Ecma/TC39-TG5/2004/25

C++/CLI

Language Specification
Working Draft 1.5, Jun, 2004

Public Review Document

Text highlighted like this indicates a placeholder for some future action. It might be a note from the editor to
himself, or an indication of the actual or expected direction of some as-yet open issue.

Note: In the spirit of the "Working Draft, Standard for Programming Language C++", this is an early draft.
It’s known to be incomplet and incorrekt, and it has lots of bad formatting.

Publication Time: 6/17/2004 11:44 PM

Table of Contents

Table of Contents

8 (oo (1Tt o] o RSP SSPSTN Xi
IO ol o] o -SSR 1
R 0] o 0] g 14T 1 [o2 = SR 2
I N o] g o Y=l o1 (L] o= PR 3
O I 1= 1 1 A0] ST 4
N[=TT s Lot 01T o] o] SRS SPP 7
6. ACronymMs and abbIEVIATIONSc.cccviiiiii i e e e te e s be et et e ste e e neeeneeereenree e 8
A €T o LT = Vo (= Tod]] o TSR 9
8. LANQUAGE OVEIVIBW......euiiiitiitiite etttk b ettt bbb bbbt bbbt e ettt b b 10
8.1 GEttING STATLEA ..veevvieitieieieiii ettt ettt et e et e et e e bt e et e s taestbesebeesbeesseessaesssessseasseasseesseesseesssenssessseessenssens 10
B2 T PES ettt ettt ettt ettt ettt ettt bt e e bt e bt e e et e e bt e e e bt e e bt e e ea bt e e bt e e sabeeebaeeeabeesbaeesares 10
8.2.1 Fundamental types and the CLI..........c.ooouiiiiiiiiiii ettt e b e e eeaee s 12
8.2.2 CONVEISIONSuvveeeirieeetieeeteeeeteeeeteeeetteeeeteeeeteeeeteeeetaeesaeeeeseeeeaseeeesseeenseeeseeeassesenseeeessseensesensseeeseean 13
I BN & 2 1 o1 SRS 13
8.2.4 Type SyStemM UNITICATIONeeeuieriieeiieeieeie ettt ettt ettt e st e st e e teebe e bt ebeesbeesaeesseesanesnseens 13
8.2.5 Pointers, handles, and NULL..............oooiiiiiiiiiiiiie e e e e aaaanee s 14

IR B o 1 11 (<1 1<) oIS 15
8.4 Automatic MEMOTY MANAZEIMNENIL.ecrveerueeruierieeteerteesteeseesuteeeeeseenseesseesstesnsesseesseesseesssesnsesnsesnseenses 17

B S X PTESSIONS ...c.uviieiiieiitieetteeetee ettt estteeetteessseeesseeeasseeesseeeasseeassaeassseeasseeassseesssaeanssaessssesssaesnsseenssassnsseenssen 18
B0 STALCIMEIIES. ... uvieieiiiieeeeiieeeeecte e e ettt e e eteeeeeetteeeeeettaeeeesaaaeeeeassaseessaaeeeansseseeasssesesansseseansseseeansseeeeasseeaens 18
8.7 DICLEGALES ...evveeuveeiieieeeiee et et et et et et e seee et e esbe e bt e teesseessseasbean s e e s s e et e e R aeeRaeasbeanbeens e e seeseennbeanseenseenses 18
8.8 NALIVE ANA €T CIASSES . .uviiiiiiiiie ettt e et e e e et a e e e e aaeeeeeaaaeseeeaseeeeeasreeeeesrseaens 19
8.8.1 LItEral fICLAS ..eecuveiieeie ettt et ettt e e et e et e et e e e e eearaeereean 19
8.8.2 INILONLY FIEIAS ..e.veiieiiiiieeiieie ettt st st e et ebe e e e seessaessseesseenseensaessaessaessnennseans 20
B3 FUNCHIONS.eeiiieiieeeeeeeeee ettt e e e e e ettt e e e e e seaaaae et eeeesssanaaaaeeeeesssasnnstaseeeesssssnnnraaneeeas 20
B84 PIrOPEITICS .eeeuvveeerieeiieeitee ettt eeiteeette ettt e eveeestbeessbeeestaeessseesasaeesssaeassaeessseassseeassseesssasessseeasseesssesnssees 21

B 8.0 EVOMES. ..eiiiiiiiie ettt e e e e e et e e e e e e e etae e e e etaaeeeabaaeeeataaeeeattaaeeeatraeeeaareeeeanrrens 23
8.8.6 STALIC OPETALOTS ...euvveeuiieiieiiertieeiieete et et e bt eteesteesteesatesateeaseanseeseesseesseasnsesnseenseenseenseenseesseesanesnsenns 24
8.8.7 INSTANCE CONSTIUCTOTS. . uuiiiiiiiiiiiiiiieeeeeececitit e e e e e eeeitte e e e e e e e eeitbareeeeeeeeeatbsassaeeeesaassssssseaesessesssresseeens 25
888 DIESIIUCLOTS ...veieeeiiiee et e e ettt e ettt e ettt e e ettt e e et e e e e e tbeeeeetaeeeeeataaeeeeasseeeaaasaaeeeassseeeeansseeseanssesesansrens 25
8.8.9 StAtIC COMSIIUCTIONS .. .viiutiietiiieitie et ettt ettt ettt e ettt e eete e e e teeeeteeeetaeeeeteeeetseeeaseeeeseeeeasesesseeanseeensseesareeas 25
LRI KU 641 4155 w17 1 Lo SRR 25
8.8.10.1 FUNCLION OVEITIAING .. .ecvvietieiieiieeiietieteeteesteesteesteeseressveesseesseesseesssesssesssessseessessseessessssessseans 25

8.9 VALUE CLASSESeiiuviiieiiie ettt ettt ettt et e et e et e e et e e eteeeeaaeeebeeeeaseeeatesenaseeeaseeeteeeesseeerseeenres 27

B L0 INTEITACES ...ttt e e et e e e e e e et a e et ee e e e e s aaaaaeeeeeessesnateeeeeesessnnnaaareeeeeaannn 27
Bl 1 EIUIMIS ...ttt e ettt e e e e e ettt b b e e e e e e eeeeaatabaaeaaaeeeeasttssassaaaeeeaansssessaaeeesasssssesaaaeaanns 29
8.12 Namespaces and aSSCIMDIIESuecvirevieirieriierieieesteereereeteesteesteesbeseseesseesseesseesssesssesssesssessseassesssens 29
813 VETSIONINE ..ecuveeiiieiiietietteeiie ettt ete et et e e stt e s tteeateebe e bt esseesateeaseeabeenseenseesseesateeaseenseeseenseeseasnsesnseenseensens 30
B 14 ATITIDULES ... ettt e e ettt e e e et e e e eeatae e e eeaaeeeeetaeeeeataeeeeaateeeeeataeeeaaaraeaean 31

B 15 GOINETICS ... ettt et ettt et e et e e et e e eteeeeaaeeeeaeeeeateeeateeeeseeeenteeeseeeenteseseeeenseeeseeeenseeeeneeeenres 32
8.15.1 Creating and CONSUMING ZENETICSeecvverurerererrerrrereeseerseesseessesssessseasseesseessessssesseesssesssesssesssenns 32
B.15.2 COMSLIAINTS ...eeeiiiieiiiieieee e ettt e e e e e ettt et e e e e seeaaeeeeeesessassaaaeeeeessssananaaaeeeeesssssnnnasseeeesesssnnnraaneeeas 33
8.15.3 GENETIC TUNCHIONSviiiieiiie ettt e e et e e e e et e e e e ete e e e eete e e e eebaeeeeeabeeeeeeateeeeensaeaeeenseeas 34

S =) (o=) o U [ox (U] =TT 36
0.1 TOKEIS <.ttt ettt e et e e et e e et e e eate e e tae e e taeeeteeeeaseeeteeeeteeeeteeeteeeeteeeereeeeareeenees 36
01,1 TACNIITIEIS ...ttt et ettt ettt e e e et e e e v e e eateeeetaeeeabeeetaeeaaseeensaeeeaseeenseeennreesareean 36

il

C++/CLI Language Specification

0. 1.2 KKEYWOTAS ...veeuvieeieeirieetieteeteesteesttestteesbeesbeesteestaesssessseasseessaassaesssesssessseasseasseessaesssesssesssesssesssenssenssens 37
L2 R B 5 115 1 RSP PUTTR 37
0.1.3.1 The NUIL IIEETALcovviiiiiiieiie ettt ettt ettt e ab e e teeetbeesebeeeaseesasaesnseeensseesareeas 38
9.1.4 Operators and PUNCLUALOTSc.cccveerreerrieriierresreereeseeseesseesseesseessaesssesssessseessessseesssesssssssessseessesssens 38
O T T Tl o] ol o) (SRS 39
LO.T IMEIMDETS ... vveuvieiieeeieeive et eteesteesttesttestbeesseesbeesseessaassesssessseassaessaessaesssesssessseasseasseesssesssesssesssenssenssensens 39
10.1.1 ValUe Class MEIMDETS.......cccevcierieriieeiieesiieseestestestesseeseesseesseessaessaesssesssessseesseesseesssesssesssesnseessees 39
10.1.2 Dele@ate MEMDETS......cccueeieieiieeiieiieerieesteesiteste et ete e bt eteesteesttesaeesatesaseeseesseesseesseesnsesneesnseenseenseas 39
1O.2 MEIMDET ACCESS ...uvveeerieetiieieieeatieesiteesteeeseeessseesseaessseasssesassseessseassesessseesssssassssesssessssesesssesssessssseessses 40
10.2.1 Declared aCCESSIDIIILYvvecvieriieriieriieiieiieeie ettt et e stesae st e esbeesbeeseeseesseessaesssesssesssesnsesnseesses 40
T =T o oot ot T o PP P TR PRT PR PRPPRO 41
11.1 Predefined MaCTO NAIMES.........cccvieriieriieriieiie et et et et e eestesseesbeenseesseesseesseessaessaesssesssenssesssessseensessees 41
I 1 L= T OO PO U RV PTUPTUPUPRPRN 42
12.1 FUNAMENTAL LYPES....eeuviitieriieiieeieeieerteesieesteestesteesbeesseesseessaessaesssessseesseesseesseesseesssesssesssesssesssesseensens 42
12.2 ClaSS LY PES wveeeurieeirieerieesiteesteeetteestteesteeetreesebeeesseaasseeasseeesseesssaaassaeesseesssaeassseeassaeassasensseesssesensseessses 43
12.2.1 NALIVE ClaSSES..cuuriieuiieriieeitieestteectieesteesteeeeteesseessseeessseesseeessseesssseessseessseessssessssessnsseesssesssssesnsses 43
12.2.2 VAIUE CLASSESuvieiieiieiieiieiie et eite et esteesteestteseaessteesseesseeseessaessaesssessseasseesseessaesssesssesssesssennseessees 43
12.2.2.1 SIMPIE VAIUE ClASSESeevietieiiiieieeie ettt ettt ettt e st e st e et esteebe e beesbeesaeesneeeneeenseenseas 43
12.2.2.2 ENUIM CLASSES ...veeueviiiiiieciiieeiieeeiteeeieeestteesiveeetteeseseesssaeesesaaassaeessseesssesessseesssesasssessssessnsseesssens 43
12.2.3 R ClASSES..cutieiieiieiiesieeie ettt et et e st e s teesttessteesbeesse e saessaesssessseasseasseesseessaessesseesssesssenssennsennses 43
12.2.4 INEEITACE ClASSES ..eiiuvviiieiiieiie ettt ettt e et e et e e e beeeetbeesabeeeabaeesabeeensseenseeeesesennseennnes 43
12.2.5 DEIEEALE LY PES ...eveieueiieeiiieeiieeciee ettt e eteeertteestteeeteeestbeeesteeessaeasseeesssaasssaeesssaesssesesssansseessesasseensses 43
L S AN & ¢) £ TSR 43
12.3 DIECIATALOT LYPOS ...vieutieererirerieeieeieesteesteesteesteesssessseanseesseessaessaesssesssessseasseesseesseesseesseesssesssesssesseesennsens 43
L2.3.1 RAW B DS ettt ettt ettt ettt ettt et e e bt e s at e s bt e e e bt e s bt e e bt e e eabee e abeesabeesabeeebteesbaeenates 43
12.3.2 POINEET EYPES veeeuvrierurieeirierieeestteesteesstteessseesseeassseesseeessseesssesasssaesssseessseessseesssseesssessnsesesssessssseensses 43
12.3.3 HANALE LYPES .oeuvvieiieiieiieiiesiee st et eteete et esteesteessbeasseesseessaessaessaessaessseasseasseesseesssesssesssesssennseensees 44
T2.3.4 INUILEYPE ..ttt ettt ettt ettt st e sttt et et e e bt e s at e eateenteenteeseesaeesasesaeesntesnseenseenseenseas 44
12.3.5 RETCIEICE LY PES . ueicutiiiiiieiiieeciee ettt ettt e et e et e e ebeeestaeestbeeetbeeesseeessseasssaeesssaesssesensseessseessasenssesnsses 44
12.3.6 INLETIOT POINEETS. ... veeviereereieireereeteesteesteesteesereasreesseasseesseesssesssessseasseesseessessssesssssssesssesssessseessenssees 45
12.3.6.1 DETINITIONS ...cuviiiiiieiiieeiieeciee ettt ettt ettt e et e e et e e e teeestbeeesbaeesabeeeasesesaeesasseessseassseeensseesnrenas 45
12.3.6.2 Target tyPe rESIIICTIONSvieiuiieeetiieeirieeiieesteeeteeeseteesteeetreesbeeesaeessseeessseessseesssesessseessseesssenns 45
12.3.6.3 OPCTALIONS ..ecvvveereeerierieieesieesteestesreeseeseesseesssesssessseasseessaesssesssesssesssessseesseesssesssesssessseassesssens 45
12.3.6.4 CONVEISION TULES. ... ueeiviiiiieiiieieeieeseestesttesveebeesteesteessaessseasseesseesseessaessaesssessseesseessesssennseensees 46
12.3.6.5 DAtA GCCESS .vvreeuriiieeiiiiieeeiiteeesiteeeerttteeestreeeeatbteeessseeeeasseaeeasssseeessseaessssssesesssseesanssseessnssees 46
12.3.6.6 THE thiS POINLET......ccccuiieieiieeiieeiieeeteeeriteesteeerteesbeeetteesebeeebbeessseeassesessseesssseesssessssesesseesssees 47
12.3.7 PINNING POINLETSveeuvieiieiierieerereeteesteesteesteesseesssessseanseesseesseesssesssesssessseessesssesssessssesssesssessesssesssees 47
12.3.7.1 DEIINITIONS ...cuviiitiieiiie ettt eeiee ettt e et ettt e et e e e b e e eteeesebeeeabeeesaseesaseeesseeeasseessseeassesesseesnrenas 47
12.3.7.2 Target tyPe rSIIICTIONSeieiuiieeetiieeitieitieesteeeteeestteesbeeetreesbeeesaeessseeessseessseesssssessseessseesssens 47
12.3.7.3 OPCTALIONS ..ecvvvevrieireeirietiesieesteestesreeseesseesseesssesssessseasseessaesssesssesssesssessseesseesssesssesssensseassesssens 47
12.3.7.4 CONVEISION TULES......eeitiiiiieiieeieeiteesieestestesteebe e teesseessaessseasseesseesseessaesssesssesssessseessesssensseensees 47
12.3.7.5 DAtA ACCESS .vveeeurrieeeriiieeeeitteeeeittteeesttteesseraeesststeeeasseeeeasseeesassaessasseeesasstesssnsseesansssaesenssees 48
12.3.7.6 DUration Of PINNINGccvveiieiieiieeieeieesieeseestesreebeeseesseesseessaessseasseesseesseesssesssesssesssessseessens 48

12.4 TOP-1eVE] tYPE VISIDIIILY ...eeveiiieiiiiieieeitecieesee sttt ettt e st e beesbeesbe e saesseessnesnsesnseensaensens 49
L3, VAKTADIES ...t bbbttt r s 50
I O] 01T] o] o TSRS 51
14.1 Standard CONVEISIONS.......cueiviireerrierteerteesteesttesreereeseesseesseesseesssesssessseasseessessseessessssesssesssesssesssesssesssens 51
14.1.1 HANAIE CONVEISIONSc.uviiirieetieeitieeitteeeteeeteeesteeesteeessseeeseeesssesasseessseessesesssesssesessssesssesensseessses 51
14.1.2 POINEET COMVEISIONS ..eccuvvieierieetreerteeestreesseeeseeessseessseessseesssesesssessssssessseessesssssessssessssssesssesssssesssses 51
14.1.3 LVAlU@ CONVETSIONSvviereiieeiieeriieesiieesteeeseteesseeessseessseesssseessseeessseessseeesssessssesesssesssseesssesasssesnsses 51
14.2 TMPIICIE CONVEISIONSvieuvieiieieierieeieesteesteesteestesseasseesseesseessaessaesssessseasseessessseesseesssesssesssesssesssessseensens 51

v

Table of Contents

14.2.1 Implicit constant eXPresSiON CONVETSIONScvierveerreerreerererresseeseesseesseessessssessesssessseessesssesssssssens 51
14.2.2 User-defined iMpPliCit CONVETSIONSeccverierreerieieesiieseesresreeseesseesseesseessaesssesssesseesseessessseessees 52
14.3 EXPIICIE CONVETSIONSveeutieiieiieeiieeie et et esteesttestteeteeete et e bt esttesatesaeeeateenseenseeseesseesnsesneesnsesnseenseenseas 52
14.4 BOXING COMVETSIONSvvvevrerererereesseeseessessseesseesseasseassesssessssesssesssesssessseessesssessssesssssssssssessesssesssesssesssens 52
14.5 USer-defiNed COMVETSIONSeeutetirtieiiitieiietesteetesteeitete st ettt est et esbe et e sbesat e ee e bt et e et eseetesbeeneenbeeaeenes 53
T4.5. T COMNSIIUCTOTS 1eeeeeueriieeeiiiieeeiiteeeeetteeeeetteeeeseteeeeestaeeeesraeeeaassseaeassssseeasssssasasssseesssssssesesssssesesssseasnnnes 53
14.5.2 EXplicit CONVEISION fUNCHIONSccviiiiiiiiiiiieiiieeiie ettt e cieeeiteeeteeetveesireeeteeesebeeessaeessseeessaeesnneensns 53
14.5.3 Static CONVETSION fUNCHIONSeetiitieierieeeieie ettt ettt ettt see et e e e bt et e seeneeaeseeeneeneenseeneenes 53
14.6 Parameter array CONMVEISIONS.cccvverteerreereerrerireareaseeseesseessaesssessessseesseessessseessessssesssesssesssesssesssesssens 53
14.7 Compiler-defined eXpliCit CONVEISIONS.......ccuiiiuiiiiiertientieeiie ettt ettt et e st esatesate st e beebeesbeeaeeeneeas 54
14.7.1 UNDOXINE CONMVETSIONSeueeutieueeteetietesteententeeteeneesseentenseeseesesseeneesesseasesseensesseaneensesseensensessesneenes 54
14.8 NAMING CONMVEIMEIONSuteteeiierteeiteieettete et et steeetesteetteteete et esbeeatentesseenbeabeeneeabeeatenseeseensensesbeentensesneenes 54
14.8.1 CLS-compliant cONVErsion fUNCHONScceeveeriieiieiieiienieesiteete et eie et esteesaeeseesteebeebeesseeneeas 55
14.8.2 C++-dependent cONVErsion fUNCHIONScecueeiiiriiiiieiieiieriie ettt ettt st e 55
15, EXPIESSIONS ...ttt bbbt s bbb bbb Rt h bR R b et b et b bbb 56
15.1 FUNCLION MEIMDETSeiiitieieeieeteie ettt ettt ettt e e bt e et e e eae et e stessee b e eseene e st eneensesseeneesseeneenseeneenes 56
15.2 PriMAry @XPIESSIONS.veerviereeerirerteeteeteesteesseesssessressseasseesseeseesseesseesssssssesssessseessesssessssesssesssesssessseessens 56
15.3 POSEIIX @XPIESSIONS ...euvievieeieiiiieiieeieesteesttestteeteeeteebe e bt e seesseesatesaseenseenseeseesseesseesnsesnsesneesnsesnseenseensens 56
15.3.1 SUDSCIIPEING ..eeeuviiiiiiieeiieeeiee et e e ettt e ettt e et e e sebeeebaeeesbeeessaeeassaeassseessaaassaaesssessssssansssenssesansseessses 57
15.3.2 INACXEA ACCESS ..euveveeuiitieiietieiteie ettt ettt et ettt et e b s bt et e s bt e st et e saeeneeebe e st entesaee b eneesbeeneenbesaeenes 57
15.3.3 FUNCHON CALL ..c.viiiiiiiieieecee ettt et e e et estv e e et e e s aveeeaeeenteeeereeenaaeenens 57
15.3.4 Explicit type conversion (functional NOtation)............cccuveeeererciieeiieeriieeee et eiee e eseree e 58
15.3.5 Pseudo destructor Calloouiiiiiiieiee ettt e 58
15.3.6 Class MEIMDET BCCESS. . c..teuverirutetirtieterteetenteeteesteateestentesteentesteestensesbeenee bt estensesbeensenaesbeeneensesaeenes 58
15.3.7 Increment and dECIEMENT...........coiiiiiiiiieeiiiectie ettt et e et e e eire e et e e taeesbeeeaseesasesenreeenaneesenes 58
15.3.8 DIYNAIMIC CASL.reuvriieiiiiieriieriieitesreateeteesteesteeseressseasseasseessaesseesssessseasseasseesseesseesssesssesssesssesssesssesssees 58
15.3.9 TYPe 1d@NTTICALIONeeviieiieieieiie et et esteesiee st e st e et e bt et e e sseestaessbessseesseesseesseesssesssesnsesssesssennseenses 59
15.3.10 STALIC CASE ..uvviiiiiiieiiieetie ettt ettt e ettt e et e e et e eeteeeetbeeenseeesebeeensseesseasasaeensseesssesensseessesenseensnes 60
15.3.11 REINEETPICE CASE ..ecuvvieieiiieiiieeiee et eeiteeette et e e etteestaeeetbeeestaeessseeestaeesssaessseeessseessseeassseesssesansseensses 61
I5.3. T2 COMSE CASE ..ttt ettt ettt sttt et ettt et e bt e s bt e she e sat e et e et e e nbeesbeesbeenbeesbeeeateenteeaeen 61
15.3.13 SATE CAST..ccuuiiiiiiiciie ettt ettt ettt et e et e e et e e e ab e e ebeeeba e e abee e taeeetbeeetaeenreeeaaeeenres 61
15.4 UNATY EXPIESSIONS ..uvvieirieeitreerreeesireeaseeaseeesseessseeessseessesessseessseesssssesssessssssessssssssessssssesssessssessssseessses 61
I5.4.1 UNATY OPCIALOTS. ..eeuveeeirierieeesereeeteeestteesteesseeessseesssseessseesseesssseesssseessseesssessssessssesessssesssessssseensses 61
I B B 3 2SRRI 61
I5.4. 1.2 UNATY ® ..ottt ettt et e et ettt e st e b e sae e b e seesaensesseessaseassensesseassesseassensessaensansenssenns 61
LT T B 1T o 2 S USSR 62
L B -3 USSP 62
15.4.2 Increment and dECIEMENT...........eoiiiiiiiiieeiiieciee ettt et et e et eestbeeeree e ereeebeeeaseesaseeenreeenseeenenes 62
LT B /<o) OSSR 62
L5414 INEW ...ttt ettt ettt ettt et et e st et e e st et e s et en e et e e et e a s e bt en e e st ene et e eeeeneenteeheente st eaeenee 63
I5.4.5 DICIELE ...ttt ettt ettt h et b e e bbbt et b e e a e ettt e at e bt she et e b et enee 63
15.4.6 THE GCNEW OPETALOL........ieivieeiieeeiieeitteeeteeeteeesbeeestreessbeeesseeessseesssseessseessseeesssessssesessseesssesasseensses 63
15.4.6.1 gcnew ODbject Creation EXPIESSIONSvicveerreerreerreerrerrersessseesseesseessessseesssessesssesssesssesssesssees 63
15.4.6.2 ATTaY CTCAtION CXPIESSIONS ...eeuvrerrerererererreereeseesseesseesssessseesseesseesseessessssesssessseessessseessesssesnsees 63
15.5 Explicit type conversion (Cast NOLALION)ccueeureiierieeiientiente e eeteeteeteesteesteesseesntesneeenteeneeenseenseas 63
15.6 POINter-to-MeEMbDET OPEIATOLSveeiuiieiiieeiieeetieeitieesteeereeestreesbeeesseeessseessseeasseessseeessaeessseessseesssesssses 64
15.7 MUItIPIICALIVE OPEIALOTS. .. .ecvviiereerrieieesteesteesteesresreasseesseesseesseessaesssessseasseessessseessessssesssesssesssenssesssesssens 64
15.8 AAQItiVE OPETALOTSeeuvietietieieieeie et et e st e ettesteeteebe e bt e beesseesseesateenseenseenseesseesseesnsesnsesseesnsesnseenseensens 64
15.8.1 Delegate COMDINATIONccuviiiiiieiiiecieeeiee et e etteesteeebeeestteeeebeeebaeessseeesseeeseseeessesesseasssesassseessses 64
15.8.2 Dele@ate TEMOVALcccviiiiiiieiiieieeieesiteseesteereebe e be et e s b e s ebeesbeessaessaesseessaesssessseassesssesssesssenssees 64
15.9 SHIft OPEIALOTS ..eouvieuiieiieieieeie et ettt et et e steestesteenbe e beessaesaessaesssessseasseesseessaessaesssesssesssesssennsennseensees 65
15.10 Relational OPETALOTSeveieiieiieieerttesiee ettt ettt ettt et e sttesateseteeateeteeseesseesseesnsesneesnsesnseenseenseas 65
15,11 EQUALILY OPETALOTS.....c.veeitiereieiereeteeteeteesteesttessessreesseesseessaesaesssesssessseasseessessseessessssesssesssesssenssesssesssens 65
15.11.1 Ref class @qUality OPETALOTScccvverveeriieriierirerieeieeteereesseesseesseessaesssessseesseesseesseesssesssesssesseensees 65

C++/CLI Language Specification

15.11.2 Delegate €qUality OPCIAtOTS....c.virveerrierierreereereeteesteesseesseesssessseasseaseesseesseesseesssesssesssensseessesssees 65
15.12 BitwiSe AND OPETALOTccuviiiieiieieeiiesieeseestesteeteesbeeteesaessaessaessseasseesseesseesseeseesssesssesssesssesseensens 65
15.13 Bitwise eXClusive OR OPEIAtOTc.civiiiiiiiieieeit ettt et ettt et e st e st e et e et e eneeenseeeeas 65
15.14 Bitwise INCIUSIVE OR OPETALOT......ccuiiiiiiiiiiiieeie et eeerte e sre et e ereebeeteesteesteessaesssesssesssessseesseesses 65
15.15 L0GICal AND OPETALOTccuviieiieieeieerieeseeseestesteeteeteesseeseessaessaessseasseasseasseesseesseesssesssesssesssenseensees 65
15.16 LOZICal OR OPETALOT ...ccuveiiiiieiieiieeie et eeieestee et ete ettt et et e sttesatesateeateenteenseenbeesseasseesneesnsesnseenseensens 65
15.17 CoNAItiONAl OPEIALOTvieitiieiiieeitiieiiieeieeeeteeeteeestteeereeestaeesbeeeseeessseeassaeasseesssaeesseessseessseessseessses 65
15.18 ASSIGNIMENE OPETALOTSvveevieereerrieieesreesieesresreesseeseesseesseesssesssesssessseesseessessseessessssesssesssesssesssesssesssens 65
15.19 COMIMA OPETALOT ..euviieiiieeiiieeiteesteeetteestteeeteesteeessteesaseeeasseesnseesseeesnseesnseeansseesnseesseeesseesnseesnseeesnses 65
15.20 CONSLANT EXPIESSIONS .uvvieeerirererierrieeitreesreeeteeesseessesassseesseessseeassseesssessssssasssessssssessssessssessseesssseessses 65

T - 1110 0[] 0] PR PPTP 67
16.1 SeleCtion StATEIMEIILSc..viiiiiiiiieeeieie ettt e eett e eette e e ettt e e e etteeeeeetaeeeeetteseeesteseeesseseeeatseeeeenseeeeeanseeas 67

16.1.1 The SWItCh STALEIMENLcviiiiieieeie ettt ettt et e e et e e etee e et e e eaeeeeaeeeeaeeeenreeeaeeeennas 67
16.2 Tteration STALCIMEILSccuviiiuiieetieeetieeeteeeteeeeteeeeteeeetteeeteeeeteeeetaeeeteeeetseeeaseeeseeeasseseresensseesssesesreesnnes 67

16.2.1 The for €ach StatemMENTeiiiiiiiiei ettt eete e e et e e e eette e e e eetreeeeeeateeeeeeaveeaeeees 67
16.3 JUMDP SALCITIENLS. .. .ecuvieiiieeriiieeiieesteeeteeeteeesteestteessteessseeesseessseeasseeessseesssaeesseessseessseeessseensseesnsseensses 68

16.3.1 The break StatemMENTccouviiiiiieciiiiciee ettt ettt ete e e et e et e e et e e e veeeeaaeeeareeeeseeeaeeeeenas 68

16.3.2 The CONLINUE StATEIMENTc.vvveeieiiiieeeciieeeeeeteee e e et eeetteeeeeeteeeeeeeteeeeeeetaeeeeeetaeeeeeeraeeeeeisseeeeeareeeeennes 68

16.3.3 The return StAtEIMENLccoiiiiiiiieiiie et et ettt e e eete e e eeette e e eetaeeeeetaeeeeeteseeeetaseeesaseseeeesreeaeennes 69

16.3.4 The GOtO STALCINENL......ccuvereieiieeieerieesieeseestesreeteeteeseessaessseesseesseesseessaesseessnesssesssesssesssesssenseensees 69

16.3.5 The throwW STALEIMENL.cccvviiieiiiee et eetee ettt ettt e ettt e e e eetaeeeeeetaeeeeeetaeeeeetaeeeeeeteeeeeeareeeeennes 69
R N T 0 N 11S) 10 1<) 1 RS PTS 69

A N - T LTS 0 1= o PRSP 71
18. ClaSSES ANU MEIMDEESueiiiiiie et e s e s st e s e s e st e e be e be e teesbeesseeaseeeseeenteeteesseesseesnneannens 72
18.1 Class AETINITIONSeeieiureieeecireeeeeeie e eeete e e ettt e e et e e e et e e e e e aee e e e taeeeeeaaeeeeeetseeeeeenseeeeeesseeeeesreeeeenress 72
18.1.1 Class MOMITIETSccuviiiriieiie ettt ettt et e et e et e et e et e e e eteeeeareeeaeeeeseeeenreeeeaeeeennes 73
I8.1.1.1 ADSIIACE CLASSES . .uveiiuviiiciiieeiie et ettt ettt et e et e e et e e eteeeeaaeeeteeeetaeeeateeetaeeetteeesseeeareean 73
I18.1.1.2 SEAlE CIASSESvveeeeeereeeeeieee ettt e e e e e e ae e e e et e e e et ee e eeareeeeeraeeeeenreas 73

18.2 ReServed MEMDET NMAIMNESvviiiiiiiiieeiiieeeeite e eeite e eeeiteeeeetteeeeeetteeeeetbeeeeeateeeeesseseeessesaeanseeeeeanseeas 74

18.2.1 Member names 1esServed fOr PrOPEITIES......c.cccviiriierieerierierreereeteereesteesreesteeseaessressseesseesseesseesees 74

18.2.2 Member names re€Served FOr @VENTSccovieiiiiiiieiiciie ettt et e eetee e eereeeeeans 75

18.2.3 Member names reserved for fUNCHONS............cooiuiiiiiiiiie ettt e eeve e 75
I8.3 FUNCLIONS ..ot eetiee et ettt e et e et e e et e et e eeteeeeeteeeeteeeeaseeeeteeeeaseeenseeeseeeenseseesseesnseeensreeennes 75

18.3.1 OVEITIAC fUNCHIONS ...eoouviiiiiiiieiie et ettt ettt eete e et e et e eteeeeeteeeteeeetseeeteeeeaseseseeeesseeanreeeneeenens 76

18.3.2 Scaled fUNCHON MOAITIET.........ccoiiiiiiiiiee e e e e et e e e eearee e eearaeeeeeans 78

18.3.3 Abstract function MOAIfIET.........c.eiiiiiiiii ettt et e e e ete e e eeareeeeeans 79

18.3.4 New function MOIFIET..........coviiiiiiieieiciee ettt et eere e eaeeeeenas 79

18.3.5 FUNCION OVEIIOAINGeiviiiiieiiieie ettt ettt ettt ettt et e sbe e s st e sntesnteenteenseenseas 80

18.3.6 PaT@MELET @ITAYS. .. ueeeiectieeeieiiieeeeittieeeeiteeeeetteeesetteeesentteeesataeeesassaeessassaeessnssaeessnsssessnssseesssnsseessnnes 80
I8.4 PrOPETLICS ...uvveutveeiieereetreeteesteesteestteetteeebeasbeesbeesteessaesssessseassaassaessaessaesssessseasseasseasseesseesssesssesssenssenssensees 82

18.4.1 Static and INSTANCE PrOPETLICS.eerveerrrerierrerreeteeteesteesseessressseesseeseesseesseesseesssesssesssesssesseesseessees 84

18.4.2 ACCESSOT TUNCEIONSuviiiiiiiiiecectiie ettt ettt eett e e ettt e e e ettt e e e eetaeeeeeetaeeeeeetaeeeeetasaeeeeseeeeenareeaeennes 84

18.4.3 Virtual, sealed, abstract, and override accesSOr fUNCHIONScooveivivivieiiiieieeeiieee e eetreee s 86

18.4.4 Trivial SCAlAr PIOPETLIES ...c.vvervreeierireiieeieeieeteesteesteesteessesssessseesseesseesaesseesseesssesssesssesssensseenseessees 88
L8.5 EVEIILS .ttt ettt e e e e e et e e e e e e e et taaaaaaeeeeeetttaaaaaaeeeeeabraaaaaaeeeeanararraaens 89

18.5.1 Static and INSTANCE EVENLSccciuiiiiiiiiieeeeiiee e ettt e e et e e ettt e e e ettt e e e eetbeeeeeetaeeeeetaeeeesesseeeeeareeaeennes 90

18.5.2 ACCESSOT TUNCLIONSuviiiiiiiiieeetiee e ettt e e ettt e e ettt e e e et e e e e etteeeeetaeeeestbaeeesasseeesansaseeessaseesasreeeeennes 90

18.5.3 Virtual, sealed, abstract, and override accesSOr fUNCLIONScoovvvviieiiiiiiiiiiieeeeeeeeeieeeeee e e e 90

18.5.4 TTIVIAL ©VENLSuuviiiiiiiie ettt eet e e e et e e e ettt e e e eetaeeeeetaseeeetaseeeetaeeeeetaseeenstaeeeeasrasaeeanes 91

18.5.5 EVENE INVOCALION ...eeiiuiiiieeiiiiee e et e e ettt e e ettt e e ette e e e etteeeeetaaeeeettaeeeesrasaeesssseesssaseeeassseeesasreeeeennes 93
18.6 StALIC OPCTALOTS .euvvevrerereeerietieteeteesteesteesetessreasseasseesseesseesssesssesssessseesseesseessassseessessssesssesssesssessseenseensens 93

18.6.1 Homogenizing the candidate overload Stccieiieriiriiniiiieeie et 93

18.6.2 Operators 0N HANAIES..........ceeiiiiiiiiiiieciie ettt stee e e s eee e sbe e srneeenraeesnneennns 93

vi

Table of Contents

18.6.3 Increment and deCTEMENt OPETALOTLScveeveerreerreeriiesiresresreereeseesseesseesseesseesseesssesssessseesesssesssees 94
18.6.4 OPETatOr SYNTNESIS. . ..vieiviereieiieeieeiieesteestestesresteeteeteesseessaessseasseesseesseesseesseesssessseassesssessseeseessees 96
18.6.5 NAMING COMVENMEIONSvveuereieetierteeeuteeteeteesteesteesttesateeneeeseesseesseesssesasessessseesseesssesnsesnsesnsesnseessees 96
18.6.5.1 CLS-COMPIANt OPETALOTSecvvieiieiiesiiesiieereereereesseesseesseesseesssessseasseesseesseesssesssessseessesssesssees 96
18.6.5.2 NON-CA OPETALOTS. .. .eeeutieeiieeeiieeetieeritee ettt eetteesteeessteesateeessseesnseeeseeesnseesssseessseesseeensseesnseen 97
18.6.5.3 ASSIGNIMENE OPETALOTSveeuteeiieriieeieeteesttenteesttesaeeenteeseeseesseesseesssesnsessseeseesseesssesnsesnsesnseenses 98
18.6.5.4 CH+-dependent OPETALOIScccvuierrierieeeeieerreeestteesreesseeessreesseeessseessseeessseesssessssesesssesssens 98
18.6.6 Compiler-defiNed OPEIALOTSeccierieiiieiierieieeiee e seesreereebe e e e staessbesesessseesseeseesseessnessseans 100
18.6.6.1 EQUALILY ..eouvieiieiieiieciieeie ettt ettt e st e et e et te e tee e e ssaeenseesse et aesseesssessseanseessaeseanseenseenseennns 100
18.7 INSTANCE CONSIITICIOTS ...uvvuriieiiriiieiietiiieiiaiititeteeeeesasesaaasseeaaaaaeaeaaaaaaaaaaaaanaaannnnnnnannnnnnnnsnsnnssssssssssnssssnnnnnnn 100
ST SII ¥: 1 (ol o0) 0] 8 D (o0 - SRR 100
R e 1 B 1<) U (SRRSO 101
18.10 INTLONLY FIELAS.vietiiiiiiie ettt et ettt e st e st e st e e be e bt e sbeenseeseesseesanesnneens 102
18.10.1 Using static initonly fields for CONSTANTS.........cceeeriiiiiiieiciieciie et 103
18.10.2 Versioning of literal fields and static initonly fields...........ccccevveeriierciiecienieiereere e 103
18.11 DeStructors and fINALIZETSooeuuviiiiiiiiieeeeeeee ettt ettt e e e e e et e e e e e s s snaaaaeeeeesssesnnaaeeeeeas 104
L. NALIVE CIASSES ...ttt ettt ettt ettt e e et e e et e e e et e e eabe e e beeeebbeesbaeesabeestbeesabeeestbesabeeeseeeas 105
I 01 015 (o) s PR 105
1.2 PrOPEITICS ...eeiuviieiiieeiieeeteeetee ettt e etteestteesebeeetbeessbeeessaeesssaeassaeasssaassasassseassaesssaeanssessssaeansseanssasasssnanes 105
19.3 StALIC OPCTALOTS ..uvveevieerieiieiiesieesteeseteeteeteesteeseesssesssessseasseesseessaessaesssesssesssessseesseesseessessseessessssenssenns 105
19.4 INSTANCE CONSTITUCTOTS ...vvvvrererrrieieieeeiiseisiessissesessseaeeaaeeaaeaaaa—————————————————anenannnansnanansnannsasnnssssasssssnnsssnnnnnes 105
1.5 DRICZALESeecvveieiiieeiie ettt ettt e et e ettt e ettt e e bt e e tveesabeeestaeessbaeesbeeessseesssaeassse e ssaesssaeenssaesssaeansseenssaeansseanes 105
20, RET CIASSESveiviiitee ettt ettt ettt s s e st e b e e be e ebe e et e e e beeeteeesbeebeesbeesbeesbeesbeesbbestbeenbeenbeetesaree e 106
20.1 Ref Class dECIATAtIONSccuvvveiiiiiiiiciiieeeee et e et e e e e e et e e e e e e e e eeabaaeeeeeesseessaareeeeeeesssnnaaes 106
20.1.1 Ref class base SPECITICALIONccvievuiiruieriieiieiieeii et et et e steesteesaestbeeebeesseesseesseesssessnesssessnenssenns 106
20.2 Ref Class MEIMDETScoiiiieeiiieeeee ettt e ettt e e e e e et e et e e e e seseaaaaaeeeeeessssssssaeeeeeesssnnnnnes 106
20.2.1 Variable INItIALIZETSooooeeeeeeeeee et e e e e e et e e e e s eeeaataaeeeeeseeaaeaeeeeeeeeeans 107
LR Sk 10 To15 o) -SSPt 107
2004 PTOPETTIES ..euveeuveeieeeereeiteeteeteeteeteesstessteasseesseesseessaessaesssessseasseasseasseesssesssesssesssesssesnseensesssessseesssensenns 108
20,5 EVOIES .. aaanaaaana——_—_____a_n_nnnnnnannnnnntnnnnnnnnnnatananannnnnnnnnnnnannnn 108
206 StAtIC OPETALOTS ..eeeuvvreerieeieeerreeeiteeersreesreeestteessseeaseeassseessseesssseassseessssessseesssesassseessseessseesssesssssessssees 108
20.7 INStANCE CONSIIUCIOTSuvvvrreeieeeeeeeittereeeeeeeeeeetrereeeeeeeeeeitareeeeeeeeeesitsreeeeeeeeenesrsreseeeeeeensssreseeeeeeeannnens 108
20.8 StALIC COMSIIUCTOT ...vviiiiiiiieiiieeeee et e e ettt eeeeeeee et eeeeeeeeesessaraeeeeeesssssaaseeeeessssasrasseeeeesssssassaereeessssnnnnnes 108
LR 1< ¢ 5 4 (=) (6 TR 108
20.10 INTEONTLY FICLAS...ecvviitiiiieiieiiecie ettt ettt b e e et e e e e steestbestbeesbeesseesseesseesseassaesseesssesssenssenns 108
20.11 Destructors and fINALIZETSooeveiiiiiieiee e eeeee et eere e eere e e e eetaee e e eetaeeeeeteeeeeeteeeseereeeeennes 108
20,12 DEIEGALES ...eeevveeeiiiieiiieiiie et eeteeeteeertteeebeeetaeesebeeeseeessseessseesssseessseeassseesseeasseeensseenssaeansaeesseennreenn 108
21, VAIUB CIASSESeiuviiieeteecte ettt ettt ettt e s e st st e st e et e et e e ebe e ebe e ebe e eaeeeateeabeeebeeabeesbaesbeestbesnbeenbeereesreens 109
21.1 Value Class dECIATAtIONSuvviiiiiiiiiiiieiiiee ettt ettt e e e e e e et et e e e e e s e esataaeeeeeessessaareeeeeeessennnaes 109
21.1.1 Value Class MOGITIEISuviiiveeiiiiciiiie ettt e ettt e e et e e s esateesseenaeeeseenareeesennrens 109
21.1.2 Value class Dase SPECITICALION........c.eecvierierieriierieiieete et et et e eesseeseeseressseesseesseeseesseesssessseans 109
21.2 ValUE ClaSS MEIMDETSuvvieieiiiiiiieeiiiieeee ettt e e ettt e e e e e e et e e e e e e e e seeaaaaeeeeeesssesnareeeeeeessannnnaes 110
21.3 Ref class and value class differenCeS.couviiiiiriiiiiiiie ettt e enes 110
21.4 SIMPIE VAIUE CIASSES ..eouvieiieriieiiieiieie ettt ettt e st eete e e e teesteessaessseesseesseanseesseessaessaesseesssennsenns 110
8 B 3 I 00 113 5 4 (o1 1) ¢ ST 110
22. IMIIXEA CIASSES. ... iiveeicttee ettt ettt et e e e e et e e et e e et e e e e bbe e s be e e ebeeeetteesbeeesabeeabeeabeeesabeeesbaeesnbeeanreas 111
T N -\ TSR UR PSPPI 112
231 ATTAY TYPLS wetentieiiieeeitte ettt ettt ettt ettt ettt e st e ettt e e ate e e bt e e shb e e s abt e e bt e s bt e e bt e e e abee e bbeenhbeeeabeeebbeesabeean 112
23.1.1 The SYStEM:IATITAY LYPEC .eeeurieirieeiieeiiie ettt esteeeteeestteesseeesseeesssaessesassseessseessseeessseessessnssessssseees 112
23.2 ATTAY CTCALION ...vevvieureerreeteesteesttesereeereaeseasseesseesseesssesssesssessseassessseesseesssesssesssessseessesssessseessessssesssesssenns 112
23.3 ATTAY ClOMENE ACCESS .. uvieuvierietieriierierteeteeteeteesseesteessressseasseasseasseeseeseesssessseassesssessseesseesseesssenssenns 113

vii

C++/CLI Language Specification

23,4 ATTAY MEIMDETS ...vviiviieirieieeieeteestesteseteateesbeesseesseesseesssessseassessseasseesssesssesssesssesssessseasseessessssesssessenns 113
23.5 ATTAY COVATIATICE ..veevveerrrereeerresreaseeseeseesseesseesssesssessseasseesseessessseesseesssesssesnsessseessessseessasssessseesssenssenns 113
23.6 ATTAY TNIHIAIIZETS . ..eeutietieieieete ettt ettt ettt ettt e et et e bt e steesatesaseeabeeabeenseeseesseenseenseesseesnsesnsenns 113
24, INEEITACES. ...ttt bbb bbb h bbbt E bbbttt 114
24.1 Interface deClarations.ceoueiuiiiieeie ettt ettt e sttt ettt e bt e bt e be e sbeesate et ens 114
24.1.1 Interface base SPECITICALION.......cc.vivierierieeiecte et ettt eest e seesteesaesbeeabeesbeesseeseessaessnesseessnessreans 114
24.2 INLETTACE MEIMIDETSecuvieiiieiieiieeieeie et ete et et e seestte st e esse e be e seesseesssessseenseasseenseesseesssesseesseenssennsenns 114
24.2.1 INterface fUNCLIONScocuiiiiiiiiciiecciee ettt e ettt e e et e eseb e e st e e eateeesaseeenteeeteeensseeensneenes 115
24.2.2 INLETTACE PIOPETLIES ...eeeeveeerieeeereeiieeeiteeeteeeteeestteesbeesteeessseessseeassseessseesssesassseessseessseeessseesssseees 115
24.2.3 INEETTACE ©VENLS ...eeuvieiieiiieiiieeie et et et e te st estte st e esseesseesteessaessaessaessseasseasseesseesseenssersaesseesssenssenns 115
24,24 DEICEALESceveeeieeiieeie et e etteeite ettt et et e bt e st esat e eate e bt e bt e steesheeeateeateeabe e bt e bt e shteeteenteesaeesareenreens 116
24.2.5 INteTface MEMDET ACCESSverueieuiiitietieitientiert e ettt ettt et et e e bt e sbe e s bt e sbteeatesateeateenbeebeesbeesbeesabesareens 116
24.3 Fully qualified interface Member NAMESceecvieviiiriieriierieieesie e ereereeseeseesseesseeseeessnessaessseans 116
24 .4 Interface IMPIEMENTALIONSeeecvereiertieieeieereeseestesreeseeteesteesteessaesssessseesseessaessaesssesssesseesssenssenns 116
AT =l 01U o 1T UR TP 117
25.1 NALIVE CIUIMISeeiivieiiieeiieeetee ettt esteeeeteeeeeveeeteeessseesseeessseesssesassssesssesasssaasssesnsssessseessseesssesenssessseeas 117
25.1.1 Native enum deClarations........cecuieieiiiieiieieeiteeree sttt ettt et e st e st e st ebeebeesbeesbeesaeesaeesareeas 117
25.1.2 Native eNUM VISIDIIIEY ..evieiiieiieiieiiieit ettt ere e et e e steesteesaestbessbeesseesseessaesssesssesseesssesssenns 117
25.1.3 Native enum UNAETLYING tYPC...cvuiruirciieeiieiiieriieieeiteste et esieesteesaesresseesseesseesssesssessseesseessessseans 117
25.1.4 Native eNUM MEIMDEIScocuiiiiiiiiiiiieti ettt ettt ste e bt et esabeebeebe e bt e sbeesstesaeeeaeesaeesaeeens 118
25.2 CLIBIUINIS ..ottt sttt ettt ettt et e b e bt s ht e ea e e a bt et e e bt e sbeesb e e sa b e eateembeembe e bt et e enbeesbeesbeesatenns 118
25.2.1 CLI enUM dECIATAtIONScvveriieeiieiieiresierieesieseteeteeteeseesteeseaesseessseasseesseeseesssesssessseessesssenssenns 118
25.2.2 CLI €NUM VISTDIIIEY L.uteeiieiieeiieeie ettt ettt ettt ettt et et e bt e s stesntesbeesaeesaneens 118
25.2.3 CLI enum UNAETIYING t¥PE ...ecccvvieriiiieiiieeiieiieeestteeeteeeteesiveeeteeesebeessseeeeseessseeesseessseeasseessseeenes 118
25.2.4 CLI €NUM MEIMDETS.cvievieriieeereerieriesreesseesteessteasseesseaseesseesseesssesssessseassesssessssesssssssesssssssesssenns 118
25.2.5 CLI enum values and OPETatiOnS.eceeruieriiereerieeieeteesieesteesteesttesteenteeseenseesseesseesseesnsessenns 118
25.3 The SyStemM i ENUM TYPC....ccciiiiiiiieciiieeiee ettt e s e e st eestbeesbeeetbeessbeeestseessseesnseeesssesssseens 119

P T B L [T a T USSP 120
26.1 Dele@ate defINITIONScccviiieiiiieiieiiieeceeeeteeeite ettt e et e e streesbeeeteeesebeessbeeesseessseeessseessseessseessseesssees 120
26.2 Delegate INSTANTIATIONecuveiiecreereesieeteestestesreereebeesseesseesseesseesssessseasseesseesseesssesssesssesseesssessseassenns 122
26.3 Dele@ate INVOCATION ...eeuvieiieriieeiieeieeie et et et esttesttestteetteeateete e st esseesseesseesaseenseenseenseaseenseesseesnsesnseans 122
A (o1 =T T LSS 124
27.1 CommON €XCEPLION CLASSES ... eeuiieuiieiieiieiieiterite sttt ettt et e st e st e sateebeebe e beesbeesaeesstesnseeseesnnesasenns 124
28, ATEETDULES ...ttt E ettt 125
28.1 ALLIIDULE CLASSES. .. uviiiiiiiiiiie ettt ettt et ee et e e sttt e e bt e e sebeeebeeetseesaseeebeeessseesnseeesseessseesnsesesseesareeas 125
28. 1.1 ALIIIDULE TSAZE .. vveeivrieeiieeereeeitieeiteeette ettt esteeeteeesebeessseeesseessseeassseessseessseeessseessseesssseesssessnsseenes 125
28.1.2 Positional and Named ParameterS...........cvervierieereerieeriieerieeseeseeseesresseeseesseesseesssessseesseessanssenns 126
28.1.3 AtrIDULE PATAIMELET LY PES. .. eeveetieruieeiieeieeiterteesteesteesiteeteeteesteesseesseesaeesnsesnseenseenseesseesaeesasesnsenns 127
28.2 ALrIDULE SPECITICALION ..iieviiiiiieeiiieciieecieeette ettt ee ettt e et e e s beeeebeessbeeetaeessbeeessaeessseessseessseeessesssseeas 127
28.3 AUTTIDULE TNSEATICES ...veveeueieieiterteeeiete et ete et et e e st e e e et eseeteeteentenseeaeensesseeneeaseeseensesseeneensenseensenseeneensas 130
28.3.1 Compilation Of an AttTTDULEccuveriiriieiieiierieeree ettt se e e st e st e eebeesseessaesseessaesssessnennseans 131
28.3.2 Run-time retrieval of an attribute INSTANCE.c.eevuieiiiriinierieeee et 131
28.4 RESETVEA AITTDULESeeueitieiietietieie ettt et ettt et et et e e et eet e e s et e s ee st eneeseeseensesteeseeneesseeneenseeneenses 131
28.4.1 The AttributelUsage attriDULE..........ceecvierierierieste et et et et estee s e e sresbeesbeesseeseessaessnesssessnesnsenns 131
28.4.2 The ODbSOIEte AttrTDULE......cccveiiiiiieiiiiiciieeeieeeie et ettt e et e e ete e e stbeessbeeeereeseseeenteeesseeenseeanes 131
28.5 Attributes fOr INtEIOPEIALIONccvvieriiieiiiieiieeeieest ettt eeteeeteeesebeesbeeeteeessbeessseeessseesssaeassesessesssseeas 132
28.5.1 Interoperation with other CLI-based 1anguages..........c..ccveveerierierienrieriereereesreeseeseeseneseneens 132
28.5.1.1 The DefaultMember attribULC..........c.eeeiuiiiiiiieiieceieeeee ettt e e eenes 132
28.5.1.2 The MethodImplOption attribULEc.eeeviieiiieeiiieeieeeree et e e e eeevee s 132

