CEAD) (R, E(nALD)
YxA, erAn) E xp

Yree XA .1, 0-(t, A7) % rec XAy, ¢-(1,A,D)
Otherwise the function W is not defined. We further set, for / which is well-typed and strongly con-
nected, which has a unique initiating participant, and which does not contain hiding or free session

channels:

(i) €y, (ttop(l).€))

Remark. Above in the communication case, the last condition T # T, guarantees the choice of T, is
unique.

1A thread assignment contains redundancy, containing identical occurrences of a thread assignment, for the
readability of the clauses for annotating functions.
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