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Abstract 

A number  of communica t ion  libraries have been writ- 
ten to suppor t  concurrent  programming.  For a variety 
of reasons, these libraries generally are not  well-suited 
for use in underg radua te  courses. We have wr i t ten  a 
communica t ion  l ibrary uniquely tai lored to an academic 
environment .  The  l ibrary provides two levels of commu-  
nicat ion abs t rac t ion  ( topology and channel) and sup- 
por t s  communica t ion  among threads,  processes on the 
same machine,  and processes on different machines,  via 
a unified interface. The  routines facilitate controlled 
message loss along channels and can be in tegra ted  wi th  
an existing graphical  tool  tha t  suppor ts  visualizat ion 
of the communica t ion  tha t  occurs. An  editor has been 
developed for au tomat ic  code generat ion for a rb i t ra ry  
topologies via a graphical  interface. All these tools run  
over Solaris, Linux, and Windows.  

1 Motivation 

Concur ren t  p rog ramming  is increasingly fundamenta l  to 
underg radua te  Compu te r  Science educat ion [1]. Corre- 
spondingly,  courses dedicated to, or containing a com- 
ponent  in, this area are moving ever earlier into the un- 
dergradua te  curriculum. Yet this remains a very chal- 
lenging subject  to teach. Aside from the difficulty of 
the  material ,  available tools generally are not  tai lored 
to an academic environment .  

In our experience, a significant hurdle to s tudent  under-  
s tanding,  especially among  lower-level s tudents,  is the 
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complexi ty  and diversity of communica t ion  interfaces. 
Students  likely learn separate  interfaces for synchro-  
nized communica t ion  among  threads  (lightweight pro- 
cesses), processes (heavyweight  processes) on the same 
machine,  and processes on different machines.  Ano the r  
difficulty faced in temching networked communica t ion  
in par t icular  is the in t roduct ion  of message loss in some 
controlled fashion. 

In order to address these issues, we have developed a 
l ibrary to suppor t  communica t ion  among threads,  pro- 
cesses on the same machine,  or processes on different 
machines,  via a unified interface. These routines imple- 
ment  an abs t rac t ion  of the p r imary  overarching char- 
acteristics of I P C  (interprocess communicat ion) .  T h e y  
facilitate the s tudy  of concurrent  appl icat ion design and 
can serve as a s ta r t ing  point  for s tudy  of the implemen- 
ta t ion  of I P C  within a part icular  paradigm,  threads,  
processes on the  same machine,  or processes on different 
machines. The  l ibrary abst racts  the passing of messages 
at two levels: topology  (the highest  level) and channel. 
Additionally,  the  routines provide a mechanism for in- 
t roducing  message loss in a controlled fashion. These 
routines can be in tegrated into an existing visualization 
sys tem tha t  depicts the  communica t ion  tha t  takes place. 
A topo logy  editor  has been developed tha t  facilitates 
au toma ted  generat ion of code for a rb i t ra ry  topologies 
using a graphical  interface. The  routines, visual izat ion 
system, and topology  editor run over Solaris, Linux, and 
Windows.  

2 Related Work 

Arnow developed the X D P  message passing l ibrary for 
teaching dis t r ibuted p rog ramming  [2]. The  goals of this 
l ibrary were more  narrow t h a n  our goals in developing 
the tools described in this paper.  The  X D P  l ibrary ab- 
s tracts  away some of the complexi ty  of the BSD socket 
interface, in order to reduce the course t ime required to 
cover a network p rog ramming  interface while requiring 
tha t  s tudents  still address fundamenta l  problems such 
as buffering, race conditions, synchronizat ion,  and relia- 
bility. The  l ibrary does not  a t t emp t  to provide mult iple 
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levels of abs t rac t ion,  controlled message loss, or inte- 
gra ted  visual izat ion suppor t .  