29, TEMPIALES ...t bbb bbb bbb bbbttt 133

viii

Table of Contents

B N 3 o] USRS 133
29.2 TYPE AEAUCTION ...ttt et a et b et e et s at et s bt et en e e nbeeateteeneenees 133
KO € 01T ot ST P TP PP PP PPPRPRPR PPN 134
30.1 Generic dECIATAtIONSc..eeivireiiiieeiie ettt et et e et e et e e e tbeeeteeeteeesabeeessesesseessseeesssensseenssesenseeanes 134
30.1.1T TYPE PATAIMICLETSeeeeeerrieeeiireeeeiiteeeeetteeseserteesaaetreesaaareeesassaeesanssseesasssseesassseeessssseeessssseeessssseeesnn 135
30.1.2 Referencing a generic tyPe DY NAMEccvierrierieriierreereeieesieerreesteesssessressseessessseesseessessssesneans 135
30.1.3 THE INSANCE LYPC c.veevreereeererieeiiesieereestesreeteeseesseesseesseessseasseesseesseesssesssesssesssessseesseessessssenssenns 136
30.1.4 Base classes and INTEITACESccueiiiiieciieeciie ettt ettt ettt e et eesar e e s beeeteeeseseeenreeenes 136
30.1.5 ClaS8 MEIMIDETS ...cuteeiieiiieitieie ettt ettt et et e bt e s bt e sat e e ateeabe e bt e sbeesabesateeabeenbeenbeesbeenbeesaeesaraans 137
30.1.6 StAtIC INEIMDETS......evieiietieiiete ettt ettt ettt ettt eb et eb et e s bt e st et e sbt et e s beeseenbebesseeneeeneenees 138

B0, 1.7 OPETALOTS. .ccuutteeuiieeiutee ettt et e et e ettt e ettt e sttt e s bt e e suteesabteebteesabeeeabbeesabeeeabteesabeeasbeesabeesnbeesnsteesbaeanas 139
30.1.8 MemDber OVEIIOAAINGcccviieeiiieiiieeiiiecieeeee ettt e estte e et e et eesbeeetaeessbeeessseessseessseeessesanseeenes 139
30.1.9 MEeMDET OVEITIAINGecvieiieieieiiieieesieestesresbeereereesseesteessveesseesseesssesssesssessseassessssesssessessssensenns 140
30.1.10 NESEEA LY PCS .euvierierieriieiterieetteseesteestesteabeeseesseesssesssessseasseesseesseesssessseesseesseessessseessessssenssenns 140
30.2 CONSIUCEA LYPES wveeerrrrerurierrieeitieesteeateeestteesteeasseeessseeasseeassssassseeassssessseesssessssseesssesssssssssssesssessssseanes 141
30.2.1 Open and closed CONSIIUCTEA tYPES ...cuviivierrieriierierieereereeteesteeseesetesreesreesseeseessaesssessseessesseans 141
30.2.2 TYPE QUGUMEILS.ueeeeuiieeriieeeieeetieeeitteertteesteeseteeesteeetaeessseesseeesnseeanseeeasseesaseeessseesnseesnsseesnseesnns 142
30.2.3 Base classes and INTEITACESccviiiiiieciiieciee ettt ettt et e e it e eear e e s abeeeteeeseseeenreeenes 142
30.2.4 ClaS8 MNEIMIDETS ...cutieiieiieeiieeie ettt te ettt ettt e bt e bt e s bt e sat e eateeabe e bt e sbeesabesmteeabeenbeenbeesbeenbeesaeesaneans 143
30.2.5 ACCESSIDILIEY...eetieiiesiiiiieiietterte sttt ettt et e st e st e et e esseebe e taessaesabeenbeenbeensaeseensaenteenerennreans 144
30.3 GENEIIC TUNCHIONS. ...c.utiiiiiieitiieetie ettt e et e eet e e et e estreeetee e teeesabeeesaeeseseesssasesseesnsesessesessseesnsesensseanes 144
30.3.1 Function signature matChing rulesccueeiciiiiiiiiiiiiecie et e e e sree e 145
30.3.2 TYPE AEAUCLION ..e.evieiiieiieciieciie ettt et te st e et e vt et e esttesteestbeesbeesbeesseesssesssessseesseessaesseesseesssensseans 146
30.4 COMSITAIINESeuteeieeteettete ettt et e et e ea et e b et e e bt este b e eb e e st eabeeaee b e ss e e beebeestenbeeheenteasebeenseneeeneensesaeeneans 148
30.4.1 SatiSTYING CONSIIAINESeetiiriiieieeieesieeeie et e bt e it estee st e seeeeeeete e teesseesatesaseenseeseeseesseesseesasesnsenas 149
30.4.2 Member I00KUP ON tYPE PATAIMELETS.c.vverererreereerriesieesieesreeseereesseesssesssesssesssessseesssessessesssenns 149
30.4.3 Type parameters and DOXINEcccvervueriierrrieriiesiieseertesreesieesieeseessresssessseesseessessssesssessseessessseans 150
30.4.4 Conversions involVing type PArAMELEISc.eerueeruierierieeieerieeseesteeseeeteesteesseesseesseeeseenseessenas 150

31. Standard C and CH+ HDFAITES.c.oiiiiiiii e 151
Y O I N 1] - L g [TSP P TP PP P PP PRURPRPRTRPR 152
32.1 CUStOM MOAITIETSeviiiiiiieiii ettt ettt et e et eeete e et eeeteeesebeeebeeeeseeensseessssessseessseeensaeanes 152
32.1.1 Signature MALCRINGooiiiiiiiieciie ettt et e et e e s veeebeeesebeeestbeessseessseeesseessseesssneanes 152
32.1.2 MOAIEq VS. NOAOPL...cc.evieiiieeiiiieetieeeteeeriteesteeeteesaeeesaeesseessseesssesessseessseesssseessseessseenssessnseenes 153
32.1.3 MOQITIET SYNEAX ..ecuvieiieriieriieiieeieesteesteeseesetesteeseeseesseesseessaesssessseesseesseesseesssesssessseesseessessssenssenns 153
32.1.4 Types having multiple custom MOAIfIETS.........ccceerirriiriiiieeie ettt 154
32.1.5 Standard custom MOITIETScc.uiiiieiiiiiiieiie ettt ettt bee st esaee s eas 155
32.1.5. 1 ISBOXEA ...ttt et b ettt b e et ebe st e it et 155
32.1.5. 2 ISBYVAIUC...cc.eiiiieiiee ettt ettt et sttt et et e be e neeenes 156
32.1.5.3 TSCOMSL. .ttt ettt ettt ettt e b e s bt e e ae e s at e et e bt e bt e bt e eh et sat e eat e e teeteebe e beenneeenes 156
32.1.5.4 ISEXPLiCItlyDereferenCed........coccviiiiiriiiiiiiie ettt reesraeseeesereeaeens 156
32.1.5.5 ISIMplicitlyDereferenCed.c.occvieriieriierieiie ettt e s see e eees 156

R B T O3 0 510 ¥ TSRS PPP 157

R B T A 1) 55 1 U<« B ST 158
32.1.5.8 IsSignUnSPecifiedByLe.....ccviviiiiieiieiiciieriee ettt ettt esseesbe e baesaaesseenseennns 158
32.1.5.9 TSUGEREIUITeviiieiieiiciieie ettt ettt ettt et s te e s e seesaessesseessesseessensessaensenseessessensenssenses 159
32.1.5. 10 ISVOLALIIE ...ttt ettt ettt ettt et e steenee b e eseenseseeseeneenseeneennas 159
ANNEX A, VErfiabIe COUB.........iiiiiiii s 161
Annex B. Documentation COMIMENTS.coiiiiiiiiieiei et 162
ANNEX C. NON-NOIrmMatiVe FEFEIENCEScoviiiiiiiiiciie s 163
ANNEX D. CLI NAMING QUIABTINESeieiiiee ettt sttt te et e aesre e e sreeneesneenes 164

X

C++/CLI Language Specification

D.1 CapitaliZation StYIES.....ccviiiiieiiieiieeiieieeitert et ste e et eebeeb e e e e steesttessaesssessseesseesseesseesseesseesssessseassenns 164
D.1.1 PaSCAL CASINEeeuvieiieiiieiiieeiie et et et et e te st este st e esbeesseessaessaesseessseassessseasseenseesssesssersaessessssensenns 164
D.1.2 CaMEL CASINGeeuvieneieiieriieeiie et ettt ettt et et e et et e bt et e e sbeesteeeaeesabeeaseenseeseesseassteseesseesasesnsenns 164
D.1.3 ALL UPPEICASE ...ecvveevrieiiesieesireaieeteeteesteesteesseestsessseassessseessaesseesssesssesssesssesssesssessssssssessesssessssesssenns 164
D.1.4 CapitaliZation SUMIMATYcccverveerreereeruerresreeseesseesseessaesseesssesssesssesssessseessessssssssesssesssesssesssenns 164

D.2 WOTA CHOICE.viiiiiiieiie ettt ettt et e et e e ete e e st e e satee e tseesabeeensseeeseeenseeesssaesssesenseesnraeas 165

.3 INAIMIESPACES ...eevveeeeiiiiee ettt e ettt e ettt e e setteeesestteeesastteeesansaaeesansseeesasssesesanssseesanssaeesassaesansseeesssseeessnnes 165

LD] TSRS 165

D5 TNEETTACES ...ttt ettt ettt sttt s h et b e e st et e bt et e st e eat e besbeenteabeeatenteeneenees 166

D6 BIUIMS ...ttt ettt et e bt b e s ab e e bt e e sabeeeabe e e nbbeesabeeenbbeesabeeebbeesabeean 166

LD AN 1 (6 1153 10 o3 RSP 167

D8 PArGMELELSeouieiiiiiieiiieiieee ettt sttt st et e b ettt sttt et be e sbeesaeesareea 167

.9 FUNCLIONS ...ttt ettt ettt et e et e e et e e et e e e tbeeebee e tbeesaseeeasaeesaseeeasasensseesssasesseesnsesesseesnseeas 167

D10 PIOPEILIES ...veeevieeiiieeiee ettt eeite ettt e st e e e teeesibeeesteeetbeeesbeeetsaesssaeassseessseeassssenssaessseeessseesseessseesssessssenns 167

D11 EVENES .ottt ettt ettt sttt ettt et e b e a ettt ettt et e be e sheesaaesateea 168

D12 CaSC SENSTLIVILY .euvieutietieitieiiieett et et et e e st e et e sate st eateeste e te e teesseesatesaseenbeenbeenseeseesseanseeseesseesnsennseans 168

D.13 Avoiding type NAME CONTUSIONcccuviiiiieiieiieiiieeiieeeteeesiteesteesteeesebeesbeeessseessseeesseessseessseeesssesssseens 169

ANNEX E. FULUNE QIFECTIONScviiiiiitiitct bbbt 170

E.1 Static members in INTETTACESeeiuieiiiitiiiie ettt sb e st sbeesate e 170

E.2 IMIX@A L P@S .uveenveeriieeeieeieeteesttesttesttestesetessseesseessaessaessaesssessseasseasseesseesssesssesssessseanseeseensesssessseesssensenns 170

E.3 gcnew of UNMAanaged LYPEScecveeruierieiiieieeie ettt stt ettt et e st e saeeeate et ente e bt e bt e saeesaeesneeeaneens 170

E.4 NEW Of MANAZEA CFPCS ..eiiieiiieiiieeiieciee et eeiee ettt et e et e e st eesteeesebeessbeeessbeessseeassseessseessseeessesssseens 170

E.5 Unsupported CLS-recommended OPETatorS........c..ccvverveereeereereerreeireesseesreeseessresssesssesssesssesssesssessseens 170

L0 LIEETALS ...ttt ettt ettt ettt s h et b e e h e et b et e et e at et et bt et e bt eat et eneenees 170

E.7 Delegating CONMSIUCTOTS. ...cueeruieriiieieeteetteteesttesttestteseteeiteeteete e st esseesseesneesnseenseenseenseanseenseesseesnsennsenns 170

E.8 The checked and unchecked StAtEMENTS.........c.ccuieiireriieiere ettt 173

Annex F. Incompatibilities with Standard CH+ ... s 174
ANNEX G INUEX ...ttt b bbb bbb bbbt b et b bbb 175

10

15

20

Introduction

Introduction

This International Standard is based on a submission from Microsoft. It describes a technology, called
C++/CLI, that is a binding between the Standard C++ programming language and the ECMA and ISO/IEC
Common Language Infrastructure (CLI) (§3). That submission was based on another Microsoft project,
Managed Extensions for C++, the first widely distributed implementation of which was released by
Microsoft in July 2000, as part of its .NET Framework initiative. The first widely distributed beta
implementation of C++/CLI was released by Microsoft in ??.

ECMA Technical Committee 39 (TC39) Task Group 5 (TGS5) was formed in October 2003, to produce a
standard for C++/CLI. (Another Task Group, TG3, had been formed in September 2000, to produce a
standard for a library and execution environment called Common Language Infrastructure. An ISO/IEC
version of that CLI standard (§3) has since been adopted. CLI is based on a subset of the NET Framework.)

The goals used in the design of C++/CLI were as follows:
e Provide an elegant and uniform syntax and semantics that give a natural feel for C++ programmers

e Provide first-class support for CLI features (e.g., properties, events, garbage collection, generics) for
all types including existing Standard C++ classes

e Provide first-class support for Standard C++ features (e.g., deterministic destruction, templates) for
all types including CLI classes

e Preserve the meaning of existing Standard C++ programs by specifying pure extensions wherever
possible

The development of this standard started in December 2003.

It is expected there will be future revisions to this standard, primarily to add new functionality.

xi

1. Scope

This International Standard specifies requirements for implementations of the C++/CLI binding. The first
such requirement is that they implement the binding, and so this International Standard also defines
C++/CLI. Other requirements and relaxations of the first requirement appear at various places within this
International Standard.

C++/CLI is an extension of the C++ programming language as described in ISO/IEC 14882:2003,
Programming languages — C++. In addition to the facilities provided by C++, C++/CLI provides additional
keywords, classes, exceptions, namespaces, and library facilities, as well as garbage collection.

C++/CLI Language Specification

2. Conformance

Clause §1.4, “Implementation compliance” of the C++ Standard applies to this International Standard.

10

15

Normative references

3. Normative references

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below.
For undated references, the latest edition of the normative document referred to applies. Members of ISO
and IEC maintain registers of currently valid International Standards.

ISO/IEC 2382.1:1993, Information technology — Vocabulary — Part 1: Fundamental terms.

ISO/TEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).
ISO/IEC 14882:2003, Programming languages — C++.

ISO/IEC 23271:2004, Common Language Infrastructure (CLI), all Partitions.

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated IEC
559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985,
IEEE Standard for Binary Floating-Point Arithmetic.)

This Standard supports the same version of Unicode as the CLI standard.

10

15

20

25

30

35

40

C++/CLI Language Specification

4. Definitions

For the purposes of this Standard, the following definitions apply. Other terms are defined where they appear
in italic type or on the left side of a syntax rule. Terms explicitly defined in this Standard are not to be
presumed to refer implicitly to similar terms defined elsewhere. Terms not defined in this Standard are to be
interpreted according to the C++ Standard, ISO/IEC 14882:2003.

application — Refers to an assembly that has an entry point. When an application is run, a new application
domain is created. Several different instantiations of an application can exist on the same machine at the
same time, and each has its own application domain.

application domain — An entity that enables application isolation by acting as a container for application
state. An application domain acts as a container and boundary for the types defined in the application and the
class libraries it uses. A type loaded into one application domain is distinct from the same type loaded into
another application domain, and instances of Objects are not directly shared between application domains.
Each application domain has its own copy of static variables for these types, and a static constructor for a
type is run at most once per application domain. Implementations are free to provide implementation-
specific policy or mechanisms for the creation and destruction of application domains.

assembly —Refers to one or more files that are output by the compiler as a result of program compilation.
An assembly is a configured set of loadable code modules and other resources that together implement a unit
of functionality. An assembly can contain types, the executable code used to implement these types, and
references to other assemblies. The physical representation of an assembly is not defined by this
specification. Essentially, an assembly is the output of the compiler. An assembly that has an entry point is
called an application.

attribute — A characteristic of a type and/or its members that contains descriptive information. While the
most common attributes are predefined, and have a specific encoding in the metadata associated with them,
user-defined attributes can also be added to the metadata.

boxing — An explicit or implicit conversion from a value class to type System: :Object, in which an
Object box is allocated and the value is copied into that box. (See also “unboxing”.)

CLS compliance — The Common Language Specification (CLS) defines language interoperability rules,
which apply only to items that are visible outside of their defining assembly. CLS compliance is described in
Partition I of the CLI standard (§3).

definition, out-of-class — A synonym for what Standard C++ calls a “non-inline definition”.

delegate — A ref class such that an instance of it can encapsulate one or more functions. Given a delegate
instance and an appropriate set of arguments, one can invoke all of that delegate instance’s functions with
that set of arguments.

event — A member that enables an Object or class to provide notifications.

field — A synonym for what Standard C++ calls a “data member”.

function, abstract — A synonym for what Standard C++ calls a “pure virtual function”.

garbage collection — The process by which allocated memory is automatically reclaimed on the CLI heap.
gc-lvalue — An expression that refers to an Object or subObject on the CLI heap.

handle — A handle is called an “Object reference” in the CLI specification. For any CLI type T, the
declaration TA h declares a handle h to type T, where the Object to which h is capable of pointing resides on

10

15

20

25

30

35

40

Definitions

the CLI heap. A handle tracks, is rebindable, and can point to a whole Object only. (See also “type,
reference, tracking”.)

heap, CLI — The storage area (accessed by gcnew) that is under the control of the garbage collector of the
Virtual Execution System as specified in the CLI. (See also “heap, native™.)

heap, native — The dynamic storage area (accessed by new) as defined in the C++ Standard (§18.4). (See
also “heap, CLI".)

IL — Intermediate Language, the instruction set of the Virtual Execution System.
instance — An instance of a type; synonymous with “Object”.
Ivalue — This has the same meaning as that defined in the C++ Standard (§3.10).

metadata — Data that describes and references the types defined by the Common Type System (CTS).
Metadata is stored in a way that is independent of any particular programming language. Thus, metadata
provides a common interchange mechanism for use between tools that manipulate programs (such as
compilers and debuggers) as well as between these tools and the Virtual Execution System.

Object — An instance of a type; synonymous with “instance”. (Uppercase-O Object is distinguished from
the lowercase-o object defined in the C++ Standard.)

pinning — The process of (temporarily) keeping constant the location of an Object that resides on the CLI
heap, so that Object’s address can be taken and that address remains constant.

property — A member that defines a named value and the functions that access that value. A property
definition defines the accessing contracts on that value. Hence, the property definition specifies the
accessing functions that exist and their respective function contracts.

rebinding —The act of making a handle or pointer refer to the same or another Object.
rvalue — This has the same meaning as that defined in the C++ Standard (§3.10).

tracking — The act of keeping track of the location of an Object that resides on the CLI heap; this is
necessary because such Objects can move during their lifetime (unlike Objects on the native heap, which
never move). Tracking is maintained by the Virtual Execution System during garbage collection. Tracking is
an inherent property of handles and tracking references.

type, boxed — See “type, value, boxed”.
type, class, any — Any CLI or native type.

type, class, interface — A type that declares a set of virtual members that an implementing class must
define. An interface class type binds to a CLI interface type.

type, class, ref — A type that can contain fields, function members, and nested types. Instances of a ref
class type are allocated on the CLI heap. A ref class type binds to a CLI class type.

type, class, value — A type that can contain fields, function members, and nested types. Instances of a value
class type are values. Since they directly contain their data, no heap allocation is necessary. A value class
type binds to a CLI value type.

type, CLI — An interface class, a ref class, or a value class.

type, fundamental — The arithmetic types as defined by the C++ Standard (§3.9.1), and that map to CLI
value types. (These include booT, char, and wchar_t, but exclude enumerations.)

type, handle — Longhand for “handle”.
type, native — An ordinary C++ class (declared using class, struct, or union).

type, pointer, native — The pointer types as defined by the C++ Standard (§8.3.1). (Unlike a handle, a
native pointer doesn’t track, since Objects on the native heap never move.)

type, reference, native — The reference types as defined by the C++ Standard (§8.3.2).

10

15

C++/CLI Language Specification

type, reference, tracking — A tracking reference is a kind of reference that has restrictions as to where it
can be declared. For any type T, the declaration T% r declares a tracking reference r to type T. (See also
“handle™.)

type, value, boxed — A boxed value class is an instance of a value class on the CLI heap. For a value class
V, a boxed value class is always of the form VA.

type, value, simple — The subset of value classes that can be embedded in a CLI type. The simple value
classes include the fundamental types.

unboxing — An explicit conversion from type System: :Object to any value class, from VA (the boxed
form of a value class) to V (the value class), or from any interface class to any value class that implements
that interface class. (See also “boxing”.)

Virtual Execution System (VES) — This system implements and enforces the Common Type System
(CTS) model. The VES is responsible for loading and running programs written for the CLI. It provides the
services needed to execute IL and data, using the metadata to connect separately generated modules together
at runtime. For example, given an address inside the code for a function, it must be able to locate the
metadata describing the function. It must also be able to walk the stack, handle exceptions, and store and
retrieve security information. The VES is also known as the “Execution Engine”.

10

15

20

Notational conventions

5. Notational conventions

Various pieces of text from the C++ Standard appear verbatim in this standard. Additions to such text are
indicated by underlining, and deletions are indicated using strike-through. For example:

The rules for operators remain largely unchanged from Standard C++; however, the following rule in
Standard C++ (§13.5/6) is relaxed:

“An operator function shall either be a nen-statie member function or be a non-member function and have at
least one parameter whose type is a class, a reference to a class, a class handle, an enumeration, a reference
to an enumeration, or an enumeration handle.”

Unless otherwise noted, the following names are used as shorthand to refer to a type of their corresponding
kind:

e T for interface class

e N for native type

o R for ref class

e S for simple value class
o V for value class

The CLI has its own set of naming conventions, some of which differ from established C++ programming
practice. The CLI conventions have been used throughout this Standard, and they are described in § Annex
D.

Many source code examples use facilities provided by the CLI namespace System; however, that
namespace is not explicitly referenced. Instead, there is an implied using namespace System; at the
beginning of each of those examples.

10

15

C++/CLI Language Specification

6. Acronyms and abbreviations

This clause is informative.

The following acronyms and abbreviations are used throughout this Standard:

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file
access, custom attributes, security attributes, string manipulation, formatting, streams, and collections.

CIL — Common Intermediate Language
CLI — Common Language Infrastructure
CLS — Common Language Specification
CTS — Common Type System

VES — Virtual Execution System

IEC — the International Electrotechnical Commission
IEEE — the Institute of Electrical and Electronics Engineers
ISO — the International Organization for Standardization

End of informative text.

10

15

General description

7. General description

This Standard is intended to be used by implementers, academics, and application programmers. As such, it
contains a considerable amount of explanatory material that, strictly speaking, is not necessary in a formal
language specification.

This standard is divided into the following subdivisions:
Front matter (clauses 1-7);

Language overview (clause 8);

i

The language syntax, constraints, and semantics (clauses 9-32);
4. Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to
refer to related clauses. Notes are provided to give advice or guidance to implementers or programmers.
Annexes provide additional information and summarize the information contained in this Standard.

Clauses 1-5, 7, and 9-32 form a normative part of this standard; and Foreword, Introduction, clauses 6 and
8, annexes, notes, examples, and the index, are informative.

Except for whole clauses or annexes that are identified as being informative, informative text that is
contained within normative text is indicated in the following ways:

1. [Example: The following example ... code fragment, possibly with some narrative ... end example]
2. [Note: narrative ... end note]

3. [Rationale: narrative ... end rationale]

10

15

20

25

30

35

40

C++/CLI Language Specification

8. Language overview

This clause is informative.

This specification is a superset of Standard C++. This clause describes the essential features of this
specification. While later clauses describe rules and exceptions in detail, this clause strives for clarity and
brevity at the expense of completeness. The intent is to provide the reader with an introduction to the
language that will facilitate the writing of early programs and the reading of later chapters.

8.1 Getting started
The canonical “hello, world” program can be written as follows:

int main() {
System: :Console: :wWriteLine("hello, world");

The source code for a C++/CLI program is typically stored in one or more text files with a file extension of
.Ccpp, as in hello. cpp. Using a command-line compiler (called c1, for example), such a program can be
compiled with a command line like

c1l hello.cpp

which produces an application named helTo. exe. The output produced by this application when it is run
is:

helTlo, world\n

The CLI library is organized into a number of namespaces, the most commonly used being System. That
namespace contains a ref class called Console, which provides a family of functions for performing console
1/0. One of these functions is WritelL1ine, which when given a string, writes that string plus a trailing
newline to the console. (Examples from this point on assume that the namespace System has been the
subject of a using declaration.)

8.2 Types

Look at the possibility of rewriting this sub-clause. C++ has many more class types, and a handle type can
include all class types. Keep this placeholder until the type tree diagram has been added. [[#13]]

Value classes differ from handle types in that variables of the value classes directly contain their data,
whereas variables of the handle types store handles to Objects. With handle types, it is possible for two
variables to reference the same Object, and thus possible for operations on one variable to affect the Object
referenced by the other variable. With value classes, the variables each have their own copy of the data, and
it is not possible for operations on one to affect the other.

The example
ref class Classl {

pubTic:
int value;
Class1() {
value = 0;
b
};

int main(Q) {
int vall = 0;
int val2 = vall;
val2 = 123;

10

10

15

20

25

30

35

40

45

50

Language overview

ClasslA refl gcnew Classl;
ClasslA ref2 refl;
ref2->value = 123;

console::writeLine("values: {0}, {1}", vall, val2);
console::writeLine("Refs: {0}, {1}", refl->value, ref2->value);

3
shows this difference. The output produced is

values: 0, 123
Refs: 123, 123

The assignment to the local variable vall does not affect the local variable val2 because both local
variables are of a value class (the type int) and each local variable of a value class has its own storage. In
contrast, the assignment ref2->value = 123; affects the Object that both refl and ref2 reference.

The lines

console::writeLine("values: {0}, {1}", vall, val2);
console::writeLine("Refs: {0}, {1}", refl->value, ref2->value);

deserve further comment, as they demonstrate some of the string formatting behavior of

console: :wWriteLine, which, in fact, takes a variable number of arguments. The first argument is a
string, which can contain numbered placeholders like {0} and {1}. Each placeholder refers to a trailing
argument with {0} referring to the second argument, {1} referring to the third argument, and so on. Before
the output is sent to the console, each placeholder is replaced with the formatted value of its corresponding
argument.

Developers can define new value classes through enum and value class declarations. The example

public enum class Color {
Red, Blue, Green

public value struct Point {
int x, Vy;

public interface class IBase {
void FQ;

public interface class IDerived : IBase {
void GO ;

public ref class A {

protected:

virtual void HQ) {.
console::wWriteLine("A.H");

h
};
public ref class B : A, IDerived {
public:

void FO {

Console::writeLine("B::F, implementation of IDerived::F");

void GO {)]) . .
Console::wWriteLine("B::G, implementation of IDerived::G");

virtual protected void H() override {
console::writeLine("B::H, override of A::H");

}
};
public delegate void MybDelegate();

shows an example of each kind of type definition. Later clauses describe type definitions in detail.

11

10

15

20

C++/CLI Language Specification

Types like Color, Point, and IBase above, which are not defined inside other types, can have a type
visibility specifier of either pub1ic or private. The use of publi c in this context indicates that the type
will be visible outside the assembly. Conversely, the private indicates that the type will not be visible
outside the assembly. The default visibility for a type is private.

8.2.1 Fundamental types and the CLI

Each of the fundamental types is shorthand for a CLI-provided type. For example, the keyword int refers to
the value class System: : Int32. As a matter of style, use of the keyword is favored over use of the
complete system type name.

The table below lists the fundamental types and their corresponding CLI-provided type: This mapping is
still under discussion; it is by no means settled yet.[[#93]]

Type Description CLI Value class
booT Boolean type; a bool value is either true or System: :Boolean
false
System: :SByte or
. . . System: :Byte
char 8-bit signed/unsigned integral type y y

(with modopt for
IsSignUnspecifiedByte)

signed char 8-bit signed integral type System: :SByte
unsigned char 8-bit unsigned integral type System: :Byte
short 16-bit signed integral type System::Intl6
unsigned short 16-bit unsigned integral type System::UIntl6
int 32-bit signed integral type System::Int32
unsigned int 32-bit unsigned integral type System: :UInt32
.o . System::Int32
long 32-bit signed integral type (with modopt IsLong)
. . . . System: :UInt32
unsigned long 32-bit unsigned integral type (with modopt IsLong)

long Tong System::Int64

64-bit signed integral type

unsigned long long 64-bit unsigned integral type System: :Uint64

float Single-precision floating point type System::Single

double Double-precision floating point type System: :Double

System: :Double (with

1 1
ong double modopt IsLong)

Extra-precision floating point type

wchar_t A 16-bit Unicode code unit System: :Char

Add description for how fundamental types have the same member functions as those described in the CLI.

[[Ed]]

Although they are not fundamental types, three other types provided in the CLI library are worth
mentioning. They are:

e System::0bject, which is the ultimate base type of all value and handle types
e System::String, a sequence of Unicode code units
e System::Decimal, a precise decimal type with 28 significant digits

C++/CLI has no corresponding keyword for these.

12

10

15

20

25

30

35

40

45

Language overview

8.2.2 Conversions

A number of new kinds of conversion have been defined. These include handle and parameter array
conversion, among others.

8.2.3 Array types

An Array in C++/CLI differs from a native array (§8.3.4) in that the former is allocated on the CLI heap, and
can have a rank other than one. The rank determines the number of indices associated with each array
element. The rank of an Array is also referred to as the dimensions of the Array. An Array with a rank of
one is called a single-dimensional Array, and an Array with a rank greater than one is called a multi-
dimensional Array.

Throughout this Standard, the term Array is used to mean an array in the CLI. A C++-style array is referred
to as a native array or, more simply, array, whenever the distinction is needed.

Say more, especially w.r.t the template class array<element-type>. [[#23]]

8.2.4 Type system unification

C++/CLI provides a “unified type system”. All value and handle types derive from the type
System: :0Object. It is possible to call instance functions on any value, even values of fundamental types
such as int. The example

int main() {
Console::writeLine((3).ToString());

calls the instance function ToString from type System: : Int32 on an integer literal, resulting in the
string “3” being output. (Note that the seemingly redundant grouping parentheses around the literal 3, are
not redundant; they are needed to get the tokens “3” and “.” instead of as “3.”.)

The example
int main() {
int i = 123;
ObjectA o = 1i; // boxing
int j = static_cast<int>(o); // unboxing

is more interesting. An int value can be converted to System: :Object and back again to int. This
example shows both boxing and unboxing. When a variable of a value class needs to be converted to a
handle type, an Object box is allocated to hold the value, and the value is copied into the box. Unboxing is
just the opposite. When an Object box is cast back to its original value class, the value is copied out of the
box and into the appropriate storage location.

This type system unification provides value classes with the benefits of Object-ness without introducing
unnecessary overhead. For programs that don’t need int values to act like Objects, int values are simply
32-bit values. For programs that need int values to behave like Objects, this capability is available on
demand. This ability to treat value classes as Objects bridges the gap between value classes and ref classes
that exists in most languages. For example, a Stack class can provide Push and Pop functions that take and
return ObjectA values.

public ref class stack {

public:

ObjectA Pop() {..}
void Push(ObjectA o) {.}

Because C++/CLI has a unified type system, the Stack class can be used with elements of any type,
including value classes like int.

13

C++/CLI Language Specification

8.2.5 Pointers, handles, and null

Standard C++ supports pointer types and null pointer constants. C++/CLI adds handle and null values. To
help integrate handles, and to have a universal null, C++/CLI defines the keyword nul1ptr. This keyword
represents a literal having the null type. nulTptr is referred to as the null value constant. (No instances of
the null type can ever be created, and the only way to obtain a null value constant is via this keyword.)

The definition of null pointer constant (which Standard C++ requires to be a compile-time expression that
evaluates to zero) has been extended to include nu1Tptr. The null value constant can be implicitly
converted to any pointer or handle type, in which case it becomes a null pointer value or null value,
respectively. This allows nu11ptr to be used in relational, equality, conditional, and assignment

10

15

20

25

30

35

40

45

50

55

60

expressions, among others.

ObjectA objl
StringA strl
if (objl == 0);
differ)

if (objl == 0L);

if (objl == nullptr);

char* pcl = nullptr;
if (pcl == 0);
if (pcl == 0L);
if (pcl == nullptr);

nullptr; // handle objl has the null value
nullptr; // handle strl has the null value
false (zero is boxed and the two handles

false
true

pcl is the null pointer value

true as zero is a null pointer value

tr‘ue 1] 1] 1]

true as nullptr is a null pointer constant

int nl = 0;

nl = nullptr; error, no implicit conversion to int
if (nl == 0); true, performs integer comparison

if (nl == 0L); “ “ “

if (n1 == nullptr);

if (nullptr);
if (nullptr == 0);
if (nullptr == 0L);

error, no implicit conversion to int

error . L . .
error, no 1mp'|1c1t conversion to 1nt

SOOI NN N\~ NN NN
SN OO NN NN NN N

nullptr = 0; error, nullptr is not an Tvalue

nullptr + 2; error, nullptr can’t take part in arithmetic
ObjectA obj2 = 0; obj2 is a handle to a boxed zero

ObjectA obj3 = OL; obj3 “ “ “

StringA str2 = 0; error, no conversion from int to StringA
StringA str3 = OL; “ “ “ “
char* pc2 = 0; pc2 is the null pointer value

char® pc3 = OL; pc3 “ “ “

ObjectA obj4 = expr ? nullptr : nullptr; // obj4 is the null value
ObjectA obj5 = expr ? 0 : nullptr; // error, no composite type
ch?r* pcd = expr ? nullptr : nullptr; // pc4 is the null pointer
value

char®* pc5 = expr ? 0 : nullptr; // error, no composite type

int n2 = expr ? nullptr : nullptr; // error, no implicit conversion to
int

int n3 = expr ? 0 : nullptr; // error, no composite type
sizeof(nullptr); // error, the null type has no size, per se
typeid(nullptr); // error

throw nullptr; // error

void f(ObjectA); // 1

void f(StringA); // 2

void f(char¥*); // 3

void f(int); // 4

f(nullptr); // error, ambiguous (1, 2, 3 possible)
f(0); // calls f(int)

void g(ObjectA, ObjectA); // 1

void g(ObjectA, char¥*); // 2

void g(ObjectA, 1int); // 3

g(nullptr, nullptr); // error, ambiguous (1, 2 possible)
g(nullptr, 0); // calls g(oObjectA, int)

g(0, nullptr); // error, ambiguous (1, 2 possible)

14

10

15

20

25

30

35

40

Language overview

void h(ObjectA, 1int);
void h(char*, ObjectA);

h(nullptr, nullptr); // calls h(char*, oObjectA);
h(nullptr, 2); // calls h(objectA, int);
template<typename T> void k(T t);

k(0); // specializes k, T = int

k(Cnullptr); // error, can’t instantiate null type
k((objectA)nullptr); // specializes k, T = ObjectA
k<int*>(nullptr); // specializes k, T = int*

Since Objects allocated on the native heap do not move, pointers and references to such Objects need not
track an Object’s location. However, Objects on the CLI heap can move, so they require tracking. As such,
native pointers and references are not sufficient for dealing with them. To track Objects, C++/CLI defines
handles (using the punctuator A) and tracking references (using the punctuator %).

N* hn = new N; // allocate on native heap

N& rn = *hn; // bind ordinary reference to native Object
RA hr = gcnew R; // allocate on CLI heap

R% rr = *hr; // bind tracking reference to gc-lvalue

In general, % is to A as & is to *.

Just as Standard C++ has a unary & operator, C++/CLI provides a unary % operator. While &t yields a T* or
an interior_ptr<T> (see below), %t yields a TA.

Rvalues and lvalues continue to have the same meaning as with Standard C++, with the following rules
applying:

e An entity declared with type T*, a native pointer to T, points to an lvalue.

e Applying unary * to an entity declared with type T*, dereferencing a T*, yields an lvalue.

e An entity declared with type T&, a native reference to T, is an Ivalue.

e The expression &lvalue yields a T*.

e The expression %lvalue yields a TA,

A gc-Ivalue is an expression that refers to an Object on the CLI heap, or to a value member contained within
such an Object. The following rules apply to gc-lvalues:

e Standard conversions exist from “cv-qualified lvalue of type T to “cv-qualified gc-lvalue of type
T,” and from “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.”

e An entity declared with type TA, a handle to T, points to a gc-lvalue.

e Applying unary * to an entity declared with type TA, dereferencing a TA, yields a gc-lvalue.
e An entity declared with type T%, a tracking reference to T, is a gc-lvalue.

o The expression &gc-lvalue yields an interior_ptr<T> (See below.).

e The expression %gc-lvalue yields a TA.

The garbage collector is permitted to move Objects that reside on the CLI heap. In order for a pointer to
refer correctly to such an Object, the runtime needs to update that pointer to the Object’s new location. An
interior pointer (which is defined using interior_ptr) is a pointer that is updated in this manner.

8.3 Parameters

A parameter array enables a many-to-one relationship: many arguments can be represented by a single
parameter Array. Parameter arrays are a type safe alternative to parameter lists that end with an ellipsis.

A parameter array is declared with a leading . . . punctuator and an Array type. There can be only one
parameter array for a given function, and it must always be the last parameter specified. The type of a

15

10

15

20

25

30

35

40

45

50

55

C++/CLI Language Specification

parameter array is always a single-dimensional Array type. A caller can either pass a single argument of this
Array type, or any number of arguments of the element type of this Array type. For instance, the example

void F(... array<int>A args) {
Console::writeLine("# of arguments: {0}", args->Length);
for (int i = 0; i < args->Length; i++)
Console::writeLine("\targs[{0}] = {1}", i, args[il);

3
int main(Q {
OF
F(L);
F(1, 2);
F(1, 2, 3);
; F(gcnew array<int> {1, 2, 3, 4});

shows a function F that takes a variable number of int arguments, and several invocations of this function.
The output is:

of arguments: O
of arguments: 1

args[0] =1

of arguments: 2
args[0] =1
args[1l] = 2

of arguments: 3
args[0] =1
args[l] = 2
args[2] = 3

of arguments: 4
args[0] =1
args[1l] = 2
args[2] = 3
args[3] = 4

By declaring the parameter array to be an Array of type System: :ObjectA, the parameters can be
heterogeneous; for example:

void G(... array<ObjectA>A args) { .. }
G(10, “Hello”, 1.23, ‘X’); // arguments 1, 3, and 4 are boxed

A number of examples presented in this document use the WriteL1ine function of the Console class. The
argument substitution behavior of this function, as exhibited in the example

inta=1, b = 2;
console::writeLine("a = {0}, b = {1}", a, b);

is accomplished using a parameter array. The Console class provides several overloaded versions of the
writeL1ine function to handle the common cases in which a small number of arguments are passed, and
one general-purpose version that uses a parameter array, as follows:
namespace System {)
public ref class Object {.};
public ref class string {.};
public ref class Console {
public:]])]
static void writeLine(StringA s) {.}
static void writeLine(StringA s, ObjectA a) {..}
static void writeLine(StringA s, ObjectA a, ObjectA b) {.}
static void writeLine(StringA s, ObjectA a, ObjectA b, ObjectA c)
{.}

static void writeLine(StringA s, ... array<ObjectA>A args) {.}

}

[Note: The CLI library specification shows library functions using C# syntax, in which case, the C# keyword
params indicates a parameter array. For example, the declaration of the final WriteL1ine function above is
written in C#, as follows:

16

10

15

20

25

30

35

40

45

50

55

Language overview

public static void writeLine(string s, params object[] args)

end note]

8.4 Automatic memory management
The example

public ref class Stack {
pubTic:
stack() {
first = nullptr;

property bool Empty {
bool get() {
return (first == nullptr);

h
ObjectA Pop() {
if (first == nullptr)
] thEow gcnew Exception("Can't Pop from an empty Stack.™);
else
ObjectA temp = first->value;
first = first->Next;
return temp;

}

void Push(ObjectA o) {
first = gcnew Node(o, first);

ref struct Node {
NodeA Next;
objectA value;
Node(objectA value) : Node(value, nullptr) {}
Node(objectA value, NodeA next) {
Next = next;
value = value;

3
BT
private:
NodeA first;

’
shows a Stack class implemented as a linked list of Node instances. Node instances are created in the Push
function and are garbage collected when no longer needed. A Node instance becomes eligible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed
from the Stack, the associated Node instance becomes eligible for garbage collection.

The example

int main(QQ {
StackA s = gcnew Stack();
for (int i = 0; i < 10; 1++)
s->Push(i);
s = nullptr;
3
shows code that uses the Stack class. A Stack is created and initialized with 10 elements, and then
assigned the value nuTTptr. Once the variable s is assigned the null value, the Stack and the associated 10
Node instances become eligible for garbage collection. The garbage collector is permitted to clean up
immediately, but is not required to do so.

The garbage collector underlying C++/CLI can work by moving Objects around in memory, but this motion
is invisible to most C++/CLI developers. For developers who are generally content with automatic memory
management but sometimes need fine-grained control or that extra bit of performance, C++/CLI provides the
ability to pin Objects, to prevent temporarily the garbage collector from moving them. For example,

17

10

15

20

25

30

35

40

C++/CLI Language Specification

void f(int* p) { *p = 100; }

int main(Q) {
array<int>A arr =
gcnew array<int>(100);
pin_ptr<int> pinp = &arr[0]; // pin arr’s Tocation
f(pinp); // change arr[0]’s value

8.5 Expressions
C++/CLI makes numerous additions and changes to the C++ Standard with respect to operators. For
example:

e The addition of delegates requires the use of the function-call operator to invoke the functions
encapsulated by a delegate.

e A new use of typeid has been added. For example, Int32: : typeid results in a handle to an
Object of type System: : Type that describes the CLI type Int32.

e The cast operators have been extended to accommodate handle types.
o The safe_cast operator has been added.
e The operator gcnew has been added. This allocates memory from the CLI heap.

e The binary + and - operators have been extended to accommodate delegate addition and removal,
respectively.

e Simple assignment has been extended to accommodate properties and events as the left operand.

¢ Compound assignment operators are synthesized from the corresponding binary operator. [[#56]]

8.6 Statements

A new statement, for each, has been added. This statement enumerates the elements of a collection,
executing a block for each element of that collection. For example:
void display(array<int>A args) {
for each (int 1 in args)
console::WriteLine(i);

}

A type is said to be a collection type if it implements the System: :Collections.IEnumerable
interface or implements some collection pattern by meeting a number of criteria.

8.7 Delegates

Delegates enable scenarios that Standard C++ programmers typically address with function adapters from
the Standard C++ Library.

A delegate definition implicitly defines a class that is derived from the class System: :Delegate. A
delegate instance encapsulates one or more functions in an invocation list, each member of which is referred
to as a callable entity. For instance functions, a callable entity is an instance and a member function on that
instance. For static functions, a callable entity is just a member function. Given a delegate instance and an
appropriate set of arguments, one can invoke all of that delegate instance’s callable entities with that set of
arguments.

Consider the following example:
delegate void MyFunction(int value); // define a delegate type

public ref struct A {
static void F(Cint i) { Console::writeLine("F:{0}", i); }

18

10

15

20

25

30

35

40

45

50

Language overview

public ref struct B {
void G(int i) { console::writeLine("G:{0}", 1i); }

The static function A: : F and the instance function B: : G both have the same parameter types and return type
as MyFunction, so they can be encapsulated by a delegate of that type. Note that even though both
functions are public, their accessibility is irrelevant when considering their compatibility with MyFunction.
Such functions can also be defined in the same or different classes, as the programmer sees fit.

int main() {

MyFunctionA d; // create a delegate reference
g(= gcnew MyFunction(&A::F); // invocation Tlist is A::F
10);

BA b = gcnew B;) _ _ _ _
d += gcnew MyFunction(b, &B::G); // invocation list is A::F B::G

d(20);
d += gcnew MyFunction(&A::F); // invocation list is A::F B::G A::F
d(30);
g(—=)gcnew MyFunction(b, &B::G); // invocation 1ist is A::F A::F
40);

:10
:20

TATMOTOTMT
w
o

The constructor for a delegate needs two arguments when it is bound to a non-static member function: the
first is a handle to an instance of a ref class, and the second is the address of the non-static member function
within that ref class’s type. The constructor for a delegate needs only one argument when it is bound to a
static function, the argument is the address of the static member function.

The invocation lists of two compatible delegates can be combined via the += operator, as shown. Also,
callable entities can be removed from an invocation list via the -= operator, as shown However, an
invocation list cannot be changed once it has been created. Specifically, these operators create new
invocation lists.

Once a delegate instance has been initialized, it is possible to indirectly call the functions it encapsulates just
as if they were called directly (in the same order in which they were added to the delegate's invocation list),
except the delegate instance’s name is used instead. The value (if any) returned by the delegate call is that
returned by the final function in that delegate's invocation list. If a delegate instance is null and an attempt is
made to call the “encapsulated” functions, an exception of type Nul1ReferenceException results.

8.8 Native and ref classes

8.8.1 Literal fields

A literal field is a field that represents a compile-time constant rvalue. The value of a literal field is
permitted to depend on the value of other literal fields within the same program as long as they have been
previously defined. The example
ref class X {
Titeral int A = 1;
public:
Titeral int B

A+ 1;
ref class Y {
pubTic:
Titeral double C = X::B * 5.6;

19

10

15

20

25

30

35

40

45

C++/CLI Language Specification

shows two classes that, between them, define three literal fields, two of which are public while the other is
private.

Even though literal fields are accessed like static members, a literal field is not static and its definition
neither requires nor allows the keyword static. Literal fields can be accessed through the class, as in
int main() {

cout << "B " << X::B << "\n";
cout << "C " << Y:i:iC << "\n";

which produces the following output:

B =2
Cc =11.2

Literal fields are only permitted in reference, value, and interface classes.

8.8.2 Initonly fields

The initonly identifier declares a field that is an Ivalue only within the ctor-initializer and the body of a
constructor, or within a static constructor, and thereafter is an rvalue. This is called an initonly field. For
example:

public ref class Data {
initonly static double coefficientl;
initonly static double coefficient2;
static Data() {
// read in the value of the coefficients from some source

coefficientl = ..; // ok
) coefficient2 = ..; // ok
pubTic:
static void FO {
coefficientl = ..; // error
coefficient2 = ..; // error

1

Assignments to an initonly field can only occur as part of its definition, or in an instance constructor or static
constructor in the same class. (A static initonly field can be assigned to in a static constructor, and a non-
static initonly field can be assigned to in an instance constructor.)

Initonly fields are only permitted in ref and value classes.

8.8.3 Functions

Member functions in CLI types are defined and used just as in Standard C++. However, C++/CLI does have
some differences in this regard. For example:

e The const and volatile qualifiers are not permitted on instance member functions.

e The function modifier override and override specifiers provide the ability to indicate explicit
overriding and named overriding (§8.8.10.1).

e Marking a virtual member function as sealed prohibits that function from being overridden in a
derived class.

o The function modifier abstract provides an alternate way to declare a pure virtual member
function.

o The function modifier new allows the function to which it applies to hide the base class function of
the same name,parameter-type-list, and cv-qualification. Such a hiding function does not override
any base class function, even if the hiding function is declared virtual.

e Type-safe variable-length argument lists are supported via parameter arrays.

20

10

15

20

25

30

35

40

45

50

Language overview

8.8.4 Properties

A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and
indexed. A scalar property enables scalar field-like access to an Object or class. Examples of scalar
properties include the length of a string, the size of a font, the caption of a window, and the name of a
customer. An indexed property enables Array-like access to an Object. An example of an index property is
a bit-array class.

Properties are an evolutionary extension of fields—both are named members with associated types, and the
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing Arrays and
indexed properties. However, unlike fields, properties do not denote storage locations. Instead, properties
have accessor functions that specify the statements to be executed when their values are read or written.

Properties are defined with property definitions. The first part of a property definition looks quite similar to a
field definition. The second part includes a get accessor function and/or a set accessor function. Properties
that can be both read and written include both get and set accessor functions. In the example below, the
point class defines two read-write properties, X and Y.

pubTic value class point {

int Xor;
int Yor;

pubTic:
property int X {
int get() return Xor; }
void set(int value) Xor = value; }

A

property int Y {

int get() { return Yor; }
void set(int value) { Yor = value; }
point() {
move(0, 0);
point(int x, int y) {
move(x, Y);
void move(int x, int y) { // absolute move
X = X;
Y =Y;
}
void translate(int x, int y) { // relative move
X += X;
Y +=Y;

b
The get accessor function is called when the property’s value is read; the set accessor function is called when
the property’s value is written.

The definition of properties is relatively straightforward, but the real value of properties is seen when they
are used. For example, the X and Y properties can be read and written as though they were fields. In the
example above, the properties are used to implement data hiding within the class itself. The following
application code (directly and indirectly) also uses these properties:

point pl; // set to (0,0)

pl.X = 10; // set to (10,0)

pl.y = 5; // set to (10,5)

pl.move(5, 7); // move to (5,7)

point p2(9, 1); // set to (9,1)

p2.translate(-4, 12); // move 4 left and 12 up, to (5,13)

21

10

15

20

25

30

35

40

45

50

55

60

C++/CLI Language Specification

A default indexed property allows Array-like access directly on an instance. Whereas properties enable
field-like access, default indexed properties enable Array-like access. [Note: Other languages refer to default
indexed properties as “indexers”. end note]

As an example, consider a Stack class. The designer of this class might want to expose Array-like access so
that it is possible to inspect or alter the items on the stack without performing unnecessary Push and Pop
operations. That is, class Stack is implemented as a linked list, but it also provides the convenience of
Array access.

