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Introduction 

This International Standard is based on a submission from Microsoft. It describes a technology, called 
C++/CLI, that is a binding between the Standard C++ programming language and the ECMA and ISO/IEC 
Common Language Infrastructure (CLI) (§3). That submission was based on another Microsoft project, 
Managed Extensions for C++, the first widely distributed implementation of which was released by 5 
Microsoft in July 2000, as part of its .NET Framework initiative. The first widely distributed beta 
implementation of C++/CLI was released by Microsoft in ??. 

ECMA Technical Committee 39 (TC39) Task Group 5 (TG5) was formed in October 2003, to produce a 
standard for C++/CLI. (Another Task Group, TG3, had been formed in September 2000, to produce a 
standard for a library and execution environment called Common Language Infrastructure. An ISO/IEC 10 
version of that CLI standard (§3) has since been adopted. CLI is based on a subset of the .NET Framework.) 

The goals used in the design of C++/CLI were as follows: 

• Provide an elegant and uniform syntax and semantics that give a natural feel for C++ programmers 

• Provide first-class support for CLI features (e.g., properties, events, garbage collection, generics) for 
all types including existing Standard C++ classes 15 

• Provide first-class support for Standard C++ features (e.g., deterministic destruction, templates) for 
all types including CLI classes 

• Preserve the meaning of existing Standard C++ programs by specifying pure extensions wherever 
possible 

The development of this standard started in December 2003.  20 

It is expected there will be future revisions to this standard, primarily to add new functionality. 





 Scope 
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1. Scope 

This International Standard specifies requirements for implementations of the C++/CLI binding. The first 
such requirement is that they implement the binding, and so this International Standard also defines 
C++/CLI. Other requirements and relaxations of the first requirement appear at various places within this 
International Standard. 5 

C++/CLI is an extension of the C++ programming language as described in ISO/IEC 14882:2003, 
Programming languages — C++. In addition to the facilities provided by C++, C++/CLI provides additional 
keywords, classes, exceptions, namespaces, and library facilities, as well as garbage collection. 
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2. Conformance 

Clause §1.4, “Implementation compliance” of the C++ Standard applies to this International Standard. 



 Normative references 

3 

3. Normative references 

The following normative documents contain provisions, which, through reference in this text, constitute 
provisions of this Standard. For dated references, subsequent amendments to, or revisions of, any of these 
publications do not apply. However, parties to agreements based on this Standard are encouraged to 
investigate the possibility of applying the most recent editions of the normative documents indicated below. 5 
For undated references, the latest edition of the normative document referred to applies. Members of ISO 
and IEC maintain registers of currently valid International Standards. 

 

ISO/IEC 2382.1:1993, Information technology — Vocabulary — Part 1: Fundamental terms. 

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS). 10 

ISO/IEC 14882:2003, Programming languages — C++. 

ISO/IEC 23271:2004, Common Language Infrastructure (CLI), all Partitions. 

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated IEC 
559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985, 
IEEE Standard for Binary Floating-Point Arithmetic.) 15 

 

This Standard supports the same version of Unicode as the CLI standard. 
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4. Definitions 

For the purposes of this Standard, the following definitions apply. Other terms are defined where they appear 
in italic type or on the left side of a syntax rule. Terms explicitly defined in this Standard are not to be 
presumed to refer implicitly to similar terms defined elsewhere. Terms not defined in this Standard are to be 
interpreted according to the C++ Standard, ISO/IEC 14882:2003. 5 

 

application — Refers to an assembly that has an entry point. When an application is run, a new application 
domain is created. Several different instantiations of an application can exist on the same machine at the 
same time, and each has its own application domain. 

application domain — An entity that enables application isolation by acting as a container for application 10 
state. An application domain acts as a container and boundary for the types defined in the application and the 
class libraries it uses. A type loaded into one application domain is distinct from the same type loaded into 
another application domain, and instances of Objects are not directly shared between application domains. 
Each application domain has its own copy of static variables for these types, and a static constructor for a 
type is run at most once per application domain. Implementations are free to provide implementation-15 
specific policy or mechanisms for the creation and destruction of application domains. 

assembly —Refers to one or more files that are output by the compiler as a result of program compilation. 
An assembly is a configured set of loadable code modules and other resources that together implement a unit 
of functionality. An assembly can contain types, the executable code used to implement these types, and 
references to other assemblies. The physical representation of an assembly is not defined by this 20 
specification. Essentially, an assembly is the output of the compiler. An assembly that has an entry point is 
called an application. 

attribute — A characteristic of a type and/or its members that contains descriptive information. While the 
most common attributes are predefined, and have a specific encoding in the metadata associated with them, 
user-defined attributes can also be added to the metadata. 25 

boxing — An explicit or implicit conversion from a value class to type System::Object, in which an 
Object box is allocated and the value is copied into that box. (See also “unboxing”.) 

CLS compliance — The Common Language Specification (CLS) defines language interoperability rules, 
which apply only to items that are visible outside of their defining assembly. CLS compliance is described in 
Partition I of the CLI standard (§3). 30 

definition, out-of-class  — A synonym for what Standard C++ calls a “non-inline definition”. 

delegate — A ref class such that an instance of it can encapsulate one or more functions. Given a delegate 
instance and an appropriate set of arguments, one can invoke all of that delegate instance’s functions with 
that set of arguments. 

event — A member that enables an Object or class to provide notifications. 35 

field — A synonym for what Standard C++ calls a “data member”. 

function, abstract — A synonym for what Standard C++ calls a “pure virtual function”. 

garbage collection — The process by which allocated memory is automatically reclaimed on the CLI heap. 

gc-lvalue — An expression that refers to an Object or subObject on the CLI heap. 

handle — A handle is called an “Object reference” in the CLI specification. For any CLI type T, the 40 
declaration T^ h declares a handle h to type T, where the Object to which h is capable of pointing resides on 
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the CLI heap. A handle tracks, is rebindable, and can point to a whole Object only. (See also “type, 
reference, tracking”.) 

heap, CLI — The storage area (accessed by gcnew) that is under the control of the garbage collector of the 
Virtual Execution System as specified in the CLI. (See also “heap, native”.)  

heap, native — The dynamic storage area (accessed by new) as defined in the C++ Standard (§18.4). (See 5 
also “heap, CLI”.) 

IL – Intermediate Language, the instruction set of the Virtual Execution System. 

instance — An instance of a type; synonymous with “Object”. 

lvalue — This has the same meaning as that defined in the C++ Standard (§3.10). 

metadata — Data that describes and references the types defined by the Common Type System (CTS). 10 
Metadata is stored in a way that is independent of any particular programming language. Thus, metadata 
provides a common interchange mechanism for use between tools that manipulate programs (such as 
compilers and debuggers) as well as between these tools and the Virtual Execution System. 