Other ,  commercia l ly  used message passing libraries are 
available, e.g. P V M  and MPI .  M P I  is pe rhaps  the 
mos t  widely used, and s t ruc tur ing  our message passing 
l ibrary a round the M P I  interface (adding suppor t  for 
visual izat ion and main tenance  of vector  t ime  over the 
M P I  primit ives)  was considered. However, at  the t ime  
our  development  began,  publ icly available implementa -  
tions of MPI ,  like XDP,  required t ha t  the  same  code 
be executed for each process compris ing an application.  
This  made  it unsui table  for d is t r ibuted  or th readed  ap- 
pl icat ion development .  Additionally,  we did not  want  
to make  instal lat ion and main tenance  of M P I  or P V M  
a requirement  for the  use of our system. 

McDonald  and Kazemi  have extended the P V M  and 
M P I  message passing env i ronment  to suppor t  virtual 
process %opologies [10]. Several core functions have also 
been developed to enable  a parallel  p rog ram to request  
use of  a s t anda rd  process topology, to  spawn and in- 
s t an t i a te  all tasks  par t ic ipa t ing  in a topology, and  to 
specify t ransmission,  reception,  and synchronizat ion in 
t e rms  of logical communica t ion  pa t te rns ,  el iminating,  
for example,  the need for s tudents  to compu te  process 
identifiers. T h e y  also provide a graphical  interface for 
specifying, verifying, and viewing topologies.  Hence, 
their  tools are similar to wha t  is achieved by  our topol-  
ogy classes and  editor.  Our  tools addi t ional ly  provide 
controlled message loss and execut ion visualization. 

3 Communication Library 

Communica t ion  is abs t rac ted  at  two levels: channel  and 
topology. The  two abs t rac t ions  are described, in turn ,  
below. 

C h a n n e l  The  goal of the channel classes is to provide 
an abs t rac t ion  of communica t ion  t ha t  ties closely to 
t ha t  encountered in the  l i terature.  Three  channel  types  
have been implemented .  The  first class is a synchronous 
one-to-one channel. Along this channel, b o t h  send and 
receive are blocking [5]. Address ing in this class, as in 
all the  classes, among  threads  is by P T h r e a d s  th read  
identifier 1 and among  processes is by  integer identifier. 
Process  identifiers are ei ther assigned implici t ly when 
appl icat ion processes are s t a r t ed  by  a control  process, 
described later,  or can be assigned explicit ly by  the 
user when a channel  is created.  No a t t e m p t  is made  
to prevent  deadlock caused by  appl ica t ion communica-  
t ion pat terns ,  and  the  rout ines will block indefinitely. 
Message loss cannot  be in t roduced  artificially into syn- 
chronous channels. 

1Pthreads refers to thread implementations that  adhere 
to the POSIX standard PI003.1c. 

char msg[]="False pearls before real svine"; 
channell = ne~ AsynOnetoOneChannel(1, 

myID,dropSome(rand())); 
channell.send((void *)msg,sizeof(msg)); 

(a) Sender 

char msg[MSGLEN]; 
channelO= ne~ AsynOnetoOneChannel(O,myID,O.5); 
channelO.recv((void *)msg,sizeof(msg)); 

Figure 1: 
Channel  

(b) Receiver 

Message Transmiss ion  along Asynchronous  

The  second class implements  an asynchronous one-to- 
one channel.  Along these channels, sends are non- 
blocking; two receive pr imit ives  are provided,  one block- 
ing and one non-blocking [5]. Message loss can be intro- 
duced along any asynchronous one-to-one channel be- 
tween processes. The  loss can be specified ei ther  as a 
value be tween zero and one or via  an integer function, 
wi th  a single integer input ,  at the  t ime  the  channel  is 
created.  W h e n  the  loss is specified as a value between 
zero and one, messages will be  dropped,  immedia te ly  
pr ior  to the point  at which they  would be  sent along 
a to ta l ly  reliable channel,  by  the  communica t ion  layer 
according to a uni form dis t r ibut ion.  W h e n  loss is speci- 
fied as a function, the  funct ion is evaluated at this same 
point  immedia te ly  prior  to the  send operat ion.  If  the 
r e tu rn  value f rom the  user-suppl ied fnnct ion is grea ter  
t h a n  or equal  to one, the  message is sent, otherwise 
the  message is dropped.  (Hence, the  loss function is 
directional.)  Figure  1 depicts  code t ha t  creates a chan- 
nel be tween the  processes wi th  identifiers zero and  one; 
process zero then  sends a message to  process one. Mes- 
sages sent by process zero are d ropped  according to the 
function d ropSome( )  (which is assumed to  be  defined 
elsewhere). Hal f  the  messages sent by process one (to 
process zero) are d ropped  according to a uni form dis- 
t r ibut ion.  