Default indexed property definitions are similar to property definitions, with the main differences being that
default indexed properties can be nameless and that they include indexing parameters. The indexing
parameters are provided between square brackets. The example

public ref class Sstack {
public:
ref struct Node {
NodeA Next;
ObjectA value;
Node(ObjectA value) : Node(value, nullptr) {}
Node(ObjectA value, NodeA next) {
Next = next;
value = value;

3

};

private:

NodeA first;

NodeA GetNode(int index) {
NodeA temp = first;
while (index > 0) {

temp = temp->Next;
index--;

return temp;

}
bool validIndex(int index) { .. }

public:
property ObjectA default[int] { // default indexed property
ObjectA get(int index) {
if (!validindex(index))
] throw gcnew Exception("Index out of range.");
else
return GetNode(index)->value;

void set(ObjectA value, int index) {
if (!validindex(index))
] throw gcnew Exception("Index out of range.");
else
) GetNode(index)->value = value;
3

objectA pPop() { .. }
void Push(ObjectAr o) { .. }

-

int main() {
StackA s = gcnew Stack;

s->Push(1);

s->Push(2);

s->Push(3);

s[0] = 33; // The top item now refers to 33 instead of 3
s[1l] = 22; // The middle item now refers to 22 instead of 2
s[2] = 11; // The bottom item now refers to 11 instead of 1

22

10

15

20

25

30

35

40

45

50

Language overview

shows a default indexed property for the Stack class.

[Note: A more efficient implementation of Stack would make use of generics. end note]

8.8.5 Events

An event is a member that enables an Object or class to provide notifications. A class defines an event by
providing an event declaration (which resembles a field declaration, though with an added event identifier)
and an optional set of event accessor functions. The type of this declaration must be a handle to a delegate

type (§8.7).

An instance of a delegate type encapsulates one or more callable entities. For instance functions, a callable
entity consists of an instance and a function on that instance. For static functions, a callable entity consists of
just a function. Given a delegate instance and an appropriate set of arguments, one can invoke all of that
delegate instance’s functions with that set of arguments.

In the example

public delegate void EventHandler(ObjectA sender,
EventArgsA e);

public ref class Button {
public:
event EventHandlerA Click;
void Reset() {
Click = nullptr;

1

the Button class defines a C11 ck event of type EventHandler. Inside the Button class, the C11ck
member is exactly like a private field of type EventHand1er. However, outside the Button class, the

C11 ck member is typically only used on the left-hand side of the += and —= operators. The += operator adds
a handler for the event, and the -= operator removes a handler for the event. The example

public ref class Forml {
ButtonA Buttonl;
void Buttonl_cCTlick(ObjectA sender, EventArgsA e) {
! console::writeLine("Buttonl was clicked!");

public:
Forml() {
Buttonl = gcnew Button;
// Add Buttonl_Click as an event handler for Buttonl’s Click event
Buttonl->Click += gcnew EventHandler(this, &Buttonl_CTlick);

23

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

void Disconnect() {
Buttonl->Click -= gcnew EventHandler(this, &Buttonl_CTlick);

}
};
shows a class, Forml, that adds Buttonl_cC11ck as an event handler for Buttonl’s C11ick event. In the
Disconnect function, that event handler is removed
For a trivial event declaration such as
event EventHandlerA Click;

the compiler automatically provides the default implementations of the accessor functions.

An implementer who wants more control can get it by explicitly providing add and remove accessor
functions. For example, the Button class could be rewritten as follows:

public ref class Button {
EventHandlerA handler;

public:
event EventHandlerA Click {
void add(EventHandlerA e) { Lock<Mutex> 1(m); handler += e; }
void remove(EventHandlerA e) { Lock<Mutex> 1(m); handler -= e; }

}
-

This change has no effect on client code, but it allows the Button class more implementation flexibility. For
example, the event handler for C11 ck need not be represented by a field.

8.8.6 Static operators

Add examples for native and value classes. [[Ed]]

In addition to Standard C++ operator overloading, C++/CLI provides the ability to define operators that are
static and/or take parameters of " type.

The following example shows part of an integer vector class:

public ref class Intvector {
int array<int>A values;

public:
property int Length { // property
int get() { return values->Length; }

property int default[int] { // default indexed property
int get(int index) { return values[index];
void set(int index, int value) { values[index] = value; }

IntvVector(int length) : Intvector(length, 0) {}
IntvVector(int Tength, int value);

// unary - (negation)
static IntVectorA operator-(IntVectorA 1iv) {
IntVectorA temp = gchew IntvVector(iv->Length);
for (int i = 0; i < iv->Length; ++i) {
temp[i] -1v[il;

return temp;

static IntvectorA operator+(IntVectorA 1iv, int val) {
IntVectorA temp = gcnew IntvVector(iv->Length);
for (int i 0; i < iv->Length; ++i) {
temp[i] iv[i] + val;

return temp;

24

10

15

20

25

30

35

40

45

50

Language overview

static IntvectorA operator+(int val, IntvectorA iv) {
return iv + val;

-

int main() {
IntVectorA vl
IntVectorA iv2
ivl = -2 + 1iv2
iv2 = -ivl;

gcnew IntVector(4); // 4 elements with value 0
gcnew IntVector(7, 2); // 7 elements with value 2
S;

+ 01

}

8.8.7 Instance constructors

Unlike Standard C++, C++/CLI, supports static constructors (§8.8.9). As such, this specification refers to
constructors as defined by the C++ Standard as being instance constructors.

8.8.8 Destructors
Introduce finalizers. [[#63]]

8.8.9 Static constructors

A static constructor is a ref or value class static member function that implements the actions required to
initialize the static members of a class, rather than the instance members of that class. Static constructors
cannot have parameters, must be private, and they cannot be called explicitly. The static constructor for a
class is called automatically by the runtime. [Note: A static constructor is required to be private to prevent
the static constructor from being invoked more than once. end note]

The example

public ref class Data {
private:
initonly static double coefficientl;
initonly static double coefficient2;
static Data() {
// read in the value of the coefficients from some source
coefficientl .-
coefficient2 .

I
public:
-

shows a Data class with a static constructor that initializes two initonly static fields.

8.8.10 Inheritance

When using ref classes, C++/CLI supports single inheritance of ref classes only. However, multiple
inheritance of interfaces is permitted.

8.8.10.1 Function overriding

In Standard C++, given a derived class with a function having the same name,parameter-type-list, and cv-
qualification as a virtual function in a base class, the derived class function always overrides the one in the
base class, even if the derived class function is not declared virtual.
struct B {]
virtual void f(Q);
virtual void gQ);

L
struct D : B {

virtual void fQ; // D::f overrides B::f
void gQ; // D::g overrides B::g

25

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

We shall refer to this as implicit overriding. (As the virtual specifier on D: : f is optional, the presence of
virtual there really isn’t an indication of explicit overriding.) Since implicit overriding gets in the way of
versioning (§8.13), implicit overriding must be diagnosed by a C++/CLI compiler.

C++/CLI supports two virtual function-overriding features not available in Standard C++. These features are
available in any class type. They are explicit overriding and named overriding.

Explicit overriding: In C++/CLl1, it is possible to state that

1. A derived class function explicitly overrides a base class virtual function having the same
name,parameter-type-list, and cv-qualification, by using the function modifier override, with the
program being ill-formed if no such base class virtual function exists; and

2. A derived class function explicitly does not override a base class virtual function having the same
name,parameter-type-list, and cv-qualification, by using the function modifier new.

struct A {
virtual void fQO;
virtual void hQ;
virtual void jO;

struct B {
virtual void gQ;
virtual void h(Q;

struct D : A, B {
virtual void f() override; // D::f overrides A::f
virtual void g() override; // D::g overrides B::g
virtual void h() override; // D::h overrides A::h and B::h
virtual void j() new; // D::j doesn’t override A::j, it hides it

)
The use of virtual inD: :f,D: :g, and D: : h, is mandatory; however, that in D: : j is not.

Named overriding: Instead of using the override modifier, we can achieve the same thing by using an
override-specifier, which involves naming the function we are overriding. This approach also allows us to
override a function having a different name, provided the parameter lists are the same.

struct A {
virtual void jO;
virtual void m(Q);
3
struct B {
; virtual void kQ);

struct D : A, B {
virtual void x()
virtual void y(Q)

// D::x overrides A::j
B::k; // D::y overrides A::m and B::k

I
> >

s

struct P {
void fO;

private:
virtual void h(Q);
virtual void jO;

struct Q : P {
virtual void fQ
virtual void h(Q)

P::f; // error, P::f is not overridable
; // P::h not visible, but ok

;
The use of virtual in all function declarations having an override-specifier is mandatory.

Explicit and named overriding can be combined, as follows:

26

10

15

20

25

30

35

40

45

Language overview

struct A {]
virtual void f(Q);
virtual void g(Q);
struct D : A {))
virtual void f() override = A::g; // D::f overrides A::g
A function can only be overridden once in any given class. Therefore, if an implicit or explicit override does
the same thing as a named override, the program is ill-formed.
struct B {]
virtual void fQ;
struct D : B {]]))
virtual void f() override = B::f; // Error: B::f is overridden twice
[Note: If a base class is dependent on a template type parameter, a named override of a virtual function from
that base class does not happen until the point of instantiation. In the following
template<typename T>
ref class R : T {

public:
virtual void f() =T::G { .. }

T::Gis a dependent name. end note]

8.9 Value classes

Value classes are similar to ref classes in that the former represent data structures that can contain fields and
function members. However, unlike ref classes, value classes do not require heap allocation. A variable of a
value class directly contains the data of the value class, whereas a variable of a ref class contains a handle to
the data.

Value classes are particularly useful for small data structures that have value semantics. Complex numbers,
points in a coordinate system, or key-value pairs in a dictionary are all good examples of structs. Key to
these data structures is that they have few fields, that they do not require use of inheritance or referential
identity, and that they can be conveniently implemented using value semantics where assignment copies the
value instead of the reference.

The simple types provided by C++/CLI, such as int, double, and booT, are, in fact, all value classes. Just
as these predefined types are value classes, it is also possible to use value classes and operator overloading
to implement new “primitive” types in this specification.

value struct Point {
int x, y;
Point(int x, int y) {
this->x = Xx;
this->y = vy;

3

8.10 Interfaces

An interface defines a contract. A class that implements an interface must adhere to its contract by
implementing all of the functions, properties, and events that interface declares.

The example
delegate void EventHandler(Object sender, EventArgsA e);

27

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

interface class IExample {
void F(int value);
property bool P { bool get(); }
property double default[int];
event EventHandlerA E;

shows an interface that contains a function F, a read-only scalar property P, a default indexed property, and
an event E, all of which are implicitly public.

Interfaces are implemented using inheritance syntax.
interface class 11 { void FQ; }; // F 1is implicitly virtual abstract
ref class R1 : I1 { virtual void FQO { /* implement 11l::f */ } };

An interface can require implementation of one or more other interfaces. For example

interface class IControl {
void Paint();

;
interface class ITextBox : IControl {
void SetText(StringA text);
;
interface class IListBox : IControl {
void SetItems(array<StringA>A items);
;
interface class IComboBox : ITextBox, IListBox {};
A class that implements IComboBox must also implement ITextBox, IListBox, and IControl.

Classes can implement multiple interfaces. In the example
interface class IDataBound {
void Bind(BinderA b);
public ref class EditBox : Control, IControl,
public IDataBound {
pubTic:
void Paint() {.}
void Bind(BinderA b) {..}

;
the class EditBox derives from the class Control and implements both IControl and IDataBound.

In the previous example, interface functions were implicitly implemented. C++/CLI provides an alternative
way of implementing these functions that allows the implementing class to avoid having these members be
public. Interface functions can be explicitly implemented using the override syntax shown in §8.8.10.1. For
example, the EditBox class could instead be implemented by providing IControl: :Paint and
IDataBound: :Bind functions.

public ref class EditBox : IControl, IDataBound {

private:

void Paint() = IControl::Paint {.}
void Bind(BinderA b) = IDataBound::Bind {..}

Interface members implemented in this way are called explicit interface members because each member
explicitly designates the interface member being implemented.

int main() {)
EditBoxA editbox = gcnew EditBox;

editbox->Paint(); ~// error: Paint 1is private
IControlA control = editbox;)))]
control->Paint(); // calls EditBox’s Paint implementation

28

10

15

20

25

30

35

40

45

Language overview

8.11 Enums

Standard C++ already supports enumerated types. However, C++/CLI provides some interesting extensions
to this facility. For example:

e Anenum can be declared public or private, so its visibility outside its parent assembly can be
controlled.

e The underlying type for an enum can be specified.
e An enum type and/or its enumerators can have attributes.

e A new syntax is available for defining enums that are strongly typed and thus do not have integral
promotion conversions.

8.12 Namespaces and assemblies

The programs presented so far have stood on their own except for dependence on a few system-provided
classes such as System: :ConsoTe. It is far more common, however, for real-world applications to consist
of several different pieces, each compiled separately. For example, a corporate application might depend on
several different components, including some developed internally and some purchased from independent
software vendors.

Namespaces and assemblies enable this component-based system. Namespaces provide a logical
organizational system. Namespaces are used both as an “internal” organization system for a program, and as
an “external” organization system—a way of presenting program elements that are exposed to other
programs.

Assemblies are used for physical packaging and deployment. An assembly can contain types, the executable
code used to implement these types, and references to other assemblies.

To demonstrate the use of namespaces and assemblies, this subclause revisits the “hello, world” program
presented earlier, and splits it into two pieces: a class library that contains a function that displays the
greeting, and a console application that calls that function.

The class library will contain a single class named DisplayMessage. For example:

// DisplayHelloLibrary.cpp
namespace MyLibrary {
public ref struct DisplayMessage {
static void Display() {
console::writeLine("hello, world");

}
1
}

The next step is to write a console application that uses the DisplayMessage class; for example:

// HelloApp.cpp
#using <DisplayHelloLibrary.d11>
int main() {
MyLibrary::DisplayMessage: :Display(Q);

No headers need to be included when using CLI library classes and functions. Instead library assemblies are
referenced via a #using directive, with the assembly name enclosed in <...>, as shown. The code written
can be compiled into a class library containing the class DisplayMessage and an application containing
the function main. The details of this compilation step might differ based on the compiler or tool being used.
A command-line compiler might enable compilation of a class library and an application that uses that
library with the following command-line invocations:

cl /LD DisplayHelloLibrary.cpp
c1 HelTloApp.cpp

which produce a class library named DisplayHelTloLibrary.d11 and an application named
HelloApp.exe.

29

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

8.13 Versioning

Versioning is the process of evolving a component over time in a compatible manner. A new version of a
component is source-compatible with a previous version if code that depends on the previous version can,
when recompiled, work with the new version. In contrast, a new version of a component is binary-
compatible if an application that depended on the old version can, without recompilation, work with the new
version.

Consider the situation of a base class author who ships a class named Base. In the first version, Base
contains no function F. A component named Derived derives from Base, and introduces an F. This
Derived class, along with the class Base on which it depends, is released to customers, who deploy to
numerous clients and servers.

public ref struct Base { // version 1

-

public ref struct Derived : Base {
virtual void FQ) { _
Cconsole::WriteLine("Derived.F");

};

So far, so good, but now the versioning trouble begins. The author of Base produces a new version, giving it
its own function F.
public ref struct Base { // version 2

virtual void FO { // added in version 2
console::writeLine("Base.F");

1

This new version of Base should be both source and binary compatible with the initial version. (If it weren’t
possible simply to add a function then a base class could never evolve.) Unfortunately, the new F in Base
makes the meaning of Derived’s F unclear. Did Derived mean to override Base’s F? This seems unlikely,
since when Derived was compiled, Base did not even have an F! Further, if Derived’s F does override
Base’s F, then it must adhere to the contract specified by Base—a contract that was unspecified when
Derived was written. In some cases, this is impossible. For example, Base’s F might require that overrides
of it always call the base. Derived’s F could not possibly adhere to such a contract.

C++/CLI addresses this versioning problem by allowing developers to state their intent clearly. In the
original code example, the code was clear, since Base did not even have an F. Clearly, Derived’s F is
intended as a new function rather than an override of a base function, since no base function named F exists.

If Base adds an F and ships a new version, then the intent of a binary version of Derived is still clear—
Derived’s F is semantically unrelated, and should not be treated as an override.

However, when Derived is recompiled, the meaning is unclear—the author of Derived might intend its F
to override Base’s F, or to hide it. By default, the compiler makes Derived’s F override Base’s F.
However, this course of action does not duplicate the semantics for the case in which Derived is not
recompiled.

If Derived’s F is semantically unrelated to Base’s F, then Derived’s author can express this intent by
using the function modifier new in the declaration of F.

public ref struct Base { // version 2
virtual void FQO { // added in version 2
console::writeLine("Base.F");

1

public ref struct Derived : Base { // version 2a: new
virtual void F() new { _
console::wWriteLine("Derived.F");

};

30

10

15

20

25

30

35

40

45

50

Language overview

On the other hand, Derived’s author might investigate further, and decide that Derived’s F should
override Base’s F. This intent can be specified explicitly by using the function modifier override, as
shown below.

public ref struct Base { // version 2

virtual void FQ { // added in version 2
console::writeLine("Base.F");

1

public ref struct Derived : Base { // version 2b: override
virtual void F() override {
Base::F();
console::wWriteLine("Derived.F");

}
s
The author of Derived has one other option, and that is to change the name of F, thus completely avoiding
the name collision. Although this change would break source and binary compatibility for Derived, the
importance of this compatibility varies depending on the scenario. If Derived is not exposed to other

programs, then changing the name of F is likely a good idea, as it would improve the readability of the
program—there would no longer be any confusion about the meaning of F.

8.14 Attributes

C++/CLI has certain declarative elements. For example, the accessibility of a function in a class can be
specified by declaring it publ1ic, protected, or private. C++/CLI generalizes this capability, so that
programmers can invent new kinds of declarative information, attach this declarative information to various
program entities, and retrieve this declarative information at run-time. Programs specify this additional
declarative information by defining and using attributes.

For instance, a framework might define a HelpAttribute attribute that can be placed on program elements
such as classes and functions, enabling developers to provide a mapping from program elements to
documentation for them. The example
[AttributeUsage(AttributeTargets::Al1)]
public ref class HelpAttribute : Attribute {
StringA url;
public:]]
HelpAttribute(SstringA url) {
; this->url = url;

StringA Topic;

property StringA url {
StringA get() { return url; }

3

defines an attribute class named HelpAttribute that has one positional parameter (StringA url) and
one named parameter (StringA Topic). Positional parameters are defined by the formal parameters for
public instance constructors of the attribute class, and named parameters are defined by public non-static
read-write fields and properties of the attribute class. For convenience, usage of an attribute name when
applying an attribute is allowed to drop the Attribute suffix from the name.

The example

[Help("http://www.mycompany.com/../Classl.htm")]

public ref class Classl {

public:
[Help("http://www.mycompany.com/../Classl.htm", Topic = "F")]
void FO {}

shows several uses of the attribute He1p.

31

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

Attribute information for a given program element can be retrieved at run-time by using reflection support.
The example

int main(Q) {
TypeA type = Classl::typeid;
array<ObjectA>A arr =
type->GetCustomAttributes(HelpAttribute: :typeid, true);

if (arr->Length == 0)
] Co?so1e::WriteLine(“C1assl has no Help attribute.");
else

HelpAttributeA ha = (HelpAttributeA) arr[0];
Console::writeLine("url = {0}, Topic = {1}", ha->Url, ha->Topic);

}

checks to see if Class1 has a He'l p attribute, and writes out the associated Topic and Ur1 values if that
attribute is present.

8.15 Generics

Generic types and functions are a set of features—collectively called generics—defined by the CLI to allow
parameterized types. Generics differ from templates in that generics are instantiated by the Virtual Execution
System (VES) at runtime rather than by the compiler at compile-time. A generic declaration must be a ref
class, value class, interface class, delegate, or function.

8.15.1 Creating and consuming generics

Below, we create a Stack generic class declaration where we specify a type parameter, ItemType, using
the same notation as with templates, except that the keyword generic is used instead of template. This
type parameter acts as a placeholder until an actual type is specified at use.
generic<typename ItemType>
public ref class Stack {
array<ItemType>A 1tems;
public: i
Sstack(int size) {)
items = gcnew array<ItemType>(size);

void Push(ItemType data) { .. }
; ItemType Pop() { .. }
When we use the generic class declaration Stack, we specify the actual type to be used by the generic class.
In this case, we instruct the Stack to use an int type by specifying it as a type argument using the angle
brackets after the name:

Stack<int>A s = gcnew Stack<int>(5);

In so doing, we have created a new constructed type, Stack<int>, for which every ItemType inside the
declaration of Stack is replaced with the supplied type argument int.

If we wanted to store items other than an int into a Stack, we would have to create a different constructed
type from Stack, specifying a new type argument. Suppose we had a simple Customer type and we
wanted to use a Stack to store it. To do so, we simply use the Customer class as the type argument to
Stack and easily reuse our code:

Stack<CustomerA>A s = gcnew Stack<CustomerA>(10);

s->Push(gcnew Customer) ;
CustomerA ¢ = s->Pop();

Of course, once we’ve created a Stack with a Customer type as its type argument, we are now limited to
storing only Customer objects (or objects of a class derived from Customer). Like templates, generics
provide strong typing.

32

10

15

20

25

30

35

40

45

50

55

Language overview

Generic type declarations can have any number of type parameters. Suppose we created a simple
Dictionary generic class declaration that stored values alongside keys. We could define a generic version
of a Dictionary by declaring two type parameters, as follows:
generic<typename KeyType, typename ElementType >
public ref class Dictionary {
pubTic:
void Add(KeyType key, ElementType val) { .. }
property ElementType default[KeyType] { // indexed property

ElementType get(KeyType key) { ..
void set(ElementType value, KeyType key) { .. }

3

When we use Dictionary, we need to supply two type arguments within the angle brackets. Then when
we call the Add function or use the indexed property, the compiler checks that we supplied the right types:
Dictionary<StringA, CustomerA>A dict
= gcnew Dictionary<StringA, CustomerAs;

dict->Add("Peter", gcnew Customer);
CustomerA c = dict["Peter"];

8.15.2 Constraints

In many cases, we will want to do more than just store data based on a given type parameter. Often, we will
also want to use members of the type parameter to execute statements within our generic type declaration.
For example, suppose in the Add function of our Dictionary we wanted to compare items using the
CompareTo function of the supplied key, as follows:

generic<typename KeyType, typename ElementType >

public ref class Dictionary {

public:
void Add(KeyType key, ElementType val) {

if (key->CompareTo(x) < 0) { .. } // compile-time error

3

}s
Unfortunately, at compile-time the type parameter KeyType is, as expected, generic. As written, the
compiler will assume that only the operations available to System: :0Object, such as calls to the function
ToString, are available on the variable key of type KeyType. As a result, the compiler will issue a
diagnostic because the CompareTo function would not be found. However, we can cast the key variable to a
type that does contain a CompareTo function, such as an IComparabTe interface, allowing the program to
compile:

generic<typename KeyType, typename ElementType >

public ref class Dictionary {

pubTic:
void Add(KeyType key, ElementType val) {

if (static_cast<IComparableA>(key)->CompareTo(x) < 0) { .. }

3
3
However, if we now construct a type from Dictionary and supply a key type argument which does not
implement IComparable, we will encounter a run-time error (in this case, a
System: :InvalidCastException). Since one of the objectives of generics is to provide strong typing
and to reduce the need for casts, a more elegant solution is needed.

We can supply an optional list of constraints for each type parameter. A constraint indicates a requirement
that a type must fulfill in order to be accepted as a type argument. (For example, it might have to implement
a given interface or be derived from a given base class.) A constraint is declared using the word where,
followed by a type parameter and colon (:), followed by a comma-separated list of class or interface types.

33

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

In order to satisfy our need to use the CompareTo function inside Dictionary, we can impose a constraint
on KeyType, requiring any type passed as the first argument to Dictionary to implement IComparable,
as follows:
generic<typename KeyType, typename ElementType >
where KeyType : IComparable
public ref class Dictionary {

public:
void Add(KeyType key, ElementType val) {

if (key->CompareTo(x) < 0) { .. }

3
}s
When compiled, this code will now be checked to ensure that each time we construct a Dictionary type
we are passing a first type argument that implements IComparable. Further, we no longer have to
explicitly cast variable key to an IComparabTe interface before calling the CompareTo function

Constraints are most useful when they are used in the context of defining a framework, i.e., a collection of
related classes, where it is advantageous to ensure that a number of types support some common signatures
and/or base types. Constraints can be used to help define “generic algorithms” that plug together
functionality provided by different types. This can also be achieved by subclassing and runtime
polymorphism, but static, constrained polymorphism can, in many cases, result in more efficient code, more
flexible specifications of generic algorithms, and more errors being caught at compile-time rather than run-
time. However, constraints need to be used with care and taste. Types that do not implement the constraints
will not easily be usable in conjunction with generic code.

For any given type parameter, we can specify any number of interfaces as constraints, but no more than one
base class. Each constrained type parameter has a separate where clause. In the example below, the
KeyType type parameter has two interface constraints, while the ETlementType type parameter has one
class constraint:
generic<typename KeyType, typename ElementType >
where KeyType : IComparable, IEnumerable
where ElementType : Customer
public ref class Dictionary {

public:
void Add(KeyType key, ElementType val) {

if (key->CompareTo(x) < 0) { .. }

}
1

8.15.3 Generic functions

In some cases, a type parameter is not needed for an entire class, but only when calling a particular function.
Often, this occurs when creating a function that takes a generic type as a parameter. For example, when
using the Stack described earlier, we might often find ourselves pushing multiple values in a row onto a
stack, and decide to write a function to do so in a single call.

We do this by writing a generic function. Like a generic class declaration, a generic function is preceded by
the keyword generic and a list of type parameters enclosed in angle brackets. As in a template function,
the type parameters of a generic function can be used within the parameter list, return type, and body of the
function. A generic PushMultipTe function might look like this:

generic<typename ItemType>

void PushMultiple(Stack<ItemType>A s, ... array<ItemType>A values) {
for each (ItemType v in values) {
s->Push(v);
}

34

10

15

20

25

30

Language overview

Using this generic function, we can now push multiple items onto a Stack of any kind. Furthermore, the
compiler type checking will ensure that the pushed items have the correct type for the kind of Stack being
used. When calling a generic function, we place type arguments to the function in angle brackets; for
example:

Stack<int>A s = gcnew Stack<int>(5);
PushMultiple<int>(s, 1, 2, 3, 4);

The call to this function supplies the desired ItemType as a type argument to the function. In many cases,
however, the compiler can deduce the correct type argument from the other arguments passed to the
function, using a process called type deduction. In the example above, since the first regular argument is of
type Stack<int>, and the subsequent arguments are of type int, the compiler can reason that the type
parameter must also be int. Thus, the generic PushMuTtipTe function can be called without specifying the
type parameter, as follows:

Stack<int>A s = gcnew Stack<int>(5);

Pushmultiple(s, 1, 2, 3, 4);
Based on the rules for type deduction in templates, it seems surprising that you can match
array<ItemType>" with an argument of type int. Here is a standard C++ example intended to illustrate the
issue:

template <class ItemType> struct Stack {};
template <class ItemType> struct Array {
Array(ItemType);
I8
template <class ItemType>
void PushMultiple(Stack<ItemType>, Array<ItemType>);
int main() {
Stack<int> s;
PushMultiple(s, 1); // deduction fails
PushMultiple<int>(s, 1);
H

Are the rules for generic different in this area?

[There seems to be information related to this in 30.3.2. See that subclause for further comments on this
issue.][[#125]]

End of informative text.

35

10

15

20

25

30

35

40

C++/CLI Language Specification

0. Lexical structure

A number of issues are not yet discussed here. Much of this clause is yet to be added. [[#24]]

9.1 Tokens

9.1.1 Identifiers

Certain places in the Standard C++ grammar do not allow identifiers. However, C++/CLI allows a defined
set of identifiers to exist in those places, with these identifiers having special meaning. [Note: Such
identifiers are colloquially referred to as context-sensitive keywords; none-the-less, they are identifiers. end
note] The identifiers that carry special meaning in certain contexts are:

abstract delegate event finally
generic in initonly Titeral
override property sealed where

When referred to in the grammar, these identifiers are used explicitly rather than using the identifier
grammar production. Ensuring that the identifier is meaningful is a semantic check rather than a syntax
check.

When the token generiic is found, it has special meaning if and only if it is not preceded by the token : :
and is followed by the token < and then either of the keywords class or typename. [Note: In rare cases, a
valid Standard C++ program could contain the token sequence generic followed by < followed by class
where generic should be interpreted as a type name. For example:

template<typename T> struct generic {
typedef int I;

class x {};
generic<class X> x1;
generic<class X()> x2;

In such cases, use typename to indicate that the occurrence of generiic is a type name:

typename generic<class X> x1;
typename generic<class X()> x2;

or, in these particular cases, an alternative would be to remove the keyword class (that is, to not use the
elaborated-type-specifier), for example:

generic<X> x1;
generic<X()> x2;

end note]

The grammar productions for elaborated-type-specifier (C++ Standard §7.1.5.3, §14.6, and §A.6) that
mention typename are extended as follows, to make nested-name-specifier optional in the first of the two
applicable productions:

elaborated-type-specifier:

typename ::q nested-name-specifieryy identifier
typename ::q nested-name-specifier templateq, template-id

The C++ standard (§14.6/3) is amended, as follows:

36

10

15

20

25

30

35

40

45

Lexical structure

"A gualified-ididentifier that refers to a type and in which the nested-name-specifier depends on a template-
parameter (14.6.2) shall be prefixed by the keyword typename to indicate that the guakified-ididentifier
denotes a type, forming an elaborated-type-specifier (7.1.5.3)."

and §14.6/5 is deleted:

[Note: The presence of typename lets the programmer disambiguate otherwise ambiguous cases such as the
token sequence property :: X x;.The declaration property :: X Xx; declares a member variable
named x of type property: :X, as it does in Standard C++. The token sequence property typename

11 X Xx; declares a property named x of type : : X. end note]

When name lookup for any of array, interior_ptr, pin_ptr, or safe_cast fails to find the name, and
the name is not followed by a left parenthesis, the name is interpreted as though it were qualified with
c11: : and the lookup succeeds, finding the name in namespace : : c11.

When name lookup for any of array, interior_ptr, pin_ptr, or safe_cast succeeds and finds the
name in namespace : : c11, the name is not a normal identifier, but has special meaning as described in this
Standard.

9.1.2 Keywords
The following keywords are added to those in the C++ Standard (§2.11):

enumiiclass enumiistruct foriteach gcnew
interfaceiiclass interfaceiistruct nullptr refiiclass
refiistruct valueiiclass valueiistruct

The symbol is used in the grammar to signify that white-space appears within the keyword. Any white-
space, including comments and new-lines (but excluding documentation comments and newlines in macros),
is permitted in the position signified by the & symbol. Following translation phase 4, a keyword with & will
be a single token. [Note: The : symbol is only used in the grammar of the language. Examples will include
white-space as is required in a well-formed program. end note] [Note: Keywords that include the 3 symbol
can be produced by macros, but are never considered to be macro names. end note]

Translation phase 4 in the C++ Standard (§2.1/4) is extended as follows:

Preprocessing directives are exeettedparsed and stored. Then, in the translation unit and in each macro
replacement-list, starting with the first token, each pair of adjacent tokens tokenl and token2 is successively
considered, and if token1:Ztoken? is a keyword, then token] and token2 are replaced with the single token
token1::token2. and-Then macro invocations are expanded. If a character sequence that matches the syntax

of a universal-character-name is produced by token concatenation (16.3.3), the behavior is undefined. A
#include preprocessing directive causes the named header or source file to be processed from phase 1
through phase 4, recursively.

In some places in the grammar, specific identifiers have special meaning, but are not keywords. [Note: For
example, within a virtual function declaration, the identifiers abstract and sealed have special meaning.
Ordinary user-defined identifiers are never permitted in these locations, so this use does not conflict with a
use of these words as identifiers. For a complete list of these special identifiers, see §9.1.1. end note]

9.1.3 Literals
The grammar for literal in the C++ Standard (§2.13) has been extended as follows:

37

10

15

C++/CLI Language Specification

literal:
null-literal

9.1.3.1 The null literal

null-literal::
nullptr

The null-literal is the keyword nul1ptr, whose type is the null type (§12.3.4). nullptr represents the
null value constant and is unique. This literal is not an Ivalue.

The null value constant can be converted to any handle type, with the result being a null handle. The null
value constant can also be converted to any pointer type, with the result being a null pointer.

9.1.4 Operators and punctuators

It has been agreed that >> will be handled apprpriately to allow constructs such as List<List<int>> to be
handled correctly. If a < for a template, for example, is seen, and >> that is not inside parentheses, that >>
will always be considered to be the closing delimiter of two < symbols, and results in an error if there are
not two such corresponding < symbols. [[Ed.]]

38

10

15

20

25

30

Basic concepts

10. Basic concepts

Much of this clause is yet to be added, include application entry point, assembly boundaries, etc. [[#25]]

#using subclause: When importing functions from an assembly, functions with these names shall be
renamed with the appropriate C++ identifier for the conversion function. If such a function does not make
sense as a conversion function (for example, it takes three arguments), the function name is not changed to
the internal conversion function name, and thus the function is callable by the name it has in the assembly.
[[#95]]

10.1 Members

10.1.1 Value class members

The members of a value class are the members declared in that value class, and the members inherited from
the value class’s direct base class System: :vValueType and the indirect base class System: :Object.

The members of a fundamental type correspond directly to the members of the value class type aliased by
the fundamental type, as follows: This mapping is still under discussion; it is by no means settled yet.[[#93]]

o The members of signed char are the members of the System: : SByte value class.
e The members of unsigned char are the members of the System: : Byte value class.

e Ifaplain char is signed, the members of char are the members of the System: : SByte value
class; otherwise, they are the members of the System: : Byte value class.

e The members of short 1int are the members of the System: : Int16 value class.

o The members of unsigned short are the members of the System: :UInt16 value class.

e The members of int are the members of the System: : Int32 value class.

e The members of unsigned int are the members of the System: :UInt32 value class.

o The members of Tong Tong are the members of the System: : Int64 value class.

o The members of unsigned long long are the members of the System: : UInt64 value class.
e The members of wchar_t are the members of the System: : Char value class.

e The members of float are the members of the System: :Single value class.

e The members of doubTe are the members of the System: :Double value class.

e The members of Tong double are the members of the System: :DoubTe value class.

e The members of booT are the members of the System: :BooTlean value class.

10.1.2 Delegate members

The members of a delegate are the members inherited from class System: :Delegate, in addition to the
members added by the C++ compiler. [Note: The compiler needs to add typedef members to the class so that
template code can use the return type or the parameter types. end note]

39

10

15

20

25

30

35

40

C++/CLI Language Specification

10.2 Member access

10.2.1 Declared accessibility

In the C++ Standard (§10), an access-specifier is used to define member access control. This grammar has
been extended to accommodate the notion of assemblies, as follows:

access-specifier:

pubTic private
private public
protected public
public protected
private protected
protected private
public public
protected protected
private private

It is expected that "public private" (and "private public") will be replaced by "internal", and that those
access-specifiers containing the same name twice will simply revert to a single occurance of that name.

[[Ed.]]

In the C++ Standard (§11/1), member access control for each access-specifier is defined. To accommodate
the addition of assemblies, these definitions have been extended, as follows:

A member of a class can be

e privateorprivate private; that is, its name can be used only by members and friends of the
class in which it is declared.

e protectedorprotected protected: that is, its name can be used only by members and friends
of the class in which it is declared, and by members and friends of classes derived from this class.

e publicorpublic pubTic; thatis, its name can be used anywhere without access restriction.

e public privateorprivate public; thatis, its name can be used in its parent assembly. This
1s referred to as assembly access.

e public protectedor protected public: thatis, its name can be used in its parent assembly
or by types derived from the containing class. This is referred to as family or assembly access. .

e private protectedorprotected private; that is, its name can be used only by types
derived from the containing class within its parent assembly. This is referred to as family and
assembly access. .

For access-specifiers containing two keywords, the more restrictive of the two applies outside the parent
assembly while the less restrictive of the two applies within the parent assembly.

An overriding name is allowed to have a different accessibility than the name it is overriding. Clarify the
ordering definition. [[#26]] An ordering is applied to distinguish between greater accessibility. Given the
two accessibilities A and B, A has narrower access than B if A permits the same or less access than A within
the assembly and outside the assembly. A has wider access than B if A permits the same or more access than
A within the assembly and outside the assembly. Narrowing and widening of accessibilities implies a partial
ordering of accessibilities. For example, protected is wider than private, protected is wider than
protected, protected is narrower than public, protected is narrower than protected, protected
private is narrower than pub1ic protected, and no ordering exists between public private and
protected. [Note: In general, widening and narrowing accessibility is not CLS compliant. end note]

40

10

Preprocessor

11. Preprocessor

11.1 Predefined macro names
In addition to the macros specified in the C++ Standard (§16.8), the following macro name shall be defined
by the implementation:

__cplusplus_c1i The name __cpTlusplus_cT1i is defined to the value 200406 when compiling a
C++/CLI translation unit. [Note: It is intended that future versions of this standard will replace the value of
this macro with a greater value. end note]

The value of this predefined macro remains constant throughout the translation unit.

If this pre-defined macro name is the subject of a #define or a #undef preprocessing directive, the
behavior is undefined.

41

10

15

20

25

30

C++/CLI Language Specification

12. Types

Add a picture of a type tree. [[#13]]

The C++ Standard (§3.9/10) definition for scalar types has been extended, as follows:

“Arithmetic types (3.9.1), enumeration types, handles, pointer types, and pointer to member types (3.9.2),
and cv-qualified versions of these types (3.9.3) are collectively called scalar types.”

The C++ Standard (§7.1.5) definition for type-specifier has been extended, as follows:

type-specifier:

aélegate-definition

12.1 Fundamental types

Standard C++ (§3.9.1) is augmented by the following: This mapping is still under discussion; it is by no
means settled yet.[[#93]]

For all fundamental types (not just character types), all bits of the object representation participate in
the value representation.

An object of type char shall have exactly 8 bits.

There are five signed integer types: “signed char”, “short int”, “int”, “long int”, and
“long long”

For each of the signed integer types, there exists a corresponding (but different) unsigned integer

9 <c 9% ¢ EE 1Y

type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long
int”, and “unsigned long long”

An object of type short 1int shall have exactly 16 bits.
An object of type int shall have exactly 32 bits.

An object of type Tong 1nt shall have exactly 32 bits.
An object of type Tong Tong shall have exactly 64 bits.

The value of an object having a signed integer type shall be stored using twos-complement
representation.

An object of type wchar_t shall be unsigned and have exactly 16 bits.

An object of type float is represented using the 32-bit single-precision IEC 60559 format.

An object of type doube is represented using the 64-bit double-precision IEC 60559 format.

An object of type Tong doubTe is represented using the 64-bit double-precision IEC 60559 format.
An object of type boo1 shall have exactly 8 bits.

The type long long will be defined by pointing to the paper WG21 N1565.[[#126]]

42

10

15

20

25

30

35

Types

12.2 Class types
12.2.1 Native classes

12.2.2 Value classes
Is there more to say? What about boxing? [[Ed]]

All value class types implicitly inherit from the class System: :valueType, which, in turn, inherits from
class System: :Object. [Note: System: :vValueType is not itself a value class type. Rather, it is a ref
class type, from which all value class types are automatically derived. end note]

12.2.2.1 Simple value classes
Is this the place to describe the mapping of fundamental types to CLI types? [[Ed]]

12.2.2.2 Enum classes

12.2.3 Ref classes

A ref class defines a data structure that contains fields, function members (functions, properties, events,
operators, instance constructors, destructors, and static constructors), and nested types. Ref classes support
inheritance. Instances of ref classes are created using new-expressions (§15.4.6.1).

Ref classes are described in §20.

12.2.4 Interface classes

An interface defines a contract. A ref or value class that implements an interface must adhere to its contract.
An interface can inherit from multiple base interfaces, and a ref or value class can implement multiple
interfaces.

Interface classes are described in §24.

12.2.5 Delegate types

A delegate is a data structure that refers to one or more functions, and for instance functions, it also refers to
their corresponding Object instances.

Delegate types are described in §26.

12.2.6 Arrays

12.3 Declarator types

The WG21 WP says at the end of 8.3.5p3 "The resulting list of transformed parameter types and the
presence or absence of the ellipsis is the function's parameter-type-list." Since we are using the term
”parameter-type-list", we need to define it in this clause somewhere. [[Ed]]

12.3.1 Raw types

12.3.2 Pointer types
It is possible to declare a pointer to a function that takes a parameter array (§18.3.6). [Example:

void F(double, ... array<int>A);
void (*p) (double, ... array<int>A) = &F;

end example]

A native pointer cannot point to an Object on the CLI heap unless that Object has been pinned (§12.3.7).

43

10

15

20

25

30

35

40

45

C++/CLI Language Specification

12.3.3 Handle types

Need to add text to indicate the circumstances under which the modreq IsBoxed shall be emitted (i.e.,
passing a handle to a value type). Point to that modreq's spec.[[#127]]

For any CLI type T, the declaration TA h declares a handle h to type T, where the Object to which h is
capable of pointing resides on the CLI heap. A handle tracks, is rebindable, and can point to a whole Object
only. [Note: In general, handles are to the gc heap as pointers are to the native heap. end note]

The default initial value of a handle is nul1ptr.

Objects of CLI type are allocated on the CLI heap via gcnew, and such Objects are referred to by handles.
[Example:

RA rl
RA r2

gcnew R; // allocate an Object on the CLI heap
rl; // handles rl and r2 point to the same Object

end example] If an Object allocated using gcnew is never destroyed (using deTete or by an explicit
destructor call), that Object’s destructor will never be run; however, the garbage collector will reclaim the
Object’s memory, and the Object’s finalizer (§??), if one exists, will be run. [Example:
// allocate an Object on the CLI heap
RA r3 = gcnew R;
} // the Object will be garbage-collected and
// finalized, but its destructor will not be run
end example]

Unlike pointers, handles track; that is, a handle’s value can change as the Object to which it refers gets
moved by the garbage collector. This has the following implications:

e A handle cannot be converted to and from void¥*. (A handle can, however, be converted to and
from ObjectA.) [Note: There is no voidA. end note]

e A handle cannot be converted to and from an integral type. (A handle cannot be hidden from the
garbage collector.)

e Handles cannot be ordered.

e A handle can only point to a whole Object.

[Example:
RA r4 = new R;
ObjectA o = r4; // ok
RA r5 = dynamic_cast<RA>(0); // ok, r4 and r5 point to the same Object
long 1 = reinterpret_cast<long>(r5); // error, can’t convert to integer
RA r6 = reinterpret_cast<RA>(1); // error, can’t convert from
integer
std::set<RA> s; // error, RA’s can’t be compared with less

end example]
All handles to the same Object compare equal, even if that Object is moved by the garbage collector.

A handle can have any storage duration.

12.3.4 Null type

The null type is a special type that exists solely to support the null-literal, nul1ptr (also referred to as the
null value constant). No instances of this type can be created; the only way to obtain a value of this type is
via the nu1Tptr literal, whose type is the null type.

12.3.5 Reference types
A native reference can bind to any lvalue.

As an Object on the CLI heap can be moved by the garbage collector, its location must be tracked. As such,
a reference to such an Object is called a tracking reference (%), and it can bind to any gc-lvalue. [Note:

44

10

15

20

25

30

35

40

Types

Because there is a standard conversion from lvalue to gc-lvalue, a tracking reference can therefore bind to
any gc-lvalue or Ivalue. end note]

For any type T, the declaration T% r declares a tracking reference r to type T. [Example:

RA h = gcnew R; // allocate on CLI heap

R% r = *h; // bind tracking reference to ref class Object
void (V% r);

f(*gcnew V); // bind tracking reference to value class Object

end example]
Like an ordinary reference, a tracking reference is not rebindable; once set, its value cannot be changed.

A program containing a tracking reference that has storage duration other than automatic is ill-formed.
[Note: This limitation directly reflects that of the CLI, because tracking references are in general
implemented in terms of CLI byrefs. This limitation is not inherent in this language design, and can be
removed on CLI platforms that support byrefs that can exist in non-stack locations. end note]

12.3.6 Interior pointers

The garbage collector is permitted to move Objects that reside on the CLI heap. In order for a pointer to
refer correctly to such an Object, the runtime needs to update that pointer to the Object’s new location. An
interior_ptr is a pointer that is updated in this manner.

We need a grammar for this. [[#108]]

The compiler will need to emit a modopt to distinguish interior ptr<T> from tracking reference to T (T%) in
the metatada.[[#28]] Need to add text to indicate the circumstances under which the modopt
IsExplicitlyDereferenced shall be emitted (i.e., interior ptr as a parameter). Point to that modopt's spec.

12.3.6.1 Definitions

An interior pointer shall have an implicit or explicit auto storage-class-specifier. An interior_ptr can
be used as a parameter and return type.

An interior pointer shall not be a subObject.
The default initial value for an interior pointer not having an explicit initial value, shall be nu11ptr.

[Note: An interior pointer to a value class can be implemented as a CLI byref. However, a byref can't refer
to a whole Object, so an interior pointer to a ref class can be implemented using an Object reference (just
like a handle is implemented); this common implementation need not affect the programmer, who still sees
distinct semantics for interior_ptr<R> and RA. end note]

12.3.6.2 Target type restrictions

An interior pointer shall not point to a ref class Object. (However, such a pointer is permitted to point to a
handle to a ref class Object.) Other target types are permitted. We need to say which types. For example,
what about pointers to functions? [[#29]] [Example:

OK
OK
error, String is a ref class
OK; is a handle to ref class
OK
OK

interior_ptr<int> pl;
interior_ptr<int*> p2 = nullptr;
interior_ptr<System::String> p3;
interior_ptr<System: :StringA> p4;
interior_ptr<interior_ptr<int> > p5;
interior_ptr<intA> p6 = nullptr;

NN
NN

end example]

12.3.6.3 Operations

An interior pointer can be involved in the same set of operations as native pointers, as defined by the C++
Standard. [Note: This includes comparison and pointer arithmetic. end note]

45

10

15

20

25

30

35

40

C++/CLI Language Specification

Cover the dangers of pointer arithmetic and interior ptrs. [[#109]]

12.3.6.4 Conversion rules

The following conversion rules apply to interior pointers:

Conversion from interior_ptr<T1l>to interior_ptr<T2> is allowed if and only if conversion from
T1* to T2* is allowed,;

In conversions between types where exactly one type is interior_ptr<T1>, the interior pointer behaves
exactly as if it were “pointer to cv T1”, with two exceptions:

e Conversion to any other type “pointer to cv T1” is not allowed. In particular, conversion from
interior_ptr<T> to T* is not allowed.

e Conversion from the null pointer constant to interior_ptr<T> is not allowed (but conversion
from nullptr is)
[Example:

array<int>A arr = gcnew array<int>(100);
interior_ptr<int> ipi = &arr[0];

int* p = ipi; // error; no conversion from interior to non-
interior

int k = ;

ipi = &k; // OK; k is an auto variable

ipi = 0; // error; must use nullptr instead

ipi = nullptr; // OK

ipi = p; 1/, 0K

if Gipi) {.} // OK

end example]

12.3.6.5 Data access
An interior pointer exhibits the usual pointer semantics for data access:

e Operator -> is used to access a member of an Object pointed to by an interior pointer;

e Operator * is used to dereference an interior pointer.

[Example:
value struct Vv {
int data;
\VARVA:

interior_ptr<v> pv = &v;
pv->data = 42;)
interior_ptr<int> pi = &v.data;
assert(*pi == 42);
end example]
Taking the address of an interior pointer yields a native pointer.

Interior pointers can point to Objects inside the CLI heap. As such, taking the address of an Object pointed
to by an interior pointer yields an interior pointer that cannot be converted to T*, as described in §12.3.6.4.

[Example:

value struct v {
int data;

46

10

15

20

25

30

35

40

Types

\VARVE:

interior_ptr<v> pv = &v;

V** p = &pv; // error

interior_ptr<v>* pi = &pv; // OK, pv is on the stack and so is an lvalue
int* p2 = &(pv->data); // error

int* p3 = &(v.data); // OK, v is on the stack, v.data is an Tvalue

end example]

12.3.6.6 The this pointer

In the body of a non-static member-function of a value class V, this is an expression of type
interior_ptr<Vv>, whose value is the address of the Object for which the function is called.

[Example:
value struct v {
int data;
void fQO;
void v::fQ {
interior_ptr<v> pvl = this; // OK
v* pv2 = this; // error

end example]

12.3.7 Pinning pointers

Need to add text to indicate the circumstances under which the modopt IsPinned shall be emitted (i.e.,
pin_ptr as a parameter). Point to that modopt's spec.[[#129]]

Ordinarily, the garbage collector is permitted to move Objects that reside on the CLI heap. However, such
movement can be blocked temporarily, on a per Object basis. A pinning pointer is one that prevents the
garbage collector from moving the CLI heap-based Object to which that pointer points. This makes it
possible for code not under the control of the runtime to manipulate memory within the bounds of the CLI
heap without corrupting that heap.

Although a pinning pointer can be initialized from an interior pointer, the value of a pinning pointer is never
changed by the runtime.

12.3.7.1 Definitions

A pinning pointer shall have an implicit or explicit auto storage-class-specifier. A pin_ptr shall not be
used as a parameter and return type.

We need a grammar for this. [[#110]]
[Note: As a pinning pointer is an interior pointer, the default initial value for a pinning pointer not having an

explicit initial value, is nul1ptr. (§12.3.6.1) end note]

12.3.7.2 Target type restrictions

The target type restrictions for pinning pointers are the same as for interior pointers (§12.3.6.2).

12.3.7.3 Operations

The operations that can be formed on pinning pointers are the same as for interior pointers (§12.3.6.3).

12.3.7.4 Conversion rules

The following conversion rules apply to interior pointers:

Conversion from pin_ptr<T1l>to pin_ptr<T2> is allowed if and only if conversion from T1* to T2* is
allowed;

47

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

In conversions between types where exactly one type is cv pin_ptr<T>, the pinning pointer behaves
exactly as if it were “pointer to cv T”, with the exception that conversion from a null pointer constant to
pin_ptr<T> is not allowed (but conversion from nul1ptr is). [Note: In particular, conversion from
pin_ptr<T>to T* is allowed as a standard conversion. end note]

[Example:

array<int>A arr = gcnew array<int>(100);
pin_ptr<int> ppi = &arr[0];

int* p = ppi; // OK

int k = 10;

ppi = &k; // OK; k is an auto variable

ppi = 0; // error; must use nullptr instead
ppi = nullptr; // OK

pin_ptr<int> ppi2 = p; // OK
end example]

12.3.7.5 Data access

With two exceptions, pinning pointers follow the same data access semantic as interior pointers (§12.3.6.5).
Since a pinning pointer points to an unmovable Object inside the CLI heap, a pin_ptr<T> can be converted
to T* (§12.3.7.4). Dereferencing a pinning pointer yields an lvalue. [Example:

value struct v {

int data;
void f(Q);
void V:: T {
int* pi;
interior_ptr<v> ipv = this;
pi = &(ipv->data); // error
pin_ptr<v> ppv = this;
pi = &(ppv->data); // OK
V* pv;
pv = ipv; // error
pv = ppv; // OK
}
V v;
pin_ptr<v> pv = &v;
V¥* p = &pv; // error
int* pi = &pv->data; // OK

end example]

12.3.7.6 Duration of pinning

As soon as a pinning pointer is initialized or assigned the address of an Object, that Object is guaranteed to
remain at its location on the CLI heap. If the pinning pointer is then made to point to another Object, that
Object is guaranteed to remain at its location on the CLI heap, and the Object previously pointed to is no
longer considered pinned, allowing the garbage collector to move it. If a pinning pointer is assigned the
value nul1ptr, the Object previously pointed to (if any) is no longer considered pinned

When the block in which a pinning pointer is defined exits, any Object pointed to by that pinning pointer is
no longer considered pinned by that pinning pointer; however, it might still be pinned by another pinning
pointer.