Object — An instance of a type; synonymous with “instance”. (Uppercase-O Object is distinguished from 
the lowercase-o object defined in the C++ Standard.) 15 

pinning — The process of (temporarily) keeping constant the location of an Object that resides on the CLI 
heap, so that Object’s address can be taken and that address remains constant. 

property — A member that defines a named value and the functions that access that value. A property 
definition defines the accessing contracts on that value. Hence, the property definition specifies the 
accessing functions that exist and their respective function contracts. 20 

rebinding —The act of making a handle or pointer refer to the same or another Object. 

rvalue — This has the same meaning as that defined in the C++ Standard (§3.10). 

tracking — The act of keeping track of the location of an Object that resides on the CLI heap; this is 
necessary because such Objects can move during their lifetime (unlike Objects on the native heap, which 
never move). Tracking is maintained by the Virtual Execution System during garbage collection. Tracking is 25 
an inherent property of handles and tracking references. 

type, boxed — See “type, value, boxed”. 

type, class, any — Any CLI or native type. 

type, class, interface — A type that declares a set of virtual members that an implementing class must 
define. An interface class type binds to a CLI interface type. 30 

type, class, ref — A type that can contain fields, function members, and nested types.  Instances of a ref 
class type are allocated on the CLI heap. A ref class type binds to a CLI class type. 

type, class, value — A type that can contain fields, function members, and nested types. Instances of a value 
class type are values. Since they directly contain their data, no heap allocation is necessary. A value class 
type binds to a CLI value type. 35 

type, CLI — An interface class, a ref class, or a value class. 

type, fundamental  — The arithmetic types as defined by the C++ Standard (§3.9.1), and that map to CLI 
value types. (These include bool, char, and wchar_t, but exclude enumerations.)  

type, handle — Longhand for “handle”. 

type, native — An ordinary C++ class (declared using class, struct, or union). 40 

type, pointer, native — The pointer types as defined by the C++ Standard (§8.3.1). (Unlike a handle, a 
native pointer doesn’t track, since Objects on the native heap never move.) 

type, reference, native — The reference types as defined by the C++ Standard (§8.3.2). 
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type, reference, tracking — A tracking reference is a kind of reference that has restrictions as to where it 
can be declared. For any type T, the declaration T% r declares a tracking reference r to type T. (See also 
“handle”.) 

type, value, boxed — A boxed value class is an instance of a value class on the CLI heap. For a value class 
V, a boxed value class is always of the form V^. 5 

type, value, simple — The subset of value classes that can be embedded in a CLI type. The simple value 
classes include the fundamental types. 

unboxing — An explicit conversion from type System::Object to any value class, from V^ (the boxed 
form of a value class) to V (the value class), or from any interface class to any value class that implements 
that interface class. (See also “boxing”.) 10 

Virtual Execution System (VES) — This system implements and enforces the Common Type System 
(CTS)   model. The VES is responsible for loading and running programs written for the CLI. It provides the 
services needed to execute IL and data, using the metadata to connect separately generated modules together 
at runtime. For example, given an address inside the code for a function, it must be able to locate the 
metadata describing the function. It must also be able to walk the stack, handle exceptions, and store and 15 
retrieve security information. The VES is also known as the “Execution Engine”. 
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5. Notational conventions 

Various pieces of text from the C++ Standard appear verbatim in this standard. Additions to such text are 
indicated by underlining, and deletions are indicated using strike-through. For example: 

The rules for operators remain largely unchanged from Standard C++; however, the following rule in 
Standard C++ (§13.5/6) is relaxed: 5 

“An operator function shall either be a non-static member function or be a non-member function and have at 
least one parameter whose type is a class, a reference to a class, a class handle, an enumeration, a reference 
to an enumeration, or an enumeration handle.” 

Unless otherwise noted, the following names are used as shorthand to refer to a type of their corresponding 
kind: 10 

• I for interface class 

• N for native type 

• R for ref class 

• S for simple value class 

• V for value class 15 

The CLI has its own set of naming conventions, some of which differ from established C++ programming 
practice. The CLI conventions have been used throughout this Standard, and they are described in §Annex 
D. 

Many source code examples use facilities provided by the CLI namespace System; however, that 
namespace is not explicitly referenced. Instead, there is an implied using namespace System; at the 20 
beginning of each of those examples. 
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6. Acronyms and abbreviations 

This clause is informative. 

The following acronyms and abbreviations are used throughout this Standard: 

 

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file 5 
access, custom attributes, security attributes, string manipulation, formatting, streams, and collections. 

CIL  —  Common Intermediate Language 

CLI — Common Language Infrastructure 

CLS — Common Language Specification 

CTS — Common Type System 10 

VES  —  Virtual Execution System 

 

 

IEC — the International Electrotechnical Commission 

IEEE — the Institute of Electrical and Electronics Engineers 15 

ISO — the International Organization for Standardization 

End of informative text. 
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7. General description 

This Standard is intended to be used by implementers, academics, and application programmers. As such, it 
contains a considerable amount of explanatory material that, strictly speaking, is not necessary in a formal 
language specification. 

This standard is divided into the following subdivisions: 5 

1. Front matter (clauses 1–7); 

2. Language overview (clause 8); 

3. The language syntax, constraints, and semantics (clauses 9–32); 

4. Annexes 

Examples are provided to illustrate possible forms of the constructions described. References are used to 10 
refer to related clauses. Notes are provided to give advice or guidance to implementers or programmers. 
Annexes provide additional information and summarize the information contained in this Standard.  

Clauses 1–5, 7, and 9–32 form a normative part of this standard; and Foreword, Introduction, clauses 6 and 
8, annexes, notes, examples, and the index, are informative. 

Except for whole clauses or annexes that are identified as being informative, informative text that is 15 
contained within normative text is indicated in the following ways: 

1. [Example: The following example … code fragment, possibly with some narrative … end example] 

2. [Note: narrative … end note] 

3. [Rationale: narrative … end rationale] 
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8. Language overview 

This clause is informative. 

This specification is a superset of Standard C++. This clause describes the essential features of this 
specification. While later clauses describe rules and exceptions in detail, this clause strives for clarity and 
brevity at the expense of completeness. The intent is to provide the reader with an introduction to the 5 
language that will facilitate the writing of early programs and the reading of later chapters. 

8.1 Getting started 
The canonical “hello, world” program can be written as follows: 

int main() { 
 System::Console::WriteLine("hello, world"); 10 
} 

The source code for a C++/CLI program is typically stored in one or more text files with a file extension of 
.cpp, as in hello.cpp. Using a command-line compiler (called cl, for example), such a program can be 
compiled with a command line like 

cl hello.cpp 15 

which produces an application named hello.exe. The output produced by this application when it is run 
is: 

hello, world\n 

The CLI library is organized into a number of namespaces, the most commonly used being System. That 
namespace contains a ref class called Console, which provides a family of functions for performing console 20 
I/O. One of these functions is WriteLine, which when given a string, writes that string plus a trailing 
newline to the console. (Examples from this point on assume that the namespace System has been the 
subject of a using declaration.) 