Imp lemen ta t i on  of this code using a BSD socket inter- 
face would require app rox ima te ly  twice as m a n y  calls 
as the  two (cons t ruc tor  and send) required here. This  
es t imate  neglects the  addit ional ,  non-tr ivial ,  complex- 
i ty required to suppor t  process addressing v ia  integer 
identifier and to drop messages in a controlled fashion. 

The  final class is a m a n y - t o - m a n y  channel, and is cur- 
rent ly  available only for threads.  This  class essentially 
implements  a bounded  buffer. 

Each class has a me thod  tha t  allows a channel  to be 
queried for d a t a  available to read. T h e  re tu rn  has a 
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theGrid = new Grid(RQWS,CDLS,myID); 

if ((myID Z COLS) != 3) 
theGrid.send(RIGHT,(void *)&myID,sizeof(myID)); 

if ((myID Z COLS) != 0) 
theGrid.send(LEFT,(void *)~myID,sizeof(myID)); 

if (myID >= CQLS) 
theGrid.send(UP,(void *)~myID,sizeof(myID)); 

if (myID < (RDWS-1)*COLS) 
theGrid.send(DONN,(void *)~nnyID,sizeof(myID)); 

Figure  3: H i s to ry  Window 

Figure  2: Exchange  of ID A m o n g  Gr id  Neighbors  

value of one when  d a t a  is available,  bu t  has no effect on 
the  channel  itself. If  no message  is available, the  r e tu rn  
value is zero. 

Vector  t ime  is ma in t a ined  wi th in  user appl icat ions.  Vec- 
tor  t ime  is used to de te rmine  the  happened-be fo re  re- 
la t ion [8] among  events  t h a t  occur  wi th in  a d i s t r ibu ted  
c o m p u t a t i o n  [9]. Users can query, and  increment  the  lo- 
cal c o m p o n e n t  of, the  current  local vector  t ime  wi th in  
an appl icat ion.  

T o p o l o g y  One- to-one  channels  can be  joined into 
topologies.  T h e  p r i m a r y  funct ion of the  topo logy  class 
is to faci l i tate  crea t ion  of mul t ip le  channels  via  ins tan-  
t i a t ion  of a single class. Several s t anda rd  topologies,  
derived f rom the topo logy  class, axe also p rov ided  in- 
cluding: ful ly-connected,  s tar ,  l inear array, ring, grid, 
and  torus .  Message sends arid receives axe res t r ic ted  
to di rect ly  connec ted  nodes  wi th in  the  topology.  For 
example ,  the  center  node  of a s ta r  ne twork  is the  only 
node  able to send to, and  receive from, outer  nodes; 
ou te r  nodes  can  only send to,  and receive from, the  
center  node.  Topologies  are bui l t  wi th  reliable a~yn- 
chronous channels.  F igure  2 depicts  exchange  of iden- 
tifiers a m o n g  all neighbors  in a grid topology.  Note  
t h a t  macros  RIGHT,LEFT,UP,DOWN axe defined wi th in  
our  system.  Similar  macros  are defined as app rop r i a t e  
to a given topology.  