[Example:

ref struct R {
int data;

RA r = gcnew R;

48

10

15

20

Types

pin_ptr<int> ppi = &r->data; // Object referenced by r is pinned
}

// ppi’s parent block has exited, so Object is free to move

end example]

12.4 Top-level type visibility

A non-nested class, interface, delegate, or enum definition can optionally specify the accessibility of the
class, interface, delegate, or enum:

top-level-type-visibility:
public
private

The pubTi c top-level-type-visibility specifier indicates that the non-nested class, interface, delegate, or
enum will be visible outside the assembly. Conversely, the private top-level-type-visibility specifier
indicates that the class, interface, delegate, or enum will not be visible outside the assembly. However,
private types are visible within the same assembly. The default visibility for a class, interface, delegate, or
enum is private. [Example:

pubTic class VvisibleClass {}; // visible outside the assembly
private class InternalClass {}; // visible only within the assembly

end example]

Those class, interface, delegate, or enum definitions nested within another type definition have the
accessibility specified within that type. The use of a top-level-type-visibility modifier on a nested type
definition causes the program to be ill-formed.

49

C++/CLI Language Specification

13. Variables

To be added.[[#32]]

50

10

15

20

25

30

35

Conversions

14. Conversions

14.1 Standard conversions

The standard conversions in the C++ standard apply to C++/CLI. The following standard conversions are
added:

14.1.1 Handle conversions

A handle conversion is similar to a pointer conversion as defined in the C++ Standard (§4.10). A handle
conversion has conversion rank.

An rvalue of type “handle to cv D,” where D is a type, can be converted to an rvalue of type “handle to cv B,”
where B is a base class of D. If B is an inaccessible or ambiguous base class of D, a program that necessitates
this conversion is ill-formed. The result of the conversion is a handle to the base class sub-Object of the
derived class Object.

Since the type vo1idA is ill-formed, there is no handle conversion to it.

A handle to a type array<SA, n> has a handle conversion to a handle to type array<TA, n> provided SA
has a handle conversion to TA and n (the rank of both Arrays) is the same. Such a conversion is better than
Separate the list of conversions from the order of preference (such as how Standard C++ separates Standard
Conversions from overload resolution). a conversion from type array<SA, n>to System: :ArrayA.

The null value constant can be converted to any handle type; the result is a handle with null value of that
type, and is distinguishable from every other value that is a handle to an Object. Two null values of the
same handle type shall compare equal.

14.1.2 Pointer conversions
The definition of null pointer constant in the C++ Standard (§4.10/1) has been extended, as follows:

“A null pointer constant is either an integral constant expression rvalue of integer type that evaluates to zero,
or the null value constant null1ptr.”

[Note: The implication of this is that the null value constant can be converted to any pointer type. end note]

Need to say more here. Possibly move “Interior pointer conversion rules” (§12.3.6.4) and “Pinning pointer
conversion rules” (§12.3.7.4) here. [[Ed]]

14.1.3 Lvalue conversions

There is a standard conversion for each of the following: “cv-qualified Ivalue of type T” to “cv-qualified gc-
lvalue of type T,” and “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.”

14.2 Implicit conversions

The C++ Standard (§4.12) text that describes Boolean conversions has been extended, as follows:

“An rvalue of arithmetic, enumeration, pointer, pointer to member type, or handle can be converted to an
rvalue of type boo1. A zero value, null pointer value, null member pointer value, or null value is converted
to false; any other value is converted to true.”

14.2.1 Implicit constant expression conversions

The following implicit constant expression conversions are permitted:

51

10

15

20

25

30

35

C++/CLI Language Specification

e The null value constant can be converted to any pointer type.

e The null value constant can be converted to any handle type.
14.2.2 User-defined implicit conversions

14.3 Explicit conversions

The following explicit conversions are permitted:
e The null value constant can be converted to any pointer type.

e The null value constant can be converted to any handle type.

14.4 Boxing conversions

The boxing conversion applies only to value classes (including the simple value classes). The boxing
conversion cannot be rewritten by the user and is reserved to the implementation.

The boxing conversion is modeled as a preferred UDC. The text of this section should be revised to address
concerns from the updated conversion proposal. [[#34]]

A boxing conversion follows the exact same sequence of operations as user-defined conversions (C++
Standard §13.3.3.1.2). Boxing conversions are considered before user-defined conversions, and a boxing
conversion sequence never invokes a user-defined conversion. In other words, given a choice between
applying a boxing conversion or a user-defined conversion, the boxing conversion is selected. Thus,
§13.3.3.2 of the C++ Standard is revised, as follows:

We should start off the conversions clause with “Conversion Sequences”, which would cover this
adjustment to the C++ Standard. That makes Boxing conversions shorter and prevents us from introducing
parameter array conversions in a sub-clause where it doesn’t belong. [[#34]]

“When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

e astandard conversion sequence (13.3.3.1.1) is a better conversion sequence than a boxing
conversion sequence, a user-defined conversion sequence, a parameter array conversion sequence,
or an ellipsis conversion sequence, and

e aboxing conversion sequence is a better conversion sequence than a user-defined conversion
sequence, a parameter array conversion sequence, or an ellipsis conversion sequence, and

e auser-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than a parameter
array conversion sequence or an ellipsis conversion sequence (13.3.3.1.3).

e a parameter array conversion sequence is a better conversion sequence than an ellipsis conversion
sequence (13.3.3.1.3).”

The boxing conversion for a value class V is an implicit conversion from V to VA. As stated above, a standard
conversion is permitted to follow a boxing conversion, and thus a handle conversion is able to convert VA to
System: :0bjectA or a handle to an interface that V implements. The conversion occurs as follows:

The compiler selects the boxing conversion and emits the BOX instruction as specified in the CLI Standard,
Partition 111, §4.1. This causes a runtime bitwise copy of the value class instance to an Object on the CLI
heap.

All value classes must be copyable. That is, a value class shall not have a non-public default constructor.

Ref classes have an explicit conversion from R to RA, (This is described later in §??.)

52

10

15

20

25

30

35

40

Conversions

14.5 User-defined conversions

14.5.1 Constructors

All constructors in ref and value classes are explicit (C++ Standard, §12.3.1). Using the exp11icit keyword
on a constructor in a ref class or value class is permitted, but it is redundant.

The meaning of an explicit constructor is unchanged from Standard C++. [Note: That is, an explicit
constructor is permitted in direct-initialization syntax (C++ Standard, §8.5) and casts (C++ Standard, §5.2.9,
§5.4). end note]

Further changes are needed to effectuate the CLI convention that constructors are never used for
conversions, whether explicit or implicit. Making constructors of ref and value classes explicit eliminates
them from consideration for implicit conversions, but additional changes to the overload resolution rules are
needed to indicate that such constructors should be considered for casts of the form X(c) (which are viewed
as creating an object) but not for casts of other forms, e.g., (X)(c) or static _cast<X>(c) (which are viewed as
conversions). The C++ standard treats those two cases as equivalent direct-initializations.[[#105]]

14.5.2 Explicit conversion functions

C++/CLI allows the exp1icit keyword on conversion functions. Thus, C++ Standard, §7.1.2 is changed,
as follows:

“The exp1icit specifier shall be used only in declarations of constructors within a class
declaration, or on declarations of conversion functions within a class declaration; see 12.3.1.”

A conversion function that is declared with the exp11cit keyword is known as an explicit conversion
function. A conversion function that is declared without the exp11icit keyword (i.e., every conversion
function in Standard C++) is known as an implicit conversion function.

An explicit conversion function, like an explicit constructor, can only be invoked by direct-initialization
syntax (C++ Standard §8.5) and casts (C++ Standard §5.2.9, §5.4).

A type shall not contain an implicit conversion function and an explicit conversion function that perform the
same conversion. Only one of these is allowed.

It is possible to write a class that has both an explicit converting constructor and a conversion function that
can perform the same conversion. In this case, the explicit conversion function is preferred.

Add an example. [[Ed]]

14.5.3 Static conversion functions

C++/CLI allows conversion functions, both implicit and explicit, to be static. Conversion functions shall
not have namespace scope. A static conversion function shall take only one parameter, which is the type to
convert from (a non-static member conversion function shall have no parameters). Neither static nor non-
static conversion functions shall specify return types.

Either the source type (parameter type) or the target type (type-specifier-seq) is required to be T, TA, T&, or
T%, where T is the type of the containing class. (T* is not allowed because conversions are not looked up
through pointers.)

Implicit conversions can now be found in more than one place: the scope of the type of the source
expression and the scope of all potential target types. If overload resolution results in a set of conversion
functions (and possibly converting constructors) that can perform the same conversion, the program is
ambiguous and ill-formed.

14.6 Parameter array conversions

The parameter array conversion sequence occurs when overload resolution chooses a function that takes a
parameter array as its last argument. Such overloads are preferred to C-style variable-argument functions,
and are not preferred to any other overloads.

53

10

15

20

25

30

35

40

C++/CLI Language Specification

A parameter array overload is chosen by overload resolution. For the purpose of overload resolution, the
compiler creates signatures for the parameter array functions by replacing the parameter array argument with
n arguments of the Array’s element type, where n matches the number of arguments in the function call.
These synthesized signatures have higher cost than other non-synthesized signatures, and they have lower
cost than functions whose parameter-declaration-clause terminates with an ellipsis. This is similar to the
tiebreaker rules for template-functions and non-template functions. It would be useful to reference those
somehow. [[Ed]]

For example, for the function call f(varl, var2, .., varm, vall, val2, .., valn)

void f(Tl argl, T2 arg2, .., Tm argm, ... array<T>A arr)
is replaced with
void f(Tl argl, T2 arg2, .., Tm argm, T tl, T t2, .., T tn)

Overload resolution is performed with the set containing the synthesized signatures according to the rules of
Standard C++. If overload resolution selects a C-style variable-argument conversion, it means that none of
the synthesized signatures was chosen.

If overload resolution selects one of the synthesized signatures, the conversion sequences needed for each
argument to satisfy the call is performed. For the synthesized parameter array arguments, the compiler
constructs an Array of length n and initializes it with the converted values. Then the function call is made
with the constructed parameter array.

14.7 Compiler-defined explicit conversions

14.7.1 Unboxing conversions

The unboxing conversion allows a conversion to an unboxed value class directly from a handle to one of the
following:

e System::Object

e System::vValueType

e an interface that the value class implements
o the value class itself

The conversion from the boxed form of a value class (VA) to the value class (V) can be done using a
dereference (i.e., operator®). It can also be done by any cast notation that invokes user-defined
conversions.

The unboxing conversion can be done with any cast notation that invokes user-defined conversions.

14.8 Naming conventions

Conversion functions shall conform to a particular naming convention. (The names required of conversion
functions are given by the CLS guidelines.) While all conversion functions have the CLS required name, not
all conversion functions are CLS-conversion functions.

During compilation, the name of the conversion function is the C++ identifier used in source code for that
function. For example, the conversion function from A to B could be the static member function of either A
or B, operator B(A), or the instance function of A, operator B(). The identifier used for the operator
function in an assembly shall have the CLS name as specified in §14.8.1 and §14.8.2.

A conversion function inside a native class shall have the names used in §14.8.1 and §14.8.2 prefixed with <
and suffixed with >. Otherwise, the name specified in these subclauses is unchanged. A C++ program shall
not declare nor define a function within a CLI type using one of the CLS names referred to herein.

A program shall not refer to the CLS-compliant name given to the conversion function.

54

10

15

20

Conversions

All conversion functions, regardless of whether they are CLS-compliant functions or not shall be marked as
SpecialName functions in the metadata.

14.8.1 CLS-compliant conversion functions
A conversion function is CLS-compliant when the following conditions occur:

The conversion function is a static member of a ref class or a value class.

If a value class is a parameter or a target value of the conversion function, the value class shall not be passed
by reference nor passed by pointer or handle.

If a ref class is a parameter or a target value of the operator function, the ref class shall be passed by handle.
The handle shall not be passed by reference.

If the above criteria are not met, the conversion function is C++-dependent. Table 14-1 lists the name to give
to the function used to represent the operator function in an assembly.

Table 14-1: CLS Conversion Functions

Function Name in Assembly C++ Conversion Function
T op_Implicit(s) operator T(S)
T op_Explicit(s) explicit operator T(S)

The operators op_Implicitand op_Explicit are permitted to be overloaded on their return type.

14.8.2 C++-dependent conversion functions

If a conversion function does not match the criteria for CLS compliance, as listed in §14.8, the conversion
function is C++-dependent. The names in Table 14-1 are also used for C++-dependent conversion functions
in an assembly.

Both op_ImpTicit and op_Explicit are allowed to be overloaded on their return type.

Converting constructors are emitted as constructors, never as converting functions. (Constructors in CLI
classes are always explicit.)

55

10

15

20

25

C++/CLI Language Specification

15. Expressions

15.1 Function members
The following function member kinds are added to those defined by Standard C++:

e Properties (both scalar and default indexed)
e Events

The statements contained in these function members are executed through function member invocations. The
actual syntax for writing a function member invocation depends on the particular function member category.

Invocations of default indexed properties employ overload resolution to determine which of a candidate set
of function members to invoke.

[Note: The following table summarizes the processing that takes place in constructs involving these three
categories of function members that can be explicitly invoked. In the table, e, x, y, and vaTlue indicate
expressions classified as variables or values, T indicates an expression classified as a type, F is the simple
name of a function, and P is the simple name of a property.

Construct Example Description
P P::get()
Property access P = value P::set(value)
E += value E::add(value)
Event access
E -= value E::remove(value)
. elx, vy] E::get(x, y)
Default indexed property access elx, y] = value E:iset(x, y, value)

The rewrite rules for e[x] (default indexed accesses) are different where there is only one index. This is
because there is a potential ambiguity with the C++ operator[]. Is this mentioned elsewhere? [[#35]]

end note]

15.2 Primary expressions

To accommodate the addition of properties, the “Primary expressions” subclause of the C++ Standard (§5.1)
has been extended, as follows:

“A static property or event is not associated with any instance of a class, and a program is ill-formed
if it refers to this in the accessor functions of a static property or event.”

“An instance property or event is associated with a specific instance of a class, and that instance can
refer to this in the accessor functions of that instance property or event.”

15.3 Postfix expressions

To accommodate the addition of default indexed properties and Arrays (which are accessed using subscript-
like expressions), the C++ Standard grammar (§5.2) for postfix-expression has been extended, as follows:

56

10

15

20

25

30

35

40

45

Expressions

postfix-expression:

postfix-expression [expression]
indexed-access

Indexed access is described in §15.3.2.

15.3.1 Subscripting

Given a class instance X, of a type having a default indexed property and operator[], an expression of the
form X[1i] is ambiguous. In such cases, the operator[] function or default indexed property accessor
function must be called directly, as appropriate. If a derived class defines only one of operator([] ora
default indexed property, lookup will use that function rather than making the program ambiguous.

15.3.2 Indexed access

An indexed-access consists of an indexed-designator, followed by a “[” token, followed by an expression-
list, followed by a “]” token. The expression-list consists of one or more expressions, separated by commas.

indexed-access:
indexed-designator [expression-list]

indexed-designator shall designate an instance that has one or more default indexed properties that are
applicable with respect to the expression-list of the indexed-access.

An indexed-access is interpreted as follows: Each default indexed property with only one indexing
parameter has an associated operator[] synthesized. For the property property int default[int],
the synthesized “operator[] (int)” is created. Overload resolution for the appropriate operator[] is
done for indexed-access expressions where the expression list is not comma-separated. If a class has two
operator[] operators with the same signature, the expression is ambiguous and the program is ill-formed.
Otherwise, the rewrite rules for properties and events are used for indexed-access expressions.

Need to consider how these expressions are interpreted in templates. [[#111]]

Commas in expression-list are treated as a special case—they are considered punctuators. However, if an
expression in that list is enclosed in parentheses, any commas inside that expression are interpreted as
operators (and behave as described in §5.18/2 of the C++ Standard).

struct S {
property int default[int index] { .. } // indexed property

5 property int default[string idx1l, int idx2] { .. } // indexed property
};
void f(S& s, string& x, int j) {

s[x,7] = 42; // ok, uses indexed property 2
s[1,7] = 42; // error (tries to use indexed property 2,
// but there is a type mismatch;
/ no comma operator is used)
s[(1,7)] = 42; // ok, uses indexed property 1 with j as the
argument
s[(1,x),j] = 42; // ok, uses indexed property 2

[Note: Given a class instance X, of a type having a default indexed property and operator[], an expression
of the form X[i] can be ambiguous. In such cases, the operator[] function or default indexed property
accessor function must be called directly, as appropriate. end note]

15.3.3 Function call

Add text to indicate the circumstances under which the following type modifiers shall be emitted, and point
to each modifier's definition:
e [sBoxed i.e., passing a handle to a value type).

57

10

15

20

25

30

35

40

C++/CLI Language Specification

e IsByValue (i.e., ref class type passed by value).

o IsConst (i.e., pointer or reference to a const-qualified type).

o IsExplicitlyDereferenced (i.e., interior ptr as a parameter).

o IsImplicitlyDereferenced (i.e., parameter is a reference).

e IsLong (i.e., long/unsigned long/long double parameters).

o IsExplicitlyDereferenced (i.e., pin_ptr as a parameter).

e IsSignUnspecifiedByte (i.e., plain char's sigedness).

e [sUdtReturn (i.e., ref class type returned by value).

e IsVolatile (i.e., pointer or reference to a volatile-qualified type).[[#131]]

The C++ Standard (§5.2.2/1) states, “A function call is a postfix expression followed by parentheses
containing a possibly empty, comma-separated list of expressions which constitute the arguments to the
function.”

C++/CLI contains support for delegates (§26). As such, the postfix expression can be a delegate type, in
which case, the whole expression is a delegate invocation (§26.3), and the argument list is passed to each
function encapsulated by the delegate.

15.3.4 Explicit type conversion (functional notation)
15.3.5 Pseudo destructor call

15.3.6 Class member access

A named indexed property is accessed like any other member of a class. [Note: As expected, an expression
of the form p->NamedIndexer[index] is equivalent to (*p).NamedIndexer[index]. end note]

If a program attempts to access a default indexed property via a pointer to an Object having that default
indexed property, and the arrow operator, that program is ill-formed. [Note: Although p->[index] is ill-
formed, the expression (*p) [1ndex] is permitted. end note]

15.3.7 Increment and decrement

15.3.8 Dynamic cast

For the expression dynamic_cast<T>(e), in addition to the rules specified by the C++ Standard (§5.2.7),
the following also applies:

If T is neither a handle nor a pointer, it is possible for dynamic cast expressions to invoke an unboxing
conversion. If T is a value class, and e has type TA or a type UA (where there is a handle conversion from TA
to UA), the dynamic cast invokes the UNBOX instruction from the CLI Standard, Partition III. If T is a V% for
a value class V, and e has type VA or a type UA (where there is a handle conversion from VA to UA), the
dynamic cast invokes the UNBOX instruction as well. If the unboxed type is not of type T, then an exception
of type System: : InvalidCastException is thrown. cv-qualification needs to be considered. [[#36]]

Otherwise, if T is a native reference to a value class, and e has type UA, the program is ill-formed.
[Rationale: This can open a gc hole in the program as native references do not track what they refer to
during garbage collection. end rationale]

Otherwise, if T is VA (where V is a value class) or UA (where there is a handle conversion from VA to UA),
and e has a type V or reference to V, then the expression invokes a boxing conversion sequence.

Otherwise, if T is a handle type, e shall be an rvalue of a handle to complete class type, and the result is an
rvalue of type T.

If the value of e is a null value, the result is the null value of type T.

58

10

15

20

25

30

35

40

45

Expressions

If T is “handle to cvl B” and e has type “handle to cv2 D” such that B is a base class of D, the result is a
handle to B such that it refers to the same Object as e. The cv-qualification for cv1 shall be the same as or
greater than that for cv2.Otherwise, a runtime check is required.

If a run-time check is applied to the cast, and T is a handle or reference to a CLI type, the run-time check is
performed using the ISINST CIL instruction from the CLI Standard, Partition III, §4.6.

If T is either a handle or a pointer to any type other than a native class, and the cast fails, the result is the null
value or the required result type. If T is a reference to any type other than a native class and the cast fails,
then the expression throws System: : InvalidCastException. When T is a native class, the rules of
Standard C++ §5.2.7/9 apply.

15.3.9 Type identification
C++/CLI adds a new use of the typeid keyword, whereby a given type name can be followed by
1 :typeidto get a System: : TypeA for the given type name.

The C++ Standard grammar production for unary-expression (§5.3 and §A.4) is extended with a new
production as follows:

unary-expression:

i&beid—expression

typeid-expression:
elaborated-type-specifier :: typeid

In the C++ standard (§14.6.2.2/4), the "Expressions of the following forms" list is extended to include
typeid-expression.

The result of a typeid-expression is an lvalue of static type System: : TypeA. There is only one

System: : Type Object for any given type. [Note: This means that for type T, T: : typeid == T::typeid
is always true. end note] As this form is a compile-time expression, it can be used as an argument to an
attribute constructor.

The type name in the typeid-expression shall be a raw type or a pointer to a raw type.
Check if long::typeid and char::typeid are allowed (and if so, what do they mean). [[#112]]

Add a note that discourages the practice of using the result of T::typeid to guard static members with a lock.

[[Ed]]

The typeid-expression provides convenient syntactic access to the functionality of the System: :

Type: :GetType() library function. Whereas GetType () must be called on an Object of the given type,
: 1 typeid can be applied to a type directly, and consequently does not require an Object to be created.
[Example:

using namespace System::Reflection;
ref class X { .. };

Console::WriteLine(X::typeid); // does not require an object
XA pX = gchew X;
TypeA pType = pX->GetType(); // GetType requires an object

Console::WriteLine(pType);

console::writeLine(Int32::typeid);
Console::writeLine(array<Int32>::typeid);
Console::WriteLine(void::typeid);

TypeA t = String::typeid;
Console::writeLine(t->BaseType);

array<MethodInfoA>A functions = t->GetMethods();
for each (MethodInfo mi in functions)
console::wWriteLine(mi);

The output produced is:

59

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

X

X

System.Int32

System.Single[]

System.void

System.Object

System.String ToString(System.IFormatProvider)
System.TypeCode GetTypeCode()

System.Object Clone()

System.String IsInterned(System.String)
System.CharEnumerator GetEnumerator()
System.Type GetType()

end example]

The : : typeid operator can be applied to a type parameter or to a constructed type: the result is an Object
of type System: : Type that represents the runtime type of the type parameter or constructed type. Outside
of the body of a generic type definition, the : : type1id operator shall not be applied to the bare name of that
type. [Example:

generic<typename T>
ref class X {

pubTic:
static void FQ {
TypeA tl = T::typeid; // okay
TypeA t2 = X<T>::typeid; // okay
TypeA t3 = X::typeid; // okay
};
int main() {
TypeA t4 = int::typeid; // okay
TypeA t5 = X<int>::typeid; // okay
TypeA t6 = X::typeid; // error

Clearly, the initialization of t6 is in error. However, that of t3 is not, as the use of X is really an implicit use
of X<T> (§30.1.2). end example]

It might be useful to add an example showing the use of the ::typeid-form with a custom attribute.

What about handles and tracking references? We still need to make sure we have a design for standard
typeid (that returns std::type info) in addition to the new ::typeid (that returns System::Type). [[#38]]

15.3.10 Static cast
The rules of specified by the C++ Standard (§5.2.9) apply. For the expression, static_cast<T>(e), the
following also applies.

Unboxing and boxing are described as preferred user-defined conversions. Nothing important about these
needs to be mentioned in static cast, but those UDCs are not completely specified yet.[[#132]]

A static cast can invoke a user-defined conversion function as described in the C++ Standard (§5.2.9/2). All
of the following are considered: explicit conversion functions, implicit conversion functions, explicit
converting constructors, and implicit converting constructors.

The cast expression discussed in the C++ Standard (§5.2.9/3) is allowed also on tracking references.
The conversion discussed in the C++ Standard (§5.2.9/7) is allowed for both native and CLI enumerations.

An rvalue of type “handle to cv1l B”, where B is a type, can be converted to an rvalue of type “handle to cv2
D”, where D is a class derived from B, if a valid standard conversion from “handle to D” to “handle to B”
exists (§14.1.1), and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. The null value
is converted to the null value of the destination type. This can be unverifiable and might cause a gc
hole.[[#133]]

60

10

15

20

25

30

35

Expressions

15.3.11 Reinterpret cast

The rules of specified by the C++ Standard (§5.2.10) apply. A reinterpret cast expression that attempts to
cast from or to a handle type is ill-formed.

A reinterpret cast will never invoke an unboxing conversion or a boxing conversion sequence.

15.3.12 Const cast

The rules specified by the C++ Standard (§5.2.11) apply. For the expression, const_cast<T>(v), the
following also applies.

Where the C++ Standard discusses the application of const_cast to pointers, the rules shall also apply to
handles.

An lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast<T2%>
if a pointer or handle to T1 can be explicitly converted to the type pointer or handle to T2 using a
const_cast. The result of a reference const_cast refers to the original Object.

A null value is converted to the null value of the destination type. A program in which v in the const cast
expression is the nul1ptr literal is ill-formed.

A const cast will never invoke an unboxing conversion or a boxing conversion sequence.

15.3.13 Safe cast

Safe cast performs the optimal cast for CLI frameworks. The name safe_cast is located within the c11
namespace. The compiler processes a safe_cast expression as follows:

e The compiler performs a lookup in the current context for the name safe_cast.

e Ifthe name refers unambiguously to : : c11 : : safe_cast, then the expression is processed by the
compiler according to the following grammar and interpreted according to the rules specified herein.

safe_cast < type-id > (expression)

The type of the operand and the target type shall be a value class, a handle to a value class, a handle to a ref
class, or a handle to an interface class. Otherwise, the expression is ill-formed.

Include the specification for safe cast from the revised casting proposal. [[#39]]

15.4 Unary expressions
15.4.1 Unary operators

15.4.1.1 Unary &

Since a discussion of lvalue, rvalue, and gc-lvalue has now been included, the above statement is
generalized by saying that the application of & to an rvalue or a gclvalue is ill-formed. (Is this still true?)
[[#40]]

When applied to an lvalue of type T, & yields a T* (see Standard C++ §??). When applied to a gc-lvalue of
type T, & yields an interior_ptr<T> (12.3.6).

A program that attempts to apply the built-in unary & operator to a literal field, or to a property, or to an
initonly field outside of the class’s constructor, is ill-formed.

15.4.1.2 Unary *

The C++ Standard (§5.3.1/1) has been extended to allow for indirection on handles. Specifically, the
following text:

61

10

15

20

25

30

35

40

45

C++/CLI Language Specification

“The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an lvalue referring to the object or function to
which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.”’

has been replaced with:

“The unary * operator performs indirection: the expression to which it is applied shall be one of the
following:

o Ifthe expression is a pointer to an object type or a pointer to a function type, then the result is an
lvalue referring to the object or function to which the expression points. If the type of the expression
is “pointer to T,” the type of the result is “T.”

e Ifthe expression is a handle to an object type, then the result is a gc-lvalue referring to the object to
which the expression points. If the type of the expression is “handle to T.” the type of the result is
“T",’

Dereferencing a TA yields a gec-lvalue of type T.

15.4.1.3 Unary %
When applied to an Ivalue of type T or a gc-lvalue of type T, % yields a TA. [Example:

ref class R { };
vo1d f(System: ObJectA),

f(%r); // ok
end example]

This operator results in a boxing operation. [Note: All handles to the same Object compare equal. For value
classes, because % is a boxing operation, multiple applications of % results in a handles that do not compare
equal. end note]

15.4.1.4 Unary »

No such operator exists; should it? The only major asymmetry between %/" and &/* is that unary * is used
to dereference both * and #, which allows for the writing of templates that can deal with both pointer and
handle types using a common syntax; however, there is no unary ». People new to the syntax often expect to
dereference a ” using a unary ”. Should unary ” be allowed as a synonym for unary *? Doing so might
introduce needless redundancy by having two unary operators with identical semantics. We might also be
closing a door if we later discover a valid distinct meaning for unary * vs. unary *—we can't think of any
meaning but the single "dereference" meaning, but maybe we're just not imaginative enough.)[[Ed.]]

15.4.2 Increment and decrement

15.4.3 Sizeof

The mapping of C++/CLI types to fundamental types is still under discussion; it is by no means settled yet,
so the sizeof guarantees below may change or be removed.[[#93]] The C++ Standard (§5.3.3/1) has been
extended, as follows:

“The sizeof operator shall not be applied to an expression that has function or incomplete type, or
to an enumeration type before all its enumerators have been declared, or to the parenthesized name
of such types, or to an lvalue that designates a bit-field, or to an expression that has null type, or to a
handle, or to a tracking reference, or to a ref class. sizeof(char), sizeof(signed char) and
sizeof(unsigned char) are 1; theresult-of sizeofapplied-to-any-other fundamental-type
9B implementation-defined. |Note -in-particutar-sizeof (bool)-and-sizeof (wchar_t)-are
implementation-defined: sizeof (short) is 2, sizeof(int) is4, sizeof(long) is 4,
sizeof(long long) is 8, sizeof (float) is 4, sizeof (double) is 8, sizeof(long
double) is 8, sizeof (wchar_t) is 2, sizeof(bool) is 1. end note]”

62

10

15

20

25

30

35

40

Expressions

The following paragraph is inserted after C++ Standard (§5.3.3/2):

“When applied to a value class type, the result is not a compile-time constant expression.”

15.4.4 New

A program is ill-formed if it attempts to allocate memory using new for an Object of CLI type other than a
simple value class.

15.4.5 Delete
The C++ Standard (§5.3.5/1) has been extended to allow for deletion of Objects allocated on the CLI heap,
as follows:

“The operand shall have a pointer type, a handle type, or a class type having a single conversion
function (12.3.2) to a pointer type.”

“In the first alternative (delete object), the value of the operand of deTete shall be a pointer or
handle to a non-array object or a pointer to a sub-object (1.8) representing a base class of such an
object (clause 10). If not, the behavior is undefined.”

“If the delete-expression calls the implementation deallocation function (3.7.3.2), and if the operand
of the delete expression is not the null pointer constant, the deallocation function will deallocate the
storage referenced by the pointer or handle thus rendering the pointer or handle invalid.”

The array form of deTete cannot be used on a handle type.

15.4.6 The gcnhew operator

The gcnew operator is similar to the new operator, except that the former creates an Object on the CLI heap.
The type of the result of the gcnew operator is a handle to the type of the Object allocated. In out-of-
memory situations, gchew throws System: :outOfMemoryException.

There is no array form of gcnew. There is no placement form of gcnew. The gcnew operator cannot be
overloaded or replaced. There is no class-specific form of gcnew.

A program is ill-formed if it attempts to allocate memory for an Object of native type using gcnew.

15.4.6.1 gcnew Object creation expressions

In the C++ Standard (§5.3.4), a new-expression is used to allocate memory for an Object at runtime. This
grammar has been extended to accommodate the addition of the gcnew operator, as follows:

new-expression:
gcnew new-type-id new-initializerqy
gcnew (type-id) new-initializeryy
Add the array case to this grammar. [[#42]]
The type of the Object being allocated shall not be an abstract class type. The type shall not be incomplete.

[Note: The gcnew operator applied to a value class creates a boxed value class. end note]

15.4.6.2 Array creation expressions

Does new-initializer need to be changed? [[#114]]

15.5 Explicit type conversion (cast notation)

The rules in the C++ Standard (§5.4/5) have been extended for C++/CLI by including safe casts before static
casts.

e aconst_cast

63

10

15

20

25

30

35

40

C++/CLI Language Specification

e asafe_cast

e asafe_cast followed by a const_cast

e astatic_cast
e astatic_cast followed by a const_cast

e areinterpret_cast

a reinterpret_cast followed by a const_cast

[Note: Standard C++ programs remain unchanged by this, as safe casts are ill-formed when either the
expression type or target type is a native class. end note]

Provide background on the expected behavior and rationale. (Get this from the updated casting proposal.)

[[Ed]]

15.6 Pointer-to-member operators
15.7 Multiplicative operators

15.8 Additive operators

15.8.1 Delegate combination
Every delegate type provides the following predefined operator, where D is the delegate type:

static D operator +(D* x, D" y);

The binary + operator performs delegate combination when both operands are of the same delegate type D.
The result of the operator is the result of calling System: :Delegate: :Comb1ine on both arguments, and
casting the result to DA. [Note: For examples of delegate combination, see §15.8.2 and §26.3. Since
System: :Delegate is not a delegate type, operator+ is not defined for it. end note]

15.8.2 Delegate removal
Every delegate type provides the following predefined operator, where D is the delegate type:
static DA operator —(DA x, DA y);

The binary - operator performs delegate removal when both operands are of the same delegate type D. The
result of the operator is the result of calling System: :Delegate: :Remove(x, Y), and casting the result
to DA. [Note: the += and -= operator are defined via assignment operator synthesis. end note] [Example:

delegate void D(int x);
ref struct Test {
static void M1(int i) { /* .. */ }
static void M2(int i) { /* .. */ }
int main() {
DA cdl gcnew D(&Test::M1);
DA cd?2 gcnew D(&Test::M2);

DA cd3 = cdl + cd2;
cd3 -= cdl;

cd3 += cdl;
cd3 = cd3 - (cdl + cd2);

}

end example]

64

10

15

20

25

30

35

15.9 Shift operators
15.10 Relational operators
15.11 Equality operators

15.11.1 Ref class equality operators

Add support for handle equality comparison, and handle ==/!= nullptr, and vice versa. [[#43]]

15.11.2 Delegate equality operators

Every delegate type provides the following predefined comparison operators:

bool operator ==(DelegateA x, DelegateA y);
bool operator !=(DelegateA x, DelegateA y);

These are implemented in terms of System: :Delegate: :Equals.

15.12 Bitwise AND operator

15.13 Bitwise exclusive OR operator
15.14 Bitwise inclusive OR operator
15.15 Logical AND operator

15.16 Logical OR operator

15.17 Conditional operator
With regard to expressions of the following forms
? p : nullptr

e
e ? nullptr : p
e ? h : nullptr
e ? nullptr : h

Expressions

where e is an expression that can be implicitly converted to booT, p has pointer type, and h has handle type,

the C++ Standard (§5.16/6) is changed to

“The second and third operands have pointer type, or one has pointer type and the other is a null

pointer constant or null value constant; pointer conversions and qualification conversions are

performed to bring them to their composite pointer type. The result is of the composite pointer type.
If either the second or the third operands have a handle type, and the other operand is the null value

constant, the result is of the handle type.”

15.18 Assignment operators

Add words here to discuss assignment for properties and events from the point of view of the rewrite rules.

[[#44]]

The left operand of an assignment shall be an lvalue or a gclvalue.

15.19 Comma operator

15.20 Constant expressions

The C++ Standard (§5.19/2) provides a list of “Other expressions [that] are considered constant-expressions
only for the purpose of non-local static object initialization.” That list has been extended by the addition of

the following:

65

C++/CLI Language Specification

e the null value constant.

A literal field can be used in any context that permits a literal of the same type. As such, a literal field can be
present in a compile-time constant expression.

To accommodate the addition of literal fields, the following is inserted in the C++ Standard, after §5.19/3:

“A literal constant expression includes arithmetic constant expression, string literals of type
System: : String, and the null value constant nullptr.”

Investigate whether string literals include compile-time expressions, such as string concatenation. [[#115]]

66

10

15

20

25

30

35

Statements

16. Statements

Unless stated otherwise in this clause, all existing statements are supported and behave as specified in the
C++ Standard (§6).

16.1 Selection statements

16.1.1 The switch statement

A program is ill-formed if it uses a switch statement to transfer control in to a finally-clause.

16.2 lteration statements

In addition to the three iteration statements specified by Standard C++ (§6.5), the iteration-statement
production has been extended to include foreach-statement.

iteration-statement:
foreach-statement

16.2.1 The for each statement

The for each statement enumerates the elements of a collection, executing the statement for each element
of that collection.

foreach-statement:
for each (type ??-declaratoropt identifier in expression) statement

The type, declarator, and identifier of a for each statement declare the iteration variable of the statement.
The iteration variable corresponds to a local variable with a scope that extends over the substatement.
During execution of a for each statement, the iteration variable represents the collection element for
which an iteration is currently being performed. The program is ill-formed if the substatement attempts to
assign to the iteration variable or to pass the iteration variable by reference.

The type of expression shall be a collection type (as defined below), and an explicit conversion (§??) must
exist from the element type of the collection to the type of the iteration variable. If expression has the value
nullptr,aSystem: :NulTReferenceException is thrown.

A type C is said to be a collection type if it implements the System: :Collections.IEnumerable
interface or implements the collection pattern by meeting all of the following criteria:

e C contains a publi c instance function with the signature GetEnumerator (), that returns a struct-
type, class-type, or interface-type, which is called E in the following two points.

e E contains a pub1i c instance function with the signature MoveNext () and the return type bool.

e E contains a pub1i c instance property named Current that permits reading the current value. The
type of this property is said to be the element type of the collection type.

A type that implements IEnumerab’e is also a collection type, even if it doesn't satisfy the conditions
above. (This is possible if it implements IEnumerabe via explicit interface member implementations.)

The System: :Array type (§23.1.1) is a collection type, and since all Array types derive from

System: :Array, any Array type expression is permitted in a for each statement. For single-dimensional
Arrays, the for each statement enumerators traverses the Array elements in increasing order, starting with

index 0 and ending with index Length - 1. For multi-dimensional Arrays, elements are traversed such that
the indices of the rightmost dimension are increased first, then the next left dimension, and so on to the left.

67

10

15

20

25

30

35

40

C++/CLI Language Specification

A for each statement is executed as follows:

o The collection expression is evaluated to produce an instance of the collection type. This instance is
referred to as c in the following.

e An enumerator instance is obtained by evaluating the function invocation c.GetEnumerator().
The returned enumerator is stored in a temporary local variable, in the following referred to as e. It
is not possible for the statement to access this temporary variable.

e The enumerator is advanced to the next element by evaluating the function invocation
e.MoveNext().

o If'the value returned by e.MoveNext () is true, the following steps are performed:

0 The current enumerator value is obtained by evaluating the property access e.Current, and the
value is converted to the type of the iteration variable by an explicit conversion (§??). The
resulting value is stored in the iteration variable such that it can be accessed in the statement.

0 Control is transferred to the statement. When and if control reaches the end point of the
statement (possibly from execution of a continue statement), another for each iteration is
performed, starting with the step above that advances the enumerator.

o If'the value returned by e.MoveNext () is false, control is transferred to the end point of the for
each statement.

[Example: The following program pushes the values 0 through 9 onto an integer stack and then uses a for
each loop to display the values in top-to-bottom order.

int main() {
Stack<int>A s = gcnew Stack<int>;
for (int i = 0; i < 10; ++1)
s->Push(i);
for each (int i 1in s)
console::write("{0} ", 1);
console::writeLine();

The output produced is:
9876543210

An Array is an instance of a collection type, so it too can be used with for each:

int main(Q) {
array<double>A values = {1.2, 2.3, 3.4, 4.5};
for each (double value in values)
console::writeLine(value);

}
The output produced is:
1.2 2.3 3.4 4.5

end example]

16.3 Jump statements

16.3.1 The break statement

A program is ill-formed if it uses a break statement to transfer control out of a finally-clause.

16.3.2 The continue statement

A program is ill-formed if it uses a continue statement to transfer control out of a finally-clause.

68

10

15

20

25

30

35

40

Statements

16.3.3 The return statement
A program is ill-formed if it has a return statement in a finally-clause.

Need to add text to indicate the circumstances under which the modreq IsUdtReturn shall be emitted (i.e.,
ref class type retruned by value). Point to that modreq's spec.[[#134]]

16.3.4 The goto statement

A program is ill-formed if it uses a goto statement to transfer control in to or out of a finally-clause.

16.3.5 The throw statement

As control passes from a throw-expression to a handler, finally-clauses, if any, are invoked for all try-block
or function-try-blocks entered since the try-block or function-try-block containing the handler was entered.
The finally-clauses are invoked in the reverse order of the invocation of their parent try-block or function-
try-blocks.

The automatic destruction of objects in any given try-block or function-try-block required by the
C++ Standard (15.2) takes place prior to the invocation of any finally-clause associated with that try-block or
function-try-block.

For an example, see §16.4

16.4 The try statement
A program that attempts to throw nulTptr is ill-formed.

In the grammar specified by Standard C++ (§15), the try-block and function-try-block productions have been
extended to include an optional finally-clause, as follows:

try-block:
try compound-statement handler-seq
try compound-statement finally-clause
try compound-statement handler-seq finally-clause

function-try-block:
try ctor-initializerey: function-body handler-seq
try ctor-initializero, function-body finally-clause
try ctor-initializere,: function-body handler-seq finally-clause

finally-clause:
finally compound-statement

The statements in a finally-clause are always executed when control leaves the associated try-block's or
function-try-block's compound-statement. This is true whether the control transfer occurs as a result of
normal execution, as a result of executing a break, continue, goto, or return statement, or as a result of
propagating an exception out of that try-block's or function-try-block's compound-statement.

If an exception is thrown during execution of the statements in a finally-clause, the exception is propagated
to the next enclosing try-block or function-try-block. If another exception was in the process of being
propagated, that exception is lost.

[Example:

class MyException {};
void f1(Q);
void f20);

69

10

15

20

25

C++/CLI Language Specification

If the call to f2 returns normally, the finally block is executed after f1's try block terminates. If the call to
f2 results in an exception, the finally block is executed before main's catch block gets control. end example]

int main(Q) {
try {
f10;
catch (const MyException& re) {

}
}

void f1(0) {
try {
f20;

}
finally {

}
}

void f20) {
if (..) throw MyException(Q);

A program is ill-formed if it:

uses a break, continue, or goto statement to transfer control out of a finally-clause.
has a return statement in a finally-clause.

uses goto or switch statement to transfer control into a finally-clause.

70

Namespaces

17. Namespaces

To be added. [[#47]]

71

C++/CLI Language Specification

18. Classes and members

This clause specifies the features of a class that are new in C++/CLI. However, not all of these features are
available to all classes. The class-related features that are supported by native classes (§19), ref classes
(§20), value classes (§21), and interfaces (§24), are specified in the clauses that define those types. [Note: A
summary of that support is shown in the following table:

This table and corresponding sections should include Special Member Functions (SMFs) like destructors,
copy constructors, default constructors, assignment operators, conversion to special bool, handle equality.
Many of these are not supported for value classes.[[#135]]

Feature Native class Ref class Value class Interface

Class modifier X X X

Reserved member names X

Function modifiers n/a

Override specifier n/a

| PR K

Parameter arrays

Properties

Events

Static operators X

Static constructor

Literal field

Initonly field

DU PRRR | 4 X

Delegate definitions X

e I A R e R AR A R R AR A R A
e e AR R R AR R R R el e

Member of delegate type

end note]

18.1 Class definitions

In the C++ Standard (§9), a class-specifier is used to define a class. This grammar has been extended to
accommodate the addition of public and private classes, as follows:

class-specifier:
top-level-type-visibility,,: class-head { member-specificationy,: 3

top-level-type-visibility is described in §12.4

To accommodate the addition of initonly and literal fields, delegates, events, and properties, the syntactic
class member-declaration in the C++ Standard (§9.2) has been extended, as follows:

member-declaration:
attributesgy: initonly-or-literalyy decl-specifier-seqq,: member-declarator-listoy:

aélegate—definition
event-definition
property-definition

72

10

15

20

25

30

35

40

45

Classes and members

initonly-or-literal:
initonly
Titeral

Attributes are described in §28, initonly fields are described in §18.10, literal fields in §18.9, delegates in
§26, events in §18.5, and properties in §18.4.

18.1.1 Class modifiers

To accommodate the addition of sealed and abstract classes, the grammar for class-head in the C++
Standard (§9) has been extended to include an optional sequence of class modifiers, as follows:

class-head:
class-key identifieroy class-modifiersqy base-clauseqp
class-key nested-name-specifier identifier class-modifiersy, base-clauseqy
class-key nested-name-specifiery,; template-id class-modifiersy, base-clauseqy

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
abstract
sealed

If the same modifier appears multiple times in a class definition, the program is ill-formed.

[Note: abstract and sealed can be used together; that is, they are not mutually exclusive. As non-
member functions are not CLS-compliant, a substitute is to use an abstract sealed class, which can contain
static member functions. This is the utility class pattern. end note]

The abstract and sealed modifiers are discussed in §18.1.1.1 and §18.1.1.2, respectively.

18.1.1.1 Abstract classes

An abstract class follows the rules of Standard C++ for abstract classes (§10.4); however, a class definition
containing the abstract class modifier need not contain any abstract functions. [Example:

struct B abstract {
void fOO { }

’
struct D : B { };

int main(Q {
; // error: B is abstract
) D d; // ok

end example]

18.1.1.2 Sealed classes

The sealed modifier is used to prevent derivation from a class. The program is ill-formed if a sealed class
is specified as the base class of another class. [Example:

struct B sealed {

struct D : B { // error, cannot derive from a sealed class

end example]

Whether or not a class is sealed has no effect on whether or not any of its member functions are, themselves,
sealed.

73

10

15

20

25

30

35

40

45

C++/CLI Language Specification

[Note: The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain
runtime optimizations. In particular, because a sealed class is known never to have any derived classes, it is
possible to transform virtual function member invocations on sealed class instances into non-virtual
invocations. end note]

18.2 Reserved member names

To facilitate the underlying C++/CLI runtime implementation, for each member definition that is a property
or event, the implementation must reserve several names based on the kind of the member definition
(§18.2.1, §18.2.2). A program is ill-formed if it contains a class that declares a member whose name matches
any of these reserved names, even if the underlying runtime implementation does not make use of these
reservations. If a particular name is reserved within a class, that name is also reserved in all classes that
derive from that class.

The reserved names do not introduce definitions, thus they do not participate in member lookup.

[Note: The new modifier cannot be used to circumvent the restriction that a member with a reserved name
shall not be declared. end note]

[Note: The reservation of these names serves several purposes:

e To allow other languages to interoperate using an ordinary identifier as a function name for get or
set access.

e Partition I of the CLI standard requires these names for CLS-producer languages.
end note]

In order to accommodate the CLI notion of finalizers, several names are reserved for functions (§18.2.3).

18.2.1 Member names reserved for properties
For a scalar or named indexed property P (§18.4), the following names are reserved:

get_P
set_P

Both names are reserved, even if the scalar or named indexed property is read-only or write-only.

[Example:

ref struct A {
property int P {
int get() { return 123; }

};
ref struct B : A {
int get_P() { // error
return 456;
3

end example]

For a default indexed property (§18.4), the following names are reserved:

get_Item
set_Item

Both names are reserved, even if the default indexed property is read-only or write-only.

Need to address the following: C++/CLI uses the System::Reflection::DefaultMemberAdttribute attribute to
specify that something other than the default name, “Item”, should be used. Given that, the text describes
what happens if no name is chosen; that is, Item is used by default. Once the name has been set with
DefaultMember, it cannot be changed in a derived class. If two interfaces have different DefaultMember
attributes, implementing both interfaces is ill-formed.[[#136]]

74

10

15

20

25

30

35

40

45

Classes and members

18.2.2 Member names reserved for events
For an event E (§18.5), the following names are reserved:

add_E
remove_E
raise_E

18.2.3 Member names reserved for functions
For CLI types, the following name is reserved:
Finalize

18.3 Functions

Extend the grammar to accommodate attributes on functions.[[#137]]

The addition of overriding specifiers and function modifiers requires a change to the Standard C++ grammar
for direct-declarator. [Note: The two new optional syntax productions, function-modifier and override-
specifier, appear in that order, after exception-specification, but before function-body or function-try-block.
end note]

One of the productions for the Standard C++ grammar for member-declarator (§9.2) has been extended, as
follows:

override-specifier should support 0 for compatibility with pure-specifier.[[Ed.]]

member-declarator:
declarator function-modifiersy, override-specifieryy

function-modifiers:
function-modifier
function-modifiers function-modifier

function-modifier:
abstract
new
override
sealed

function-modifiers are discussed in the following subclauses: abstract in §18.3.3, new in §18.3.4,
overridein §18.3.1, and sealed in §18.3.2. override-specifier is discussed in §18.3.1.

A member function declaration containing any of the function-modifiers abstract, override, or sealed,
or an override-specifier, shall explicitly be declared virtual. [Rationale: A major goal of this new syntax
is to let the programmer state his intent, by making overriding more explicit, and by reducing silent
overriding. The virtual keyword is required on all virtual functions, except in the one case where
backwards compatibility with Standard C++ allows the virtual keyword to be optional. end rationale]

If a function contains both abstract and sealed modifiers, or it contains both new and override
modifiers, it is ill-formed.

An out-of-class member function definition shall not contain a function-modifier or an override-specifier.

The Standard C++ grammar for parameter-declaration-clause (§8.3.5) has been extended to include support
for passing parameter arrays, as follows:

parameter-declaration-clause:
parameter-array
parameter-declaration-list , parameter-array

There shall be only one parameter array for a given function or instance constructor, and it shall always be
the last parameter specified.

75

10

15

20

25

30

35

40

45

C++/CLI Language Specification

Parameter arrays are discussed in §18.3.6.

18.3.1 Override functions

The Standard C++ grammar for direct-declarator has been extended (see §18.2.3) to allow the function
modifier override as well as override specifiers.

override-specifier:
= overridden-name-list

overridden-name-list:
id-expression
overridden-name-list , id-expression

In Standard C++, given a derived class with a function that has the same name,parameter-type-list, and cv-
qualification of a virtual function in a base class, the derived class function always overrides the one in the
base class, even if the derived class function is not declared virtual. This is known as implicit overriding. A
program containing an implicitly overridden function is ill-formed. [Note: A programmer can eliminate the
diagnostic by using explicit or named overriding. end note]

With the addition of the function modifier override and override specifiers, C++/CLI provides the ability
to indicate explicit overriding and named overriding, respectively. (Each named override corresponds
exactly to a single MethodImpls in metadata. See “Explicit method overrides” in CLI Partition II.)