8.2 Types 
Look at the possibility of rewriting this sub-clause. C++ has many more class types, and a handle type can 25 
include all class types. Keep this placeholder until the type tree diagram has been added. [[#13]] 

Value classes differ from handle types in that variables of the value classes directly contain their data, 
whereas variables of the handle types store handles to Objects. With handle types, it is possible for two 
variables to reference the same Object, and thus possible for operations on one variable to affect the Object 
referenced by the other variable. With value classes, the variables each have their own copy of the data, and 30 
it is not possible for operations on one to affect the other. 

The example 
ref class Class1 { 
public: 
 int Value; 35 
 Class1() { 
  Value = 0; 
 } 
}; 

int main() { 40 
 int val1 = 0; 
 int val2 = val1; 
 val2 = 123; 
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 Class1^ ref1 = gcnew Class1; 
 Class1^ ref2 = ref1; 
 ref2->Value = 123; 

 Console::WriteLine("Values: {0}, {1}", val1, val2); 
 Console::WriteLine("Refs: {0}, {1}", ref1->Value, ref2->Value); 5 
} 

shows this difference. The output produced is 
Values: 0, 123 
Refs: 123, 123 

The assignment to the local variable val1 does not affect the local variable val2 because both local 10 
variables are of a value class (the type int) and each local variable of a value class has its own storage. In 
contrast, the assignment ref2->Value = 123; affects the Object that both ref1 and ref2 reference. 

The lines 
Console::WriteLine("Values: {0}, {1}", val1, val2); 
Console::WriteLine("Refs: {0}, {1}", ref1->Value, ref2->Value); 15 

deserve further comment, as they demonstrate some of the string formatting behavior of 
Console::WriteLine, which, in fact, takes a variable number of arguments. The first argument is a 
string, which can contain numbered placeholders like {0} and {1}. Each placeholder refers to a trailing 
argument with {0} referring to the second argument, {1} referring to the third argument, and so on. Before 
the output is sent to the console, each placeholder is replaced with the formatted value of its corresponding 20 
argument. 

Developers can define new value classes through enum and value class declarations. The example 
public enum class Color { 
 Red, Blue, Green 
}; 25 
public value struct Point {  
 int x, y;  
}; 

public interface class IBase { 
 void F(); 30 
}; 

public interface class IDerived : IBase { 
 void G(); 
}; 

public ref class A { 35 
protected: 
 virtual void H() { 
  Console::WriteLine("A.H"); 
 } 
}; 40 
public ref class B : A, IDerived { 
public: 
 void F() { 
  Console::WriteLine("B::F, implementation of IDerived::F"); 
 } 45 
 void G() { 
  Console::WriteLine("B::G, implementation of IDerived::G"); 
 } 

 virtual protected void H() override { 
  Console::WriteLine("B::H, override of A::H"); 50 
 } 
}; 

public delegate void MyDelegate(); 

shows an example of each kind of type definition. Later clauses describe type definitions in detail. 
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Types like Color, Point, and IBase above, which are not defined inside other types, can have a type 
visibility specifier of either public or private. The use of public in this context indicates that the type 
will be visible outside the assembly. Conversely, the private indicates that the type will not be visible 
outside the assembly. The default visibility for a type is private. 

8.2.1 Fundamental types and the CLI 5 
Each of the fundamental types is shorthand for a CLI-provided type. For example, the keyword int refers to 
the value class System::Int32. As a matter of style, use of the keyword is favored over use of the 
complete system type name. 

The table below lists the fundamental types and their corresponding CLI-provided type: This mapping is 
still under discussion; it is by no means settled yet.[[#93]] 10 

 

Type Description CLI Value class 

bool 
Boolean type; a bool value is either true or 
false 

System::Boolean 

char 8-bit signed/unsigned integral type 
System::SByte or 
System::Byte 
(with modopt for 
IsSignUnspecifiedByte) 

signed char 8-bit signed integral type System::SByte 

unsigned char 8-bit unsigned integral type System::Byte 

short 16-bit signed integral type System::Int16 

unsigned short 16-bit unsigned integral type System::UInt16 

int 32-bit signed integral type System::Int32 

unsigned int 32-bit unsigned integral type System::UInt32 

long 32-bit signed integral type 
System::Int32 
(with modopt IsLong) 

unsigned long 32-bit unsigned integral type 
System::UInt32 
(with modopt IsLong) 

long long 64-bit signed integral type System::Int64 

unsigned long long 64-bit unsigned integral type System::Uint64 

float Single-precision floating point type System::Single 

double Double-precision floating point type System::Double 

long double Extra-precision floating point type System::Double (with 
modopt IsLong) 

wchar_t A 16-bit Unicode code unit System::Char 

 

Add description for how fundamental types have the same member functions as those described in the CLI. 
[[Ed]] 

Although they are not fundamental types, three other types provided in the CLI library are worth 15 
mentioning. They are: 

• System::Object, which is the ultimate base type of all value and handle types 

• System::String, a sequence of Unicode code units 

• System::Decimal, a precise decimal type with 28 significant digits 

C++/CLI has no corresponding keyword for these. 20 
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8.2.2 Conversions 
A number of new kinds of conversion have been defined. These include handle and parameter array 
conversion, among others. 

8.2.3 Array types 
An Array in C++/CLI differs from a native array (§8.3.4) in that the former is allocated on the CLI heap, and 5 
can have a rank other than one. The rank determines the number of indices associated with each array 
element. The rank of an Array is also referred to as the dimensions of the Array. An Array with a rank of 
one is called a single-dimensional Array, and an Array with a rank greater than one is called a multi-
dimensional Array.  

Throughout this Standard, the term Array is used to mean an array in the CLI. A C++-style array is referred 10 
to as a native array or, more simply, array, whenever the distinction is needed. 

Say more, especially w.r.t the template class array<element-type>. [[#23]] 

8.2.4 Type system unification 
C++/CLI provides a “unified type system”. All value and handle types derive from the type 
System::Object. It is possible to call instance functions on any value, even values of fundamental types 15 
such as int. The example 

int main() { 
 Console::WriteLine((3).ToString()); 
} 

calls the instance function ToString from type System::Int32 on an integer literal, resulting in the 20 
string “3” being output. (Note that the seemingly redundant grouping parentheses around the literal 3, are 
not redundant; they are needed to get the tokens “3” and “.” instead of as “3.”.) 

The example  
int main() { 
 int i = 123; 25 
 Object^ o = i;      // boxing 
 int j = static_cast<int>(o); // unboxing 
} 

is more interesting. An int value can be converted to System::Object and back again to int. This 
example shows both boxing and unboxing. When a variable of a value class needs to be converted to a 30 
handle type, an Object box is allocated to hold the value, and the value is copied into the box. Unboxing is 
just the opposite. When an Object box is cast back to its original value class, the value is copied out of the 
box and into the appropriate storage location. 