W i t h i n  the  topo logy  class, and each s t anda rd  topol-  
ogy, the  m e t h o d s  S e n d ( ) ,  R e c e i v e ( ) ,  B r o a d c a s t ( ) ,  
S c a t t e r ( ) ,  G a t h e r ( ) ,  and  R e d u c e ( )  are provided.  
The Send (Receive) routine sends (receives) a mes- 

sage to (from) a specified process. Broadcast effects 

a broadcast, to all processes, of a specified message 

from a specified source process. Scatter partitions an 

input block of data, from a specified source process, 

into a number of pieces equal to the number of pro- 

cesses and sends a unique piece to each of the applica- 

tion processes. Gather complements Scatter and col- 

lects data from application processes to the process with 

a specified identifier. A Reduce method collects data 

f rom each appl ica t ion  process and  s tores  the  result  in 
a specified locat ion.  T h e  user specified funct ion is t hen  
run  to  reduce the  collected da ta .  S c a t t e r ,  G a t h e r ,  
and  Reduce cur ren t ly  ope ra t e  on one-d imens ional  ar- 
rays (consecut ive s torage) .  Suppo r t  for opera t ions  on 
some non-consecut ive  s torage  in two-dimensional  ar rays  
(e.g., subma t r i x )  is under  deve lopment .  

I m p l e m e n t a t i o n  Appl ica t ions  compr i sed  of mul t ip le  
processes are spawned  v ia  a cent ra l  control  process.  
Specif icat ion of the  user p rog rams  and the  machines  on 
which they  should execute  takes  place ei ther  v ia  the  
c o m m a n d  line or f rom user-specified conf igurat ion files. 
T h e  control  process also spawns the  visual izat ion pro- 
cess, when  requested.  Visual iza t ion  d a t a  is passed  along 
T C P  channels  be tween  the  user processes and  the  visu- 
a l izat ion process.  W h e n  channels (or topologies)  are 
used, a T C P  connect ion  be tween  the  user processes is 
c rea ted  to  effect a channel.  Hence,  the  control  process  is 
not  involved in communica t ions  be tween  user processes.  

4 Topology Editor 

A topo logy  edi tor  has been  crea ted  to  faci l i ta te  r ap id  
deve lopment  of complex  topologies  v ia  a graphical  inter-  
face. T h e  edi tor  allows crea t ion  of connect ions  among  
single nodes or among  topologies.  T h e  edi tor  o u t p u t  
is a file containing specif icat ion of a class der ived f rom 
the topo logy  class. (The  der ived class n a m e  can op- 
t ional ly  be  specified by  the  user.) T h e  interface for this 
class is e q u i w l e n t  to  t h a t  for the  topo logy  class. Th is  
file can be  included by  the  user  in her  code to  easily 
crea te  the  cons t ruc ted  topology.  T h e  der ived class sup- 
por t s  b roadcas t ,  scat ter ,  ga ther ,  and reduce funct ions 
for each cus tom topology. 

5 Visualization 

A visual iza t ion sy s t em has  been  developed for visualiz- 
ing synchron iza t ion  a m o n g  the  th reads  of an execut ing  
appl ica t ion  [3]. This  sys t em h.as been  ex tended  to de- 
pict  the  commun ica t i on  t h a t  occurs  a m o n g  th reads  or 
a m o n g  processes.  This  v isual iza t ion  is linked to  use of 
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the  channel  class, and hence is available when  the chan- 
nel, topology, and specific topology  classes are used. 

A History Graph window (see figure 3) depicts  the  sends 
and receives t ha t  occur  wi thin  each process or thread,  
and connects corresponding send and receive opera t ions  
between threads  or processes. Clicking on any channel 
in this window opens the Channel window. This  win- 
dow displays all recent act iv i ty  along this channel,  in- 
cluding channel  type,  messages in the  channel,  messages 
received since the window was opened,  and current  sta-  
tus,  ei ther Sending Message or Receive Message. 