If either the function-modifier override or an override-specifier, or both, are present in the derived class
function declaration, no implicit overriding takes place. [Example:

struct A {]
virtual void f() abstract;

’
struct B {]
virtual void f() abstract;

struct D : A, B {

virtual void fQ; // overrides A::f and B::f
struct E : A, B
virtual void g() = B::f; // overrides B::f only, E is

abstract

struct F : A, B _ _
virtual void f() override; // overrides A::f and B::f

end example]

Explain the difference between using ‘override’ and ‘= function-name’; one creates an .override directive in
CIL, the other does not. [[#48]]

[Note: A member function declaration containing the function-modifier override or an override-specifier
shall explicitly be declared virtual (§18.2.3). end note]

An override-specifier contains a comma-separated list of names designating the virtual functions from one
or more direct or indirect base classes that are to be overridden.

An id-expression that designates an overridden name shall designate a single function to be overridden and
shall include that function’s base class name. Further qualification is necessary if the base class name is
ambiguous. That function shall have the same parameter-type-list and cv-qualification as the overriding
function, and the return types of the two functions shall be covariant.

[Example:

76

10

15

20

25

30

35

40

45

50

Classes and members

struct A {
virtual void f(O;

struct B {
virtual void fQ;
struct D : A, B {
virtual void g() = A::f, B::f; // override A::f and B::f
end example]

[Note: The same overriding behavior can sometimes be achieved in different ways. For example, given a
base class A with a virtual function f, an overriding function might have an override-specifier of A: : f, have
no override specifier or override function modifier, have the function-modifier override, or a
combination of the two, as in override = A::f. All override A: :f.end note]

The name of the overriding function need not be the same as that being overridden. [Example:

struct A {
virtual void fQ;
virtual void gQ;
virtual void x(O;
struct B {
virtual void f
virtual void g
struct D : A, B {
virtual void x() override = A::f; // X overrides A:;f
; virtual void y() = A::g, B::f; // y overrides A::g and B::f

end example]

A derived class shall not override the same virtual function more than once. If an implicit or explicit
override does the same thing as a named override, the program is ill-formed. [Example:

struct A {
virtual void f(O;

struct B {
virtual void f(O;
virtual void g(Q);

struct D : A, B {
virtual void g() = B::f;
virtual void fQ; // error, would override A::f and B::f, but
// B::f is already overridden
virtual void f() override = B::g;
// error, B::g is overridden twice,

// once by the explicit override, and
// once by the named override.

virtual void f() = B::f; // error, B::f is overridden twice,
// once by the implicit override, and
// once by the named override.

}s
end example]

A class is ill-formed if it has multiple functions with the same name,parameter-type-list, and cv-qualification
even if they override different inherited virtual functions. [Example:

77

5

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

struct D : B1l, B2 {
void f() =Bl::f { /*..*/ } // ok
void f() = B2::f { /*.*/ } // error, duplicate declaration
end example]

A function can both hide and override at the same time: [Example:

struct A {
virtual void fQ;

struct B {
virtual void fQ;

’
struct D : A, B {
virtual void f() new = A::f;

The presence of the new function modifier (§18.3.4) indicates that D: : f does not override any method f

from its bases classes. The named override then goes on to say that D: : f actually overrides just one
function, A: : f. end example]

A member function that is an explicit override cannot be called directly (except with explicit qualification)

or have its address taken. [Example:

struct I {]
virtual void v(Q;

struct J {]
virtual void w(Q);
struct A : I, J {
virtual void f() = I::v, J::w;
struct C : A

virtual voi
virtual voi

void Test(A* pa) {// pa could point to an A, a C, or something else

[N e
SQ
~M
7

pa->f(Q); // ambiguous: I::v or J::w?

pa->v(); // ok, virtual call

pa->w(Q); // ok, virtual call

pa->I::v(Q); // ok if I::v is implemented, nonvirtual call to I:
pa->J::w(Q); // ok if J::w is implemented, nonvirtual call to 3J:
pa->A::v(Q); // ok if I::v is implemented, nonvirtual call to I:
pa->A::w(); // ok if J::w is implemented, nonvirtual call to J:
pa->A::f(Q); / ok (classes derived from A might need to do this

// and there’s no ambiguity in this case)

}

end example][Rationale: Even though technically it is possible to allow a call to such an f when the type of

the Object is statically known to be an A, for example in:

A a;
a.fO; // ambiguous (even though it could work)

s<=s<

there does not seem to be sufficient utility to offset the user confusion about “When can I do this and when

can’t I?” end rationale]

If a destructor or finalizer (§??) contains an override specifier, the program is ill-formed.

18.3.2 Sealed function modifier

A virtual member function marked with the function-modifier sealed cannot be overridden in a derived

class. [Example:

78

10

15

20

25

30

35

40

45

Classes and members

struct B {
virtual int f() sealed;

struct D : B {]]
virtual int fQ; // error: cannot override a sealed function

end example]

[Note: A member function declaration containing the function-modifier sealed shall explicitly be declared
virtual (§18). end note] If there is no virtual function to implicitly override in the base class, the
derived class introduces the virtual function and seals it.

Whether or not any member functions of a class are sealed, has no effect on whether or not that class itself is
sealed.

An implicit, explicit, or named override can succeed as long as there is a non-sealed virtual function in at
least one of the bases. [Example: Consider the case in which A: : f is sealed, but B: : f is not. If C inherits
from A and B, and tries to implement f, it will succeed, but will only override B: : f. end example]

18.3.3 Abstract function modifier

Standard C++ permits virtual member functions to be declared abstract by using a pure-specifier. C++/CLI
provides an alternate approach via the function-modifier abstract. The two approaches are equivalent;
using both is well-formed, but redundant.” [Example: A class shape can declare an abstract function draw
in any of the following ways:

virtual void draw() = 0; // Standard C++ style

virtual void draw() abstract; // function-modifier style
virtual void draw() abstract = 0; // okay, but redundant

end example]

[Note: A member function declaration containing the function-modifier abstract shall be declared
virtual (§18). end note]

18.3.4 New function modifier
A member function declaration containing the function-modifier new shall not contain an override-specifier.

The new function modifier corresponds exactly to the CLI’s predefined attribute newslot (see the CLI
Standard, Partition II, an excerpt of which is shown as a note below.). A function’s metadata will have the
newslot attribute if that function’s declaration included the new function modifier. A function need not be
declared virtual to have the new function modifier. If a function is declared virtual and has the new
function modifier, that function does not override another function. It can, however, override another
function with a named override. A function that is not declared virtual and is marked with the new
function modifier does not become virtual and does not implicitly override any function.

[Example:

ref struct B
virtual v
%

_ { System::Console::wWriteLine("B::F"); }
virtual);

oid FQ F
oid G() { System::Console::writeLine("B::G" }
ref struct D : B {
virtual void F() new { System::Console::writeLine("D::F"); }
int main(Q {
BA b = gcnew D;
b->F(Q);
b->G(Q);

The output produced is

79

10

15

20

25

30

35

40

45

C++/CLI Language Specification

B::F
B::G

In the following example, hiding and overriding occur together:

struct A {
virtual void fQ;

struct B {
virtual void fQ;

struct D : A, B {
virtual void f() new = A::f;

The presence of the new function modifier indicates that D: : f does not override any method f from its base
classes. The named override (§18.3.1) then goes on to say that D: : f actually overrides just one function,
A: :f. The net result is that A: : f is overridden, but B: : f is not.

end example]

Static functions can use the new modifier to hide an inherited member. [Example:

ref class B {
pubTic:
virtual void FO { .. }
ref class D : B {
public:
static void FO) new { .. }

end example]
[Note: According to the CLI Standard, Partition II:

“A virtual method is introduced in the inheritance hierarchy by defining a virtual method. The
versioning semantics differ depending on whether or not the definition is marked as newslot:

If the definition is marked newslot then the definition always creates a new virtual method, even if a
base class provides a matching virtual method. Any reference to the virtual method created before
the new virtual function was defined will continue to refer to the original definition.

If the definition is not marked newslot then the definition creates a new virtual method only if there
is no virtual method of the same name and signature inherited from a base class. If the inheritance

hierarchy changes so that the definition matches an inherited virtual function, the definition will be
treated as a new implementation of that inherited function.”

end note]

18.3.5 Function overloading
The C++ Standard (§13.3.2) has been extended to incorporate parameter arrays (§18.3.6), as follows:

“For every parameter array function, two signatures are submitted to the overload candidate set: the
expanded form and the exact signature.”

18.3.6 Parameter arrays

Standard C++ supports variable-length argument lists for both member and non-member functions; however,
the approach used is not type-safe. C++/CLI adds a type-safe way using parameter arrays. A parameter
array is defined as follows:

parameter-array:
attributes,y ... parameter-declaration

80

10

15

20

25

30

35

40

45

50

55

Classes and members

Re the following: For functions outside CLI types, if they happen to have a parameter array, it is okay to
have a default parameter. That parameter can be any Array -- the parameter array part of it is just ignored
and instead for the purposes of the default parameter is just a plain Array.

A parameter-array consists of an optional set of attributes (§28), an ellipsis punctuator, and a parameter-
declaration. A parameter array declares a single parameter of the given Array type with the given name. The
Array type of a parameter array must be a single-dimensional Array type (§23.1). In a function invocation,
either a parameter array permits a single argument of the given Array type to be specified, or it permits zero
or more arguments of the Array element type to be specified. The program is ill-formed if the parameter-
declaration contains an assignment-expression.

void f(... array<ObjectA>A);
int main() {

(nullptr);
(1, 2);
f(nullptr, nullptr);
f(gcnew array<ObjectA>(1));
; f(gcnew array<ObjectA>(1), gcnew array<ObjectA>(2));

end example]

[Example:

void F1(... array<StringA>A Tist) {
for (int i =0 ; i < Tist->Length ; i++)
Console::write(“{0} 7, Tist[il);
console::writeLine();

void F2(... array<ObjectA>A Tist) {
for each (ObjectA element in 1list)
console::write(“{0} ”, element);
console::writeLine();

int main() {
Fl(“l”, uzu, ngu);
F2(1, ‘a’, “test”);
array<StringA>A myarray
= gcnew array<String> {“a”, “b”, “c” };
) Fl(myarray);

The output produced is as follows:

123
1 a test
abc

end example]

When a function with a parameter array is invoked in its expanded form, the invocation is processed exactly
as if an Array creation expression with an Array initializer (§??) was inserted around the expanded
parameters. [Example: Given the declaration

void F(int x, int y, ... array<ObjectA>A args);
the following invocations of the expanded form of the function

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to

F(10, 20, nullptr);
F(10, 20, gcnew array<System::0bjectA> {30, 40});
F(10, 20, gcnew array<System::0bjectA> {1, "hello", 3.0});

81

10

15

20

25

30

35

40

45

C++/CLI Language Specification

In particular, nuT1ptr is passed when there are zero arguments given for the parameter array. end example]

Parameter array parameters can be passed to functions that take non-parameter Array arguments of the
corresponding type. [Example:

void f(array<int>A pArray); // not a parameter array
void g(double value, ... array<int>A p) {
f(p); // ok

end example]

An argument of type array<type> can be passed to a function having a parameter . .. array<type>. In
the case of passing an array<ObjectA> argument A to a parameter P (declared using . ..
array<ObjectAs>), P binds to A (that is, P is not an Array whose first ObjectA element refers to A).

Parameter arrays can contain either native or CLI type elements. [Example:

void g(... array<ObjectA>% v); // CLI type held by A

g(1, 2, “abc”); // creates a container of 3 boxed
// Objects, having type Int32,
// Int32, and String.

void h(... array<std::string>% a); // native type held by value
h(“abc”, “def”, “xyzzy”, string2); // creates a container of 4
strings

end example]

18.4 Properties

1. Can a trivial (scalar) property be static or virtual? Yes

2. Does a property member always make a class a non-POD? No

3. Can the value of a property be passed by reference or by const reference even if the type of the property is
not a reference? No

4. Is compound assignment to the result of a property access allowed? Yes, a +=b allowed, buta=b=c s
not because CLS require that the setter have a void return type.

5. Can accessor functions be cv-qualified (examples in this paper const-qualify getters)? No

6. Can a property have reference type? No for CLS properties; otherwise, Yes.

[[Ed.]]

A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and
indexed. A scalar property enables scalar field-like access to an Object or class. Examples of scalar
properties include the length of a string, the size of a font, the caption of a window, and the name of a
customer. An indexed property enables Array-like access to an Object. An example of an index property is
a bit-array class.

Properties are an evolutionary extension of fields—both are named members with associated types, and the
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing Arrays and
indexed properties. However, unlike fields, properties do not denote storage locations. Instead, properties
have accessor functions that specify the statements to be executed when their values are read or written.

Properties are defined using property-definitions:
Extend declarator-id’s by adding a new production that allows default. [[#50]]

property-definition:
attributes,,, property-modifiers simple-type-specifier declarator
property-indexes,,: function-modifiersy,: override-specifieryy
{ accessor-specification }
attributes,,, property-modifiers simple-type-specifier declarator
function-modifiers,,: override-specifierqy ;

82

10

15

20

25

30

35

40

45

Classes and members

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
property
static
virtual

property-indexes:
[indexer-parameter-list]

indexer-parameter-list:
indexer-parameter-declaration
indexer-parameter-list , indexer-parameter-declaration

indexer-parameter-declaration:
type-specifier

The grammar for indexer-parameter-declaration does not allow handles or pointers, but full declarators are
not needed. The grammar should allow a simpler sequence of ptr-operator. [[#51]]

A property-definition can include a set of attributes (§28), property-modifiers (§18.4.1, §18.4.3), property-
indexes, function-modifiers (§18.2.3), and an override-specifier (§18.3.1). It must include the property-
modifier property.

A property-definition that does not contain a property-indexes is a scalar property, while a property-
definition that contains a property-indexes is an indexed property.

A property-definition ending with a semicolon (as opposed to brace-delimited accessor-specification)
defines a trivial scalar property (§18.4.4). [Note: There is no such thing as a trivial indexed property. end
note]Need to write up the restrictions on trivial properties.[[#138]]

Property definitions are subject to the same rules as function declarations with regard to valid combinations
of modifiers, with the one exception being that the static modifier is not permitted on a default indexed
property definition. (Default indexed properties are introduced later in this subclause.)

The simple-type-specifier of a scalar property definition specifies the type of the scalar property introduced
by the definition, and the identifier specifies the name of the scalar property. The simple-type-specifier of an
indexed property definition specifies the element type of the indexed property introduced by the definition.

property-name specifies the name of the property. For an indexed property, if property-name is default,
that property is a default indexed property. If property-name is identifier, that property is a named indexed
property.

We probably should say something about the reserved names get Item and set Item, and their relationship
with default indexed properties. Also, add a forward pointer to the corresponding attribute.[[#139]

The accessor-specification declares the accessor functions (§18.4.2) of the property. The accessor functions
specify the executable statements associated with reading and writing the property. An accessor function,
qualified with the property name, is considered a member of the class. For a default indexed property, the
parent property name is default. As such, the full names of the accessor functions for this indexed
property are default::get and default: :set.

The address of an accessor function can be taken and yields a pointer-to-member of the enclosing type.
However, it is not possible to bind a pointer-to-member value to a property. [Note: A property is a group of
one or more accessor functions, not an Object. end note]

An indexed property cannot have the same name as a scalar property. Overloading of indexed properties on
different index parameters is allowed, as long as none has the same name as a scalar property.

83

10

15

20

25

30

35

40

45

C++/CLI Language Specification

18.4.1 Static and instance properties

When a property definition includes a stat1ic modifier, the property is said to be a static property. [Note:
An indexed property cannot be static. end note] When no static modifier is present, the property is said to
be an instance property. All accessor functions in a static property are static, and writing static on such a
function is allowed but redundant. All accessor functions in an instance property are instance accessor
functions. [Example:

struct C {
static property C* MyStat1cProperty { /* .. */ } // static property
property int default[int k] { /* */ }; // instance property

end example]

[Note: Like a field, when a static property is referenced using the form E: :M, E must denote a type that has a
property M. When an instance property is referenced using the form E .M, E must denote an instance having a
property M. When an instance property is referenced through a pointer or handle, the form E->M is used. end
note]

18.4.2 Accessor functions

The accessor-specification of a property specifies the executable statements associated with reading and
writing that property.

accessor-specification:
accessor-declaration accessor-specificationgy
access-specifier : accessor-specificationy

accessor-declaration:
decl-specifier-seqo: member-declarator-listy,: ;
function-definition ;

A property must have at least one accessor function. The name of a property accessor function must be
either get or set. A property shall have no more than one get accessor function and no more than one set
accessor function. An accessor function of a property can be defined inline with the property definition, or
out-of-class.

If a property has the static modifier, all of its accessor functions are implicitly static; nevertheless,
declaring static on one or more of those accessor functions is allowed but redundant.

If a property is abstract, the accessor functions of the property can be abstract. If an accessor function is not
declared abstract, it must be defined. If any accessor function of a property is declared abstract, the property
must also be declared abstract.

The get accessor function of a scalar property takes no parameters and its return type shall match exactly the
type of the property, simple-type-specifier. A get accessor function shall not return an array. For an indexed
property, the parameters of the get accessor function shall correspond exactly to the types of the property’s
property-indexe.

This subclause only covers how the accessor functions must be defined. The expressions clause needs to
cover the rewrite rules that call these functions. [[#52]]

The set accessor function of a scalar property has one parameter that corresponds exactly to the type of the
property, simple-type-specifier. For an indexed property, the parameters of the set accessor function shall
correspond exactly to the types of the property’s property-indexes, followed by the last parameter, which
shall correspond exactly to the type of the property, simple-type-specifier. The return type of the set accessor
function for both scalar and indexed properties shall be void.

Based on the presence or absence of the get and set accessor functions, a property is classified as follows:

e A property that includes both a get accessor function and a set accessor function is said to be a read-
write property.

84

10

15

20

25

30

35

40

45

50

Classes and members

e A property that has only a get accessor function is said to be a read-only property.
e A property that has only a set accessor function is said to be a write-only property.

Like all class members, a property has an explicit or implicit access-specifier. Either or both of a property’s
accessor functions can also have an access-specifier, which specifies a narrower access than the property’s
accessibility for that accessor function. access-specifiers on accessor functions specify access for those
accessor functions only; they have no effect on the accessibility of members in the parent class subsequent to
the parent property. The accessibility following the property is the same as the accessibility before the

property.
[Note: If the get and set accessor functions in a read-write property have different implicit or explicit access-
specifiers, that property is not CLS-compliant. end note]

[Example: In the example

public ref class Button : Control {
private: _
StringA caption;

pubTic:
property StringA Caption {
StringA get() {
return caption;

void set(StringA value) {

if (caption != value) {
caption = value;
Repaint();

}
}
};

the Button control declares a public Caption property. This property does nothing more than a field
except when the property is set, in which case, the control is repainted when a new value is supplied.
Given the Button class above, the following is an example of use of the Caption property:

ButtonA okButton = gcnew Button;]
okButton->Caption = "OK"; // Invokes set accessor function
StringA s = okButton->Caption; // Invokes get accessor function

Here, the set accessor function is invoked by assigning a value to the property, and the get accessor function
is invoked by referencing the property in an expression. end example]

In the paragraph above, add a cross-reference to the rewrite rules for properties and events. (They will be
somewhere in the expressions clause.) [[Ed]]

When a derived class declares a property by the same name as an inherited property, the derived property
hides the inherited property with respect to both reading and writing. [Example: In the example

struct A {

property int P {

) void set(int value) {.}
};
struct B : A {

property int P {

int get() {.}

};

the P property in B hides the P property in A with respect to both reading and writing. Thus, in the
statements

85

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

B b;

b.Pp = 1; // Error, B.P is read-only

b.A::P = 1; // ok, reference to A.P
the assignment to b . P causes the program to be ill-formed, since the read-only P property in B hides the
write-only P property in A. Note, however, that a cast can be used to access the hidden P property. end
example]

[Note: Exposing state through properties is not necessarily less efficient than exposing fields directly. In
particular, accesses to a property are the same as calling that property’s accessor functions. When
appropriate, an implementation can inline these function calls. Using properties is a good mechanism for
maintaining binary compatibility over several versions of a class. end note]

Add some discussion of how accesses to properties are rewritten into accessor functions. This should be
covered in rewrite rules in the expressions clause. Note that access checking for whether a property can be
written to or read to is done after rewriting and overload resolutions. [[#116]]

Accessor functions can be defined inline or out-of-class. [Example:

pubTlic class point {
private:

int Xor;

int Yor;

public:
property int X {
int get() { return Xor; } // inline definition
void set(int value); // declaration only

property int Y {
int get(); // declaration only
void set(int value) { return Yor = value; } // inline definition

-

void point::X::set(int value) { Yor = value; }
int point::Y::get() { return Yor;

end example]

The qualified name of a property needs to be described somewhere. Once that happens, how an out-of-class
definition is done will already be covered by existing rules. [[#117]]

18.4.3 Virtual, sealed, abstract, and override accessor functions

A virtual property definition specifies that the accessor functions of the property are virtual. Declaring
virtual on an accessor function of a virtual property is allowed but redundant. If the vi rtual modifier
appears on every accessor function in a property not itself having such a modifier, then that modifier applies
implicitly to the property.

A sealed property definition specifies that the accessor functions of the property are sealed. A property
definition containing the function-modifier sealed shall explicitly be declared virtual. Use of this
modifier prevents a derived class from further overriding the property. Declaring sealed on an accessor
function of a sealed property is allowed but redundant. If the sealed modifier appears on every accessor
function in a property not itself having such a modifier, then that modifier applies implicitly to the property.

An abstract property definition specifies that the accessor functions of the property are abstract and
virtual, but does not provide an actual implementation of the accessor functions. Instead, non-abstract
derived classes are required to provide their own implementation for the accessor functions by overriding the
property. A property definition containing the function-modifier abstract shall explicitly be declared
virtual. All of the accessor functions of an abstract property can also individually contain an abstract
and/or virtual modifier; however, such modifiers are redundant. If the abstract modifier appears on
every accessor function in a property not itself having such a modifier, then that modifier applies implicitly

86

10

15

20

25

30

35

40

45

50

Classes and members

to the property. A virtual property can have abstract accessor functions, and the property need not be
explicitly declared abstract.

[Example:
struct B {
virtual property string Name { // virtual property
) virtual string get() abstract; // property is implicitly abstract
};

struct D : B {))
virtual property string Name sealed { /*.*/ } // Name is now sealed

end example]

Any properties defined in an interface are implicitly abstract. However, those properties can redundantly
contain the virtual and/or abstract modifiers, and a pure-specifier. [Example:
interface class X abstract {] o
property int Size { /*.*/ }; // (implicit) abstract property
virtual property string Name abstract = 0 { /*.*/ };

// “virtual”, abstract” and “= 0”
// permitted but are redundant

end example]

A property definition that includes the abstract modifier as well as an override modifier or an override-
specifier, specifies that the property is abstract and overrides a base property. The accessor functions of
such a property are also abstract.

[Note: Abstract property definitions are only permitted in abstract classes (§18.1.1.1). end note]

The accessor functions of an inherited virtual property can be overridden in a derived class by including a
property definition that specifies an override modifier or an override-specifier (§18.3.1). This is known as
an overriding property definition. An overriding property definition does not declare a new property.
Instead, it simply specializes the implementations of the accessor functions of an existing virtual property.
[Example:
struct Bl {
virtual property string Name { /*.*/ }
struct B2 {
virtual property string MyName { /*.*/ }
struct D : B1l, B2 {
// override both
virtual property string HelloIAm = Bl::Name, B2::MyName { /*.%*/ }
end example]

An accessor function can override accessor functions in other properties; it can also override non-accessor
functions. [Example:
struct B {)
virtual property string Name {

string get(Q);
void set(string value);

h
};
struct C {
virtual string getLabel();

87

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

struct D : B, C {
virtual property string MyName = B::Name {
string get() = C::getLabel; // implicitly overrides Name::get and
) // explicitly overrides C::getLabel

end example]

An overriding property definition must specify wider accessibility modifiers and exactly the same type and
name as the inherited property. If the inherited property is a read-only or write-only property, the overriding
property must be a read-only or write-only property respectively, or a read-write property. If the inherited
property is a read-write property, the overriding property must be a read-write property.

A trivial scalar property shall not override another property.

Except for differences in definition and invocation syntax, virtual, sealed, override, and abstract accessor
functions behave exactly like virtual, sealed, override, and abstract functions, respectively. Specifically, the
rules described in the C++ Standard (§10.3) and §18.3.2, §18.3.1, and §18.3.3 of this Standard apply as if
accessor functions were functions of a corresponding form:

[Example: In the example
class A abstract {
int y;

public:
virtual property int X {
int get() { return 0; }

virtual property int Y {
int get() { return y; }
void set(int value) { y = value; }

virtual property int Z abstract {
int get();
void set(int value);

}
3

X is a virtual read-only property, Y is a virtual read-write property, and Z is an abstract read-write property.

18.4.4 Trivial scalar properties

A trivial scalar property is defined by a property-definition ending with a semicolon (as opposed to a brace-
delimited accessor-specification). [Example:
struct s {
property int P;
end example]

A trivial scalar property is read-write and has implicitly defined accessor functions. The implied access-
specifier for these accessor functions is the same as for the parent property. Private backing storage for a
trivial scalar property is automatically allocated with the name of that storage being unspecified, but in the
implementer’s namespace. [Example: A compiler might treat the above trivial scalar property definition as if
it was written like the following:
struct s {
property int P {
int get() { return __P;
void set(int value) { __

o~

= value; }

private:
int _P;

end example]

88

10

15

20

25

30

35

40

45

50

Classes and members

18.5 Events

An event is a member that enables an Object or class to provide notifications. Clients can add a delegate to
an event, so that the Object will invoke that delegate. Events are declared using event-definitions:

event-definition:
attributesy,: event-modifiers event-type identifier
function-modifiersy,: Override-specifiero,: { accessor-specification }
attributesy,: event-modifiers event-type identifier
function-modifiers,, override-specifierqy ;

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
event
static
virtual

An event-definition can include a set of attributes (§28), property-modifiers (§18.4.1, §18.4.3), function-
modifiers (§18.2.3, §18.4.3), and an override-specifier (§18.3.1). It must include the event-modifier event.

The event-type of an event definition shall be a delegate type, and that type shall be at least as accessible as
the event itself. identifier designates the name of the event.

The production event-type has not yet been defined. The syntactic category of this element needs to be
reviewed.[[#140]]

The accessor-specification declares the accessor functions (§18.5.2) of the event. The accessor functions
specify the executable statements associated with adding handlers to, and removing handlers from, the event,
as well as raising that event.

An event-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification)
defines a trivial event (§18.5.4). The three accessor functions for a trivial event are supplied automatically
by the compiler along with a private backing store. An event-definition ending with a brace-delimited
accessor-specification defines a non-trivial event.

[Example: The following example shows how event handlers are attached to instances of the Button class:

public delegate void EventHandler(ObjectA sender,
EventArgsA e);

public ref struct Button : Control {
event EventHandlerA Click;
’

public ref class LoginDialog : Form

ButtonA OkButton;
ButtonA CancelButton;

public:
LoginDialog() {
okButton = gcnew Button(..);
okButton->Click += gcnew EventHandler (&kButtonClick);
CancelButton = gcnew Button(..);
CancelButton->Click += gcnew EventHandler(&CancelButtonClick);

void OkButtonClick(ObjectA sender, EventArgsA e) {
// Handle OkButton->Click event

void CancelButtonClick(ObjectA sender, EventArgsA e) {
// Handle CancelButton->Click event

89

10

15

20

25

30

35

40

C++/CLI Language Specification

Here, the LoginD1ialog constructor creates two Button instances and attaches event handlers to the C11ck
events. end example]

The address of an event accessor function can be taken and bound to a suitably typed pointer-to-member
function (subject to the usual C++ rules, such as that the calling code must have access to the function’s
name). However, it is not possible to bind a pointer-to-member Object to an event. [Note: An event is a
group of one or more accessor functions, not an Object. end note]

18.5.1 Static and instance events

When an event declaration includes a static modifier, the event is said to be a static event. When no
static modifier is present, the event is said to be an instance event.

18.5.2 Accessor functions

The accessor-specification for an event specifies the executable statements associated with adding handlers
to, and removing handlers from, the event, as well as raising that event.

The accessor-specification for an event shall contain no more than three function-definitions:

It is a bit strange to define grammar productions for these functions. We probably should either make these
terms (and change the style accordingly) or just call them the add function, remove function, and raise
function.[[#141]]

e one for a function called add, herein called the add-accessor-function,
e one for a function called raise, herein called the raise-accessor-function, and
e one for a function called remove, herein called the remove-accessor-function.

A non-trivial event shall contain both an add-accessor-function and a remove-accessor-function. If that
event has no raise-accessor-function, one is not supplied automatically by the compiler.

A program is ill-formed if it contains an event having only one of add-accessor-function and remove-
accessor-function.

add-accessor-function and remove-accessor-function shall each take one parameter, of type event-type, and
their return type shall be void.

The parameter list of raise-accessor-function shall correspond exactly to the parameter list of event-type, and
its return type shall be the return type of event-type.

[Note: Trivial envents are generally better to use because use of the non-trivial form requires consideration
of thread safety. end note]

When an event is invoked, the raise function is called.

[Example: ... end example] [[Ed]]

18.5.3 Virtual, sealed, abstract, and override accessor functions

A virtual event declaration specifies that the accessor functions of that event are virtual. The virtual
modifier applies to all accessor functions of an event.

An abstract event declaration specifies that the accessor functions of the event are virtual, but does not
provide an actual implementation of the accessor functions. Instead, non-abstract derived classes are
required to provide their own implementation for the accessor functions by overriding the event.

An event declaration that includes both the abstract and override modifiers specifies that the event is
abstract and overrides a base event. The accessor functions of such an event are also abstract.

[Note: Having an abstract event makes the enclosing class abstract. end note] The accessor functions of an
inherited virtual event can be overridden in a derived class by including an event declaration of the same
name. This is known as an overriding event declaration. An overriding event declaration does not declare a

90

10

15

20

25

30

35

40

45

Classes and members

new event. Instead, it simply specializes the implementations of the accessor functions of an existing virtual
event.

An overriding event declaration can include the sealed modifier. Use of this modifier prevents a derived
class from further overriding the event. The accessor functions of a sealed event are also sealed.

An event with the new modifier introduces a new event that does not override an event from a base class.
Make sure the complete specification is provided in the clause for the new modifier.[[#142]] Except for
differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessor functions
behave exactly like virtual, sealed, override and abstract functions.

When a trivial event overrides an event, the trivial event’s raise is implicitly declared and defined.

18.5.4 Trivial events

A trivial event is defined by an event-definition ending with a semicolon (as opposed to a brace-delimited
accessor-specification). [Example:

ref struct s {
event SomeDelegateTypeA E;

end example]

Within the class that contains the declaration of an event, certain events can be used like fields. To be used
in this way, an event must be trivial. Such an event can be used in any context that permits a field. The field
contains a delegate, which refers to the list of event handlers that have been added to the event. If no event
handlers have been added, the field contains nul1ptr.

[Example: In the example

public delegate void EventHandler(ObjectA sender,
EventArgsA e);

public ref class Button : Control {
public:
event EventHandlerA Click;
void Reset() {
Click = nullptr;

protected:
void onClick(EventArgsA e) {
Click(this, e); // raise tests for nullptr

};
Click is used as a field within the Button class. As the example demonstrates, the field can be examined,
modified. The onC11 ck function in the Button class “raises” the C11 ck event.
Outside the declaration of the Button class, the C1ick member can only be used on the left-hand side of
the += and —= operators, as in

b->Click += gcnew EventHandler(.);

which appends a delegate to the invocation list of the C11 ck event, and
b->Click -= gcnew EventHandler(.);

which removes a delegate from the invocation list of the C11 ck event. end example]

When compiling a trivial event, the compiler automatically creates storage to hold the delegate, and creates
accessor functions for the event that add event handlers to, and remove them from, the delegate field. The
compiler also automatically generates a raise accessor function. The access-specifier for the generated add
and remove accessor functions is the same as that for the whole event. The access-specifier for the generated
raise accessor function is protected. In order to be thread-safe, the addition and removal operations shall
be done while holding the lock on the containing Object for an instance event, or the type Object for a static
event. Such a lock is specified using the attribute

91

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

MethodImpl (MethodImplOptions: :Synchronized). The compiler-generated raise accessor function

shall not have this attribute.

[Note: Thus, an instance event declaration of the form:
delegate int D(int);

ref class X {
pubTic:
event DA Ev;
could be compiled to something equivalent to:

ref class X {
DA __EV; // field to hold the delegate

pubTic:
event DA Ev {
[MethodImp1(MethodImploptions: :Synchronized)]
void add(DA value) {
__Ev += value;

}

[MethodImp1 (MethodImplOptions: :Synchronized)]
void remove(DA value) {
__Ev -= value;

}

protected:]
int raise(int arg) { return _Ev(arg); }

}
};

Within the class X, references to Ev are compiled to reference the hidden field __Ev instead. (The name

“__EV” is arbitrary; the hidden field could have any name or no name at all.)

Similarly, a static event declaration of the form:
delegate int D(int);

ref class X {
pubTlic:
static event DA Ev;
could be compiled to something equivalent to:
ref class X {

static DA __Ev; // field to hold the delegate

pubTic:
static event DA Ev {
[MethodImp1(MethodImploptions: :Synchronized)]
void add(DA value) {
__Ev += value;

}

[MethodImp1 (MethodImplOptions: :Synchronized)]
void remove(DA value) {

__Ev -= value;
protected:
int raise(int arg) { return _Ev(arg); }
};
end note]

92

10

15

20

25

30

35

40

Classes and members

18.5.5 Event invocation

Events having a programmer-supplied or compiler-generated raise accessor function can be invoked using
function call syntax. Specifically, an event E can be invoked using E (delegate-argument-list) , which results
in the raise accessor function’s being called with delegate-argument-list as its argument list.

Events without a raise accessor function cannot be invoked using function call syntax. Instead, the delegate’s
Invoke function must be called directly.

18.6 Static operators
Add examples throughout this clause. [[Ed]]

To support the definition of operators in CLI types, C++/CLI allows for static operator functions.

The rules for operators remain largely unchanged from Standard C++; however, the following rule in
Standard C++ (§13.5/6) is relaxed to allow static member functions:

(The restriction below does not apply to non-static member operators — that need not have a
parameter of the type of the class.)[[#143]]“A static member or a non- member operator function
shall eithe member-function and have at least one
parameter Whose type is a class, a reference toa class a handle toa class an enumeration, a
reference to an enumeration, or a handle to an enumeration.”

The requirements of non-member operator functions apply to static operator functions.
The following rule in Standard C++ (§13.5.1/1) is relaxed to allow static member functions:

“A prefix unary operator shall be implemented by a non-static member function with no parameters
or a non-member or static function with one parameter.”

The following rule in Standard C++ (§13.5.2/1) is relaxed to allow static member functions:

“A binary operator shall be implemented either by a non-static member function with one parameter
or by a non-member or static function with two parameters.”

However, operators required by Standard C++ to be instance functions shall continue to be instance
functions. [Note: Standard C++ specifies that these operators are: operator=(§13.5.3), operator()
(§13.5.4), operator[] (§13.5.5), and operator-> (§13.5.6). end note]

18.6.1 Homogenizing the candidate overload set
Provide an example.[[#144]]

Standard C++ (§13.3.1/2) describes how all member functions are considered to have an implicit Object
parameter for the purpose of overload resolution. C++/CLI expands upon this notion by creating two
signatures for every member function (including static member functions) in which the difference between
the two signatures is the type of the implicit Object parameter. For a type T, the type of the implicit Object
parameter in the first signature is T, whereas the type for the second signature is TA. These signatures exist
only for the purpose of overload resolution, and both signatures refer exactly to the one member function
from which the signatures were created.

[Rationale: This allows functions to be called using variables that have the raw type and using variables that
are handles to the raw type. (This is necessary to compare operator overloads where the candidate set
includes member functions and operator functions from namespace scope.) end rationale]

18.6.2 Operators on Handles

Unlike pointers, some user-defined operators can be defined for handles. For example, the addition of an
integer to a handle does not attempt to add an offset to the handle (as is done with pointer arithmetic); rather,
lookup for a user-defined operator is performed. The Standard C++ operator lookup rules are modified in the
following ways:

93

10

15

20

25

30

35

40

C++/CLI Language Specification

Standard C++ (§13.5.1/1) is changed, as follows:

“Thus, for any prefix unary operator@, @x can be interpreted as either x->operator@() ifx is a
handle, x.operator@() if x is not a handle, or operator@(x).”

Standard C++ (§13.5.2/1) is changed, as follows:

“Thus for any binary operator@, x@y can be interpreted as either x->operator@(y) if xisa
handle, x.operator@(y) if x is not a handle, or operator@(x,y).”

[Note: In C++/CLI, equality operators for handles behave as if they were compiler-generated or user-defined
operators. See §18.6.6.1. end note]

The rules in Standard C++ (§13.5.3/1) continue to apply—an assignment operator shall be a instance
function. An assignment to a handle never invokes the user-defined assignment operator.

In Standard C++ (§13.5.4/1), although function call operators continue to be allowed only as instance
functions, the text is changed, as follows:

“Thus, a call x(argl, ...) isinterpreted as x->operator() (argl, ...) ifxis a handle, or
x.operator() (argl, ...) if x is not a handle, for a class object x of type T if

T::operator() (T1l, T2, T3) exists and if the operator is selected as the best match function by
the overload resolution mechanism.”

In Standard C++ (§13.5.5/1), although subscript operators continue to be allowed only as instance functions,
the text is changed, as follows:

“Thus, a subscripting expression x [y] is interpreted as x->operator[](y) if x is a handle, or
x.operator[] (y) if x is not a handle, for a class object x of type T if T: :operator[](T1)
exists and if the operator is selected as the best match function by the overload resolution
mechanism.”

In Standard C++ (§13.5.6), the member access operator does not apply to a handle. Like a pointer, x->YV is
defined as (*x) .y. A member access to a handle never invokes the user defined member access operator.

[Note: The increment and decrement operators described in Standard C++ (§13.5.7), have significant
differences from the CLS increment and decrement operators. (See §18.6.3 for details.) end note]

18.6.3 Increment and decrement operators

In C++/CLI, the static operators operator++ and operator-- behave as both postfix and prefix
operators. Neither of these static operators shall be declared with the dormant int parameter described by
Standard C++ (§13.5.7).

For the expressions x++ and x--, where the postfix operator is non-static, the following processing occurs:
e Ifxis classified as a property or indexed access:

0 The expression x is evaluated and the results are used in subsequent get and set accessor
function calls.

0 The get accessor function of x is invoked and the return value is saved.

0 The selected operator is invoked with the saved value of X as its argument and the literal 0 as the
argument to select the postfix operator overload.

0 The set accessor function of x is invoked with the value returned by the operator as its
argument.

0 The saved value of x is the result of the expression.
e Otherwise:
0 The operator is processed as specified by Standard C++.
Add an example.[[Ed.]]

94

10

15

20

25

30

35

Classes and members

For the expressions ++x and --x, where the prefix operator is non-static, the following processing occurs:

e Ifxis classified as a property or indexed access:

(0]

(0]

(0]

The expression x is evaluated and the results are used in subsequent get and set accessor
function calls.

The get accessor function of x is invoked.

The selected operator is invoked with the result of get accessor function of x as its argument and
the return value is saved.

The set accessor function of x is invoked with the saved value from the operator invocation.

The saved value from the operator invocation is the result of the expression.

e Otherwise:

(0]

The operator is processed as specified by Standard C++.

Add an example. [[Ed.]]

For the expressions x++ and x--, where the operator is static, the following processing occurs:

e If x is classified as a property or indexed access, the expression is evaluated in the same manner as if
the operator were a non-static postfix operator with the exception that no dormant zero argument is
passed to the static operator function.

e Otherwise:

O O O O

(0]

X is evaluated.

The value of x is saved.

The selected operator is invoked with the value of x as its only argument.

The value returned by the operator is assigned in the location given by the evaluation of x.

The saved value of x becomes the result of the expression.

Add an example. [[Ed.]]

For the expression ++x or --x, where the operator is static, the following processing occurs:

e If x is classified as a property or indexed access, the expression is evaluated in the same manner as if
the operator were a non-static prefix operator.

e Otherwise:

(0]

(0]

(0]

(0]

X is evaluated.
The selected operator is invoked with the value of x as its only argument.
The value returned by the operator is assigned in the location given by the evaluation of x.

x becomes the result of the expression.

[Example: The following example shows an implementation and subsequent usage of operator++ for an
integer vector class:

public ref class Intvector {
public:

/]

static IntVectorA operator++(IntvectorA iv) { /*...*/ }

95

10

15

20

25

30

35

40

45

C++/CLI Language Specification

int main(QQ {
IntvVectorA ivl = gcnew IntVector;
IntVectorA 1iv2;

iv2 = ivl++;
// equivalent to:
IntVectorA __temp = 1ivl;
ivl = IntVector::operator++(ivl);
iv2 __temp;

//
//
//
iv2 = ++ivl;
// equivalent to:
// ivl = IntVector::operator++(ivl);
) // iv2 = jvl;

Note: Unlike traditional operator versions in Standard C++, this operator need not, and in fact should not,
modify the value of its operand directly. end example]

18.6.4 Operator synthesis

The compound assignment operators (+=, -=, *=, /=, %=, A=, &=, and | =) are synthesized from other
operators. For the expression x @= y (where @ denotes one of the operators listed above): If lookup for
operator@= succeeds, the rules specified so far are applied. Otherwise, the expression x @= vy is rewritten
as X = X @ vy, and the transformed expression is interpreted with the rules specified so far. Identify when
synthesis would and would not occur. [[#56]]

If no overload for operator@= applies after overload resolution or synthesis, the program is ill-formed.

Synthesis shall not occur for operators defined inside native classes.

18.6.5 Naming conventions

During compilation, the name of every operator function is the C++ identifier used in source code for that
function. For example, the addition operator’s identifier is operator+. When the compiler emits the
program to an assembly, the metadata name for the operator function is the CLS-compliant name as
specified herein.

The CLS-compliant name for the operator function is only used in the compiled assembly. A program shall
not refer to the CLS-compliant name given to the operator function. When the compiler imports functions
from metadata, it shall rewrite the CLS-compliant name into the respective C++ operator function identifier.
Likewise, when the compiler emits metadata for the program, it translates the C++ operator function
identifier to the respective CLS-compliant name.

A C++ program shall not declare nor define a function using one of the CLS-compliant identifiers referred to
herein.

The CLS recommends certain operators upon which CLS consumer and producer languages can agree. The
set of CLS-compliant operators overlaps with the set of operators supported by C++ (see Partition I, §9.3, of
the CLI Standard) as described in §18.6.5.1. The C++ operators that do not overlap with the CLS-compliant
operators are known as C++-dependent operators (§0).

All operator functions, regardless of whether they are CLS-compliant operators or C++-dependent operators,
shall be marked as SPECIALNAME functions in the metadata.

18.6.5.1 CLS-compliant operators

An operator is CLS-compliant when the following conditions occur:

1. The operator function is one listed in either Table 18-1: CLS-Recommended Unary Operators or
Table 18-2: CLS-Recommended Binary Operators.

2. The operator function is a static member of a ref class or a value class.

96

10

15

Classes and members

3. Ifa value class is a parameter or a return value of the operator function, the value class is not passed
by reference nor passed by pointer or handle.

4. Ifarefclass is a parameter or a return value of the operator function, the ref class is passed by
handle. The handle shall not be passed by reference.

If the above criteria are not met, the operator function is C++-dependent (§18.6.5.4). Table 18-1: CLS-
Recommended Unary Operators and Table 18-2: CLS-Recommended Binary Operators list the name that
shall be given to the function used to represent the operator function in an assembly.

When importing a class from an assembly, each static member function with a name listed in Table 18-1:
CLS-Recommended Unary Operators and Table 18-2: CLS-Recommended Binary Operators shall be

renamed with its corresponding C++ identifier for the operator function.

Table 18-1: CLS-Recommended Unary Operators

Function Name in Assembly C++ Operator Function Name
op_UnaryNegation operator-
op_UnaryPlus operator+
op_LogicalNot operator!
op_Addressof operator&
op_OnesComplement operator~
op_PointerDereference operator*
Table 18-2: CLS-Recommended Binary Operators

Function Name in Assembly C++ Operator Function Name
op_Decrement operator--
op_Increment operator++
op_Addition operator+
op_Subtraction operator-
op_Multiply operator®
op_Division operator/
op_Modulus operator¥%
op_Exclusiveor operatorA
op_BitwiseAnd operator&
op_Bitwiseor operator|
op_LogicalAand operator&&
op_Logicalor operator]| |
op_Leftshift operator<<
op_Rightshift operator>>
op_Equality operator==
op_GreaterThan operator>
op_LessThan operator<
op_Inequality operator!=
op_GreaterThanOorequal operator>=
op_LessThanorEqual operator<=
op_Comma operator,

18.6.5.2 Non-C++ operators

The CLS recommends some operators that Standard C++ does not support. [Note: Compilers for other
languages might not be tolerant to functions with these names. It is recommended that a C++/CLI
implementation issue a compatibility diagnostic if a user-defined function is given one of these names listed
in §E.1. end note]

97

10

15

20

25

C++/CLI Language Specification

The ability to define operator true and operator false will be provided. [[#57]]

Function Name in Assembly C++ Operator Function Name
op_True Not yet defined[[#145]]
op_False Not yet defined

18.6.5.3 Assignment operators

Given that assignment operators take a parameter by value and return a result by value, with regard to these
operators, the CLS recommendations are incompatible with C++. As C++ requires assignment operators to
be instance functions, the C++ compiler does not generate or consume CLS assignment operators (as listed
in Table 18-3: CLS-Recommended Assignment Operators). As such, user-defined functions with names
from Table 18-3: CLS-Recommended Assignment Operators are not given special treatment.

Table 18-3: CLS-Recommended Assignment Operators

Function Name in Assembly C++ Operator Function Name
Op_Assign No equivalent
op_uUnsignedRightshiftAssignment No equivalent
op_RightsShiftAssignment No equivalent
op_MultipTlicationAssignment No equivalent
op_SubtractionAssignment No equivalent
op_ExclusiveOrAssignment No equivalent
op_LeftshiftAssignment No equivalent
op_ModulusAssignment No equivalent
op_AdditionAssignment No equivalent
op_BitwiseAndAssignment No equivalent
op_BitwiseOrAssignment No equivalent
op_DivisionAssignment No equivalent

18.6.5.4 C++-dependent operators

If an operator function does not match the criteria for a CLS-compliant operator, as listed in §18.6.5.1, the
operator is C++-dependent. Table 18-4: C++-Dependent Unary Operators and Table 18-5: C++-Dependent
Binary Operators list the metadata name for each function.

When importing functions from an assembly, functions with the names listed in Table 18-4: C++-Dependent
Unary Operators and Table 18-5: C++-Dependent Binary Operators shall be treated during compilation
using their corresponding C++ identifiers. If such a function does not make sense as an operator function
(for example, it takes three arguments), the function name shall not be changed to the internal operator
function name, and the function is callable by the name it has in the assembly.

These operator names are, in most cases, those recommended by the CLS even though they are not CLS-
compliant.

Some operator names listed below are not part of the CLS recommendations. These are op_FunctionCall
and op_Subscript.

[Note: The postfix increment and decrement operators are identified in C++ via a dormant int parameter.
Static member increment and decrement operators shall not have such a dormant int parameter. Instead, a
single static increment and decrement operator is used for both pre and post operations. (See §18.6.3 for
more details.) end note]

98

Table 18-4: C++-Dependent Unary Operators

Classes and members

Function Name in Assembly

C++ Operator Function Name

op_UnaryNegation operator-
op_UnaryPlus operator+
op_LogicalNot operator!
op_Addressof operator&
op_OnesComplement operator~
op_PointerDereference operator*

Table 18-5: C++-Dependent Binary Operators

Function Name in Assembly

C++ Operator Function Name

op_Addition operator+
op_Subtraction operator-
op_Multiply operator*
op_Division operator/
op_Modulus operator%
op_ExclusiveOr operatorA
op_BitwiseAnd operator&
op_Bitwiseor operator|
op_LogicalAand operator&&
op_Logicalor operator| |
op_Leftshift operator<<
op_Rightshift operator>>
op_Equality operator==
op_GreaterThan operator>
op_LessThan operator<
op_Inequality operator!=
op_GreaterThanorequal operator>=
op_LessThanorequal operator<=

op_MemberSelection

operator->

op_PointerToMemberSelection

operator->*

op_Comma operator,
op_Decrement operator--
op_Increment operator++
Op_Assign operator=
op_RightshiftAssignment operator>>=
op_MultipTlicationAssignment operator¥*=
op_SubtractionAssignment operator-=
op_ExclusiveOrAssignment operatorA=
op_LeftshiftAssignment operator<<=
op_ModulusAssignment operator¥%=
op_AdditionAssignment operator+=
op_B1itwiseAndAssignment operatoré&=
op_BitwiseOrAssignment operator|=
op_DivisionAssignment operator/=
op_Functioncall operator()
op_Subscript operator([]

99

10

15

20

25

30

35

40

45

C++/CLI Language Specification

18.6.6 Compiler-defined operators

18.6.6.1 Equality
Reword this subclause similarly to the way special member functions are described. [[#58]]
Every type has an equality operator that works on handles. Every type behaves as if it had both a static

operator==and operator!= where both arguments are handles to the containing type. That is, for type
T, it is as if every type had the following operators:

static bool operator==(TA Ths, TA rhs);
static bool operator!=(TA Ths, TA rhs);

The purpose of these “as if”” operators is to determine reference equality. Specifically, the return value of
operator==is true if and only if both arguments are handles referring to the same Object. Conversely, the
return value of operator!=is true if and only if both arguments are handles referring to different Objects.

If a type has a user-defined static operator== or operator!= with the same signature as the “as if”
equality operators, then the user-defined operator is used. The user-defined operator is actually emitted to
the assembly, whereas the “as if”” operators are not.

Add another subclause to cover the compiler-generated conversion from handle to unspecified bool type.
[[#591]

18.7 Instance constructors

Since C++/CLI has added the notion of a static constructor, all uses of the term “constructor” in the C++
Standard refer to what C++/CLI refers to as “instance constructor”.

18.8 Static constructors

A static constructor is a function member that implements the actions required to initialize a ref or value
class. A static constructor is declared just like an ordinary (that is, instance) constructor in Standard C++
(§8.4), except that the former is specified with the storage class static.

A static constructor shall not have a ctor-initializer-list.
Static constructors are not inherited, and cannot be called directly.
The static constructor for a class is executed as specified in the CLI standard, Partition II (§10.5.3).

If a class contains any static fields (including initonly fields) with initializers, those fields are initialized
immediately prior to the static constructor’s being executed and in the order in which they are declared.