This type system unification provides value classes with the benefits of Object-ness without introducing 
unnecessary overhead. For programs that don’t need int values to act like Objects, int values are simply 35 
32-bit values. For programs that need int values to behave like Objects, this capability is available on 
demand. This ability to treat value classes as Objects bridges the gap between value classes and ref classes 
that exists in most languages. For example, a Stack class can provide Push and Pop functions that take and 
return Object^ values. 

public ref class Stack { 40 
public: 
 Object^ Pop() {…} 
 void Push(Object^ o) {…} 
}; 

Because C++/CLI has a unified type system, the Stack class can be used with elements of any type, 45 
including value classes like int. 
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8.2.5 Pointers, handles, and null 
Standard C++ supports pointer types and null pointer constants. C++/CLI adds handle and null values. To 
help integrate handles, and to have a universal null, C++/CLI defines the keyword nullptr. This keyword 
represents a literal having the null type. nullptr is referred to as the null value constant. (No instances of 
the null type can ever be created, and the only way to obtain a null value constant is via this keyword.) 5 

The definition of null pointer constant (which Standard C++ requires to be a compile-time expression that 
evaluates to zero) has been extended to include nullptr. The null value constant can be implicitly 
converted to any pointer or handle type, in which case it becomes a null pointer value or null value, 
respectively. This allows nullptr to be used in relational, equality, conditional, and assignment 
expressions, among others. 10 

Object^ obj1 = nullptr; // handle obj1 has the null value 
String^ str1 = nullptr; // handle str1 has the null value 
if (obj1 == 0);   // false (zero is boxed and the two handles 
differ) 
if (obj1 == 0L);   // false  “   “   “   “   “ 15 
if (obj1 == nullptr); // true 

char* pc1 = nullptr;  // pc1 is the null pointer value 
if (pc1 == 0);    // true as zero is a null pointer value 
if (pc1 == 0L);   // true  “   “   “ 
if (pc1 == nullptr);  // true as nullptr is a null pointer constant 20 
int n1 = 0; 
n1 = nullptr;    // error, no implicit conversion to int 
if (n1 == 0);    // true, performs integer comparison 
if (n1 == 0L);    //    “   “   “ 
if (n1 == nullptr);  // error, no implicit conversion to int 25 
if (nullptr);    // error 
if (nullptr == 0);  // error, no implicit conversion to int 
if (nullptr == 0L);  //    “   “   “ 
nullptr = 0;    // error, nullptr is not an lvalue 
nullptr + 2;    // error, nullptr can’t take part in arithmetic 30 
Object^ obj2 = 0;   // obj2 is a handle to a boxed zero 
Object^ obj3 = 0L;  // obj3  “   “   “ 
String^ str2 = 0;   // error, no conversion from int to String^ 
String^ str3 = 0L;  //    “   “   “   “ 
char* pc2 = 0;    // pc2 is the null pointer value 35 
char* pc3 = 0L;   // pc3  “   “   “ 

Object^ obj4 = expr ? nullptr : nullptr; // obj4 is the null value 
Object^ obj5 = expr ? 0 : nullptr;   // error, no composite type 

char* pc4 = expr ? nullptr : nullptr;  // pc4 is the null pointer 
value 40 
char* pc5 = expr ? 0 : nullptr;    // error, no composite type 
 
int n2 = expr ? nullptr : nullptr; // error, no implicit conversion to 
int 
int n3 = expr ? 0 : nullptr;   // error, no composite type 45 
sizeof(nullptr);    // error, the null type has no size, per se 
typeid(nullptr);    // error 
throw nullptr;     // error 

void f(Object^);    // 1 
void f(String^);    // 2 50 
void f(char*);     // 3 
void f(int);      // 4 
f(nullptr);      // error, ambiguous (1, 2, 3 possible) 
f(0);        // calls f(int) 

void g(Object^, Object^); // 1 55 
void g(Object^, char*);  // 2 
void g(Object^, int);  // 3 
g(nullptr, nullptr);   // error, ambiguous (1, 2 possible) 
g(nullptr, 0);     // calls g(Object^, int) 
g(0, nullptr);     // error, ambiguous (1, 2 possible) 60 
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void h(Object^, int); 
void h(char*, Object^); 
h(nullptr, nullptr);   // calls h(char*, Object^); 
h(nullptr, 2);     // calls h(Object^, int); 

template<typename T> void k(T t); 5 
k(0);        // specializes k, T = int 
k(nullptr);      // error, can’t instantiate null type 
k((Object^)nullptr);   // specializes k, T = Object^ 
k<int*>(nullptr);    // specializes k, T = int* 

Since Objects allocated on the native heap do not move, pointers and references to such Objects need not 10 
track an Object’s location. However, Objects on the CLI heap can move, so they require tracking. As such, 
native pointers and references are not sufficient for dealing with them. To track Objects, C++/CLI defines 
handles (using the punctuator ^) and tracking references (using the punctuator %). 

N* hn = new N;  // allocate on native heap 
N& rn = *hn;  // bind ordinary reference to native Object 15 
R^ hr = gcnew R; // allocate on CLI heap 
R% rr = *hr;  // bind tracking reference to gc-lvalue 

In general, % is to ^ as & is to *. 

Just as Standard C++ has a unary & operator, C++/CLI provides a unary % operator. While &t yields a T* or 
an interior_ptr<T> (see below), %t yields a T^. 20 

Rvalues and lvalues continue to have the same meaning as with Standard C++, with the following rules 
applying: 

• An entity declared with type T*, a native pointer to T, points to an lvalue. 

• Applying unary * to an entity declared with type T*, dereferencing a T*, yields an lvalue. 

• An entity declared with type T&, a native reference to T, is an lvalue. 25 

• The expression &lvalue yields a T*. 

• The expression %lvalue yields a T^. 

A gc-lvalue is an expression that refers to an Object on the CLI heap, or to a value member contained within 
such an Object. The following rules apply to gc-lvalues: 

• Standard conversions exist from “cv-qualified lvalue of type T” to “cv-qualified gc-lvalue of type 30 
T,” and from “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.” 

• An entity declared with type T^, a handle to T, points to a gc-lvalue. 

• Applying unary * to an entity declared with type T^, dereferencing a T^, yields a gc-lvalue. 

• An entity declared with type T%, a tracking reference to T, is a gc-lvalue. 

• The expression &gc-lvalue yields an interior_ptr<T> (See below.). 35 

• The expression %gc-lvalue yields a T^. 

The garbage collector is permitted to move Objects that reside on the CLI heap. In order for a pointer to 
refer correctly to such an Object, the runtime needs to update that pointer to the Object’s new location. An 
interior pointer (which is defined using interior_ptr) is a pointer that is updated in this manner. 

8.3 Parameters 40 
A parameter array enables a many-to-one relationship: many arguments can be represented by a single 
parameter Array. Parameter arrays are a type safe alternative to parameter lists that end with an ellipsis. 