6 Experience 

The  channel  classes closely follow the  abs t rac t ions  of 
communica t ion  found in the l i te ra ture  and they  are eas- 
ily incorpora ted  into exist ing assignments.  The i r  use 
provides the addi t ional  advan tage  of allowing s tudents  
to visualize the  communica t ion  t ha t  takes place. 

w i t h 1  - n e w  SynOneTnOneChannel(1,0); 

neg.veLlue - mmx(mySet); 
oentValue~mog.valuo 
v i * h l - s u n d ( ( v u i d  e )meKjs£zeo f (msK) ) ;  
Ee~ovo(mySe~,msK.va lue) ;  
w ± ~ h l . r e c v ( ( v u i d  *)ms~,s~zeofCmeg))  ; 
add(mySet ,ms~.va lue) ;  

} while (sen~Vs/ue • ms~.velue); 

m s ~ . d o n e ~ l ;  

v * t h l . s e n d ( ( v o t d  *)msE.s±zeof(meE));  

(a) Solution for Process Zero 
~IthO - new SDQ~eToOneChaanel(O,l); 

ui~hO.recv((vnid ~)ms~,e~zeof(~s~)); 
if (mB.done "" 0){ 

add(mySet~s~.value); 
meE.value - min(mySet);  
wSthO.eend( (voSd  * ) m s E , e i z ~ o f ( m e ~ ) ) ;  
remove(mySe~,meE.value);  

} while (~s~.doneffi~O); 

(b) Solution .for Process One 

Figure  4: Set Par t i t ion  

We present  a sequence of exercises t ha t  result  f rom 
our experience with  teaching network p r o g r a m m i n g  over 
the  pas t  several  years in an upper- level  unde rg radua te  
course. These  exercises were recent ly developed to  serve 
as the  first set of network p r o g r a m m i n g  exercises. Ini- 
tially, our  first ne twork p r o g r a m m i n g  ass ignment  was 
more  complex.  We typical ly required an appl icat ion 
t ha t  contained mult iple  clients and a server for all client 
types,  s imilar  to t ha t  described in [4]. While  they  re- 
por t  large-scale success, we have found tha t ,  while m a n y  
s tudents  are able to complete  the  assignment,  a signif- 
icant  number  of s tudents  have difficulty. We hope t ha t  
comple t ion  of these exercises will lead to  greater  success 

in the  more complex client server exercise. 

This  set of exercises was designed to demons t r a t e  three  
fundamenta l  aspects  of concurrent  appl icat ion design: 
(1) the  use of synchronous  versus asynchronous  com- 
municat ion,  (2) determinis t ic  versus non-determinis t ic  
communica t ion ,  and  (3) the  use of a client-server ar- 
chi tecture  versus a fully d is t r ibuted  one. The  basis of 
the  exercises is Sounda ra r a j an ' s  CSP [7] implementa -  
t ion [11] of a set par t i t ion ing  p rob lem [6]. The  p rob lem 
is to par t i t ion  a set of integers into two sets according 
to  the  element  values. Each process (heavyweight  or 
lightweight) initially has half  of the  set. One process 
P0 will end up  wi th  the lower half  of the  elements  and 
the  other  process P1 ends up wi th  the  uppe r  half  of the  
elements.  

The  first exercise requires tha t  the  p rob lem be solved 
using synchronous message passing. P0 sends the  max-  
i m u m  value max(So) f rom its set So to P1 and  removes 
max(So) f rom So. Po t hen  waits to  receive the  m i n i m u m  
value rain(S1) f rom the  set $1 of P1. This  continues un- 
til P0 receives a value t ha t  is greater  t h a n  or equal  to 
the  one it sent. 

Upon  receiving a value f rom P0, P1 adds the  received 
value to $1. P1 then  sends rain(S1) to Po and removes 
rain(S1) f rom its set. This  continues until  P0 notifies P1 
t ha t  the  set is par t i t ioned.  A solution is given in figure 
4. This  exercise i l lustrates development  of a s imple ap- 
pl icat ion protocol .  (Po and P1 mus t  agree on the  fo rmat  
of messages,  and agree on a sentinel message t h a t  lets 
-P1 know tha t  no fur ther  messages will be sent.) I t  also 
serves to familiarize s tudents  wi th  the  (synchronous)  
message passing interface. 