[Example: The example

ref struct A {
static AQ {
cout << "Init A" << “\n”;

static void FQ
cout << "A::F" << “\n”;

1

ref struct B : A {
static B {
cout << "Init B" << “\n”;

static void FQ
cout << "B::F" << “\n”;

}

};

int main(Q {
A::FQO;
B::FO;

100

10

15

20

25

30

35

40

45

Classes and members

shall produce one of the following outputs:
Init A Init A Init B

A:tF Init B Init A
Init B AlF AlF
B::F B::F B::F

because A's static constructor must be run before accessing any static members of A, and B's static
constructor must be run before accessing any static members of B, and A: : F is called before B: : F. end
example]

A static constructor can be defined outside its parent class using the same syntax for a corresponding out-of-
class instance constructor, except that a static prefix shall also be present. [Example:

ref class X {

pubTic:

static XO; // static constructor declaration

XO; // instance constructor declaration

X(@int) {.} // inline instance constructor definition
static X::xXO {.} // out-of-class static constructor definition
X::xO {.} // out-of-class instance constructor definition

end example]

[Note: In Standard C++, an out-of-class constructor definition is not permitted to have internal linkage; that
is, it is not permitted to be declared static. end note]

A static constructor can have any access-specifier. [Note: However, for security reasons, a static constructor
should have a private access-specifier. end note]

If a ref or value class has no user-defined static constructor, a default static constructor is implicitly defined.
It performs the set of initializations that would be performed by a user-written static constructor for that
class with an empty function body.

The static constructor cannot be explicitly invoked. A nontrivial static constructor is emitted as a private
member of its class in metadata.

18.9 Literal fields
Literal fields are defined by including the 11 teral storage-class-specifier.

add literal to storage-class-specifier[[#146]]

Add grammar for literal-constant-initializer = Standard C++ constant-initializer + float/double + String +
nullptr. [[#60]]

A literal field is a named compile-time constant rvalue having the type of the literal field and having the
value of its literal-constant-initalizer.

Each member-declarator in the member-declarator-list shall contain a literal-constant-initializer. The decl-
specifier-seq shall not contain a cv-qualifier.

Even though literal fields are accessed like static members, a literal field definition shall not contain the
keyword static.

Whenever a compiler comes across a valid usage of a literal field, the compiler shall replace that usage with
the value associated with that literal field.

A literal field shall have one of the following types: a scalar type or System: :String. A literal-constant-
expression shall yield a value of the target type, or if the literal-constant-expression is not a string literal, it
can be a value of a type that can be converted to the target type by a standard conversion sequence.

[Note: A literal-constant-expression is an expression that can be fully evaluated at compile-time. Since the
only way to create a non-null value of a handle type other than System: : StringA is to apply the gcnew

101

10

15

20

25

30

35

40

C++/CLI Language Specification

operator, and since that operator is not permitted in a literal-constant-expression, the only possible value for
literal fields of handle type other than System: :StringA is nullptr. end note]

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in a
literal field declaration, or when the value cannot be computed at compile-time by a constant-expression, an
initonly field (§18.10) can be used instead. [Note: The versioning semantics of 1iteral and initonly
differ (§18.10.2). end-note]

Literal fields are permitted to depend on other literal fields within the same program as long as the
dependencies are not of a circular nature.

[Example:

ref struct X {
Titeral double PI = 3.1415926;
Titeral int MIN = -5, MAX = 5;
Titeral int COUNT = MAX - MIN + 1;
Titeral int Size = 10;
enum Color {red, white, blue};
Titeral color DefaultColor = red;

1

int main() {
double radius;
cout << “Enter a radius: “;
cin >> radius;
cout << "Area = " << X::PI * radius * radius << "\n";

static double d = X::PI;
for (int i = X::MIN; i <= X::MAX; ++i) {..}
) float f[sizel;

end example]

For a discussion of versioning and literal fields, see §18.10.2.

18.10 Initonly fields
Initonly fields are defined by including the initonly storage-class-specifier.
add initonly to storage-class-specifier[[#147]]

Initialization of initonly fields shall occur only as part of their definition. Assignments (via an assignment
operator or a postfix or prefix increment or decrement operator) to initonly fields shall occur only in an
instance constructor or static constructor in the same class. [Note: Of course, such assignment could be done
via a constructor’s ctor-initializer. end note] (Although an initonly field can be assigned to multiple times in
a given context, it shall be assigned in only one context.) Specifically, initialization of, and assignments to,
initonly fields are permitted only in the following contexts:

¢ In the constant-initializer of a member-declarator.

e For an instance field, in the instance constructors of the class containing the initonly field definition;
for a static field, in the static constructor of the class containing the initonly field definition.

A program that attempts to assign to an initonly field in any other context, or that attempts to take its address
or to bind it to a reference in any context, is ill-formed.

[Example:

102

10

15

20

25

30

35

40

45

50

55

Classes and members

ref class X {
initonly static int svarl = 1;// 0Ok
initonly static int svar2;
initonly static int svar3;

initonly int mvarl = 1; // Error
initonly int mvar2;
initonly int mvar3;

pubTic:
static XO{
svar3 = 3;
svarl = 4; // Ok: but overwrites the value 1
smf20);

static void smf1() {))
svar3 = 5; // Error; not in a static constructor

static void smf2() {

svar2 = 5; // Error; not in a static constructor
X : mvar2(2) { // ok

mvar3 = 3; // ok

mfl1Q);

void mf1() {])
mvar3 = 5; // Error; not in an instance constructor

void mf20) {])
mvar2 = 5; // Error; not in an instance constructor
}
}s
end example]

18.10.1 Using static initonly fields for constants
A static initonly field is useful when a symbolic name for a constant value is desired.

Add a description that for any value class we have to make the copy before calling member functions.
[[#62]]

18.10.2 Versioning of literal fields and static initonly fields

Literal fields and initonly fields have different binary versioning semantics. When an expression references a
literal field, the value of that member is obtained at compile-time, but when an expression references an
initonly field, the value of that member is not obtained until run-time. [Example: Consider an application
with the following source:

namespace Programl {)
public ref struct Utils

static_initonly int X = 1;
Titeral int Y = 1;
3

namespace Program?2 {
int main() {
Console::wWriteLine(Programl::Utils::X);
Console::wWriteLine(Programl::Utils::Y);

}

The Programl and Program2 namespaces denote two source files that are compiled separately, each
generating its own assembly. Because Programl: :Uti1s: : X is declared as a static initonly field, the value

103

10

15

20

C++/CLI Language Specification

output by Console: :wWriteLine is not known at compile-time, but rather is obtained at run-time. Thus, if
the value of X is changed and Programl is recompiled, Console: :WriteL1ine will output the new value
even if Program?2 isn’t recompiled. However, because Y is a literal field, the value of Y is obtained at the
time Program?2 is compiled, and remains unaffected by changes in Programl until Program?2 is
recompiled. end example]

18.11 Destructors and finalizers

Any native class or ref class can have a user-defined destructor. Such destructors are run at the times
specified by the C++ Standard:

e An Object of any type allocated on the stack is destroyed when that Object goes out of scope.
e An Object of any type allocated in static storage is destroyed during program termination.

e An Object that is allocated on the native heap using new, is destroyed when a delete is performed
on a pointer to that Object.

e An Object that is allocated on the CLI heap using gcnew, is destroyed when a delete is performed
on a handle to that Object.

e An Object that is a member of another Object is destroyed as part of the destruction of the enclosing
Object.

For the purposes of destruction, the native and CLI heaps are treated the same. The only difference between
the two heaps is the automation and timing of memory reclamation. In the case of the native heap, memory
is reclaimed manually at the same time as the delete, while in the case of the CLI heap, memory is
reclaimed automatically during garbage collection whether or not there was a deTete. In addition, Objects
on the CLI heap are finalized, if a finalizer exists.

Any ref class can have a user-defined finalizer. The finalizer is run zero or more times by the garbage
collector, as specified by the CLI.

Say more about finalizers (including Dispose/~T and Finalize/!T) and add some examples. [[#63]]

104

10

15

Native classes

19. Native classes

The accessibility of a non-nested native class can optionally be specified via a top-level-type-visibility

(§12.4).

A native class can optionally have a class-modifiers (§18.1.1).

19.1 Functions
A virtual member function in a native class can contain:
o the function-modifier override, or an override-specifier, or both (§18.3.1).
o the function-modifier sealed (§18.3.2).
e the function-modifier abstract (§18.3.3).
Member functions in a native class can optionally have a parameter-array (§18.3.6) in their parameter-
declaration-clause.

19.2 Properties
Support for properties in native classes.

19.3 Static operators

Native classes support static operators (§18.6).

19.4 Instance constructors

19.5 Delegates

Native classes support delegate-definitions (§26); however, a native class shall not contain a field having a
delegate type.

105

10

15

20

25

30

35

C++/CLI Language Specification

20. Ref classes

A ref class is a data structure known to the CLI runtime. It can contain fields, function members, and nested
types.

20.1 Ref class declarations
A reference-class-declaration introduces a declaration of a ref class.

reference-class-declaration:
ref-class-key identifier ;

ref-class-key:
refiiclass
refiistruct

A refiiclass declaration and refiistruct declaration differ in the default accessibility of members. The
members of a refiiclass are private by default. On the other hand, the members of a refiistruct are
public by default.

A reference-class-definition defines a ref class.

reference-class-definition:
attributes,,; top-level-type-visibility,,: ref-class-key identifier
class-modifiers,,; base-clause,,: { member-specificationy,: }

A reference-class-definition can include a set of attributes (§28), top-level-type-visibility (§12.4), class-
modifiers (§18.1.1), and base-clause (§20.1.1).

20.1.1 Ref class base specification

A reference-class-definition can include a base-clause specification, which defines the direct base class of
the ref class, and the interfaces implemented by the ref class.

If a base-specifier contains an access-specifier, that access-specifier shall be pubTi c. If a base-specifier
does not contain an access-specifier, the access-specifier is implicitly pub1ic, even if the ref class is
defined with the refiiclass keyword.

A ref class type shall have at most one class as its direct base, and that class type shall be a ref class type. If
no direct base class is specified, the direct base class is assumed to be System: :0Object.

The direct base class of a ref class type shall not be a native class, a sealed ref class, or any of the
following types: System::Array, System: :Delegate, System: :Enum, or System: :vValueType.

The direct base class of a ref class type shall be at least as accessible as the ref class type itself.

If a reference-class-definition contains one or more base-specifiers that specify interface types, the ref class
is said to implement those interface types. (Interface implementations are discussed further in §24.4.) Those
interface types shall be at least as accessible as the ref class itself.

20.2 Ref class members

Add text to indicate the circumstances under which the following type modifiers shall be emitted, and point
to each modifier's definition:[[#148]]
e IsConst (i.e., data member involves a cv type).

o IsImplicitlyDereferenced (i.e., has a reference type).

106

10

15

20

25

30

35

Ref classes

e IsLong (i.e., long/unsigned long/long double type).
o IsSignUnspecifiedByte (i.c., plain char's sigedness).
e IsVolatile (i.e., data member involves a cv type).

The members of a ref class consist of all the members introduced by its member-specification and the
members inherited from the direct base class.

A member function of a ref class shall not have a cv-qualifier-seq.

20.2.1 Variable initializers
The definition of zero-initialize in the C++ Standard (§8.5/5) has been extended, as follows:

“To zero-initialize an object of type T means:

e if T is a handle type, the object is set to the value of the null value constant converted to T;

e if T is a scalar type other than a handle type, the object is set to the value of 0 (zero) converted to T;

2
[]

The default initial value as described in the C++ Standard (§8.5/9) has been extended, as follows:

“If no initializer is specified for a handle, the handle is always zero-initialized. Otherwise, if no
initializer is specified for a nonstatic object, the object and its subobjects, if any, have an
indeterminate initial value);”

[Rationale: Handles must always have a valid value, as they are used as roots by the garbage collector. If a
handle had an invalid value, the runtime could fail. Thus, a handle that has not been initialized is always
zeroed to prevent runtime failure. end rationale]

Tracking references are treated like Standard C++ references—they are always initialized.

20.3 Functions

Add text to indicate the circumstances under which the following type modifiers shall be emitted, and point
to each modifier's definition:
o IsBoxed i.c., passing a handle to a value type).

e [sByValue (i.e., ref class type passed by value).

e [sConst (i.e., pointer or reference to a const-qualified type).

e [sExplicitlyDereferenced (i.e., interior ptr as a parameter).

e IsImplicitlyDereferenced (i.e., parameter is a reference).

o IsLong (i.e., long/unsigned long/long double parameters).

o IsExplicitlyDereferenced (i.e., pin_ptr as a parameter).

o IsSignUnspecifiedByte (i.c., plain char's signedness).

e [sUdtReturn (i.e., ref class type returned by value).

e IsVolatile (i.e., pointer or reference to a volatile-qualified type).
A virtual member function in a ref class can contain:

o the function-modifier override, or an override-specifier, or both (§18.3.1).

o the function-modifier sealed (§18.3.2).

o the function-modifier abstract (§18.3.3).

107

10

15

20

25

C++/CLI Language Specification

Virtual function overrides in ref classes shall not have covariant return types. [Rationale: This is a restriction
imposed by the CLI. end rationale]

Member functions in a ref class can optionally have a parameter-array (§18.3.6) in their parameter-
declaration-clause.

For each ref class, the implementation shall reserve several names (§18.2.3). A program is ill-formed if it
declares a member whose name matches any of these reserved names.

20.4 Properties
Ref classes support properties (§18.4).

For each property definition, the implementation shall reserve several names (§18.2.1). A program is ill-
formed if it declares a member whose name matches any of these reserved names.

20.5 Events
Ref classes support events (§18.5).

For each event definition, the implementation shall reserve several names (§18.2.2). A program is ill-formed
if it declares a member whose name matches any of these reserved names.

20.6 Static operators
Ref classes support static operators (§18.6).

20.7 Instance constructors

20.8 Static constructor

Ref classes support static constructors (§18.8).

20.9 Literal fields
Ref classes support literal fields (§18.9).

20.10 Initonly fields
Ref classes support initonly fields (§18.10).

20.11 Destructors and finalizers
See §18.11.

20.12 Delegates
Ref classes support delegate-definitions (§26).

A ref class is permitted to contain a field having a delegate type.

108

10

15

20

25

30

35

Value classes

21. Value classes

Introduce value classes -- Discuss the following: value classes are optimized for small data structures. As
such, value classes do not allow inheritance from anything but interface classes. [[#66]]

[Note: As described in §12.2.2, the fundamental types provided by C++/CLI, such as int, double, and
bool, are, in fact, all value classes. Just as these predefined types are value classes, it is also possible to use
value classes and operator overloading to implement new “primitive” types in this specification. Two
examples of such types are given at the end of this clause (§??). end note]

21.1 Value class declarations
A value-class-declaration introduces a declaration of a value class.

value-class-declaration:
value-class-key identifier ;

value-class-key:
valueiiclass
valueiistruct
A valueiiclass declaration and valueiistruct declaration differ in the default accessibility of members.
The members of a valueiicTlass are private by default. The members of a valueiistruct are public by
default.

A value-class-definition defines a value class.

value-class-definition:
attributes,y; top-level-type-visibilityo,: value-class-key identifier
value-class-modifiery, base-clausey,,: { member-specificationg: } ;

A value-class-definition can include a set of attributes (§28), top-level-type-visibility (§12.4), value-class-
modifier (§21.1.1), and base-clause(§21.1.2).

21.1.1 Value class modifiers
A value-class-definition can optionally include a modifier:

value-class-modifier:
sealed

The sealed modifier is discussed in §18.1.1.2. All value classes are implicitly sealed (so the explicit use of
this modifier in this context is redundant).

21.1.2 Value class base specification

A value-class-definition can include a base-clause specification, which defines the interfaces implemented
by the value class. Can the base class System::ValueType redundantly be specified? No [[Ed.]]

If a base-specifier contains an access-specifier, that access-specifier shall be pub11 c. If a base-specifier
does not contain an access-specifier, the access-specifier is implicitly pub1ic, even if the value class is
defined with the valueiiclass keyword.

If a value-class-definition contains one or more base-specifiers that specify interface types, the value class is
said to implement those interface types. (Interface implementations are discussed further in §24.4.) Those
interface types shall be at least as accessible as the value class itself.

109

10

C++/CLI Language Specification

21.2 Value class members

The members of a value class include all the members introduced by its member-specification and the
members inherited from the type System: :valueType.

A member function of a value class shall not have a cv-qualifier-seq.

Except for the differences noted in §21.3, the descriptions of class members provided in §20.2 through
§20.10, and §20.12 apply to value class members as well.

21.3 Ref class and value class differences
To be added. [[Ed]]

21.4 Simple value classes
Is this subclause intended to do the same thing as §12.2.2.1? If so, which one shall we keep? [[Ed]]

21.4.1 Constructors

Add words about instance constructors and static constructor.[[#150]]

Value classes cannot have SMFs (specifically, default constructor, copy constructor, assignment operator,

destructor, or finalizer. Need to add specification for this along with rationale. [[#67]]

110

Mixed classes

22. Mixed classes

This clause is reserved for possible future use. Consider writing text for here. [[#68]]

111

10

15

20

25

30

35

40

C++/CLI Language Specification

23. Arrays

An Array is a data structure that contains a number of variables, which are accessed through computed
indices. The variables contained in an Array, also called the elements of the Array, are all of the same type,
and this type is called the element type of the Array.

An Array in C++/CLI differs from a native Array (§8.3.4) in that the former is allocated on the CLI heap,
and can have a rank other than one. The rank determines the number of indices associated with each Array
element. The rank of an Array is also referred to as the dimensions of the Array. An Array with a rank of
one is called a single-dimensional Array, and an Array with a rank greater than one is called a multi-
dimensional Array.

Throughout this Standard, the term Array is used to mean an array in C++/CLI. A C++-style array is
referred to as a native array or, more simply, array, whenever the distinction is needed.

Each dimension of an Array has an associated length, which is an integral number greater than or equal to
zero. The dimension lengths are not part of the type of the Array, but, rather, are established when an
instance of the Array type is created at run-time. The length of a dimension determines the valid range of
indices for that dimension: For a dimension of length N, indices can range from 0 to N — 1, inclusive. The
total number of elements in an Array is the product of the lengths of each dimension in the Array. If one or
more of the dimensions of an Array have a length of zero, the Array is said to be empty.

The element type of an Array can be any type, including an Array type.

23.1 Array types
An Array type is declared using a pseudo-template ref class with the following declaration:

namespace cli {)
template<typename T, int rank = 1>
ref class array : Array {

The class is a pseudo-template because aspects of an Array type cannot be implemented in a library using
the facilities of the language. An array-type is any specialization of the c11: :array pseudo-template
class. For example:

array<int>A arrlD = gcnew array<int>(10);
array<int, 3>A arr3D = gcnew array<int, 3>(10, 20, 30);
23.1.1 The System::Array type

The System: :Array type is the abstract base type of all Array types. An implicit reference conversion
(§?7?) exists from any Array type to System: : Array, and an explicit reference conversion (§??) exists from
System: :Array to any Array type. Note that System: : Array is not itself an array-type. Rather, it is a
reference-class-type from which all array-type are derived.

Is reference conversion the correct term? [[#118]]

23.2 Array creation

Array instances are created by array-creation-expressions (§??) or by field or local variable declarations that
include an array-initializer (§23.6).

When an Array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an
existing Array instance, nor is it possible to resize its dimensions.

112

10

15

20

25

30

Arrays

An Array instance created by an array-creation-expression is always of an Array type. The
System: :Array type is an abstract type, so it cannot be instantiated.

Elements of Arrays created by array-creation-expressions are always initialized to their default value (§??).

23.3 Array element access

Array elements are accessed using element-access expressions (§??) of the form A[I1, I2, .., IN],
where A is an expression having an Array type, and each IX is an expression of integral type or a type that
can be implicitly converted to an integral type.

An element-access expression differs from subscript expressions in Standard C++ (§5.2.1) in that in the
former case, commas are not treated as operators. Rather, commas separate individual expressions that
respectively match the dimension of the Array being accessed. However, parentheses can be used to force
the use of the comma operator in an expression. The result of an Array element-access is a variable, namely
the Array element selected by the indices. Add examples. [[Ed]]

The elements of an Array can be enumerated using a for each statement (§16.2.1).

23.4 Array members

Every Array type inherits the members declared by the type System: :Array. In addition, Arrays have
iterators compatible with Standard C++’s template library.

Provide details for Array members. [[#73]]

23.5 Array covariance

For any two types A and B, if an implicit reference conversion (§??) or explicit reference conversion (§??)
exists from A to B, then the same reference conversion also exists from the Array type array<A, R> to the
Array type array<B, R>, where R is any given rank-specifier (but is the same for both Array types). This
relationship is known as array covariance. In particular, Array covariance means that a value of an Array
type array<A, R> might actually be a reference to an instance of an Array type array<B, R>, provided
an implicit reference conversion exists from B to A.

Because of Array covariance, assignments to Arrays where the elements are ref classes will include a run-
time check, which ensures that the value being assigned to the Array element is actually of a permitted type

(§?22).

Array covariance does not extend to boxing conversions. For example, no conversion exists that permits an
array<int> to be treated as an array<ObjectA> or array<intAs,

Array covariance really only applies to handles of Arrays, not direct Arrays — in other words, do Arrays
have copy constructors? [[#74]]

23.6 Array initializers
To be added. [[#76]]

113

10

15

20

25

30

35

C++/CLI Language Specification

24. Interfaces

An interface defines a set of virtual members that an implementing class must define. An interface can also
require an implementing class to implement other interfaces. A class can implement multiple interfaces.

The interface does not provide a definition for any of its members. Instead, classes that implement the
interface supply these definitions.

24.1 Interface declarations
An interface-class-declaration introduces a declaration of an interface.

interface-class-declaration:
interface-class-key identifier ;

interface-class-key:
interfaceiiclass
interfaceiistruct

An interfaceiiclass and interfaceiistruct declaration are equivalent. The default accessibility of
members within an interface is public, and the accessibility cannot be changed.

An interface-class-definition defines an interface.

interface-class-definition:
attributes,: top-level-type-visibility,, interface-class-key identifier
interface-class-bases,,x { member-specificationg,: 3 ;

An interface-class-definition can include a set of attributes (§28), top-level-type-visibility (§12.4), and
interface-class-bases (§24.1.1).

24.1.1 Interface base specification

An interface-class-definition can include an interface-class-bases specification, which defines the explicit
base interfaces of the interface being defined.

interface-class-bases:
interface-class-base-list

interface-class-base-list:
publicyy interface-type
interface-class-base-list , publicyy interface-type

The explicit base interfaces of an interface shall be at least as accessible as the interface itself (§??). [Note:
A program is ill-formed if it specifies a private interface in the interface-class-base-list of a pubTic
interface. end note]

The base interfaces of an interface are the explicit base interfaces and their base interfaces. That is, the set
of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base
interfaces, and so on.

An interface inherits all members of its base interfaces.

A type that implements an interface also implicitly implements all that interface’s base interfaces.

24.2 Interface members

The members of an interface are the members inherited from its base interfaces, and the members declared
by the interface itself.

114

10

15

20

25

30

35

40

Interfaces

An interface definition can declare zero or more members. The members of an interface shall be instance
functions, instance properties, instance events, or nested types of any kind. An interface cannot contain
fields, operators, constructors, destructors, finalizers, or static members of any kind.

All interface members have public access. pickup the restrictions from page 333

All members declared in an interface are implicitly abstract. However, those members can redundantly
contain the virtual and/or abstract modifiers, and/or a pure-specifier. [Example:

interface class I {
property int Size { /*.*/ }; // (implicit) abstract property
virtual property string Name abstract = 0 { /*.*/ };
// “virtual”, “abstract” and “= 0”
) // permitted but are redundant

end example]

24.2.1 Interface functions

A function in an interface is declared exactly the same way as a function in a class. An interface function
declaration is not permitted to specify a function definition; therefore, the declaration always ends with a
semicolon.

If the function is declared vi rtual, it shall also be declared abstract, and vice versa.

Member functions in an interface class can optionally have a parameter-array (§18.3.6) in their parameter-
declaration-clause.

For each interface class, the implementation shall reserve several names (§18.2.3). A program is ill-formed
if it declares a member whose name matches any of these reserved names.

24.2.2 Interface properties
Interface classes support properties (§18.4).

The accessor functions of an interface property definition correspond to the accessor functions of a class
property definition (§18.4.2), except that in an interface the accessor functions must be declarations that are
not definitions. Thus, the accessor functions simply indicate whether the property is read-write, read-only, or
write-only.

[Example:

interface class I {
property int Size { int get(); void set(int value); };
property bool default[int j] { bool get(int);
void set(int k, bool value); };

s
end example]

A property-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification)
declares a trivial scalar property (§18.4.4). Such a declaration declares an abstract virtual property with get
and set accessor functions.

An accessor function with an inline definition in an interface is ill-formed.
For each property definition, the implementation must reserve several names (§18.2.1). A program is ill-

formed if it declares a member whose name matches any of these reserved names.

24.2.3 Interface events

Interface classes support events (§18.5).

115

10

15

20

25

30

35

40

45

C++/CLI Language Specification

The accessor functions of an interface event declaration correspond to the accessor functions of a class event
definition (§18.5.2), except that the accessor functions must be function declarations that are not function
definitions.

As events in interfaces cannot have a raise accessor function (because everything in an interface is publ1ic),
such events cannot be invoked using function call syntax.

For each event definition, the implementation must reserve several names (§18.2.2). A program is ill-formed
if it declares a member whose name matches any of these reserved names.

24.2.4 Delegates
Interface classes support delegate-definitions (§26).

24.2.5 Interface member access
Do we need this subclause? [[Ed]]

24.3 Fully qualified interface member names

24.4 Interface implementations

Interfaces can be implemented by classes. To indicate that a class implements an interface, the interface
identifier is included in the base class list of the class. [Example:

interface class ICloneable {
ObjectA Clone();

interface class IComparable {
int CompareTo(ObjectA other);

ref class ListEntry : ICloneable, IComparable {
public:

ObjectA Clone() {..}

int CompareTo(ObjectA other) {..}

end example]

An interface in the base class list is always and implicitly inherited pub1ic. The pub1ic keyword is
allowed but not required as a base class access specifier for an interface. A program is ill-formed if it
contains the private, protected, or virtual keywords as base class specifiers for an interface.

A class that implements an interface also implicitly implements all of the interface’s base interfaces. This is
true even if the class doesn’t explicitly list all base interfaces in the base class list. [Example:

interface class IControl {
void Paint();
3

interface class ITextBox : IControl {
void SetText(StringA text);
3

ref class TextBox : ITextBox {
pubTic:

void Paint() {.}

void SetText(StringA text) {.}

;
Here, class TextBox implements both IControl and ITextBox. end example]

Address what happens when a ref class does not implement an interface function (and what happens when a
base class has a non-virtual function with the same name). [[#76]]

116

10

15

20

25

30

35

Enums

25. Enums

An enum type is a distinct type with named constants. C++/CLI includes two kinds of enum types: native
enums that are compatible with Standard C++ enums (§7.2), and CLI enums, which are new, and that are
preferred for frameworks programming. Native and CLI enum types are collectively referred to as enum
types. A native enum can only be generated by a C++ compiler. To languages other than C++, a native enum
and a CLI enum appear to be exactly the same; they both cause the same metadata to be generated, and they
both inherit from System: : Enum (§25.3).

[Example: The example
pubTlic enum Suit : short { Hearts = 1, Spades, Clubs, Diamonds};

defines a publicly accessible native enum type named Suit with enumerators Hearts, Spades, Clubs, and
Diamonds, whose values are 1, 2, 3, and 4, respectively. The underlying type for Suit is short int.

The example
enum class Direction { North, South = 10, East, West = 20 };

defines a CLI enum type named D1 rection with enumerators North, South, East, and Wwest, whose
values are 0, 10, 11, and 20, respectively. By default, the underlying type for Direction is int.end
example]

25.1 Native enums

A native enum is an enum type.

Enumerations as defined by the C++ Standard (§7.2) continue to have exactly the same meaning. Native
enums have extensions to allow the following: declaration of the underlying type, the placement of attributes
on enumerators, and access to enumerators within the scope of the enum-name.

25.1.1 Native enum declarations
The enum-specifier production in the C++ standard (§7.2) has been extended, as follows:
enum-specifier:
attributes,y: top-level-type-visibility,,: enum identifiery,; enum-baseq: { enumerator-listypy

}

An enum-specifier can optionally include a set of attributes (§28), top-level-type-visibility (§12.4), enum-
base (§25.1.3), and enumerator-list.

25.1.2 Native enum visibility

A non-nested native enum can optionally specify the accessibility of the native enum by using a top-level-
type-visibility of public or private (§12.4).

25.1.3 Native enum underlying type

As in Standard C++, each enum type has a corresponding underlying type, which shall be able to represent
all the enumerator values defined in the enumeration. Unlike Standard C++, C++/CLI allows that underlying
type to be specified.

enum-base:
??-type[[#152]]

The underlying type of a native enum can be explicitly declared via enum-base, as one of the following
types: bool, char, unsigned char, signed char, short, unsigned short, int, unsigned int,

117

10

15

20

25

30

35

40

C++/CLI Language Specification

long long, unsigned long long, f1oat, or double. wchar_t cannot be used as an underlying type. If no
underlying type is given for a native enum, the rules specified in the C++ Standard (§7.2) apply.

25.1.4 Native enum members
The enumerator production in the C++ Standard (§7.2) has been extended, as follows:

enumerator:
attributes,y identifier

The values assigned to enumerators are either explicit or implicit, as defined by the C++ Standard when the
underlying type is an integral value.

25.2 CLI enums

A CLI enum is an enum type. All enumerations generated by CLI-based languages other than C++ are CLI
enums. CLI enums are different from native enums in that the names of the former’s enumerators are only
found by looking in the scope of the named CLI enum, and that integral promotion as defined by the C++
standard (§4.5) do not apply to a CLI enum.

25.2.1 CLI enum declarations
A cli-enum-declaration introduces a declaration of a CLI enum type.

cli-enum-declaration:
cli-enum-class-key identifier ;

cli-enum-class-key:
enumiiclass
enumiistruct

An enumiiclass and enumiistruct declaration are equivalent.
A cli-enum-definition defines a CLI enum.

cli-enum-definition:
attributes,y: top-level-type-visibility,,: cli-enum-class-key identifier enum-baseqy
{ enumerator-listoy: }

A cli-enum-definition can optionally include a set of attributes (§28), top-level-type-visibility (§12.4), cli-
enum-class-key, enum-base (§25.1.3), and enumerator-list.

25.2.2 CLI enum visibility

A non-nested CLI enum can optionally specify the accessibility of the CLI enum by using a top-level-type-
visibility of pubTic or private (§12.4).

25.2.3 CLI enum underlying type

A CLI enum can explicitly declare an underlying type, following the same rules for explicit underlying type
as native enums (§25.1.3). A CLI enum definition that does not explicitly declare an underlying type has an
underlying type of int.

25.2.4 CLI enum members
See §25.1.1.

25.2.5 CLI enum values and operations

Each CLI enum type defines a distinct type; an explicit enumeration conversion is required to convert
between a CLI enum type and an integral type, or between two enum types. The set of values that a CLI
enum type can take on is not limited by its enum members. In particular, any value of the underlying type of
an enum can be cast to the enum type, and is a distinct valid value of that enum type.

118

10

Enums

CLI enumerators have the type of their containing enum type (except within other enumerator initializers).
The value of an enumerator declared in enum type E with associated value v is static_cast<e>(v).

The following operators can be used on values of CLI enum types: ==, I=, <, >, <=,>=,+, -, A, &, |, ~, ++,
--, sizeof. Some members in this set require an underlying integral type.

25.3 The System::Enum type

The type System: : Enum is the abstract base class of both native and CLI enum types (this is distinct and

different from the underlying type of the enum type), and the members inherited from System: : Enum are
available in any enum type. A boxing conversion (§??) exists from any enum type to System: : Enum, and
an unboxing conversion (§??) exists from System: : Enum to any enum type.

Note that System: : Enum is not itself an enum type; it is a value class type from which all enum types are
derived. The type System: : Enum inherits from the type System: :valueType, which, in turn, inherits
from System: :0Object.

119

10

15

20

25

30

35

40

C++/CLI Language Specification

26. Delegates

A delegate definition defines a class that is derived from the class System: :Delegate. A delegate instance
encapsulates one or more member functions in an invocation list, each of which is referred to as a callable
entity. For instance functions, a callable entity consists of an instance and a member function on that
instance. For static functions, a callable entity consists of just a member function.

Given a delegate instance and an appropriate set of arguments, one can invoke all of that delegate instance’s
functions with that set of arguments.

[Note: Unlike a pointer to member function, a delegate instance can be bound to members of arbitrary
classes, as long as the function signatures are compatible (§26.1) with the delegate’s type. This makes
delegates suited for “anonymous” invocation. end note]

26.1 Delegate definitions
A delegate-definition is a type-declaration[[Ed.]] (§??) that defines a new delegate type.
delegate-definition:

attributes,, top-level-type-visibility,,x delegate decl-specifier-seqqy, identifier
(decl-specifier-seq) ;

Redo this grammar. [[#78]]
A delegate-definition can include a set of attributes (§28).
The return type of each of the functions that can be encapsulated by the delegate is indicated by return-type.

A non-nested delegate can optionally specify the accessibility of the class by using a top-level-type-visibility
of public or private (§12.4).

The delegate’s type name is identifier.

The optional delegate-parameter-list specifies the parameters of the delegate, and return-type indicates the
return type of the delegate. The parameter list of a delegate corresponds to that of a function, except that at
least one parameter must be specified. [Note: no C-style “vararg” argument is allowed, nor is a parameter
array. end note]

A function and a delegate type are compatible if both of the following are true:

e They have the same number of parameters, with the same types, in the same order, with the same
parameter modifiers.

e Their return-types are the same.

Delegate types are name equivalent, not structurally equivalent. Specifically, two different delegate types
that have the same parameter lists and return type are considered different delegate types. [Example:

delegate int D1(int i, double d);

ref struct A {
static int M1(int a, double b) {.}
ref struct B {
delegate int D2(int c, double d);
static int M2(int f, double g) {.}
static void M3(int k, double 1) {.}
static int M4(Cint g) {.}
static void M5(Cint g) {..}

120

10

15

20

25

30

35

40

45

50

Delegates

D1A d1;

dl = gcnew D1(&A::M1); // ok

dl += gcnew D1(&B::M2); // ok

dl += gcnew D1(&B::M3); // error; types are not compatible
dl += gcnew D1(&B::M4); // error; types are not compatible
dl += gcnew D1(&B::M5); // error; types are not compatible

B::D2A d2;

d2 = gcnew B::D2(&A::M1); // ok

d2 += gcnew B::D2(&B::M2); // ok

d2 += gcnew B::D2(&B::M3); // error; types are not compatible
d2 += gcnew B::D2(&B::M4); // error; types are not compatible
d2 += gcnew B::D2(&B::M5); // error; types are not compatible
dl = d2; // error; different types

end example]

The only way to define a delegate type is via a delegate-definition. A delegate type is a class type that is
derived from System: :Delegate. Delegate types are implicitly sealed, so it is not permissible to derive
any type from a delegate type. It is also not permissible to derive a non-delegate class type from
System: :Delegate. System: :Delegate is not itself a delegate type; it is a class type from which all
delegate types are derived.

C++/CLI provides syntax for delegate instantiation and invocation. Except for instantiation, any operation
that can be applied to a class or class instance can also be applied to a delegate class or instance,
respectively. In particular, it is possible to access members of the System: :Delegate type via the usual
member access syntax.

The set of functions encapsulated by a delegate instance is called an invocation list. When a delegate
instance is created (§26.2) from a single function, it encapsulates that function, and its invocation list
contains only one entry. However, when two non-nul1ptr delegate instances are combined, their
invocation lists are concatenated—in the order left operand then right operand—to form a new invocation
list, which contains two or more entries.

Delegates are combined using the binary + (§15.8.1) and += operators (§15.18). A delegate can be removed
from a combination of delegates, using the binary - (§15.8.2) and -= operators (§15.18). Delegates can be
compared for equality (§15.11.2).

An invocation list can never contain a sole or embedded entry that encapsulates nul1ptr. Any attempt to
combine a non-nulTptr delegate with a nul1ptr delegate, or vice versa, results in the handle to the non-
nullptr delegate's being returned; no new invocation list is created. Any attempt to remove a null1ptr
delegate from a non-nuTTptr delegate, results in the handle to the non-nu11ptr delegate's being returned;
no new invocation list is created.

Once it has been created, an invocation list cannot be changed. Combination and removal operations
involving two non-nul11ptr delegates result in the creation of new invocation lists. A delegate list can never
be empty; either it contains at least one entry, or the list doesn’t exist.

An invocation list can contain duplicate entries, in which case, invocation of that list results a duplicate
entry's being called once per occurance.

When a list of entries is removed from an invocation list, the first occurance of the former list found in the
latter list is the one removed. If no such list is found, the result is the list being searched.

[Example: The following example shows the instantiation of a number of delegates, and their corresponding

invocation lists:
delegate void D(int x);
ref struct Test {
static void M1(int i) {.}
static void M2(int i) {.}

121

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

int main(Q) {

DA cdl = gcnew D(&Test::M1); // M1
DA cd2 = gcnew D(&Test::M2); // M2
DA cd3 = cdl + cd2; // ML + M2
DA cd4 = cd3 - cdl; // M2

}
end example]

26.2 Delegate instantiation

Each delegate type shall have two constructors, as follows:

A constructor taking one argument, del-con-argl, to create a delegate from a static member function or a
namespace scope function. Here del-con-argl shall be the address of a static member function or a
namespace scope function that is compatible with the type of the delegate being instantiated.

A constructor taking two arguments, del-con-arg2 and del-con-arg3, respectively. This is used to create a
delegate to a instance function. Here, del-con-arg2 shall be a reference to an Object instance and del-con-
arg3 shall be the address of an instance function directly defined in that instance’s type.

[Example:

delegate void D(int x);
ref struct Test {
static void M1(int 1) {..}
void M2(int i) {.}
int main() {
DA cdl = gcnew D(&Test::M1); // static function
TestA t = gcnew Test;
DA cd2 = gcnew D(t, &Test::M2); // instance function

end example]

Once instantiated, delegate instances always refer to the same target Object and function. [Note: Remember,
when two delegates are combined, or one is removed from another, a new delegate results with its own
invocation list; the invocation lists of the delegates combined or removed remain unchanged. end note]

When a delegate is created from a member function name, the formal parameter list and return type of the
delegate determine which of the overloaded functions to select. [Example: In the example

delegate double DoubleFunc(double x);

ref struct A {
static float Square(float x) {

o

return x * X;

static double Square(double x) {

return x * X;

}
};
int main(Q {
DoubleFuncA f = gcnew DoubleFunc(&A::Square);

the variable f is initialized with a delegate that refers to the second Square function because that function
exactly matches the formal parameter list and return type of Doub1eFunc. Had the second Square function
not been present, the program would have been ill-formed. end example]

26.3 Delegate invocation

Given deTegate void D(), the function call D() is shorthand for the call D->Invoke(). Invocation of a
delegate has the semantics specified for the Invoke member in the CLI Standard. [Note: Here is a summary
of what that standard requires:

122

10

15

Delegates

When a delegate instance whose invocation list contains one entry, is invoked, it invokes the one function
with the same arguments it was given, and returns the same value as the referred to function. If an exception
occurs during the invocation of such a delegate, and that exception is not caught within the function that was
invoked, the search for an exception catch clause continues in the function that called the delegate, as if that
function had directly called the function to which that delegate referred.

Invocation of a delegate instance whose invocation list contains multiple entries, proceeds by invoking each
of the functions in the invocation list, synchronously, in order. Each function so called is passed the same set
of arguments as was given to the delegate instance. If such a delegate invocation includes parameters passed
by non-const address, reference, or handle, each function invocation will occur with the address, reference,
or handle to the same variable; changes to that variable by one function in the invocation list will be visible
to functions further down the invocation list. If the delegate invocation includes a return value, its final value
will come from the invocation of the last delegate in the list. If an exception occurs during processing of the
invocation of such a delegate, and that exception is not caught within the function that was invoked, the
search for an exception catch clause continues in the function that called the delegate, and any functions
further down the invocation list are not invoked. end note]

Attempting to invoke a delegate instance whose value is nu1Tptr results in an exception of type
System: :NulTReferenceException.

123

C++/CLI Language Specification

27. Exceptions

To be added. (Cover unification of CLI and Standard C++ exception-handling models.) [[#79]]

27.1 Common exception classes

The following exceptions are thrown by certain C++/CLI operations.

Exception Name Description

System: :NullReferenceException Thrown when a null-valued handle is dereferenced.

Thrown when a static constructor throws an

System: :TypeInitializationException . . .
exception, yet no catch clauses exists to catch it.

124

10

15

20

25

30

35

Attributes

28. Attributes

The CLI enables programmers to invent new kinds of declarative information, called attributes.
Programmers can then attach attributes to various program entities, and retrieve attribute information in a
run-time environment. [Note: For instance, a framework might define a He1pAttribute attribute that can
be placed on certain program elements (such as classes and functions) to provide a mapping from those
program elements to their documentation. end note]

Attributes are defined through the declaration of attribute classes (§28.1), which can have positional and
named parameters (§28.1.2). Attributes are attached to entities in a C++ program using attribute
specifications (§28.2), and can be retrieved at run-time as attribute instances (§28.3).

28.1 Attribute classes

A class that derives from the abstract ref class System: : Attribute, whether directly or indirectly, is an
attribute class. The declaration of an attribute class defines a new kind of attribute that can be placed on a
declaration. [Note: By convention, attribute classes are named with a suffix of Attribute. Uses of an
attribute can either include or omit this suffix. end note]

28.1.1 Attribute usage

The attribute System: :AttributeUsageAttribute (§28.4.1) is used to describe how an attribute class
can be used. [Note: When the name of an attribute type ends in the suffix Attribute, the suffix can be
omitted when it is being used in an attribute and there is no other attribute having the name without the
suffix. See §??. end note]

AttributeUsage has a positional parameter (§28.1.2) that enables an attribute class to specify the kinds of
declarations on which it can be used. [Example: The example

[Attributeusage(AttributeTargets::Class | AttributeTargets::Interface)]
public ref class SimpleAttribute : Attribute {};

defines an attribute class named SimpleAttribute that can be placed on reference-class-declarations and
interface-class-declarations only. The example

[simple] ref class Classl {.};
[simple] interface class Interfacel {.};

shows several uses of the Simp1e attribute. Although this attribute is defined with the name
SimpleAttribute, when this attribute is used, the Attribute suffix can be omitted, resulting in the short
name SimpTe. Thus, the example above is semantically equivalent to the following

[simpleAttribute] ref class Classl {..};
[simpleAttribute] interface class Interfacel {.};

end example]

AttributeUsage has a named parameter (§28.1.2), called AT1TowMuTtiple, which indicates whether the
attribute can be specified more than once for a given entity. If ATTowMuTt1ipTe for an attribute class is true,
then that class is a multi-use attribute class, and can be specified more than once on an entity. If
AllowMultipTle for an attribute class is false or it is unspecified, then that class is a single-use attribute
class, and can be specified at most once on an entity.

[Example: The example

125

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

[AttributeUsage(AttributeTargets::Class, AllowMultiple = true)]
public ref class AuthorAttribute : Attribute {

StringA name;
public:

AuthorAttribute(StringA name) : name(name) { }

property StringA Name { StringA get() { return name;} }

defines a multi-use attribute class named AuthorAttribute. The example

[Author("Brian Kernighan"), Author("Dennis Ritchie")]
ref class Classl {..};

shows a class declaration with two uses of the Author attribute. end example]

AttributeUsage has another named parameter (§28.1.2), called Inherited, which indicates whether the
attribute, when specified on a base class, is also inherited by classes that derive from that base class. If
Inherited for an attribute class is true, then that attribute is inherited. If Inherited for an attribute class
is false then that attribute is not inherited. If it is unspecified, its default value is true.

An attribute class X not having an AttributeUsage attribute attached to it, as in

ref class X : Attribute { .. };

is equivalent to the following:

[AttributeUsage(AttributeTargets::All, AllowMultiple = false,
Inherited = true)] ref class X : Attribute { .. };

28.1.2 Positional and named parameters

Attribute classes can have positional parameters and named parameters. Each public instance constructor
for an attribute class defines a valid sequence of positional parameters for that attribute class. Each non-
static public read-write field and property for an attribute class defines a named parameter for the attribute
class.

[Example: The example

[AttributeUsage(AttributeTargets::Class)]
public ref class HelpAttribute : Attribute {

pubTic:
HelpAttribute(stringA url) { // uUrl 1is a positional parameter
-
property StringA Topic { // Topic is a named parameter

StringA get() {..}
void set(StringA value) {..}

property StringA uUrl { stringA get() {.} }
defines an attribute class named HeTpAttribute that has one positional parameter (StringA Url) and
one named parameter (StringA Topic). Although it is non-static and public, the property Ur1 does not
define a named parameter, since it is not read-write.

This attribute class might be used as follows:

[Help("http://www.mycompany.com/../Classl.htm")]
ref class Classl {

[Help("http://www.mycompany.com/../Misc.htm", Topic ="Class2")]
ref class Class2 {

end example]

Neither a type parameter (§30.1.1) nor an open constructed type (§30.2.1) shall be an argument to the
constructor of a custom attribute.

126

10

15

20

25

30

35

Attributes

28.1.3 Attribute parameter types

The types of positional and named parameters for an attribute class are limited to the attribute parameter
types, which are:

e One of the following types: boo1, char, wchar_t, short, int, Tong, Tong Tong, float,
doubTe, and System: :StringA.

e The type System: :ObjectA.
e The type System: : TypeA.

e An enum class type, provided it has public accessibility and the types in which it is nested (if any)
also have public accessibility.

e Single-dimensional c11 : :arrays of the above types.

28.2 Attribute specification

Attribute specification is the application of a previously defined attribute to a declaration. An attribute is a
piece of additional declarative information that is specified for a declaration. Attributes can be specified at
file scope (to specify attributes on the containing assembly) and for type-declarations (§2?), class member-
declarations, struct member-declarations, interface member-declarations, enum member-declarations,
accessor-specification (§??), and formal-parameters (§??).

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets, which
surround a comma-separated list of one or more attributes. The order in which attributes are specified in
such a list, and the order in which sections attached to the same program entity are arranged, is not
significant. For instance, the attribute specifications [A][B], [B][A], [A, B], and [B, A] are equivalent.

global-attributes:
global-attribute-sections ;

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
[global-attribute-target : attribute-list]

global-attribute-target:
assembly
module

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifier,y attribute-list]

attribute-target-specifier:
attribute-target

127

10

15

20

25

30

35

40

45

C++/CLI Language Specification

attribute-target:
class
constructor
delegate
enum
event
field
interface
method
parameter
property
returnvalue
struct

attribute-list:
attribute , o
attribute , attribute-list

attribute:
attribute-name attribute-argumentsy

attribute-name:
type-name

attribute-arguments:
(positional-argument-listyy,)
(positional-argument-list , named-argument-list)
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
attribute-argument-expression

named-argument-list:
named-argument
named-argument-list , named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

An attribute consists of an attribute-name and an optional list of positional and named arguments. The
positional arguments (if any) precede the named arguments. A positional argument consists of an attribute-
argument-expression; a named argument consists of a name, followed by an equal sign, followed by an
attribute-argument-expression, which, together, are constrained by the same rules as simple assignment. The
order of named arguments is not significant.

[Note: A trailing comma is allowed in a global-attribute-section and an attribute-section; this provides
flexibility in adding or deleting members from the list, and simplifies machine generation of such lists. end
note]

[Note: In the CLI, functions are called methods, so the target specifier for a function is method. end note]

The attribute-name identifies an attribute class. type-name shall refer to an attribute class. [Example: The
example

ref class Classl {};

128

10

15

20

25

30

35

40

45

50

Attributes

[classl] ref class class2 {}; // Error

results in an ill-formed program because it attempts to use Class1 as an attribute class when Class1 is not
an attribute class. end example]

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly
specify the target by including an attribute-target-specifier. When an attribute is placed at file scope, a
global-attribute-target is required. In all other locations, a reasonable default is applied, but an attribute-
target-specifier can be used to affirm or override the default in certain ambiguous cases (or just to affirm the
default in non-ambiguous cases). Thus, typically, attribute-target-specifiers can be omitted. The potentially
ambiguous contexts are resolved as follows:

e An attribute specified on a delegate declaration can apply either to the delegate being declared or to
its return value. In the absence of an attribute-target-specifier, the attribute applies to the delegate.
The presence of the deTegate attribute-target-specifier indicates that the attribute applies to the
delegate; the presence of the returnvalue attribute-target-specifier indicates that the attribute
applies to the return value.

e An attribute specified on a function declaration can apply either to the function being declared or to
its return value. In the absence of an attribute-target-specifier, the attribute applies to the function.
The presence of the method attribute-target-specifier indicates that the attribute applies to the
function; the presence of the returnvalue attribute-target-specifier indicates that the attribute
applies to the return value.

e An attribute specified on an operator declaration can apply either to the operator being declared or to
its return value. In the absence of an attribute-target-specifier, the attribute applies to the operator.
The presence of the method attribute-target-specifier indicates that the attribute applies to the
operator; the presence of the returnvalue attribute-target-specifier indicates that the attribute
applies to the return value.

e An attribute specified on a trivial event declaration can apply to the event being declared, to the
associated field (if the event is not abstract), or to the associated add and remove functions. In the
absence of an attribute-target-specifier, the attribute applies to the event declaration. The presence
of the event attribute-target-specifier indicates that the attribute applies to the event; the presence
of the f1ield attribute-target-specifier indicates that the attribute applies to the field; and the
presence of the method attribute-target-specifier indicates that the attribute applies to the functions.

An implementation can accept other attribute target specifiers, the purpose of which is implementation-
defined. However, an implementation that does not recognize such a target, shall issue a diagnostic.

By convention, attribute classes are named with a suffix of Attribute. An attribute-name can either
include or omit this suffix. When attempting to resolve an attribute reference from which the suffix has been
omitted, if an attribute class is found both with and without this suffix, an ambiguity is present, and the
program is ill-formed. [Example: The example

[AttributeUsage(AttributeTargets::Al1)]
public ref class X : Attribute {};

[AttributeUsage(AttributeTargets::Al11)]
public ref class XAttribute : Attribute {};

[x] // error: ambiguity
ref class Classl {};
[XAttribute] // refers to XAttribute

ref class Class2 {};

shows two attribute classes named X and XAttribute. The attribute reference [X] is ambiguous, since it
could refer to either X or XAttribute. The attribute reference [XAttribute] is not ambiguous (although
it would be if there was an attribute class named XAttributeAttribute!). If the declaration for class X is
removed, then both attributes refer to the attribute class named XAttribute, as follows:

[AttributeUsage(AttributeTargets::Al1)]
public ref class XAttribute : Attribute {};

129

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

[X] // refers to XAttribute
ref class Classl {};
[XAttribute] // refers to XAttribute

ref class Class2 {};
end example]

A program is ill-formed if it uses a single-use attribute class more than once on the same entity. [Example:
The example
[AttributeUsage(AttributeTargets::Class)]
public ref class HelpStringAttribute : Attribute {
StringA value;
public:)))
HelpStringAttribute(StringA value) {
) this->value = value;

property StringA value { StringA get() {.} }
[Helpstring("Description of Classl")]

[HeTpstring("Another description of Classl™)] // error
public ref class Classl {};

results in the programs’ being ill-formed because it attempts to use HelpString, which is a single-use
attribute class, more than once on the declaration of Class1. end example]

An expression E is an attribute-argument-expression if all of the following statements are true:
e The type of E is an attribute parameter type (§28.1.3).
e At compile-time, the value of E can be resolved to one of the following:
e A constant value.
e A System::TypeA object.
e A one-dimensional c11 : :array of attribute-argument-expressions.