A parameter array is declared with a leading ... punctuator and an Array type. There can be only one 
parameter array for a given function, and it must always be the last parameter specified. The type of a 
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parameter array is always a single-dimensional Array type. A caller can either pass a single argument of this 
Array type, or any number of arguments of the element type of this Array type. For instance, the example  

void F(... array<int>^ args) { 
 Console::WriteLine("# of arguments: {0}", args->Length); 
 for (int i = 0; i < args->Length; i++) 5 
  Console::WriteLine("\targs[{0}] = {1}", i, args[i]); 
} 

int main() { 
 F(); 
 F(1); 10 
 F(1, 2); 
 F(1, 2, 3); 
 F(gcnew array<int> {1, 2, 3, 4}); 
} 

shows a function F that takes a variable number of int arguments, and several invocations of this function. 15 
The output is: 

# of arguments: 0 
# of arguments: 1 
 args[0] = 1 
# of arguments: 2 20 
 args[0] = 1 
 args[1] = 2 
# of arguments: 3 
 args[0] = 1 
 args[1] = 2 25 
 args[2] = 3 
# of arguments: 4 
 args[0] = 1 
 args[1] = 2 
 args[2] = 3 30 
 args[3] = 4 

By declaring the parameter array to be an Array of type System::Object^, the parameters can be 
heterogeneous; for example: 

void G(... array<Object^>^ args) { … } 
G(10, “Hello”, 1.23, ‘X’);   // arguments 1, 3, and 4 are boxed 35 

A number of examples presented in this document use the WriteLine function of the Console class. The 
argument substitution behavior of this function, as exhibited in the example 

int a = 1, b = 2; 
Console::WriteLine("a = {0}, b = {1}", a, b); 

is accomplished using a parameter array. The Console class provides several overloaded versions of the 40 
WriteLine function to handle the common cases in which a small number of arguments are passed, and 
one general-purpose version that uses a parameter array, as follows: 

namespace System { 
 public ref class Object {…}; 
 public ref class String {…}; 45 
 public ref class Console { 
 public: 
  static void WriteLine(String^ s) {…} 
  static void WriteLine(String^ s, Object^ a) {…} 
  static void WriteLine(String^ s, Object^ a, Object^ b) {…} 50 
  static void WriteLine(String^ s, Object^ a, Object^ b, Object^ c) 
   {…} 
  … 
  static void WriteLine(String^ s, ... array<Object^>^ args) {…} 
 }; 55 
} 

[Note: The CLI library specification shows library functions using C# syntax, in which case, the C# keyword 
params indicates a parameter array. For example, the declaration of the final WriteLine function above is 
written in C#, as follows: 
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public static void WriteLine(string s, params object[] args) 

end note] 

8.4 Automatic memory management 
The example 

public ref class Stack { 5 
public: 
 Stack() { 
  first = nullptr; 
 } 

 property bool Empty { 10 
  bool get() { 
   return (first == nullptr); 
  } 
 } 

 Object^ Pop() { 15 
  if (first == nullptr)  
   throw gcnew Exception("Can't Pop from an empty Stack."); 
  else { 
   Object^ temp = first->Value; 
   first = first->Next; 20 
   return temp; 
  } 
 } 

 void Push(Object^ o) { 
  first = gcnew Node(o, first); 25 
 } 

 ref struct Node { 
  Node^ Next; 
  object^ Value; 
  Node(object^ value) : Node(value, nullptr) {} 30 
  Node(object^ value, Node^ next) { 
   Next = next; 
   Value = value; 
  } 
 }; 35 
private: 
 Node^ first; 
}; 

shows a Stack class implemented as a linked list of Node instances. Node instances are created in the Push 
function and are garbage collected when no longer needed. A Node instance becomes eligible for garbage 40 
collection when it is no longer possible for any code to access it. For instance, when an item is removed 
from the Stack, the associated Node instance becomes eligible for garbage collection. 

The example 
int main() { 
 Stack^ s = gcnew Stack(); 45 
 for (int i = 0; i < 10; i++) 
  s->Push(i); 
 s = nullptr; 
} 

shows code that uses the Stack class. A Stack is created and initialized with 10 elements, and then 50 
assigned the value nullptr. Once the variable s is assigned the null value, the Stack and the associated 10 
Node instances become eligible for garbage collection. The garbage collector is permitted to clean up 
immediately, but is not required to do so. 

The garbage collector underlying C++/CLI can work by moving Objects around in memory, but this motion 
is invisible to most C++/CLI developers. For developers who are generally content with automatic memory 55 
management but sometimes need fine-grained control or that extra bit of performance, C++/CLI provides the 
ability to pin Objects, to prevent temporarily the garbage collector from moving them. For example, 
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void f(int* p) { *p = 100; } 

int main() { 
 array<int>^ arr =  
  gcnew array<int>(100); 
 pin_ptr<int> pinp = &arr[0]; // pin arr’s location 5 
 f(pinp);          // change arr[0]’s value 
} 

8.5 Expressions 
C++/CLI makes numerous additions and changes to the C++ Standard with respect to operators. For 
example: 10 

• The addition of delegates requires the use of the function-call operator to invoke the functions 
encapsulated by a delegate. 

• A new use of typeid has been added. For example, Int32::typeid results in a handle to an 
Object of type System::Type that describes the CLI type Int32. 

• The cast operators have been extended to accommodate handle types. 15 

• The safe_cast operator has been added. 

• The operator gcnew has been added. This allocates memory from the CLI heap. 

• The binary + and – operators have been extended to accommodate delegate addition and removal, 
respectively. 

• Simple assignment has been extended to accommodate properties and events as the left operand. 20 

• Compound assignment operators are synthesized from the corresponding binary operator. [[#56]] 

8.6 Statements 
A new statement, for each, has been added. This statement enumerates the elements of a collection, 
executing a block for each element of that collection. For example: 

void display(array<int>^ args) { 25 
 for each (int i in args) 
  Console::WriteLine(i); 
} 

A type is said to be a collection type  if it implements the System::Collections.IEnumerable 
interface or implements some collection pattern by meeting a number of criteria. 30 

8.7 Delegates 
Delegates enable scenarios that Standard C++ programmers typically address with function adapters from 
the Standard C++ Library. 

A delegate definition implicitly defines a class that is derived from the class System::Delegate. A 
delegate instance encapsulates one or more functions in an invocation list, each member of which is referred 35 
to as a callable entity. For instance functions, a callable entity is an instance and a member function on that 
instance. For static functions, a callable entity is just a member function. Given a delegate instance and an 
appropriate set of arguments, one can invoke all of that delegate instance’s callable entities with that set of 
arguments.  

Consider the following example: 40 
delegate void MyFunction(int value); // define a delegate type 

public ref struct A { 
 static void F(int i) { Console::WriteLine("F:{0}", i); } 
}; 
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public ref struct B { 
 void G(int i) { Console::WriteLine("G:{0}", i); } 
}; 

The static function A::F and the instance function B::G both have the same parameter types and return type 
as MyFunction, so they can be encapsulated by a delegate of that type. Note that even though both 5 
functions are public, their accessibility is irrelevant when considering their compatibility with MyFunction. 
Such functions can also be defined in the same or different classes, as the programmer sees fit. 

int main() { 
 MyFunction^ d;       // create a delegate reference 
 d = gcnew MyFunction(&A::F);  // invocation list is A::F 10 
 d(10); 

 B^ b = gcnew B; 
 d += gcnew MyFunction(b, &B::G); // invocation list is A::F B::G 
 d(20); 

 d += gcnew MyFunction(&A::F);  // invocation list is A::F B::G A::F 15 
 d(30); 

 d -= gcnew MyFunction(b, &B::G); // invocation list is A::F A::F 
 d(40); 
} 

F:10 20 
F:20 
G:20 
F:30 
G:30 
F:30 25 
F:40 
F:40 

The constructor for a delegate needs two arguments when it is bound to a non-static member function: the 
first is a handle to an instance of a ref class, and the second is the address of the non-static member function 
within that ref class’s type. The constructor for a delegate needs only one argument when it is bound to a 30 
static function, the argument is the address of the static member function. 