¢~x.~' ~: ~ r ~ l i  L~,lmi ~ . . . . . . . . . . . . . . . . .  

i ............ ~ 2 ~ - ~ : ! ! ~ : = : - - ~ ~ : = : : f ~ ' ~  ' ° ~  ................................................................... 

.~j ~._~., 

I 

1 
T I 
I 

Figure  5: Simul taneous Synchronous  Sends - His tory  
Window 

The  second exercise requires a solution similar to t ha t  
for exercise one, wi th  the  except ion tha t ,  at  each step, 
Po and -Pl send their  m a x i m u m  and m i n i m u m  values, 
respectively, s imultaneously.  W h e n  P0 (P1) receives a 
value less t h a n  (greater  than)  the  one it sent out,  the  
sent value is removed f rom its set and  the  received value 
is added.  W h e n  P0 (P1) receives a value greater  t h a n  
(less than)  the  one it sent out,  the  par t i t ion  is comple te  
and  no set modif icat ions are made .  We do not  specify 
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the  use of a par t icu lar  channel  class. Development  of a 
solution requires tha t  s tudents  come to the realizat ion 
tha t  only asynchronous  message passing facili tates si- 
mul taneous  execut ion of a send by b o t h  P0 and P1- If 
synchronous communica t ion  is chosen by the s tudent ,  
the  problem quickly presents  itself wi thin  the  visualiza- 
t ion system, as depicted in figure 5. 

T h e  final exercise of this sequence incorpora tes  N pro- 
cesses with por t ions  of the  set and requires a central-  
ized solution. Students  use a supplied non-determinis t ic  
receive funct ion (or can create this funct ion for them- 
selves) t ha t  listens for d a t a  on any incoming channel.  
A server collects a set of integers f rom all clients, com- 
putes  the  set par t i t ion,  and re turns  the result ing sets to 
the  clients. 

7 Conclusions and Future Work 

We have developed a message passing l ibrary  t ha t  pro- 
vides two levels of abst ract ion,  channel  and topology,  
for the  communica t ion  tha t  occurs among processes 
and threads.  T igh t ly  in tegra ted  visual izat ion suppor t  
is available, as is suppor t  for controlled message loss. A 
topo logy  edi tor  allows deve lopment  of cus tom topolo- 
gies via a graphical  interface. We ant ic ipate  tha t  these 
communica t ion  classes and associated tools will suppor t  
the  ins t ruc t ion  of concurrent  p rogramming  by  reducing 
the  overhead associated with learning message passing 
interfaces, by providing a uniform interface for commu- 
nicat ion bo th  among threads  and among processes, and 
by providing in tegra ted  visual izat ion suppor t  wi thou t  
the  need for ins t rument ing  user programs.  

These  message passing classes are pa r t  of a larger sys- 
t em  tha t  provides a class l ibrary for threads ,  th read  
synchronizat ion,  and message passing. The  sys tem 
cur ren t ly  also has suppor t  for visualizing the  synchro- 
nizat ion of threads  and the  message passing tha t  oc- 
curs among threads  and processes. We axe current ly  
adding suppor t  for synchroniza t ion  of processes (bar- 
r ier and mutua l  exclusion), implement ing well-known 
parallel  and d is t r ibuted  algorithms, adding suppor t  for 
d i s t r ibu ted  arrays, and adding addit ional  visual izat ion 
suppor t  specifically for parallel  and d is t r ibuted  pro- 
gramming.  We believe the  tools can be used at any 
level in which s tudents  have the  p rogramming  sophisti-  
cat ion and background sufficient to cover concurrency.  
We have t augh t  th read  and network p rogramming  in a 
course popu la ted  p redominan t ly  by sophomores  and ju-  
niors. T h e  sys tem has not  been used at  a lower level. 
Comprehensive ,  detai led informat ion  on our  work is 
available at http ://www. cs.mtu, edu/-shene/NSF-3/ 
index, html. 
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