[Example:

[AttributeUsage(AttributeTargets::Class)]
public ref class MyAttribute : Attribute {
public:
property int Pl {
int get() {..}
void set(int value) {.}

property TypeA P2 {
TypeA get() {.}
void set(TypeA value) {.}

}

property ObjectA P3 {
ObjectA get() {..}
void set(ObjectA value) {..}

3

[My(Pl = 1234, P3 = gcnew array<int>{1l, 3, 5}, P2 = float::typeid)]
ref class MyClass {};

end example]

28.3 Attribute instances

An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an
attribute class, positional arguments, and named arguments. An attribute instance is an instance of the
attribute class that is initialized with the positional and named arguments.

130

10

15

20

25

30

35

Attributes

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the
following subclauses.

28.3.1 Compilation of an attribute

The compilation of an attribute with attribute class T, positional-argument-list P and named-argument-list N,
consists of the following steps:

e Follow the compile-time processing steps for compiling a new-expression of the form gcnew T(P).
These steps either result in the program being ill-formed, or determine an instance constructor on T
that can be invoked at run-time. Let us call this instance constructor C.

e If C does not have public accessibility, then the program is ill-formed.
e For each hamed-argument Arg in N:
0 Let Name be the identifier of the named-argument Arg.

0 Name must identify a non-static read-write public field or property on T. If T has no such field or
property, then the program is ill-formed.

o Keep the following information for run-time instantiation of the attribute: the attribute class T, the
instance constructor C on T, the positional-argument-list P and the named-argument-list N.

28.3.2 Run-time retrieval of an attribute instance
This is governed by the CLI standard (see §?7?).

28.4 Reserved attributes

A small number of attributes affect the language in some way. These attributes include:

e System::AttributeUsageAttribute (§28.4.1), which is used to describe the ways in which an
attribute class can be used.

e System::0ObsoleteAttribute (§28.4.2), which is used to mark a member as obsolete.

Need to document C++/CLI-specific attribute ScopelessEnumAttribute. What about
HasCopySemanticsAttribute? [[Ed]]

28.4.1 The AttributeUsage attribute
The attribute AttributeUsage is used to describe the manner in which the attribute class can be used.

A ref class that is decorated with the AttributeUsage attribute must derive from System: :Attribute,
either directly or indirectly. Otherwise, the program is ill-formed.

The constructor for class AttributeUsageAttribute takes an argument of type AttributeTargets.
This enumeration type has a number of enumerators defined, several of which need further explanation:

e Class indicates that the attribute can be applied to a ref class.

e Enum indicates that the attribute can be applied to a native or CLI enum.
e Struct indicates that the attribute can be applied to a value class.

e Method indicates that the attribute can be applied to a function.

e [Note: For an example of using this attribute, see §28.1.1. end note]

28.4.2 The Obsolete attribute
The attribute Obsolete is used to mark types and members of types that should no longer be used.

If a program uses a type or member that is decorated with the Obsolete attribute, then the compiler shall
issue a diagnostic in order to alert the developer, so the offending code can be fixed. Specifically, the

131

10

15

20

25

C++/CLI Language Specification

compiler shall issue a diagnostic if no error parameter is provided, or if the error parameter is provided and
has the value false. The program is ill-formed if the error parameter is specified and has the value true.
[Example: In the example

[ObsoTlete("This class is obsolete; use class B instead")]
ref struct A {
void FQO {}

ref struct B {
void FQO {}

int main(QQ {

AA a = gchew AQ); // diagnostic
a->FQ);

the class A is decorated with the ObsoTete attribute. Each use of A in main results in a diagnostic that
includes the specified message, “This class is obsolete; use class B instead.” end example]

28.5 Attributes for interoperation
28.5.1 Interoperation with other CLI-based languages

28.5.1.1 The DefaultMember attribute

The attribute System: :Reflection: :DefaultMemberAttribute is used to provide the underlying
name to the default indexed property. The attribute is placed on the class, and all overloads of a default
indexed property share the same name.

Check this name; this attribute might have been renamed in the CLI standard. [[#119]]

28.5.1.2 The MethodimplOption attribute

Synchronized function for compiler-generated add/remove event accessor functions. [[#113]]

132

10

15

20

25

30

Templates

29. Templates

This clause is incomplete.[[#82]]

The template syntax is the same for all types, including CLI types. Templates on CLI types can be partially
specialized, fully specialized, and non-type parameters of any type (subject to all the constant-expression
and type rules in the C++ Standard) can be used, with the same semantics as specified by the C++ Standard.

Templates are fully resolved and compiled at compile time, and reside in their own assemblies.

Within an assembly, templates are implicitly instantiated only for the uses of that template within the
assembly.

29.1 Attributes

Given that the grammars for ref class, value class, and interface class already include the possibility of
attributes, review what is stated below and modify as necessary. (Support for attributes has yet to be added
to the grammar for functions.) [[#82]]

Classes within templates can have attributes, with those attributes being written after the template parameter
list and before the class-key. A template parameter is allowed as an attribute, and also as an argument to an
attribute. [Example:

template<typename T>
[attributes]
ref class R { };

end example]

Functions within templates can have attributes, with those attributes being written after the template
parameter list and before the function definition. [Example:

template <typename T>

[attributes]

void f(const T& t) { /* .. */ }
end example]

Explicit and partial specializations of a class template must have the same class kind as the primary
template. For example, an explicit specialization of a ref class template cannot be a value class. [[#82]]

Are there any issues with metadata name emission? Is it even necessary to standardize this since template
specializations are really only useful inside an assembly. [[#82]]

29.2 Type deduction

There is no ordering among %, A, &, or *.

Template type deduction of nuTTptr literal is not possible.

Non-type template parameters will not include %, *, or nullptr. [[#82]]

133

10

15

20

25

30

35

40

C++/CLI Language Specification

30. Generics

Some issues to consider are: (1) using templates inside of generics, (2) overloading rules, and (3) dynamic
cast to type parameters. The high level goal with generics (as with other parts of C++/CLI) is to provide a
close mapping of the underlying capabilities of the CLI, which means that C++ can potentially create
generics that other languages might not be able to consume. Not all languages support all capabilities, but
C++/CLI supports more than most. (However, C++/CLI does not support array co- or contra-
variance.)[[#98]]

Generic types and functions are a set of features—collectively called generics—defined by the CLI to allow
parameterized types. Generics differ from Standard C++’s templates in that generics are instantiated by the
Virtual Execution System (VES) at runtime rather than by the compiler at compile-time.

A generic declaration defines one or more type parameters for a declaration of a ref class, value class,
interface class, delegate, or function. To instantiate a generic type or function from a generic declaration,
type arguments that correspond to that generic declaration’s type parameters must be supplied. The set of
type arguments that is permitted for any given type parameter can be restricted via the use of one or more
constraints.

30.1 Generic declarations

To accommodate the addition of generics, the grammar for declaration in the C++ Standard (§7) has been
extended, as follows:

declaration:

generic-declaration
A generic declaration is defined as follows:

generic-declaration:
generic < generic-parameter-list > constraint-clause-list,,; declaration

generic-parameter-list:
generic-parameter
generic-parameter-list , generic-parameter

Type parameters are defined via a generic-parameter-list, which is a sequence of one or more generic-
parameters (§30.1.1). Constraints are defined via a constraint-clause-list (§30.4).

If the declaration of a generic-declaration is other than a ref class, value class, interface class, delegate, or
function (excluding constructors and destructors), the program is ill-formed.

A program is ill-formed if it declares a property or event as a generic. The constituent functions of a property
or event shall not be generic.

A generic-declaration is a declaration. A generic-declaration is also a definition if its declaration defines a
ref class, a value class, an interface class, a delegate, or a function.

A generic-declaration shall appear only as a namespace scope or class scope declaration.

The text indicates that a generic-declaration may appear in a class scope, but the syntax of member-
declaration has not been extended to permit a generic-declaration. [[#153]]

Generic declarations that are also definitions can have public or private assembly visibility (§10.2.1), except
that a non-member function definition shall never have public visibility.

134

10

15

20

25

30

35

40

45

Generics

A generic type shall not have the same name as any other generic type, template, class, delegate, function,
object, enumeration, enumerator, namespace, or type in the same scope (C++ Standard 3.3), except as
specified in 14.5.4 of the C++ Standard. Except that a generic function can be overloaded either by non-
generic functions with the same name or by other generic functions with the same name, a generic name
declared in namespace scope or in class scope shall be unique in that scope. Doesn't the text "a generic name
declared in namespace scope or in class scope shall be unique in that scope" make the first sentence of this
paragraph redundant? Re the reference to 14.5.4: That is the section on partial specialization. Generics can't
be partially specialized, can they? The spec. should probably answer that explicitly. [[#154]]

Generic type declarations follow the same rules as non-generic type declarations except where noted. What
is a non-generic type? Does it mean that the rules are the same as classes? As template classes? Something
else? [[#155]] Generic type declarations can be nested inside non-generic type declarations. Can generic
types be nested in native classes? [[#156]]

Generic functions are discussed further in (§30.3).

Type Overloading — This involves overloading on arity, and is currently under investigation. Such a feature
permits the following: [[#157]]

ref class X {};

generic<typename T>

ref class X {};

generic<typename T, typename U>
ref class X {};

30.1.1 Type parameters

A type parameter can be defined in one of the following ways:

generic-parameter:
attributes,y class identifier
attribute,y typename identifier

There is no semantic difference between class and typename in a generic-parameter. A generic-
parameter can optionally have one or more attributes (§28).

A generic-parameter defines its identifier to be a type-name. The equivalent wording for template
parameters in the working paper has been changed to "defines its identifier to be a typedef-name". The
revised wording should probably be used here too (see core issue 283) [[#158]].

The scope of a generic-parameter extends from its point of declaration until the end of the declaration to
which its generic-parameter-list applies.

[Note: Unlike templates, generics has no equivalent to a non-type template-parameter or a template
template-parameter. Neither does generics support default generic-parameters; instead, generic type
overloading is used. end note]

As a type, type parameters are purely a compile-time construct. At run-time, each type parameter is bound to
a run-time type that was specified by supplying a type argument to the generic type declaration. Thus, the
type of a variable declared with a type parameter will, at run-time, be a closed constructed type (§30.2). The
run-time execution of all statements and expressions involving type parameters uses the actual type that was
supplied as the type argument for that parameter.

30.1.2 Referencing a generic type by name

Like templates in Standard C++, within the body of a generic type any usage of the unqualified unadorned
name of that type is assumed to refer to the current instantiation. 30.1.3 describes "The instance type".
These seem like two different ways of describing the same concept. Can they be unified in some
way?[[#159]] [Example:

135

10

15

20

25

30

35

40

45

C++/CLI Language Specification

generic<typename T>
ref class X {

pubTic:
xXO {3 // ok: means X<T>
void f(XA); // ok: means X<T>
11X gQ; // error

end example]
Outside its declaration, a generic type is referenced using a constructed type (§30.2). [Example: Given the
following,

generic<typename T>
ref class List {};

generic<typename U>
void fO {
List<U>A 11 = gcnew List<U>;
List<int>A 12 = gcnew List<int>;
List<List<StringA>A>A 13 = gcnew List<List<StringA>A>;

some examples of constructed types are List<U>, List<int>, and List<List<StringA>A>, A
constructed type that uses one or more type parameters, such as List<U>, is an open constructed type
(§30.2.1). A constructed type that uses no type parameters, such as List<int>, is called a closed
constructed type (§30.2.1). end example]

30.1.3 The instance type

Each type declaration has an associated constructed type, the instance type. For a generic type declaration,
the instance type is formed by creating a constructed type (§30.2) from the type declaration, with each of the
supplied type arguments being the corresponding type parameter. Since the instance type uses the type
parameters, it can only be used where the type parameters are in scope; that is, inside the type declaration.
Inside the declaration of a ref class, th1is is a const-qualified handle to the instance type. Inside the
declaration of a value class, th1is is a const-quafied interior_ptr to the instance type. For non-generic
types, the instance type is simply the declared type. [Example: The following shows several class
declarations along with their instance types:

generic<typename T>

ref class A { // instance type: A<T>
class B {}; // instance type: A<T>::B
generic<typename U>

) ref class C {}; // instance type: A<T>::C<U>

class D {}; // instance type: D

end example]

30.1.4 Base classes and interfaces

The base class and interfaces of a generic type declaration shall not be a type parameter, though they can be
a constructed type using a type parameter. [Example:

ref class Bl {};

generic<typename T>
ref class B2 {};

generic<typename T>
interface class 11 {};

136

10

15

20

25

30

35

40

45

50

Generics

generic<typename T>
ref class R1 : T {}; // error

generic<typename T>
ref class R2 : Bl {}; // ok

generic<typename T>
ref class R3 : B2<int>, Il<int> {}; // ok (closed constructed types)

generic<typename T>
ref class R4 : B2<T>, Il<T> {}; // ok (open constructed types)

end example]
A generic class declaration shall not use System: :Attribute as a direct or indirect base class.

30.1.5 Class members

All members of a generic type can use type parameters from any enclosing type, either directly or as part of
a constructed type. When a particular closed constructed type (§30.1.2) is used at run-time, each use of a
type parameter is replaced with the actual type argument supplied to the constructed type.

Properties, events, constructors, and destructors shall not themselves have explicit type parameters (although
they can occur in generic classes, and use the type parameters from an enclosing class).

When the type of a member is a type parameter, the declaration of that member shall use that type
parameter’s name without any pointer, reference, or handle declarators. Member access on a member whose
type is a type parameter shall use the -> operator. [Example:

interface class I1 {
void FQ;
1

generic<typename T>

where T : Il
ref class A {

T t; // no *, &, or A declarator allowed
public:

void FO {}

void GO {

t->F(); // -> must be used, not

s
end example]
[Note: The compiler only generates one definition for a generic class in metadata. Generics allow value
classes as generic type parameters. Textual substitution of a value class parameter would lead to an ill-
formed program as the -> operator is not allowed for member access. As the VES is responsible for
instantiations of generics, textual substitution is the wrong way of thinking about generic instantiation. end
note]

As a member whose type is a parameter type will be a value class, or a handle to a ref class, interface class,
delegate, or Array, the destructor of a generic class will not invoke the destructor on such a member.

Within a generic class declaration, access to inherited protected instance members is permitted through an
instance of any class type constructed from that generic class. [Example: In the following code

generic<typename T>
ref class B {
protected:

T X;
};

generic<typename T>
ref class D : B<T> {
static void FO {
D<T>A dt = gcnew D<T>;
dt->x = TQ;

137

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

D<int>A di = gcnew D<int>;

di->x = 123;
D<StringA>A ds = gcnew D<StringA>;
ds->x = "test";

3
3
the three assignments to x are permitted because they all take place through instances of class types
constructed from the generic type. end example]

Static operators are discussed in (§30.1.7), other static members are discussed in (§30.1.6), nested types are
discussed in (§30.1.10), and generic functions, in general, are discussed in (§30.3).

30.1.6 Static members

This subclause describes when a static constructor is invoked. In 18.8, it references the CLI Standard
Partition II (10.5.3). Are the rules the same? Should this subclause also just reference the CLI
spec?[[#160]]

A static data member in a generic class declaration is shared amongst all instances of the same closed
constructed type (§30.1.2), but is not shared amongst instances of different closed constructed types. These
rules apply regardless of whether the type of the static data member involves any type parameters or not.

A static constructor in a generic class is used to initialize static data members and to perform other
initialization for each different closed constructed type that is created from that generic class declaration.
The type parameters of the generic type declaration are in scope, and can be used, within the body of the
static constructor.

A new closed constructed class type is initialized the first time that either:
e An instance of the closed constructed type is created.
e Any of the static members of the closed constructed type are referenced.

To initialize a new closed constructed class type, first a new set of static data members for that particular
closed constructed type is created. Each of the static data members is initialized to its default value. Next,
the static data members’ initializers are executed for those static fields. Finally, the static constructor is
executed. [Example:
generic<typename T>
ref class C {
static int count = 0;
pubTlic:
static cO) {]]
Console::writeLine(typeid<C<T> >);

cO {

count++;

static property int Count {
int get() { return count; }

3
int main() {

C<int>A x1 = gcnew C<int>;
console::WriteLine(C<int>::Count);

C<double>A x2 = gcnew C<double>;
Console::WriteLine(C<double>::Count);
console::WriteLine(C<int>::Count);

C<int>A x3 = gcnew C<int>;
console::WriteLine(C<double>::Count);

138

10

15

20

25

30

35

40

45

50

Generics

console::WriteLine(C<int>::Count);

The output produced is:
C[system.Int32]
1

E[System.Doub1e]

1
1
2

end example]
Static operators are discussed in (§30.1.7)

30.1.7 Operators

Generic class declarations can define operators, following the same rules as non-generic class declarations.
The instance type (§30.1.3) of the class declaration must be used in the declaration of operators in a manner
analogous to the normal rules for operators, as follows:

e A unary operator shall take a single parameter of a handle to the instance type.

e The unary ++ and -- operators shall take a single parameter of a handle to the instance type and
return a handle to the same type.

e At least one of the parameters of a binary operator shall be a handle to the instance type.

[Example: The following shows some examples of valid operator declarations in a generic class:

generic<typename T>

public ref class vector {

pubTic:
vector(int size) { .. };
static Vector<T>A operator-(vector<T>A v) { .. }
static Vector<T>A operator++(vector<T>A v) { .. }
static Vector<T>A operator+(Vector<T>A vl, Vector<T>A v2) { .. }
//

’

int main() {
Vector<int>A ivl = gcnew Vector<int>(5);
Vector<int>A iv2;

iv2 = iv1++;]
1v2 = ++ivl + -ivl;

}

end example]
What to say about explicit conversion functions (which can only occur in managed class types)?[[#161]]

30.1.8 Member overloading

Functions, instance constructors, and static operators within a generic class declaration can be overloaded;
however, this can lead to an ambiguity for some closed constructed types. [Example:

generic<typename T1l, typename T2>
ref class X {
public:
void F(T1, 12) { }
void F(T2, T1) { }
void F(int, StringA) { }
int main() {
X<int, double>A x1 = gcnew X<int, double>;
x1->F(10, 20.5); // okay

X<double, int>A x2 gcnew X<double, int>;
x2->F(20.5, 10); // okay

139

10

15

20

25

30

35

40

45

50

55

C++/CLI Language Specification

X<int, int>A x3 = gchew X<int, int>;

x3->F(10, 20); // error, ambiguous
X<int, StringA>A x4 = gcnew X<int, StringA>;
x4->F(10, "abc"); // error, ambiguous

}

end example]
A generic class is allowed to have this potential ambiguity; however, a program is ill-formed if it uses a
constructed type to create such an ambiguity.

30.1.9 Member overriding

Function members in generic classes can override function members in base classes, as usual. If the base
class is a non-generic type or a closed constructed type, then any overriding function member cannot have
constituent types that involve type parameters. However, if the base class is an open constructed type, then
an overriding function member can use type parameters in its declaration. When determining the overridden
base member, the members of the base classes shall be determined by substituting type arguments, as
described in §30.2.4. Once the members of the base classes are determined, the rules for overriding are the
same as for non-generic classes. [Example:

generic<typename T>
ref class C abstract {
pubTic:
virtual T FO { .. }
virtual c<T>A GO { .. }
virtual void H(C<T>A x) { .. }
ref class D : C<StringA> {
pubTic:
SstringA F() override { .. } // Ok
C<StringA>A G() override { .. } // 0ok
void H(C<int>A x) override { .. } // Error, should be C<StringA>
generic<typename T, typename U>
ref class E : C<U>

public:
U FO override { .. } // Ok
C<U>A G(O) override { .. } // Ok
void H(C<T>A x) override { .. } // Error, should be C<uU>

end example]

30.1.10 Nested types

A generic class declaration can contain nested type declarations, except that a generic class declaration shall
not contain a native class. The type parameters of the enclosing class can be used within the nested types. A
nested type declaration can contain additional type parameters that apply only to the nested type. A generic
type can be nested within a non-generic type.

Every type declaration contained within a generic class declaration is implicitly a generic type declaration.
When writing a reference to a type nested within a generic type, the containing constructed type, including
its type arguments, must be named. However, from within the outer class, the nested type can be used
without qualification; the instance type of the outer class can be implicitly used when constructing the nested
type. [Example: The following example shows three different correct ways to refer to a constructed type
created from Inner; the first two are equivalent:
generic<typename T>
ref class outer {
generic<typename U>
ref class Inner {
pubTlic:]
static void F(T t, U u) {}

140

10

15

20

25

30

35

40

45

Generics

static void F(T t) {

outer<T>::Inner<StringA>::F(t, "abc"); // These two statements
have
Inner<StringA>::F(t, "abc"); // the same effect
outer<int>::Inner<StringA>::F(3, "abc"); // This type is different
b
};

end example]
A type parameter in a nested type can hide a member or type parameter declared in the outer type. [Example:

generic<typename T>
ref class outer {
generic<typename T> // valid, hides oOuter’s T
ref class Inner {
T t; // Refers to Inner’s T
};
};

end example]

30.2 Constructed types

A generic type declaration, by itself, does not denote a type. Instead, a generic type declaration is used as a
blueprint to form many different types, by way of applying type arguments (§30.2.1). A type that is named
with at least one type argument is called a constructed type. A constructed type can be open or closed, as we
shall see in (§30.2.1)

To accommodate the addition of generics, the grammar for unqualified-id in the C++ Standard (§5.1) has
been extended, as follows:

unqualified-id:
generic-id
A constructed type is referred to by a generic-id:

generic-id:
generic-name < generic-argument-list >

generic-name:
identifier

generic-argument-list is discussed in (§30.2.2).

30.2.1 Open and closed constructed types

All types can be classified as either open constructed types or closed constructed types. An open
constructed type is a type that involves type parameters. More specifically:

e A type parameter defines an open constructed type.
e An Array type is an open constructed type if and only if its element type is an open constructed type.

e A constructed type is an open constructed type if and only if one or more of its type arguments is an
open constructed type. A constructed nested type is an open constructed type if and only if one or
more of its type arguments (§30.2.2) or the type arguments of its containing type(s) is an open
constructed type.

A closed constructed type is a type that is not an open constructed type.

[Example: Given the following,

generic<typename T>
ref class List {};

141

10

15

20

25

30

35

40

45

C++/CLI Language Specification

generic<typename U>
void fQO
List<U>A 11 = gcnew List<U>;
List<int>A 12 = gcnew List<int>;
List<List<StringA>A>A 13 = gcnew List<List<StringA>A>;

List<U>, List<int>, and List<L1ist<StringA>A> are examples of constructed types are, where
List<U> is an open constructed type, and List<int> and List<List<StringA>A> are closed
constructed types. end example]

At run-time, all of the code within a generic type declaration is executed in the context of a closed
constructed type that was created by applying type arguments to the generic declaration. Each type
parameter within the generic type is bound to a particular run-time type. The run-time processing of all
statements and expressions always occurs with closed constructed types, and open constructed types occur
only during compile-time processing.

Each closed constructed type has its own set of static variables, which are not shared with any other closed
constructed types. Since an open constructed type does not exist at run-time, there are no static variables
associated with an open constructed type. Two closed constructed types are the same type if they are
constructed from the same type declaration, and their corresponding type arguments are the same type.

A constructed type has the same accessibility as its least accessible type argument.

30.2.2 Type arguments

This subclause lists the types that can and cannot be generic arguments. Fundamental types are not included
in either set, neither are function types. The subclause does not say whether or not cv-qualified types are
allowed.[[#162]]

A generic type or function is instantiated from a generic declaration by specifying type arguments that
correspond to that generic declaration’s type parameters. Type arguments are specified via a generic-
argument-list:

generic-argument-list:
generic-argument
generic-argument-list , generic-argument

generic-argument:
type-id

The arguments for an instantiation of a generic class shall always be explicitly specified. The arguments for
an instantiation of a generic function (§30.3) can either be specified explicitly, or they can be determined by
type deduction.

A generic-argument shall be a constructed type that is a value class, a handle to a ref class, a handle to a
delegate, a handle to an interface, a handle to an Array, or it shall be a type parameter from an enclosing
generic. [Note: It is not possible to use a native class, a pointer, a reference, a handle to a value class, or a ref
class by value as a generic argument. end note]

Each generic-argument shall satisfy any constraints (§30.4) on the corresponding type parameter.

30.2.3 Base classes and interfaces

A constructed class type has a direct base class. If the generic class declaration does not specify a base class,
the base class is System: :Object. If a base class is specified in the generic class declaration, the base class
of the constructed type is obtained by substituting, for each generic-parameter in the base class declaration,
the corresponding generic-argument of the constructed type. [Example: Given the generic class declarations

generic<typename T, typename U>
ref class B { .. };

generic<typename T>
ref class D : B<StringA, array<T> > { .. };

142

10

15

20

25

30

35

40

45

50

Generics

the base class of the constructed type D<int> would be B<StringA, array<int> >.end example]

Similarly, constructed ref class, value class, and interface types have a set of explicit base interfaces. The
explicit base interfaces are formed by taking the explicit base interface declarations on the generic type
declaration, and substituting, for each generic-parameter in the base interface declaration, the corresponding
generic-argument of the constructed type.

The set of all base classes and base interfaces for a type is formed, as usual, by recursively getting the base
classes and interfaces of the immediate base classes and interfaces. [Example: For example, given the
generic class declarations:

ref class A { .. };

generic<typename T>
ref class B : A { .. };

generic<typename T>
ref class C : B<IComparable<T>A> { .. };

generic<typename T>
ref class D : C<array<T> > { .. };

the base classes of D<int> are C<array<int> >, B<IComparable<array<int>A> >, A and
System: :0bject. end example]

30.2.4 Class members

The non-inherited members of a constructed type are obtained by substituting, for each generic-parameter in
the member declaration, the corresponding generic-argument of the constructed type. The substitution
process is based on the semantic meaning of type declarations, and is not simply textual substitution. It
would be helpful to explain this in more detail and/or give an example where this makes a difference.

[Example: Given the generic class declaration

generic<typename T, typename U>
ref class X {
array<T>A a;
void G(int i, T t, X<U,T> gt);
property U P { U get(); void set(U value); }
int H(double d);

the constructed type X<int, bool> has the following members:
array<int>A a;)
void G(int i, int t, X<int,bool>A gt);

property bool P { bool get(); void set(bool value); }
int H(double d);

end example]

The inherited members of a constructed type are obtained in a similar way. First, all the members of the
immediate base class are determined. If the base class is itself a constructed type, this might involve a
recursive application of the current rule. Then, each of the inherited members is transformed by substituting,
for each generic-parameter in the member declaration, the corresponding generic-argument of the
constructed type. [Example:

generic<typename U>

ref class B {

public:

U F(Tong index);
generic<typename T>
ref class D : B<array<T>A> {
pubTic:

T G(StringA s);

143

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

In the above example, the constructed type D<int> has a non-inherited member int G(StringA s)
obtained by substituting the type argument int for the type parameter T. D<int> also has an inherited
member from the class declaration B. This inherited member is determined by first determining the members
of the constructed type B<array<T>A> by substituting array<T>A for U, yielding array<T>A F(long
index). Then, the type argument int is substituted for the type parameter T, yielding the inherited member
array<int>A F(long index). end example]

30.2.5 Accessibility

A constructed type C<T1, ..., TN> is accessible when all its parts C, T1, ..., TN are accessible. For instance,
if the generic type name C is pub11ic and all of the generic-arguments T1, ..., TN are accessible as pubTic,
then the constructed type is accessible as pub11 c, but if either the type name C or any of the generic-
arguments has accessibility private then the accessibility of the constructed type is private. If one
generic-argument has accessibility protected, and another has accessibility private protected, then
the constructed type is accessible only in this class and its subclasses in this assembly.

More precisely, the accessibility domain for a constructed type is the intersection of the accessibility
domains of the open type and its type arguments.

30.3 Generic functions

Can a generic function be declared inside a native class? (No) Can generic functions (and member functions
of generic classes, for that matter) have exception specifications? (No) If so, can they refer to open
constructed types?[[#164]]

Member functions and non-member functions can be declared generic (§30.1). When a generic function is
declared inside a ref class, value class, or interface declaration, the enclosing type can itself be either generic
or non-generic. If a generic function is declared inside a generic type declaration, the body of the function
can refer to both the type parameters of the function, and the type parameters of the containing declaration.
Not all generic type parameters to a generic function need appear as a parameter type or return type of that
function. [Example:

generic<typename T>
void f1(T);

ref class cl {

generic<typename T, typename U>
T f2(7) {
U u;

}

generic<typename T>
T f2(T);

generic<typename T1>

ref class c2 {
generic<typename T2>
void f3(Tl, array<T2>A);

end example]
Types not used as a parameter type to a generic function cannot be deduced. Are the nondeduced context

rules the same as Standard C++ or not? The sentence before this is true, but not complete if the rules are the
same as Standard C++.[[#165]]

What, if anything, does it mean for a generic function to be static/extern or inline?[[#166]

When the type of a parameter or variable is a type parameter, the declaration of that parameter or variable
shall use that type parameter’s name without any pointer, reference, or handle declarators. What about cv-
qualifiers?[[#167]] Member access on a parameter or variable whose type is a type parameter shall use the -
> operator. [Example:

144

10

15

20

25

30

35

40

45

50

Generics

interface class I1 {
void FQ;
3

generic<typename T>
where T : Il
void H(T t1) { // no *, &, or A dsc1ara}or a110wed

T t2 = tl; // “
t1->FQ; // -> must be used, not .
t2_>F() ; // 111 113 113

end example]
Type parameters can be used in the type of a parameter array.

Can you take the address of a generic function instance?[[#168]]

30.3.1 Function signature matching rules

For the purposes of signature comparisons in function overloading, any constraint-clause-lists are ignored,
as are the names of the function’s generic-parameters; however, the number of generic type parameters is
relevant. [Example:

ref class A {};
ref class B {};

interface class IX {
generic<typename T>
where T : A
void F1(T t);
generic<typename T>
where T : B
void F1(T t); // error, constraints are ignored

generic<typename T>
T F2(T t, int 1);
generic<typename U>

void F2(U u, 1int i); // error, parameter names and return
// type are ignored
void F3(int Xx); // no type parameters
generic<typename T>
void F3(int x); // okay, different type parameter count
generic<typename T, typename U>
void F3(int x); // okay, different type parameter count
generic<typename U, typename T>
void F3(int Xx); // error, type parameter names are ignored

};
end example]

Functions can be overloaded; however, this can lead to an ambiguity for certain calls. [Example:

generic<typename T1l, typename T2>
void F(T1l, 12) { }

generic<typename T1l, typename T2>
void F(T2, TL) { }

int main() {
F<int, double>(10, 20.5); // okay
F<double, int>(20.5, 10); // okay
) F<int, int>(10, 20); // error, ambiguous

end example]

Although a program is permitted to have generic function declarations that could lead to such ambiguities,
that program is ill-formed if it uses function calls to create such an ambiguity.

145

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

Generic functions can be declared abstract, virtual

, and override. The signature matching rules

described above are used when matching functions for overriding or interface implementation. When a
generic function overrides a generic function declared in a base class, or implements a function in a base
interface, the constraints given for each function type parameter must be the same in both declarations.

[Example:

ref struct B abstract {
generic<typename T, typename U>
virtual T F(T t, U u) abstract;

generic<typename T>
~where T : IComparable
virtual T G(T t) abstract;
;
ref struct D : B {

generic<typename X, typename Y>
virtual X F(X x, Y y) override;

generic<typename T>)
virtual T G(T t) override;

The override of F is valid because type parameter names are permitted to differ. The override of G is invalid

// Okay

// error, constraint mismatch

because the given type parameter constraints (in this case none) do not match those of the function being

overridden. end example]

30.3.2 Type deduction

This subclause uses both the terms "type deduction" and "type inference".

uniformly.[[#Ed.]]

A call to a generic function can explicitly specify a type argument list via a generic-id, or it can omit that
type argument list using a generic-name only and rely on type deduction to determine the type arguments.

[Example:

ref struct X {
generic<typename T>
static void F(T t) {
console::writeLine("one");

generic<typename T>
static void F(T t1, T t2) {
console::writeLine("two");

generic<typename T>

static void F(T tl, int t2) {

) console::writeLine("three");

3

int main(Q) {
X::F<int>(1); // explicit, prints "one
X::F(1); // deduced, prints "one
X: :F<double>(5.0, 6.0); // explicit, prints "two"
X::F(5.0, 6.0); // deduced, prints "two"
X::F<double>(5.0, 3); // explicit, prints "three
X::F(5.0, 3); // deduced, prints "three
X::F<1nt>(1 2); // error, ambiguous
X::F(1, 2); // error, ambiguous
x::F<doub1e>(1 2); // explicit, prints "three

}

end example] [Example:
interface class 1IX {};

146

"Type deduction" should be used

10

15

20

25

30

35

40

45

Generics

ref class R : IX {};

generic<typename T>
void f(T) {}

void g(RA hR) {
f<IXA>(hR); // T is specified to be 1IX
f(hr); // T 1is deduced to be R

end example]

Type inference allows a more convenient syntax to be used for calling a generic function, and allows the
programmer to avoid specifying redundant type information.

Type deduction within generics is handled like type deduction within templates (C++ Standard §14.8.2).

If the generic function was declared with a parameter array, then type deduction is first performed against
the function using its exact signature. If type deduction succeeds, and the resultant function is applicable,
then the function is eligible for overload resolution in its normal form. Otherwise, type deduction is
performed against the function in its expanded form (§18.3.6). The issue raised in 8.15.3 is somewhat
answered here. 18.3.6 seems to deal with expanded forms of calls, not expanded forms of function
declarations. I interpret the text above as saying that deduction is done as if the function were declared like
this:

generic <typename ItemType>
void PushMultiple(Stack<ItemType>", ItemType il, [temType i2,/* ... */);

Is that correct? I think this requires a more detailed description.[[#169]]

An instance of a delegate can be created that refers to a generic function declaration. The type arguments
used when invoking a generic function through a delegate are determined when the delegate is instantiated.
The type arguments can be given explicitly or be determined by type deduction. If type deduction is used,
the parameter types of the delegate are used as argument types in the deduction process. The return type of
the delegate is not used for deduction. [Example: The following example shows both ways of supplying a
type argument to a delegate instantiation expression:

delegate int D(StringA s, int i);

delegate int EQ);

ref_class X {

public:
generic<typename T>

static T F(StringA s, T t);

generic<typename T>
static T GQ);

int main() {
DA dl = gcnew D(X::F<int>);// okay, type argument given explicitly
DA d2 = gcnew D(X::F); // okay, int deduced as type argument
EA el = gcnew E(X::G<1nt>) // okay, type argument given explicitly
) EA e2 = gcnew E(X::G); // error, cannot deduce from return type

end example]

A non-generic delegate type can be instantiated using a generic function. It is also possible to create an
instance of a constructed delegate type using a generic function. In all cases, type arguments are given or
deduced when the delegate instance is created, and a type argument list shall not be supplied when that
delegate is invoked.

Something needs to be said about instantiating a generic delegate using a generic function.[[#170]]

147

10

15

20

25

30

35

40

45

C++/CLI Language Specification

30.4 Constraints

The set of type arguments that is permitted for any given type parameter in a generic type or function
declaration can be restricted via the use of one or more constraints. Such constraints are specified via a
constraint-clause-list:

constraint-clause-list:
constraint-clause
constraint-clause-list constraint-clause

constraint-clause:
where identifier : constraint-item-list

constaint-item-list:
constraint-item
constraint-item-list , constraint-item

constraint-item:
type-id

Each constraint-clause consists of the token where, followed by an identifier that shall be the name of a
type parameter in the generic type declaration to which this constraint-clause applies, followed by a colon
and the list of constraints for that type parameter. There shall be no more than one constraint-clause for each
type parameter in any generic declaration, and the constraint-clauses can be listed in any order. The token
where is not a keyword.

A constraint-item-list can include any of the following constraint-items, in any order: a single class
constraint and one or more interface constraints (with each being specified via a type-id).

If a constraint-item is a class type or an interface type, that type specifies a minimal “base type” that every
type argument used for that type parameter shall support. Whenever a constructed type or generic function is
used, the type argument is checked against the constraints on the type parameter at compile-time. The type
argument supplied shall derive from or implement all of the constraints given for that type parameter.

The type specified by type-id in a class constraint shall be a ref class type that is not sealed, and that type
shall not be any of the following: System: :Array, System: :Delegate, System: : Enum, or
System: :vValueType. A constraint-item-list shall contain no more than one constraint that is a class type.

The type specified by type-id in an interface constraint shall be an interface class type. The same interface
type shall not be specified more than once in a given constraint-clause.

A class or interface constraint can involve any of the type parameters of the associated type or function
declaration as part of a constructed type, and can involve the type being declared, but the constraint shall not
be a type parameter alone.

Any class or interface type specified as a type parameter constraint shall be at least as accessible as the
generic type or function being declared.

[Example: The following are examples of constraints:

generic<typename T>

interface class IComparable {
int CompareTo(T value);

’

generic<typename T>)

interface class IKeyProvider {
T GetKey();

generic<typename T>
where T : IPrintable

ref class Printer

{ .}

148

10

15

20

25

30

35

40

45

Generics

generic<typename T>
where T : IComparable<T>
ref class SortedList

generic<typename K, typename V>

where K : IComparable<Kk>

where VvV : IPrintable, IKeyProvider<K>
ref class Dictionary

{ .}
end example]

If a type parameter has no constraints associated with it then it is implicitly constrained by
System: :0bject. [Note: having a type parameter constrained in this manner severely limits what you can
do with the type within the body of the generic. end note]

30.4.1 Satisfying constraints

Whenever a constructed type is used or a generic function is referenced, the supplied type arguments are
checked against the type parameter constraints declared on the generic type or function. For each constraint-
clause, the type argument A that corresponds to the named type parameter is checked against each constraint
as follows. Let C represent that constraint with the supplied type arguments substituted for any type
parameters that appear in the constraint. To satisfy the constraint, it must be the case that type A is
convertible to type C by one of the following:

e An identity conversion (§??)

e An implicit reference conversion (§??)

e A boxing conversion (§14.4)

e An implicit conversion from a type parameter A to C (§7?).

A program is ill-formed if it contains a generic type one or more of whose type parameters’ constraints are
not satisfied by the given type arguments.

Since type parameters are not inherited, constraints are never inherited either. [Example: In the code below,
D must specify a constraint on its type parameter T, so that T satisfies the constraint imposed by the base
class B<T>. In contrast, class E need not specify a constraint, because List<T> implements IEnumerable
for any T.

generic<typename T>

where T: IEnumerable
ref class B { .. };

generic<typename T>
where T: IEnumerable
ref class D : B<T> { .. };

generic<typename T>
ref class E : B<List<T>A> { .. };

end example]

30.4.2 Member lookup on type parameters

The results of member lookup in a type given by a type parameter T depends on the constraints, if any,
specified for T. If T has no constraints, then member lookup on T returns the same set of members as
member lookup on System: :Object. Otherwise, the first stage of member lookup considers all the
members in each of the types that are constraints for T. After performing the first stage of member lookup
for each of the type constraints of T, the results are combined, and then hidden members are removed from
the combined results. When are members considered hidden? Is it using the rules described later? Those
are described as applying only when a type parameter has both a class constraint and one or more interface
constraints though.[[#171]]

149

10

15

20

25

30

35

C++/CLI Language Specification

When a type parameter has both a class constraint and one or more interface constraints, member lookup can
return a set of members, some of which were declared in the class, and others of which were declared in an
interface. The following additional rules handle this case.

e During member lookup, members declared in a class other than System: :Object hide members
declared in interfaces.

e During overload resolution of functions, if any applicable member was declared in a class other than
System: :0Object, all members declared in an interface are removed from the set of considered
members.

These rules only have effect when doing binding on a type parameter with both a class constraint and an
interface constraint. Informally, members defined in a class constraint are always preferred over members in
an interface constraint.

30.4.3 Type parameters and boxing

When a value class type overrides a virtual method inherited from System: :0bject (such as Equals,
GetHashCode, or ToString), invocation of the virtual function through an instance of the value class type
doesn’t cause boxing to occur. This is true even when the value class is used as a type parameter and the
invocation occurs through an instance of the type parameter type.

Boxing never implicitly occurs when accessing a member on a constrained type parameter. For example,
suppose an interface ICounter contains a function Increment which can be used to modify a value. If
ICounter isused as a constraint, the implementation of the Increment function is called with a reference
to the variable that Increment was called on, never a boxed copy.

30.4.4 Conversions involving type parameters

The conversions that are allowed on a type parameter T depend on the constraints specified for T.

For a generic type or function have both class and interface constraints, type conversions defined in a class
constraint are always preferred over those in an interface constraint

Miscellaneous generics issues:

1. I seem to recall discussions of other kinds of constraints (I believe one of them concerned whether you
could do a "new T()").

2. Doesn't there need to be some discussion of how overload resolution works when a function argument has
a type parameter as its type?

3. Are the typename and template rules for syntactic disambiguation the same in generics as in templates?
Presumably, the lack of specialization would eliminate the need for these.

4. If scope contains a set of overloaded generic functions, is partial ordering used to choose between them?

5. I assume since there is nothing that says otherwise, that generics can be friends of other classes and
generics can make other classes, functions, (including generics) friends?

6. If friendship is supported, can a generic first be declared in a friend declaration (suggested answer: no).

7. Standard C++ has restrictions on type parameters such as prohibiting types with no linkage. Does this
rule apply to generic arguments?

8. Are there generic conversion functions?[[#172]]

150

Standard C and C++ libraries

31. Standard C and C++ libraries

Describe synchronization of standard C++ streams and System::Console. [[#7]]

What else should go here? [[#84]]

151

10

15

20

25

30

35

40

C++/CLI Language Specification

32. CLI libraries

32.1 Custom modifiers

Implementations of Standard C++ distinguish between different signatures by using name mangling;
however, not only is this a language-specific solution, the mangling scheme used varies from one
implementation to the next. As such, this approach is not viable in C++/CLI, where interoperability between
different C++ implementations is required, and interoperability between different languages is desired.
Custom modifiers address this issue.

Custom modifiers (CLI Standard, Partition II, “Types and signatures”), defined in ILasm using modreq
(“required modifier”) and modopt (“optional modifier”), are similar to custom attributes except that custom
attributes are attached to a declaration, while custom modifiers are part of that declaration’s signature. Each
custom modifer associates a type reference with an item in the signature. Two signatures that differ only by
the addition of a custom modifier (required or optional) shall not be considered to match. Signature
matching is discussed further in §32.1.1. Custom modifiers have no other effect on the operation of the VES.

32.1.1 Signature matching
Consider the following class definition:

public ref class X {
public:
static void F(int* pl) { 3
static void F(const int* p2) {.}
private:
static int* p3;
static const int* p4;

The signatures of these four members are recorded in metadata as follows:
.method public static void F(int32* pl) }
.method public static void F(1nt32 modopt([a]n IsConst)* p2) .. { .. }
.field private static int32*

.field private static int32 modopt([a]n.IsConst)* p4

where a designates the parent assembly of the IsConst type, while n designates that type’s namespace.
(These can vary by modifier, and are provided as part of each modifier’s specification (§32.1.5).) [Note:
Within the CLI context, the fully qualified name of a type uses dot (.) separators, while within a

C++ context, a double colon (: :) is used instead. end note]

Clearly, the two signatures for F differ, allowing these declarations as overloads.

Calls to these functions, and the corresponding code they generate, are as follows:

X:: ;
// call void X::F(int32%)

const int* q2 = 0;
:F(g2);
// call void X::F(int32 modopt([a]n.IsConst)*)

The correct function is called by using an exactly matching signature in the call instruction. (If no
matching signature is found at runtime, an exception of type System: :MissingMethodException is
thrown.)

Accesses to the data members are matched in a similar fashion:

152

10

15

20

25

30

35

40

45

CLI libraries

static void F(int* pl) {
pl;
pl;

// code generated:
.method public static void F(int32% pl) .. {

Tdarg.O
stsfld int32* X::p3
Tdarg.0
stsfld int32 modopt([aln.IsConst)* X::p4
) .
static void F(const int* p2) {
p4 = p2;

// code generated:
.method public static void F(int32 modopt([a]ln.IsConst)* p2) .. {

Tdarg.O
stsfld int32 modopt([aln.IsConst)* X::p4

3

The fields are accessed using an exactly matching signature in the stsf1d instruction. (If no matching
signature is found at runtime, an exception of type System: :MissingFieldException is thrown.)

32.1.2 modreq vs. modopt

The distinction between required and optional modifiers is important to tools (such as compilers) that deal
with metadata. A required modifier indicates that there is a special semantic to the modified item, which
should not be ignored, while an optional modifier can simply be ignored. For example, volatiTe-qualified
data members must be marked with the Isvolatile modreq. The presence of this modifier cannot be
ignored, as all dereferences of such members must involve the use of the volatile. prefixed instruction
(see §32.1.5.10 for an example). On the other hand, the const qualifier can be modelled with a modopt
since a const-qualified data member or parameter that is a pointer to a const-qualified object, requires no
special treatment.

The CLI itself treats required and optional modifiers in the same manner.

32.1.3 Modifier syntax

The following grammar is a subset of that defined by the CLI Standard for fields and methods. For
expository purposes, this extract has been significantly simplified. (For the complete, non-simplified,
version, refer to Partition II of the CLI Standard.)

Field:
.field Type Id
Method:
.method Type MethodName (Parameters) { MethodBody }
Parameters:
[Param [, Param]*]
Param:
Type [Id]

153

10

15

20

25

30

35

40

45

50

C++/CLI Language Specification

Type:
int32
Type
Type []
Type modreq ([AssemblyName] NamespaceName . Id)
Type modopt ([AssemblyName] NamespaceName . Id)

The Id in Field refers to the name of the data member. The Id in Param refers to the name of the optional
function parameter; this name is not part of that function’s signature. The Id in Type for a modopt and
modreq refers to the name of the custom modifier type. This type shall be a ref class having public
accessibility. (Typically, a modifier class is sealed and has no public members.) [Example: Here are data
and function member definitions, and the metadata produced for each of their declarations:

public ref class X {

int f1;

// .field private int32 fl

const int f2;

// .field private int32 modopt([aln.IsConst) f2
const int* f3;

// .field private int32 modopt([aln.IsConst)* f3
const int** f4;

// .field private int32 modopt([a]n.IsConst)** f4
const int* const* f5;

// .field private int32 modopt([a]ln.IsConst)*

// modopt([aln.IsConst)* f5
array<int>A f6;

// .field private int32[] f6

array<int*>A f7;

// .field private int32*[] f7

const array<int>A f8;

// .field private int32[] modopt([aln.IsConst) f8
array<const int>A f9;

// .field private int32 modopt([aln.IsConst)[] f9

const int* FO { .. }
.method private instance int32 modopt([aln.IsConst)* F(O .. { .. }

void F(int x, const int*y, array<int>A z) { .. }
// .method private instance void F(int32 x,
; int32 modopt([aln.IsConst)* y, int32[] z) .. { .. }

end example]

32.1.4 Types having multiple custom modifiers
A Type can contain multiple modreqs and/or modopts. [Example:

public ref class X {
const volatile int m;

/7 .field private int32 modreq([allnl.Isvolatile)
// modopt([a2]n2.IsConst) m

end example]

To ensure that signatures for the same Type produced by different implementations match, the ordering in
such a set of modreqs and modopts is as follows: first modreqs in ascending order by name, then modopts in
ascending order by name, with case being significant. [We need some rule here; is this the one?][[#173]].

154

10

15

20

25

30

35

40

45

CLI libraries

If IsBoxed is retained for the standard, we have an ordering issue to consider: Currently, the value-type
special modopt is emitted before the [sBoxed modreq. For example, class [mscorlib]System.ValueType
modopt([mscorlib]System.Int32) modreq([a]n.IsBoxed). That puts a modopt before a modreq. [[#174]]

32.1.5 Standard custom modifiers

With the exception of Isvolatile (which is defined by the CLI Standard), all of the modifiers documented
in this subclause are C++-specific.

32.1.5.1 IsBoxed

This modifier is a workaround for the MS implementation. Does it have any long-term value for the
standard, even if only as an historical note?[[#175]]
This type supports the handle type punctuator A when used with value types.

Modreq or modopt: modreq
Assembly: ??

Namespace: ??
Description:

This type is used in the signature of any data member to indicate that member is a handle to a value type. It
is also used in a function signature to indicate parameters that are handles to value types. [Example:

public value class Vv {};
public ref class C {};

public ref class X {

int* ml;
intA m2;
VA m3;
CA m4;
public:

void F(int* x) { .. }

void F(intA x) { .. }

const signed charA F(VA v, cA c) { .. }
// code generated:
.field private int32* ml

.field private class [mscorlib]Ssystem.valueType
modopt([mscorlib]System.Int32) modreq([a]n.IsBoxed) m2

.field private class [mscorlib]System.valueType modopt (V)
modreq([a]ln.IsBoxed) m3

.field private class C m4

// code generated:
.method public instance void F(int32* x) .. { .. }

.method public instance void F(class [mscorlib]System.valueType
modopt([mscorlib]System.Int32) modreq([aln.IsBoxed) x) .. { .. }

.method public instance class [mscorlib]System.valueType
modopt([aln.IsConst) modopt([mscorlib]System.SByte)
modreq([a]n.IsBoxed) F(class [mscorlib]System.valueType modopt(V)
modreq([a]n.IsBoxed) v, class C c) .. {

In the case of m2, the signature indicates that the field is a handle to type System: :ValueType. The
particular kind of value type is then indicated by the value-type special modopt that follows,
[mscorlib]System.Int32; thatis, type int. Similarly, in the case of m3, this value-type special modopt
is the user-defined type V. The second and third overloads of F also use value-type special modopts, namely
[mscorlib]System.Int32 and [mscorlib]System.SByte, to indicate int and signed char,

155

10

15

20

25

30

35

40

C++/CLI Language Specification

respectively . As suggested by this example, a value-type special modopt can be any value type. As such, C
does not result in modopt generation, as that type is a ref type, not a value type.

The IsBoxed modopt is what indicates that the signature involves a handle to a boxed value type. end
example]

32.1.5.2 IsByValue
This type supports the passing of objects of a ref class type by value.

Modreq or modopt: modreq
Assembly: ??

Namespace: ??
Description:

This type is used in the signature of a function. This modreq is not used to indicate that a ref class value is
returned by a function; for that, see IsudtReturn (§32.1.5.9). [Example: Pending end example]

32.1.5.3 IsConst
This type supports the const qualifier.

Modreq or modopt: modopt

Assembly: ??

Namespace: ??

Description:

This type can be used in the signature of any data member or function.

Numerous examples of the use of this modifier are shown in §32.1.1, §32.1.3, and §32.1.4.

32.1.5.4 IsExplicitlyDereferenced
This type supports the use of the type interior_ptr as a parameter.

Modreq or modopt: modopt
Assembly: ??