The invocation lists of two compatible delegates can be combined via the += operator, as shown. Also, 
callable entities can be removed from an invocation list via the -= operator, as shown However, an 
invocation list cannot be changed once it has been created. Specifically, these operators create new 
invocation lists. 35 

Once a delegate instance has been initialized, it is possible to indirectly call the functions it encapsulates just 
as if they were called directly (in the same order in which they were added to the delegate's invocation list), 
except the delegate instance’s name is used instead. The value (if any) returned by the delegate call is that 
returned by the final function in that delegate's invocation list. If a delegate instance is null and an attempt is 
made to call the “encapsulated” functions, an exception of type NullReferenceException results. 40 

8.8 Native and ref classes 

8.8.1 Literal fields 
A literal field is a field that represents a compile-time constant rvalue. The value of a literal field is 
permitted to depend on the value of other literal fields within the same program as long as they have been 
previously defined. The example 45 

ref class X { 
 literal int A = 1; 
public: 
 literal int B = A + 1; 
}; 50 
ref class Y { 
public: 
 literal double C = X::B * 5.6; 
}; 
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shows two classes that, between them, define three literal fields, two of which are public while the other is 
private.  

Even though literal fields are accessed like static members, a literal field is not static and its definition 
neither requires nor allows the keyword static. Literal fields can be accessed through the class, as in 

int main() { 5 
 cout << "B = " << X::B << "\n"; 
 cout << "C = " << Y::C << "\n"; 
} 

which produces the following output: 
 B = 2 10 
 C = 11.2 

Literal fields are only permitted in reference, value, and interface classes. 

8.8.2 Initonly fields 
The initonly identifier declares a field that is an lvalue only within the ctor-initializer and the body of a 
constructor, or within a static constructor, and thereafter is an rvalue. This is called an initonly field. For 15 
example: 

public ref class Data { 
 initonly static double coefficient1; 
 initonly static double coefficient2; 
 static Data() { 20 
  // read in the value of the coefficients from some source 
  coefficient1 = …; // ok 
  coefficient2 = …; // ok 
 } 
public: 25 
 static void F() { 
  coefficient1 = …; // error 
  coefficient2 = …; // error 
 } 
}; 30 

Assignments to an initonly field can only occur as part of its definition, or in an instance constructor or static 
constructor in the same class. (A static initonly field can be assigned to in a static constructor, and a non-
static initonly field can be assigned to in an instance constructor.) 

Initonly fields are only permitted in ref and value classes. 

8.8.3 Functions 35 
Member functions in CLI types are defined and used just as in Standard C++. However, C++/CLI does have 
some differences in this regard. For example: 

• The const and volatile qualifiers are not permitted on instance member functions. 

• The function modifier override and override specifiers provide the ability to indicate explicit 
overriding and named overriding (§8.8.10.1). 40 

• Marking a virtual member function as sealed prohibits that function from being overridden in a 
derived class. 

• The function modifier abstract provides an alternate way to declare a pure virtual member 
function. 

• The function modifier new allows the function to which it applies to hide the base class function of 45 
the same name,parameter-type-list, and cv-qualification. Such a hiding function does not override 
any base class function, even if the hiding function is declared virtual. 

• Type-safe variable-length argument lists are supported via parameter arrays. 
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8.8.4 Properties 
A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and 
indexed. A scalar property  enables scalar field-like access to an Object or class. Examples of scalar 
properties include the length of a string, the size of a font, the caption of a window, and the name of a 
customer. An indexed property  enables Array-like access to an Object. An example of an index property is 5 
a bit-array class. 

Properties are an evolutionary extension of fields—both are named members with associated types, and the 
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing Arrays and 
indexed properties. However, unlike fields, properties do not denote storage locations. Instead, properties 
have accessor functions that specify the statements to be executed when their values are read or written. 10 

Properties are defined with property definitions. The first part of a property definition looks quite similar to a 
field definition. The second part includes a get accessor function and/or a set accessor function. Properties 
that can be both read and written include both get and set accessor functions. In the example below, the 
point class defines two read-write properties, X and Y.  

public value class point { 15 
 int Xor; 
 int Yor; 

public: 
 property int X { 
  int get()    { return Xor; } 20 
  void set(int value) { Xor = value; } 
 } 

 property int Y { 
  int get()    { return Yor; } 
  void set(int value) { Yor = value; } 25 
 } 

 point() { 
  move(0, 0); 
 } 

 point(int x, int y) { 30 
  move(x, y); 
 } 

 void move(int x, int y) {   // absolute move 
  X = x; 
  Y = y; 35 
 }  

 void translate(int x, int y) { // relative move  
  X += x; 
  Y += y; 
 } 40 
 … 
}; 

The get accessor function is called when the property’s value is read; the set accessor function is called when 
the property’s value is written. 

The definition of properties is relatively straightforward, but the real value of properties is seen when they 45 
are used. For example, the X and Y properties can be read and written as though they were fields. In the 
example above, the properties are used to implement data hiding within the class itself. The following 
application code (directly and indirectly) also uses these properties: 

point p1;     // set to (0,0) 
p1.X = 10;      // set to (10,0) 50 
p1.Y = 5;      // set to (10,5) 
p1.move(5, 7);    // move to (5,7) 
point p2(9, 1);    // set to (9,1) 
p2.translate(-4, 12); // move 4 left and 12 up, to (5,13) 
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A default indexed property allows Array-like access directly on an instance. Whereas properties enable 
field-like access, default indexed properties enable Array-like access. [Note: Other languages refer to default 
indexed properties as “indexers”. end note] 

As an example, consider a Stack class. The designer of this class might want to expose Array-like access so 
that it is possible to inspect or alter the items on the stack without performing unnecessary Push and Pop 5 
operations. That is, class Stack is implemented as a linked list, but it also provides the convenience of 
Array access. 

Default indexed property definitions are similar to property definitions, with the main differences being that 
default indexed properties can be nameless and that they include indexing parameters. The indexing 
parameters are provided between square brackets. The example 10 

public ref class Stack { 
public: 
 ref struct Node { 
  Node^ Next; 
  Object^ Value; 15 
  Node(Object^ value) : Node(value, nullptr) {} 
  Node(Object^ value, Node^ next) { 
   Next = next; 
   Value = value; 
  } 20 
 }; 

private: 
 Node^ first;  
 Node^ GetNode(int index) { 
  Node^ temp = first;  25 
  while (index > 0) { 
   temp = temp->Next; 
   index--; 
  } 
  return temp; 30 
 } 
 bool ValidIndex(int index) { … } 

public: 
 property Object^ default[int] {  // default indexed property 
  Object^ get(int index) { 35 
   if (!ValidIndex(index)) 
    throw gcnew Exception("Index out of range."); 
   else 
    return GetNode(index)->Value; 
  } 40 
  void set(Object^ value, int index) { 
   if (!ValidIndex(index)) 
    throw gcnew Exception("Index out of range."); 
   else 
    GetNode(index)->Value = value; 45 
  } 
 } 

 Object^ Pop() { … } 
 void Push(Object^ o) { … } 

 … 50 
}; 

int main() { 
 Stack^ s = gcnew Stack; 

 s->Push(1); 
 s->Push(2); 55 
 s->Push(3); 

 s[0] = 33; // The top item now refers to 33 instead of 3 
 s[1] = 22; // The middle item now refers to 22 instead of 2 
 s[2] = 11; // The bottom item now refers to 11 instead of 1 
} 60 
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shows a default indexed property for the Stack class.  

[Note: A more efficient implementation of Stack would make use of generics. end note] 

Default indexed properties can just as easily be defined for native classes; for example: 
public class IntVector { 
public: 5 
 property int default[int index] {  // default indexed property 
  int get(int index) { … } 
  void set(int index, int value) { … } 
 } 
… 10 
}; 
int main() { 
 IntVector iv(7, 5); // define a 7-element vector with all values 5 
 int i = iv[0];   // get element 0 
 iv[1] = 55;    // set element 1 15 
 iv[3] -= 17;    // get and set element 3 
 iv[5] *= 3;    // get and set element 5 
} 

8.8.5 Events 
An event is a member that enables an Object or class to provide notifications. A class defines an event by 20 
providing an event declaration (which resembles a field declaration, though with an added event identifier) 
and an optional set of event accessor functions. The type of this declaration must be a handle to a delegate 
type (§8.7).  

An instance of a delegate type encapsulates one or more callable entities. For instance functions, a callable 
entity consists of an instance and a function on that instance. For static functions, a callable entity consists of 25 
just a function. Given a delegate instance and an appropriate set of arguments, one can invoke all of that 
delegate instance’s functions with that set of arguments. 

In the example 
public delegate void EventHandler(Object^ sender, 
 EventArgs^ e); 30 
public ref class Button { 
public: 
 event EventHandler^ Click; 
 void Reset() { 
  Click = nullptr; 35 
 } 
}; 

the Button class defines a Click event of type EventHandler. Inside the Button class, the Click 
member is exactly like a private field of type EventHandler. However, outside the Button class, the 
Click member is typically only used on the left-hand side of the += and –= operators. The += operator adds 40 
a handler for the event, and the -= operator removes a handler for the event. The example 

public ref class Form1 { 
 Button^ Button1; 
 void Button1_Click(Object^ sender, EventArgs^ e) { 
  Console::WriteLine("Button1 was clicked!"); 45 
 } 

public: 
 Form1() { 
  Button1 = gcnew Button; 
 // Add Button1_Click as an event handler for Button1’s Click event 50 
  Button1->Click += gcnew EventHandler(this, &Button1_Click); 
 } 
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 void Disconnect() { 
  Button1->Click -= gcnew EventHandler(this, &Button1_Click); 
 } 
}; 

shows a class, Form1, that adds Button1_Click as an event handler for Button1’s Click event. In the 5 
Disconnect function, that event handler is removed. 

For a trivial event declaration such as  
event EventHandler^ Click; 

the compiler automatically provides the default implementations of the accessor functions. 

An implementer who wants more control can get it by explicitly providing add and remove accessor 10 
functions.  For example, the Button class could be rewritten as follows: 

public ref class Button { 
 EventHandler^ handler; 
public: 
 event EventHandler^ Click { 15 
  void add( EventHandler^ e )    { Lock<Mutex> l(m); handler += e; } 
  void remove( EventHandler^ e ) { Lock<Mutex> l(m); handler -= e; } 
 } 
 … 
}; 20 

This change has no effect on client code, but it allows the Button class more implementation flexibility. For 
example, the event handler for Click need not be represented by a field. 

8.8.6 Static operators 
Add examples for native and value classes. [[Ed]] 

In addition to Standard C++ operator overloading, C++/CLI provides the ability to define operators that are 25 
static and/or take parameters of ^ type. 

The following example shows part of an integer vector class: 
public ref class IntVector { 
 int array<int>^ values; 

public: 30 
 property int Length {    // property 
  int get() { return values->Length; } 
 } 

 property int default[int] {  // default indexed property 
  int get(int index) { return values[index]; } 35 
  void set(int index, int value) { values[index] = value; } 
 } 

 IntVector(int length) : IntVector(length, 0) {} 

 IntVector(int length, int value); 

// unary – (negation) 40 
 static IntVector^ operator-(IntVector^ iv) { 
  IntVector^ temp = gcnew IntVector(iv->Length); 
  for (int i = 0; i < iv->Length; ++i) { 
   temp[i] = -iv[i]; 
  } 45 
  return temp; 
 } 

 static IntVector^ operator+(IntVector^ iv, int val) { 
  IntVector^ temp = gcnew IntVector(iv->Length); 
  for (int i = 0; i < iv->Length; ++i) { 50 
   temp[i] = iv[i] + val; 
  } 
  return temp; 
 } 
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 static IntVector^ operator+(int val, IntVector^ iv) { 
  return iv + val; 
 } 
 … 
}; 5 
int main() { 
 IntVector^ iv1 = gcnew IntVector(4);  // 4 elements with value 0 
 IntVector^ iv2 = gcnew IntVector(7, 2); // 7 elements with value 2 
 iv1 = -2 + iv2 + 5; 
 iv2 = -iv1; 10 
} 

8.8.7 Instance constructors 
Unlike Standard C++, C++/CLI, supports static constructors (§8.8.9). As such, this specification refers to 
constructors as defined by the C++ Standard as being instance constructors. 

8.8.8 Destructors 15 
Introduce finalizers. [[#63]] 

8.8.9 Static constructors 
A static constructor is a ref or value class static member function that implements the actions required to 
initialize the static members of a class, rather than the instance members of that class. Static constructors 
cannot have parameters, must be private, and they cannot be called explicitly. The static constructor for a 20 
class is called automatically by the runtime. [Note: A static constructor is required to be private to prevent 
the static constructor from being invoked more than once. end note] 

The example 
public ref class Data { 
private: 25 
 initonly static double coefficient1; 
 initonly static double coefficient2; 
 static Data() { 
  // read in the value of the coefficients from some source 
  coefficient1 = …; 30 
  coefficient2 = …; 
 } 
public: 
 … 
}; 35 

shows a Data class with a static constructor that initializes two initonly static fields. 

8.8.10 Inheritance 
When using ref classes, C++/CLI supports single inheritance of ref classes only. However, multiple 
inheritance of interfaces is permitted. 