Namespace: ??
Description:

This type is used in the signature of any function. [Example:

public ref class X {
public:

void F(interior_ptr<int> x) { .. }
void F(interior_ptr<unsigned char> x) { .. }

// code generated:

.method public instance void F(int32&
modopt([aln.IsExplicitlyDereferenced) x) .. { .. }

.method public instance void F(uint8&
modopt([aln.IsExplicitlyDereferenced) x) .. { .. }

end example]

32.1.5.5 IsImplicitlyDereferenced
This type is supports the reference type punctuator &.

156

10

15

20

25

30

35

40

45

50

CLI libraries

Modreq or modopt: modopt
Assembly: ??

Namespace: ??
Description:

This type is used in the signature of any data member to indicate that member is a reference. It is also used
in a function signature to indicate parameters that are passed by reference. [Example:

public ref class X {

int* ml;
int& m2;
pubTic:

void F(int* x) { .. }
void F(int& x) { .. }

// code generated:
.field private int32* ml

.field private int32* modopt([aln.IsImplicitlyDereferenced) m2
.method public instance void F(int32* x) .. { .. }

.method public instance void F(int32*
modopt([a]n. IsImplicitlybereferenced) x) .. { .. }

end example]

32.1.5.6 IsLong

As to whether or not this standard will map long, unsigned long, and long double to CLI types, is yet to be
determined. However, if any/all of them are, here’s how this modifier would be used.[[Ed.]]

This type is used for two unrelated purposes: supporting the types Tong int and unsigned Tong 1int as
synonyms for int and unsigned 1int, respectively, and supporting the type Tong double as a synonym
for doubTe.

Modreq or modopt: modopt
Assembly: ??

Namespace: ??
Description:

IsLong can be used in the signature of any data member or function. [Example:

public ref class X {
int 1;
Tong int 11;
double d;
Tong double 1d;
public:
unsigned int F(unsigned int* pu) { . }
unsigned long int F(unsigned long int* pul) { ..}

doubTe F(double* pd) { .. }
Tong double F(long double® pld) { .. }

1

// code generated:
.field private int32 i

.field private int32 modopt([a]n.IsLong) Ti

.field private float64 d
.field private float64 modopt([aln.IsLong) 1d
.method public instance uint32 F(uint32* pu) .. { .. }

157

10

15

20

25

30

35

40

45

C++/CLI Language Specification

.method public instance uint32 modopt([a]ln.IsLong)
FCuint32 modopt([aln.IsLong)* pul) .. { .. }

.method public instance float64 F(float64* pd) .. { .. }

.method public instance float64 modopt([a]n IsLong)
F(float64 modopt([aln.IsLong)* pld) .. { .. }

end example]

32.1.5.7 IsPinned
This type supports the use of the type pin_ptr as a parameter.

Modreq or modopt: modopt
Assembly: ??

Namespace: ??
Description:

This type is used in the signature of any function. [Example:

public ref class X {
public:

void F(pin_ptr<int> x) { .. } // won’t compile, yet[[Ed.]]

// code generated:

end example]

32.1.5.8 IsSignUnspecifiedByte
This type supports plain char’s being a type separate from signed char and unsigned char

Modreq or modopt: modopt
Assembly: ??

Namespace: ??
Description:

IsSignunspecifiedByte can be used in the signature of any data member or function. [Example:

public ref class x {
char c;
signed char sc;
unsigned char uc;
pubTic:
char* F(char* pl1) { .. }
char* F(signed char* p2) { .. }
char* F(unsigned char* p2) { .. }

The code generated from an implementation in which a plain char is signed, as as follows:
.field private int8 modopt([aln.IsSignunspecifiedByte) c
.field private int8 sc
.field private uint8 uc

.method public instance int8 modopt([aln.IsSignUnspecifiedByte)*
F(int8 modopt([a]ln.IsSignuUnspecifiedByte)* pl) .. { ..

.method public instance int8 modopt([aln.IsSignUnspecifiedByte)*
F(int8* p2) .. { .. }

.method public instance int8 modopt([aln.IsSignUnspecifiedByte)*
FCuint8* p2) .. {

158

10

15

20

25

30

35

40

45

CLI libraries

while that generated from an implementation in which a plain char is unsigned, is shown below:
.field private uint8 modopt([a]n.IsSignUnspecifiedByte) c
.field private int8 sc
.field private uint8 uc

.method public instance uint8 modopt([aln.IsSignUnspecifiedByte)*
F(uint8 modopt([aln.IsSignunspecifiedByte)* pl) .. { .. }

.method public instance uint8 modopt([aln.IsSignUnspecifiedByte)*
FCuint8* p2) .. { .. }

.method public instance uint8 modopt([aln.IsSignuUnspecifiedByte)*
FCuint8* p2) .. { .. }

end example]

32.1.5.9 IsUdtReturn

This type supports the returning of objects of a ref class type by value.
Modreq or modopt: modreq

Assembly: ??

Namespace: ??

Description:

This type is used in the signature of a function. This modreq is not used to indicate a ref class value is passed
to a function; for that, see IsByvalue (§32.1.5.2). [Example: Pending [[Ed.]] end example]

32.1.5.10 IsVolatile

This type supports the voTlatile qualifier. (Although Isvolatile is part of the CLI Standard, it is
documented here as well, for convenience.)

Modreq or modopt: modreq

Assembly: mscorlib

Namespace: System: :Runtime: :CompilerServices
Description:

This type can be used in the signature of any data member or function.

Any compiler that imports metadata having signature items that contain the volatile modreq is required to
use volatile. prefixed instructions when accessing memory locations that are volati1e-qualified.
[Example:

public ref class x {
volatile int* pl;

pubTic:
¥oid F(volatile int* p2, int* p3)
*pl = 1;
*p2 = 2;
*p3 = 3;
pl = 0;
}
};

// code generated:
.field private int32
modreq([mscorlib]System.Runtime.CompilerServices.Isvolatile)* pl

.method public instance void F(int32
modreq([mscorlib]System.Runtime.CompilerServices.Isvolatile)* p2,
int32* p3) cil managed {

159

10

15

20

C++/CLI Language Specification

Tdarg.0

1df1d int32 modreq([mscorlib]
System.Runtime.CompilerServices.Isvolatile)*
IsvolatileEx::pl

Tdc.i4.1

volatile. // prefix instruction needed when dereferencing pl

stind.i4

Tdarg.1
T1dc.i4.2
volatile. // prefix instruction needed when dereferencing p2
stind.i4

ldarg.2
Tdc.i4.3
stind.i4 // No prefix instruction needed when dereferencing p3

ldarg.0
1dc.14.0
stfld int32 modreq([mscorlib]
System.Runtime.CompilerServices.Isvolatile)* IsvolatileEx::pl
// No prefix instruction needed; not dereferencing pl
ret

}

Note that given the declaration volatile int* pl, plis notitself volatile-qualified; however, *pl is.
end example]

160

Verifiable code

Annex A. Verifiable code

To be added. [[#87]]

161

C++/CLI Language Specification

Annex B. Documentation comments

To be added. [[#88]]

162

Non-normative references

Annex C. Non-normative references

ISO/IEC 23270:2003, Programming languages — C#.

163

10

15

20

25

C++/CLI Language Specification

Annex D. CLI naming guidelines

This annex is informative.
Add guidelines for generics. [[Ed]]

One of the most important elements of predictability and discoverability is the use of a consistent naming
pattern. Many of the common user questions don’t even arise once these conventions are understood and
widely used. There are three elements to the naming guidelines:

1. Casing — use of the correct capitalization style
2. Mechanical — use nouns for classes, verbs for functions, etc.
3. Word choice — use consistent terms across class libraries.

The following subclause lays out rules for the first two elements, and some philosophy for the third.

D.1 Capitalization styles

The following subclause describes different ways of capitalizing identifiers.

D.1.1 Pascal casing
This convention capitalizes the first character of each word. For example:
Color BitConverter

D.1.2 Camel casing
This convention capitalizes the first character of each word except the first word. For example:
backgroundColor totalvalueCount

D.1.3 All uppercase

Only use all uppercase letters for an identifier if it contains an abbreviation. For example:
System: :I0
System: :WinForms: :UI

D.1.4 Capitalization summary

The following table summarizes the capitalization style for the different kinds of identifiers:

Type Case Notes

Class PascalCase

Class, attribute PascalCase Has a suffix of Attribute

Class, exception PascalCase Has a suffix of Exception

Literal PascalCase

Enum type PascalCase

Enum value PascalCase

Event PascalCase

Field, non-public instance camelCase

Field, public instance PascalCase Rarely used (use a property instead)

164

10

15

20

25

30

CLI naming guidelines

Type Case Notes

Function PascalCase

Interface PascalCase Has a prefix of I
Local variable camelCase

Namespace PascalCase

Parameter camelCase

Property PascalCase

D.2 Word choice

Do avoid using class names duplicated in heavily used namespaces. For example, don’t use the
following for a class name.

System Collections Forms U1
Do not use abbreviations in identifiers.

If you must use abbreviations, do use camelCase for any abbreviation containing more than two
characters, even if this is not the usual abbreviation.

D.3 Namespaces

The general rule for namespace naming is CompanyName: : TechnologyName.

Do avoid the possibility of two published namespaces having the same name, by prefixing
namespace names with a company name or other well-established brand. For example,
Microsoft: :0ff1ice for the Office Automation classes provided by Microsoft.

Do use PascalCase, and separate logical components with two colons (as in
Microsoft::0ffice: :PowerpPoint). If your brand employs non-traditional casing, do follow
the casing defined by your brand, even if it deviates from normal namespace casing (for example,
NeXT: :WebObjects, and ee: : cummings).

Do use plural namespace names where appropriate. For example, use System: :ColTections
rather than System: : ColTection. Exceptions to this rule are brand names and abbreviations. For
example, use System: : I0 not System: : 10s.

Do not have namespaces and classes with the same name.

D.4 Classes

Do name classes with nouns or noun phrases.
Do use PascalCase.
Do use sparingly, abbreviations in class names.

Do not use any prefix (such as “C”, for example). Where possible, avoid starting with the letter “I”,
since that is the recommended prefix for interface names. If you must start with that letter, make
sure the second character is lowercase, as in IdentityStore.

Do not use any underscores.

public ref class FileStream { .. };
public ref class Button { .. };

h
public ref class String { .. };

165

10

15

20

25

30

35

C++/CLI Language Specification

D.5 Interfaces

Do name interfaces with nouns or noun phrases, or adjectives describing behavior. For example,
IComponent (descriptive noun), ICustomAttributeProvider (noun phrase), and
IPersistable (adjective).

Do use PascalCase.

Do use sparingly, abbreviations in interface names.

Do not use any underscores.

Do prefix interface names with the letter “I”, to indicate that the type is an interface.

Do use similar names when defining a class/interface pair where the class is a standard
implementation of the interface. The names should differ only by the “I”” prefix in the interface
name. This approach is used for the interface IComponent and its standard implementation,

Component.

public interface
public ref class
public interface
public interface

D.6 Enums

class IComponent { .. };
Component : IComponent { .. };
class IServiceProvider{ .. };
class IFormatable { .. };

Do use PascalCase for enums.

Do use PascalCase for enum value names.

Do use sparingly, abbreviations in enum names.

Do not use a family-name prefix on enum.

Do not use any “Enum” suffix on enum types.

Do use a singular name for enums.

Do use a plural name for bit fields.

Do define enumerated values using an enum if they are used in a parameter or property. This gives

development tools a chance at knowing the possible values for a property or parameter.

pubTic enum class FileMode

Create,
CreateNew,
open,
OpenorcCreate,
Truncate

1

Do use the Flags custom attribute if the numeric values are meant to be bitwise ored together.

166

10

15

20

25

30

35

40

CLI naming guidelines

[FTags]
public enum class Bindings

CreateInstance,
DefaultBinding,
ExcatBinding,
GetField,
GetProperty,
IgnorecCase,
InvokeMethod,
NonPubTlic,
OABinding,
SetField,
SetProperty,
Static

};

Do use int as the underlying type of an enum. (An exception to this rule is if the enum represents
flags and there are more than 32 flags, or the enum might grow to that many flags in the future, or
the type needs to be different from int for backward compatibility.)

Do use enums only if the value can be completely expressed as a set of bit flags. Do not use enums
for open sets (such as operating system version).

D.7 Static members

Do name static members with nouns, noun phrases, or abbreviations for nouns.
Do name static members using PascalCase.

Do not use Hungarian-type prefixes on static member names.

D.8 Parameters

Do use descriptive names such that a parameter’s name and type clearly imply its meaning.
Do name parameters using camelCase.

Do prefer names based on a parameter’s meaning, to names based on the parameter’s type. It is
likely that development tools will provide the information about type in a convenient way, so the
parameter name can be put to better use describing semantics rather than type.

Do not reserve parameters for future use. If more data is need in the next version, a new overload
can be added.
Do not use Hungarian-type prefixes.

Type GetType(StringA typeName))
string Format(StringA format, array<ObjectA>A args)

D.9 Functions

Do name functions with verbs or verb phrases.

Do name functions with PascalCase.
RemoveAll() GetCharArray() Invoke()

D.10 Properties

Do name properties using noun or noun phrases.

Do name properties with PascalCase.

167

10

15

20

25

30

35

40

45

C++/CLI Language Specification

D.11 Events

Do name event handlers with the EventHandTer suffix.
public delegate void MouseEventHandler(ObjectA sender, MouseEventA e);

Do use two parameters named sender and e. The sender parameter represents the Object that raised
the event, and this parameter is always of type Object, even if it is possible to employ a more
specific type. The state associated with the event is encapsulated in an instance e of an event class.
Use an appropriate and specific event class for its type.

public delegate void MouseEventHandler(ObjectA sender, MouseEventA e);

Do name event argument classes with the EventArgs suffix.
public ref class MouseEventArgs : EventArgs {
int x;
int y;
pubTic:))
MouseEventArgs(int x, int y) {
this->x = x;
this->y = vy;

property int X { int get() { return x; } }
property int Y { int get() { return y; } }
Do name event names that have a concept of pre- and post-operation using the present and past tense

(do not use Beforexxx/Afterxxx pattern). For example, a close event that could be canceled
would have a Closing and Closed event.

event ControlEventHandlerA ControlAdded;

Consider naming events with a verb.

D.12 Case sensitivity

Don’t use names that require case sensitivity. Components might need to be usable from both case-
sensitive and case-insensitive languages. Since case-insensitive languages cannot distinguish
between two names within the same context that differ only by case, components must avoid this
situation.

Examples of what not to do:

Don’t have two namespaces whose names differ only by case.

namespace ee::cummings;
namespace Ee::Cummings;

Don’t have a function with two parameters whose names differ only by case.
void F(StringA a, StringA A)
Don’t have a namespace with two types whose names differ only by case.

System::WinForms::Point p;
System: :WinForms: : POINT pp;

Don’t have a type with two properties whose names differ only by case.

property int f { int get(); void set(int value); }
property int F { int get(); void set(int value); }

Don’t have a type with two functions whose names differ only by case.

void fQO;
void FQ;

168

10

15

20

25

30

35

40

CLI naming guidelines

D.13 Avoiding type name confusion

Different languages use different names to identify the fundamental CLI types, so in a multi-language
environment, designers must take care to avoid language-specific terminology. This subclause describes a
set of rules that help avoid type name confusion.

Do use semantically interesting names rather than type names.

In the rare case that a parameter has no semantic meaning beyond its type, use a generic name. For
example, a class that supports writing a variety of data types into a stream might have:

void write(double value);
void wWrite(float value);
void write(long Tong value);
void write(int value);

void wWrite(short value);

rather than a language-specific alternative such as:

void Write(doubTle doublevalue);

void write(float floatvalue);

void write(long long Tonglongvalue);
void Write(int intvalue);

void write(short shortvalue);

In the extremely rare case that it is necessary to have a uniquely named function for each
fundamental data type, do use the following universal type names: SByte, Byte, Int1l6, UInt16,
Int32,UInt32, Int64, UInt64, Single, Double, Boolean, Char, String, and Object. For
example, a class that supports reading a variety of data types from a stream might have:

double ReadDouble();
float ReadSingle();
Tong Tong ReadInt64();
int ReadInt32();

short ReadIntl6();

rather than a language-specific alternative such as:

double ReadDouble();
float ReadFloat();

Tong Tong ReadLongLong();
int ReadInt();

short Readshort();

End of informative text

169

10

15

20

C++/CLI Language Specification

Annex E. Future directions

This annex is informative.

This annex contains information about features that might be considered for a future revision of this
Standard.

E.1 Static members in interfaces
Yet to come.[[#176]]

E.2 Mixed types
Yet to come. [[#176]]

E.3 gcnew of unmanaged types
Yet to come. [[#176]]

E.4 new of managed types
Yet to come. [[#176]]

E.5 Unsupported CLS-recommended operators

Function Name in Assembly C++ Operator Function Name
op_SignedRightshift undefined
op_UnsignedRightshift undefined
op_MemberSelection undefined
op_PointerToMemberSelection undefined

Regarding op_MemberSelection and op_PointerToMembersSelection, the C++ Standard only
permits non-static member declarations of these operators.

E.6 Literals

Investigate whether string literals can include compile-time expressions, such as concatenation of strings

with non-strings using the + operator.

E.7 Delegating constructors

Tutorial: When implementing a class, it is not unusual to have a number of constructors share some common

code. For example, consider the case of the following point class:

170

10

15

20

25

30

35

40

45

50

Future directions

class point {

int x_;

int y_;

void commonCode();
public:

point();

point(int x, int y);

point(const point& p);

// ...
s
All three constructors need to initialize the two private members, Xx_ and y_; they might also perform other
actions, some of which they share, and some of which are unique. One approach is as follows:
point::point() : x_(0), y_(0) {

commonCode() ;
// ... custom code goes here

point::point(int x, int y) : x_(x), y_(y) {
commonCode() ;

point::point(const point& p) : x_(p.x), y_(p.y_) {
commonCode () ;
// ... custom code goes here

Certainly, the constructor with no parameters can be eliminated by adding default argument values to the
constructor having two. However, that is not an entirely satisfactory approach for all classes. Specifically, it
allows the two-argument constructor to be called with only the first argument, but not with only the second,
which, philosophically, is asymmetric.

As shown above, a common approach to implementing such a family of constructors is to place their
common code in a private member function, such as commonCode, and have each of them call that function.

C++/CLI helps solve this problem by providing delegating constructors. Simply stated, prior to executing
its body, a delegating constructor can call one of its sibling constructors as though it were a base constructor.
That is, it delegates part of the Object’s initialization to another constructor, gets control back, and then
optionally performs other actions as well. Using this approach, the constructors shown earlier can be re-
implemented as follows:

point::point() : point(0, 0) {
// ... custom code goes here

point::point(int x, int y) : x_(x), y_(y) {
// ... common code goes here

point::point(const point& p) : point(p.x_, p.y_) {
// ... custom code goes here

Note how the ctor-initializer construct has been extended to accommodate a call to a sibling constructor,
using the exact same approach as for a call to a base class constructor. The common code statements can
now be part of the body of the second constructor, where they will be executed by calls to all three
constructors. When the first and third constructors are called, they transfer control to the second. When that
returns control to its caller, that caller’s body is executed.

Any constructor can delegate to any of its siblings; however, a class must have at least one non-delegating
constructor (no diagnostic is required), and that constructor can still have a ctor-initializer that calls one or
more base class constructors. A delegating constructor cannot also have a ctor-initializer that contains a
comma-separated list of member initializers.

171

10

15

20

25

30

35

40

45

50

55

C++/CLI Language Specification

Specification: The definition of ctor-initializer has been extended to accommodate the addition of delegating
constructors to C++/CLI; however, no change is necessary in the Standard C++ (§8.4) grammar.

Prior to executing its body, a constructor can call one of its sibling constructors to initialize members. That
is, it delegates the Object’s initialization to another constructor, gets control back, and then optionally
performs other actions as well. A constructor that delegates in this manner is called a delegating
constructor, and the constructor to which it delegates is called a target constructor. A delegating constructor
can also be a target constructor of some other delegating constructor. [Example:
class FullName {
string firstName_;
string middleName_;
string lastName_;
public:]))))
FullName(string firstName, string middleName, string TastName);

FullName(string firstName, string TastName);
FulIName(const FullName& name);

};

FullName: :FullName(string firstName, string middleName, string lastName)
: firstName_(firstName), middleName_(middleName), lastName_(lastName)
{

/] ...
3

// de1egatin? copy constructor
FullName: :FullName(const FullName& name)
FullName(name.firstName, name.middleName, name.TlastName)

/] ...
3

// de1egatin? constructor _
FullName::FullName(string firstName, string lastName)
FullName(firstName, "", lastName)

/] ...
}

end example]

If a mem-initializer-id designates the class being defined, it shall be the only mem-initializer. The resulting
ctor-initializer signifies that the constructor being defined is a delegating constructor.

A delegating constructor causes a constructor from the class itself to be invoked. The target constructor is
selected by overload resolution and template argument deduction, as usual. If a delegating constructor
definition includes a ctor-initializer that directly or indirectly invokes the constructor itself, the program is
ill-formed; however, no diagnostic is required.

[Example: When using constructors that are templates, deduction works as usual:

class X {
template<class T> X(T, T) : 1_(first, Tlast) { /* Common Init */ }
Tist<int> 1_;
public:
X(vector<short>&);
X::X(vector<short>& v) : X(v.begin(Q), v.end()) { }
// T is deduced as vector<short>::iterator

end example]

The Object’s lifetime begins when all construction is successfully completed. For the purposes of the C++
Standard (§3.8), “the constructor call has completed” means the originally invoked constructor call.
[Rationale: Even if a target constructor completes, an outer delegating constructor can still throw an
exception, and if so the caller did not get the Object that was requested. The foregoing decision also
preserves the Standard C++ rule that an exception emitted from a constructor means that the Object’s
lifetime never began. end rationale]

172

Future directions

Add text to show the behavior in the CLI (including CIL).
E.8 The checked and unchecked statements

Statements of the form checked { .. } and unchecked { .. } could be used to control the overflow-
checking context for integral-type arithmetic operations and conversions.

End of informative text

173

10

C++/CLI Language Specification

Annex F. Incompatibilities with Standard
C++

This annex is informative.

This annex contains information about aspects of C++/CLI that are incompatible with Standard C++.

1. Commas in [], but not having enclosing parentheses, being treated as punctuators rather than as
operators.[[Ed.]]

2. New keywords: gcnew, nullptr. [[Ed.]]
3. Exception handling stuff.[[#178]]
4. Treatment of >> and >>=.[[Ed.]]

End of informative text

174

10

15

20

25

30

35

40

45

Annex G. Index

This annex is informative.

... See ellipsis
(]

INAEXEA ACCESS oo 57
4=

event handler addition.........ccoeevvvveveeiiiiieinnnns 23

event handler removalcooeeveeveviviveeneennnnn. 23
abstract class............... See class modifier, abstract

abstract function....See function modifier, abstract
access

ASSEMDIY ..eiviiiiicie e 40
family and assembly..........cccccevevirciirciieniiennnnns 40
family or assemblyccevceeveiviirniirniiiene, 40
NATTOWET ...ueeiviiieeeeeeeeeiiirreeeeeeeeeeaerrsreeeaaeeanans 40
WIACT ...t 40
accessor function
add.....oooeeiiiiiiee See add accessor function
[0S AU See get accessor function
property 21, 82, 84, See also get accessor
function; set accessor function
remove................ See remove accessor function
1<, TR See set accessor function
add accessor functioncccceeeeeveeeeeinneeeennen. 24
add_* reserved NamMescccceeevveerieeenieennnennn 75
APPLICALION ..ot 4
application domainccoeeeevveeerieeneenienieeieene. 4
argument list
function call.......c..cooovieeiiieiiieieee e, 58
variable length.................... See parameter array
AITAY weveeereeeieeeeieeeieeenteeebeeesabeesbeeesaaeesbeeenanes 112
COVATIANCE ..oeeeuvvieeeeiiiee et e et e eeiae e 113
CIEALIONvveeeiieeiie ettt e 112
element aCCeSS......covureieeiiieeeeiieeeeeiee e 113
nitialization..........cccoeeieeiiiii e, 113
MEMDETS ...oeovviiiiiiieieeeee e 113
PATAIMELETeeieiiiieeeiiiiee et eiiee e e e e 75
Standard CH+ccoeiiiiiee, 112
ATTAY i 67,112,113
array pseudo-template classc.cocceeeveereennen. 112
ASSEMDBIY ...cuiiiiiiiieiee e 4,29
attributeocoe.... 4,31, 125, See also Attribute
class naming conventionceeeveeevennne. 125
compilation of an..........cceeeevveieiienienienenne, 131
delegateoccveeeviiieieeeeeeee e 129
CVENE ..eiiiiiiiie e e 129
fUNCHION ..o 129
nstance of an.........ccocoeeveiiiieeiiiiceeee e, 130

50

55

60

65

70

75

80

&5

90

95

175

Index

NAmMeE Of ANoovviviiiiiieice e 128
TESEIVE...iiiiiriiiieeieee e 131
specification of an.........ccceeeeeveveivesiieneenienn, 127
AUIIDULE ..o 125,131
attribute Classocvveveeeveeeeeieeeeeee e, 125
MUI-USE ..o 125, 126
parameter
NAMEd........coiierieieeeeeeeeeeeee e 126
POSItionalceevvierieeiieiieeeeee e, 126
SINEIE-USE ..veeerieeiieeerie e e eiee e eree e 125
attribute SECtION........ovvvveriinreieeeiieee e, 127
Attribute suffiXcooeviiiieiii e, 129
attribute target.......ccoeevvecieeriierierieeee e 129
ASSEMDLY ...evieiieeieece e 129
(LT3 1| N 129
FIELd e 129
MEthOd ...ooooiiiiiieieeeeeeeeeeeeee 129
01 211 1 SR 129
J0100) 01 SRS 129
(11015 | O PROPRURPPPRPPRRPRE 129
174 LSRR 129
AttributeUsage.......... See AttributeUsageAttribute
AttributeUsageAttributecccceeeeeee 125, 131
block
finally
exception thrown from...........ccccceeveeeenen. 69
Boolean.......cooovuviviiiiiiii e, 39
MEMDErS OF ..oveviiiiiiiiiiiieeeee e, 39
DOXING .vvveeieeiieieeieeree sttt 4,13
Byt oo 39
mMemMbETS Ofeevveeeiiiiiiii e 39
CHtstandardoovveeeveeeieiiiiiiieeeeeeeene 3,163
callable entity........ccoeeeeeviieiieniereereesee e 120
CRAT oo 39
members Ofc..vvvveiiiiiiieen 39
class
abstract.........cc......... See class modifier, abstract
attribute....cooeeveveiieieeee, See attribute class
generic
operator andccoeceeecieerieenienienie e 139
initialization of @.......cccovvvviiiiiiiiiieeeee, 25
INtErfacecooevvvevveeeieieeeeeee e, See interface
NATIVE wevvveieiieeeeeeeeeeee e See native class
TEE e See ref class
sealedcoovvvvvennnnn.. See class modifier, sealed
SIUCE VEISUS ..oooviiiiiiiiiiiiiiiiiiieiee 27,110
ValUE...ovviiiiiiiiieeeeee e See value class

10

15

20

25

30

35

40

45

50

55

C++/CLI Language Specification

class definitionccceevvveveerieneenie e 72
class MOdIfiercccvvvveeciieiieieee e 73
ADSEIACE ..vvvieeieeciie e 73
S€alEd....ieieiiee e 73
cli::array See array pseudo-template class, See
array
cliz:interior ptr......cccceceeeeecveeeeneenns See interior ptr
ClizPIN. Ptraeveciieiicieiecece e See pin_ptr
clizzsafe cast......cceeveeverierienieninnns See safe cast
CliItIY CaSt.uiiiieiiicieciecieereereeree See try cast
CLS........... See Common Language Specification
CLS compliancCe........ccceeveereervenienieeieeneesnenene 4
COIIECHION ..cceeiiiiiieeeeee e 18, 67
SYStEMIIATTAY .evveeveeeiieeeiie e eeree e 67
Common La,nguage Infrastructure xi
Common Language Specification........................ 8
Common Type System........ccccveeeuvrerreernnnne 5,6,8
constant
NULL POINTET ...veevveeiieeiieeie e 51
CONSIIAINT ..ottt 33
ClASS et 33,148
CONSEIUCLOT ..eeteeeeiieeiieeeieeeeieeeiee e e eeee e 33
INEETTACE e 33,148
constructor
delegatingcceeveevieeviierienie e 172
INSEANCE....veieeiieeiieeeiee et eeree e 100
STALIC 1vvvvvvvrvrererereirierererrrerererarerererararara———.. 25,100
default......cooooeiiiiee 101
L1 0] AR 172
conversion
EXPLICIE.veeevieiieiieriie e cre e ere ettt 52
implicit
constant EXPreSSiONeevveereereereerivennenns 51
UNDOXING....eeeviieirieeiieeeieeereeeriveeereeeeeeeeeveeenns 6
CTS oo, See Common Type System
CUITENLE ..o 67
definition
non-inline See definition, out-of-class
OUL-OF-ClasS ...covvierierieeie et 4
delegate 4, 18, 23, 120, See also Delegate
equality of........ See operator, equality, delegate
removal 0f @.....ccoeevvevierieiiececeeeeeee e 64
sealedness of @.......cccccceveeeeiieciieiiieeie e, 121
Delegatecceeeevieeeieeeiieeiieeieeeiee s 18, 39, 120
MEMDbETS OFfccuviiieiiieiecicrrecre e 39
design g0als.......cccveviverierienieeeeeee e xi
Double......coociiieiiieeec e 39
101151101015 I o) USSR 39
CILIPSIS 1eevveeiieeieeie ettt 81
531101 o PP 11
LA TL=) 1L RPN 4,23, 89
ADSITACT .ot 90
ACCESSING AN.eevvreneieeieeenieeieerieerieesieesieeseeeeeens 56
handler........occooiiiiiiie 89
inhibiting overriding of ancccccoceeeenee. 91

60

65

70

75

80

85

90

95

100

105

110

176

INSTANICE ...t 90
NON-IIVIAL ...vvviiiiiiicceec e, 89
OVEITIAE ... 90
reSErved NAMESoeevvevveeiiirieeeeiieee e, 75
S€Aled ..voviiiiiieie e 91
Y7218 (< J SRRSO 90
TAVIAL e 89, 91
VIFEUAL covveceiiece e 90
EXAMPIES ...veeiiieiieiieiere e 9
exception
types thrown by certain operations.............. 124
Execution Engine....See Virtual Execution System
explicit interface membercccceveereennnnnne 28
FIELA o 4
initonly....... See initonly field, See initonly field
literal.......ooovvmeiiieiiiiiiiieeeeeee, See literal field
FINAlIZE oooooiiiieeeeee e, 75
FINALLY .ccovieiieeccece e 69
function
ADSTIACE ..o i 4
pure virtual.........c..ccveennnns See function, abstract
reServed NAMESocovvvvieeeirieeeiiieeeeeeieeeeenns 75
function member........cccvvvviiiiiiiiiieeeeeeee, 56
function modifier........cccccveviiiiiiiiiiiiiieeeeees 75
P21 01 8 v Y] AR RRRR 79
TEEW .oveveeesereseeereeenens 79
OVEITIAC ... 76
SEALEd ..vveiiiiiie e 78
garbage collection...........ccceeevvervenvennnennen. 4,5, 17
ge-lvalueooveeiiiiie See lvalue, gc
generic method ... See method, generic
GONETICS wevveenreereerireereereereeseesseesseessnesssesnsenns 135
get accessor functioneeceeveeveeeeeenenns 21, 84
get * reserved Names........oocveevveeeiieeiee e, 74
oS A 1753 PR 74
GetEnumerator..........oooovvvvvveeiieiiieeiieeeeeeeeeee, 67
handleooooveiiiieeieeee e, 4
NULL.ccoi e 38
OPETAtIONS ON A..veevvveneieeieeereereereereenseesseeeees 93
heap
CLI e 5
NALIVE .vvveeeeeieeeeeereeee et eere e eereeeeeaneas 5
IEC..oovveiiiinns See International Electrotechnical
Commission
IEC 60559 standardcccccoeeevvveeeiiveieiinneeeens 3
IEEE See Institute of Electrical and Electronics
Engineers
IEEE 754 standard............ See IEC 60559 standard
IEnumerable.GetEnumerator .. See GetEnumerator
IEnumerator.Current........................... See Current
IEnumerator.MoveNext.................. See MoveNext
INAEXEA ACCESS .vvvviieiiiriieeeeeeee e 57
indexed property
ACCESSING AN ..vvvvreirieeiieeeieeerireesreeeereesreeenes 56
default.....ccccveiiiiiiiii e 22

10

15

20

25

30

35

40

45

50

55

INHETIANCEovvveeiiiicc e 43
initonly field........ccccoovvvvciecieiene, 20, 101, 102
literal field VErsus.....cccocvveeeeiivevnnnnnneen. 102, 103
INSTANCE ..t e e eare e e enaeee s 5
Institute of Electrical and Electronics Engineers .8
INELO oo 39
MEMDBETS OF ..ovvvviiiiiiiiii e, 39
INt32 oo 12, 39
members Of.......cccooovviiiiiiiiecee e 39
IO oo 39
100150010151 5o o) SRR 39
INEETTACE ..vvveieeieeeeeeeeee e 27,114
DASE. e 114
delegatecocveeeeiieeieeee e 116
1SS 1L U 115
FUNCHION .eeeveiiiiieeee e 115
implementation............ccceeevveeeciieenveeeeneeeene 116
100153011 011 RSP SRR 114
ADSITACT ..o 115
VIFTUAL oo 115
MEMDET ACCESS vvvvvvenrrieeeirireeeeerreeeeereeee e 116
PLOPEILY toevieeiieeiee ettt 115
interface class.......cooovvvveeeiiiiiicnnennnn. See interface
interface Struct........cccccevevevvveeeeeennnnn. See interface
International Electrotechnical Commission 8
International Organization for Standardization....8
INVOCAtION LiSt...ccovuviiiiiiiiieiiiiiee e 120
ISO .. See International Organization for

Standardization, See International Organization
for Standardization

ISO/IEC 10646........ooieeiieeeeeeeeeeeeeee e 3
KEYWOTd....oiiiieiieiieie e 37
literal fieldooovvveeiiiiiiiieeee 19, 101

initonly field versus........ccccceeveveeeennens 102, 103

interdependency ofccccovvevierienieeieennen, 102

restrictions on type of @.......c.cceevveveeriennnns 101

VErsioning of @.....cceeevvvevieeiiieeniieeie e 103
IVAIUC ..o 5

gc4
member

data ..o See field
member declaration............cocceeevverierveneeniennnen. 72
member name

TESEIVE .eovtieiiiiiiiiie it 74
metadatacooeevieniiniiiien 5
method

Jo3S) 1) (U UUPRUPRRRRON 34

VITTUAL .o 80
MethodImpl.........ccoeovevierieriieiieieesee e 92
MethodImplOptions

Synchronized........c.ccoccveeveiiiiviieeiieiee e, 92
modifier

0] 01507 1 - USSR 152

TEQUITEd ooovvieiieciieeie e 152
107074 ()] AR USSP 152

60

65

70

75

80

85

90

95

100

105

110

177

0070161 (<o USSP 152
MOVENECXL ..eeeieieeiieeiiee ettt e eeee e 67
NAMESPACE ...eeeneveeenrieerireerieeenireesieeeniaeesbeeesareenns 29
NALIVE ClASS...ccvviieiieieeieerieerteesre e 105
new
class member hiding andcccceeveeneenen. 20
new function................ See function modifier, new
NEWSIOL...oiieiieeiierieiieriie et ere e e esre e e 80
NOTMALIVE TEXLE.eeuvierererieeireieeieesieesresreereeseeneeas 9
110 (< TSR 9
AU EYPE oo 44
NUIL Value ..o 51
null value constant...........c.ccceeeveviieiciieeciieenieens 38
nullptr
literal....c.oooveeiieiieieeece e 38
null pointer constant and..........c...cceceeeeeennne 51
NullReferenceException
foreach andcccoeevvvieeciieciieieeeeeee, 67
0] o] o1 APPSR 5,13
object reference.........ccceeeveeeveeeecreeenennns See handle
Obsolete......cccevrerreerriennnns See ObsoleteAttribute
Obsolete Attribute..........ceeevvereerierienieeieeiens 131
operator
equality
delegate......coveviierieciecieeeee e 65
STALIC ..o euviieiiee ettt e 93
CH+-dependentcceeevvevveeecnieenieeennnnn, 98
CLS-compliant..........cccccveeeveeeriecreenreenneennen. 96
compiler-defined..........cccooeveviircivnniinninnns 100
decrement..........coeuveeeeieeeeiieeiie e 94
11103 S) 1011 | AU 94
SYNthesis 0f @ccovvvevverieriieiieeeeeeeen, 96
output
formatted........cccoevveieiiiieieee e 11
overload resolutioncoceeveveeveecieevieenieeneenn 56
override function.. See function modifier, override
override Specifiercccevvvervieeerieesiee e 75,76
PATAMELET ATTAY .veeeveveeereeeereerireeeieeeereesneeens 15, 80
type parameter and.............cceeverrerreenieennen. 145
PINNINE c.eeeiiieiieieeriieee e 5
pointer
F10105) o (o) (UUURT R OPR PR 15,45
PINNING ...ttt 47
private typeccecveee.e. See type visibility, private
PTOPCILY evveeeiieeiie et eereeeee e e eree e enes 5,21, 82
ADSITACE ...eevvieiieieecie et 86
ACCESSING @ .evveenreeiieriieniieeieeieereereeseenseeneeas 56
INAEXE.....cvviiiiiiriie i 21, 82
default......ccoovevievieieeeeen 83
NAMEd......cooiiiiiieeiieeee e 83
inhibiting overriding of a..........ccceeevvverenenne. 86
INSTANCE ..evveeereeieeieeiieeee e ereereereereeseeseeas 84
OVEITIAC ...viiiiiieiieeee e 87
1€ad-0N1Y ..cuvviiiiieiieeeee e 85
TEAA-WITLE ..vveevvieiieceieeere ettt 84

10

15

20

25

30

35

40

45

50

55

C++/CLI Language Specification

1eSETVEd NAMESvvvenereeeiieeeiee e ereeeeee e 74
SCALAT ..o 21, 82
EAVIAL oot 88
SCAlEd...eeiiiiieeie e 86
] 11 (U 84
VIFtUAL .o 86
WITEE-0NLY .evieiiieciii e 85
public type....ccccevrrreannen. See type visibility, public
raise * reserved NAmesccoeeveeveecveeieeieennnn 75
TEDINAING ..eeoeviiiiieciie et 5
1L CLASS 1ovvviiiecieciccece e 106
DASE...eeeieeiieteere e 106
restricted tyPes ...oovveveeeieeieereeeeseeeee 106
MEMDET.....vviiiieeiiieeiie e eree e 106
T SIUCE 1ovvveieieeeeeee e See ref class
remove accessor function..........cceeeeveeeeveeeneennee, 24
remove * reserved Names..........coccvveeeveeeereeennen. 75
TVAIUC. ..ottt 5
SATE CASL..eeviiiiieii et 61
SBYLE ..eeeueetieieeieete et 39
MEMDbETS Ofcvveiviiiiiiieciece e 39
sealed class.................... See class modifier, sealed
sealed function See function modifier, sealed
set accessor functionc.cceeveevveeecieeenveenennnnn 21
set * reserved NAmMES.......c.ecevveveevreerieeneesneenens 74
St It ..eeeiiiiiiiiiiic 74
SINEIE ..vviiiiieeiee e 39
MEMDbETS Ofcvveieieiiiiieciecie e 39
standard
CHtannn. See C++ standard, See C++ standard
IEC 60559ccveeee. See IEC 60559 standard
IEEE 754ovoeveennen. See IEC 60559 standard
Unicodeccceeeeveeennnenne. See Unicode standard
stdcliz::languagecocevveeeiieeiieeie e 112
STTUCT e 11,27
advice for using over classc.ccceevervrennnnne 27
Class VEISUS......ccevviiviieieeeeeee e 27,110
TET et See ref class
A1 L T See value class
System
ValueTyPe ..oooveeeeieeereeeie et 43
System.NullReferenceException See
NullReferenceException
SYStEMIATTAY vovveeveeereere e See Array
System:: Attributeccceevrverreernenne. See Attribute
System:: AttributeUsageAttribute..................... See
AttributeUsageAttribute
System::Delegate..........ccoeevrverurerennne. See Delegate
System::Int32coovvvevierieieeieeieeeeenn See Int32
System::NullReferenceException See

NullReferenceException
System::ObsoleteAttribute ..See ObsoleteAttribute
System::TYPe....coovueeriieiiiiinieerieeeeene See Type
System:: TypelnitializationException............... See

TypelnitializationException

60

65

70

75

80

85

90

95

100

105

110

178

this
constructor call
EXPLICIE ceveeniieiieciie et 172
TOSIIING ...vvieevieiiecreere et eee 13
tLACKING ...evveeiieiiecee et 5
type
DOXEd ..o, 5
ClASS wooevee et See class
ATLY ceiteeeeiieee ettt e e sttt e e et e e st re e e seataee e e 5
INtErfacecoeveeeiiieceiee e, 5
TeE e 5
ValUC...ccviieiiiceieecee e 5
(3 5 SRRt 5
CloSed ...oiiiiiieeee e, 141
collectionccceeevveeecieeeeieecieea, See collection
CONSLIUCTEd....ooeeiiieiieiiee e, 32
bases Of c..ovviiviiiiiiiiee e 136, 142
delegate......coveviievieciecieee e 43
ClemMent.........cooviiiiiiiieiie e 67
fundamental
mapping to system classcccceerverennnnn. 39
members 0f accoeeeiiiiiiie 39
fundamentalccoooeiiiiiiiii e 5
handle........cccooooiiiiiii 5
INSEANCE ..cvveeeevie ettt e 136
INTEIfACe ...ovveeeieiieccee e 43
NALIVE .vviieiiiiiee et eere et e e e e e 5
0] 0153 1 APPSR 141
pointer
NAIVE .vvvieieeiiee e eere et e 5
private........cceeeveennennn. See type visibility, private
publicccveerveiieinnne, See type visibility, public
reference
NALIVE .eviiiiieiiiee et e e e e e eeareea e 5
trACKING .vvivvieiiecie e 6
simple
struct type and.........ccceeeveeeeieenneenne, 27,109
STTUCE ..t See struct
value
DOXEd .. 6
SIMPIC...viieriiiiiieeiie ettt 6
TYPC et 59
tYPE ArGUMENTeenveeneieiieeiieeiie et 32
type INferencingcceevveeveeieevieeneenieeseeeenenns 35
tYPE PATAMECLET ...veevveenreerierereeereeereereesreeseeeseneens 32
boXINg andccceevveecieeiierieiee e, 150
conversion and...........ccceeeeevveeeeeiinieeeeiieeeenns 150
member loOKUP 0Neevvverviererenerenreenieennenn 149
type VISIDILY ..oovveereieeieeieeeeeee e 49, 72
CLASS e 49
default.....coooveveeiieiiiiiee 12, 49
delegate.......covevieeriieiieeieeece e 49
CIUITL ..eeeeeeeiiiiieeeeeeeeeeirreeeeeeeeeeeaarrreeeeeeeeeennes 49
INtErfaceccoeoeeviiiiiie e 49
PIIVALE .oevvieeieeie ettt 12, 49

memMbETS Of ...cccooiiiiiiiiiiii

Index

MEMDET ..eiiiiiiiie ittt e evree e e 39
value Struct......cccoeevveeeieeecieecieeeen. See value class
variable

10Cal ..o 11
variable-length argument list...........ccccccceeeenene. 80
VETSIONINE ..eevvieniieiieiiesiiesiee e eie et esieesiee e 30
VES..iiieie See Virtual Execution System
Virtual Execution System.............ccceeveeneen. 56,8

WHETE oot 148

	Scope
	Conformance
	Normative references
	Definitions
	Notational conventions
	Acronyms and abbreviations
	General description
	Language overview
	Getting started
	Types
	Fundamental types and the CLI
	Conversions
	Array types
	Type system unification
	Pointers, handles, and null

	Parameters
	Automatic memory management
	Expressions
	Statements
	Delegates
	Native and ref classes
	Literal fields
	Initonly fields
	Functions
	Properties
	Events
	Static operators
	Instance constructors
	Destructors
	Static constructors
	Inheritance
	Function overriding

	Value classes
	Interfaces
	Enums
	Namespaces and assemblies
	Versioning
	Attributes
	Generics
	Creating and consuming generics
	Constraints
	Generic functions

	Lexical structure
	Tokens
	Identifiers
	Keywords
	Literals
	The null literal

	Operators and punctuators

	Basic concepts
	Members
	Value class members
	Delegate members

	Member access
	Declared accessibility

	Preprocessor
	Predefined macro names

	Types
	Fundamental types
	Class types
	Native classes
	Value classes
	Simple value classes
	Enum classes

	Ref classes
	Interface classes
	Delegate types
	Arrays

	Declarator types
	Raw types
	Pointer types
	Handle types
	Null type
	Reference types
	Interior pointers
	Definitions
	Target type restrictions
	Operations
	Conversion rules
	Data access
	The this pointer

	Pinning pointers
	Definitions
	Target type restrictions
	Operations
	Conversion rules
	Data access
	Duration of pinning

	Top-level type visibility

	Variables
	Conversions
	Standard conversions
	Handle conversions
	Pointer conversions
	Lvalue conversions

	Implicit conversions
	Implicit constant expression conversions
	User-defined implicit conversions

	Explicit conversions
	Boxing conversions
	User-defined conversions
	Constructors
	Explicit conversion functions
	Static conversion functions

	Parameter array conversions
	Compiler-defined explicit conversions
	Unboxing conversions

	Naming conventions
	CLS-compliant conversion functions
	C++-dependent conversion functions

	Expressions
	Function members
	Primary expressions
	Postfix expressions
	Subscripting
	Indexed access
	Function call
	Explicit type conversion (functional notation)
	Pseudo destructor call
	Class member access
	Increment and decrement
	Dynamic cast
	Type identification
	Static cast
	Reinterpret cast
	Const cast
	Safe cast

	Unary expressions
	Unary operators
	Unary &
	Unary *
	Unary %
	Unary ^

	Increment and decrement
	Sizeof
	New
	Delete
	The gcnew operator
	gcnew Object creation expressions
	Array creation expressions

	Explicit type conversion (cast notation)
	Pointer-to-member operators
	Multiplicative operators
	Additive operators
	Delegate combination
	Delegate removal

	Shift operators
	Relational operators
	Equality operators
	Ref class equality operators
	Delegate equality operators

	Bitwise AND operator
	Bitwise exclusive OR operator
	Bitwise inclusive OR operator
	Logical AND operator
	Logical OR operator
	Conditional operator
	Assignment operators
	Comma operator
	Constant expressions

	Statements
	Selection statements
	The switch statement

	Iteration statements
	The for each statement

	Jump statements
	The break statement
	The continue statement
	The return statement
	The goto statement
	The throw statement

	The try statement

	Namespaces
	Classes and members
	Class definitions
	Class modifiers
	Abstract classes
	Sealed classes

	Reserved member names
	Member names reserved for properties
	Member names reserved for events
	Member names reserved for functions

	Functions
	Override functions
	Sealed function modifier
	Abstract function modifier
	New function modifier
	Function overloading
	Parameter arrays

	Properties
	Static and instance properties
	Accessor functions
	Virtual, sealed, abstract, and override accessor functions
	Trivial scalar properties

	Events
	Static and instance events
	Accessor functions
	Virtual, sealed, abstract, and override accessor functions
	Trivial events
	Event invocation

	Static operators
	Homogenizing the candidate overload set
	Operators on Handles
	Increment and decrement operators
	Operator synthesis
	Naming conventions
	CLS-compliant operators
	Non-C++ operators
	Assignment operators
	C++-dependent operators

	Compiler-defined operators
	Equality

	Instance constructors
	Static constructors
	Literal fields
	Initonly fields
	Using static initonly fields for constants
	Versioning of literal fields and static initonly fields

	Destructors and finalizers

	Native classes
	Functions
	Properties
	Static operators
	Instance constructors
	Delegates

	Ref classes
	Ref class declarations
	Ref class base specification

	Ref class members
	Variable initializers

	Functions
	Properties
	Events
	Static operators
	Instance constructors
	Static constructor
	Literal fields
	Initonly fields
	Destructors and finalizers
	Delegates

	Value classes
	Value class declarations
	Value class modifiers
	Value class base specification

	Value class members
	Ref class and value class differences
	Simple value classes
	Constructors

	Mixed classes
	Arrays
	Array types
	The System::Array type

	Array creation
	Array element access
	Array members
	Array covariance
	Array initializers

	Interfaces
	Interface declarations
	Interface base specification

	Interface members
	Interface functions
	Interface properties
	Interface events
	Delegates
	Interface member access

	Fully qualified interface member names
	Interface implementations

	Enums
	Native enums
	Native enum declarations
	Native enum visibility
	Native enum underlying type
	Native enum members

	CLI enums
	CLI enum declarations
	CLI enum visibility
	CLI enum underlying type
	CLI enum members
	CLI enum values and operations

	The System::Enum type

	Delegates
	Delegate definitions
	Delegate instantiation
	Delegate invocation

	Exceptions
	Common exception classes

	Attributes
	Attribute classes
	Attribute usage
	Positional and named parameters
	Attribute parameter types

	Attribute specification
	Attribute instances
	Compilation of an attribute
	Run-time retrieval of an attribute instance

	Reserved attributes
	The AttributeUsage attribute
	The Obsolete attribute

	Attributes for interoperation
	Interoperation with other CLI-based languages
	The DefaultMember attribute
	The MethodImplOption attribute

	Templates
	Attributes
	Type deduction

	Generics
	Generic declarations
	Type parameters
	Referencing a generic type by name
	The instance type
	Base classes and interfaces
	Class members
	Static members
	Operators
	Member overloading
	Member overriding
	Nested types

	Constructed types
	Open and closed constructed types
	Type arguments
	Base classes and interfaces
	Class members
	Accessibility

	Generic functions
	Function signature matching rules
	Type deduction

	Constraints
	Satisfying constraints
	Member lookup on type parameters
	Type parameters and boxing
	Conversions involving type parameters

	Standard C and C++ libraries
	CLI libraries
	Custom modifiers
	Signature matching
	modreq vs. modopt
	Modifier syntax
	Types having multiple custom modifiers
	Standard custom modifiers
	IsBoxed
	IsByValue
	IsConst
	IsExplicitlyDereferenced
	IsImplicitlyDereferenced
	IsLong
	IsPinned
	IsSignUnspecifiedByte
	IsUdtReturn
	IsVolatile

	Verifiable code
	Documentation comments
	Non-normative references
	CLI naming guidelines
	Capitalization styles
	Pascal casing
	Camel casing
	All uppercase
	Capitalization summary

	Word choice
	Namespaces
	Classes
	Interfaces
	Enums
	Static members
	Parameters
	Functions
	Properties
	Events
	Case sensitivity
	Avoiding type name confusion

	Future directions
	Static members in interfaces
	Mixed types
	gcnew of unmanaged types
	new of managed types
	Unsupported CLS-recommended operators
	Literals
	Delegating constructors
	The checked and unchecked statements

	Incompatibilities with Standard C++
	Index