8.8.10.1 Function overriding 40 
In Standard C++, given a derived class with a function having the same name,parameter-type-list, and cv-
qualification as a virtual function in a base class, the derived class function always overrides the one in the 
base class, even if the derived class function is not declared virtual.  

struct B { 
 virtual void f(); 45 
 virtual void g(); 
}; 
struct D : B { 
 virtual void f();  // D::f overrides B::f 
 void g();    // D::g overrides B::g 50 
}; 
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We shall refer to this as implicit overriding. (As the virtual specifier on D::f is optional, the presence of 
virtual there really isn’t an indication of explicit overriding.) Since implicit overriding gets in the way of 
versioning (§8.13), implicit overriding must be diagnosed by a C++/CLI compiler. 

C++/CLI supports two virtual function-overriding features not available in Standard C++. These features are 
available in any class type. They are explicit overriding and named overriding. 5 

Explicit overriding: In C++/CLI, it is possible to state that 

1. A derived class function explicitly overrides a base class virtual function having the same 
name,parameter-type-list, and cv-qualification, by using the function modifier override, with the 
program being ill-formed if no such base class virtual function exists; and  

2. A derived class function explicitly does not override a base class virtual function having the same 10 
name,parameter-type-list, and cv-qualification, by using the function modifier new.  

 
struct A { 
 virtual void f(); 
 virtual void h(); 15 
 virtual void j(); 
}; 

struct B { 
 virtual void g(); 
 virtual void h(); 20 
}; 

struct D : A, B { 
 virtual void f() override; // D::f overrides A::f 
 virtual void g() override; // D::g overrides B::g 
 virtual void h() override; // D::h overrides A::h and B::h 25 
 virtual void j() new;  // D::j doesn’t override A::j, it hides it 
}; 

The use of virtual in D::f, D::g, and D::h, is mandatory; however, that in D::j is not. 

Named overriding: Instead of using the override modifier, we can achieve the same thing by using an 
override-specifier, which involves naming the function we are overriding. This approach also allows us to 30 
override a function having a different name, provided the parameter lists are the same. 

struct A { 
 virtual void j(); 
 virtual void m(); 
}; 35 
struct B { 
 virtual void k(); 
}; 

struct D : A, B { 
 virtual void x() = A::j;   // D::x overrides A::j 40 
 virtual void y() = A::m, B::k; // D::y overrides A::m and B::k 
}; 

struct P { 
 void f(); 
private: 45 
 virtual void h(); 
 virtual void j(); 
}; 

struct Q : P { 
 virtual void f() = P::f; // error, P::f is not overridable 50 
 virtual void h();    // P::h not visible, but ok 
}; 

The use of virtual in all function declarations having an override-specifier is mandatory.  

Explicit and named overriding can be combined, as follows: 
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struct A { 
 virtual void f(); 
 virtual void g(); 
}; 

struct D : A { 5 
 virtual void f() override = A::g;   // D::f overrides A::g 
}; 

A function can only be overridden once in any given class. Therefore, if an implicit or explicit override does 
the same thing as a named override, the program is ill-formed. 

struct B { 10 
   virtual void f(); 
}; 

struct D : B { 
   virtual void f() override = B::f; // Error: B::f is overridden twice 
};  15 

[Note: If a base class is dependent on a template type parameter, a named override of a virtual function from 
that base class does not happen until the point of instantiation. In the following 

template<typename T> 
ref class R : T { 
public: 20 
   virtual void f() = T::G { … } 
}; 

T::G is a dependent name. end note] 

8.9 Value classes 
Value classes are similar to ref classes in that the former represent data structures that can contain fields and 25 
function members. However, unlike ref classes, value classes do not require heap allocation. A variable of a 
value class directly contains the data of the value class, whereas a variable of a ref class contains a handle to 
the data. 

Value classes are particularly useful for small data structures that have value semantics. Complex numbers, 
points in a coordinate system, or key-value pairs in a dictionary are all good examples of structs. Key to 30 
these data structures is that they have few fields, that they do not require use of inheritance or referential 
identity, and that they can be conveniently implemented using value semantics where assignment copies the 
value instead of the reference. 

The simple types provided by C++/CLI, such as int, double, and bool, are, in fact, all value classes. Just 
as these predefined types are value classes, it is also possible to use value classes and operator overloading 35 
to implement new “primitive” types in this specification. 

value struct Point { 
 int x, y; 
 Point(int x, int y) { 
  this->x = x; 40 
  this->y = y; 
 } 
}; 

8.10 Interfaces 
An interface defines a contract. A class that implements an interface must adhere to its contract by 45 
implementing all of the functions, properties, and events that interface declares. 

The example 
delegate void EventHandler(Object sender, EventArgs^ e); 
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interface class IExample { 
 void F(int value); 
 property bool P { bool get(); } 
 property double default[int]; 
 event EventHandler^ E; 5 
}; 

shows an interface that contains a function F, a read-only scalar property P, a default indexed property, and 
an event E, all of which are implicitly public. 

Interfaces are implemented using inheritance syntax. 
interface class I1 { void F(); }; // F is implicitly virtual abstract 10 
ref class R1 : I1 { virtual void F() { /* implement I1::f */ } }; 

An interface can require implementation of one or more other interfaces. For example 
interface class IControl { 
 void Paint(); 
}; 15 
interface class ITextBox : IControl { 
 void SetText(String^ text); 
}; 

interface class IListBox : IControl { 
 void SetItems(array<String^>^ items); 20 
}; 

interface class IComboBox : ITextBox, IListBox {}; 

A class that implements IComboBox must also implement ITextBox, IListBox, and IControl. 

Classes can implement multiple interfaces. In the example 
interface class IDataBound { 25 
 void Bind(Binder^ b); 
}; 

public ref class EditBox : Control, IControl, 
   public IDataBound { 
public: 30 
 void Paint() {…} 
 void Bind(Binder^ b) {…} 
}; 

the class EditBox derives from the class Control and implements both IControl and IDataBound. 

In the previous example, interface functions were implicitly implemented. C++/CLI provides an alternative 35 
way of implementing these functions that allows the implementing class to avoid having these members be 
public. Interface functions can be explicitly implemented using the override syntax shown in §8.8.10.1. For 
example, the EditBox class could instead be implemented by providing IControl::Paint and 
IDataBound::Bind functions.  

public ref class EditBox : IControl, IDataBound { 40 
private: 
 void Paint() = IControl::Paint {…} 
 void Bind(Binder^ b) = IDataBound::Bind {…} 
}; 

Interface members implemented in this way are called explicit interface members because each member 45 
explicitly designates the interface member being implemented. 

 int main() { 
  EditBox^ editbox = gcnew EditBox; 
  editbox->Paint();   // error: Paint is private 
  IControl^ control = editbox; 50 
  control->Paint();   // calls EditBox’s Paint implementation 
 } 
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8.11 Enums 
Standard C++ already supports enumerated types. However, C++/CLI provides some interesting extensions 
to this facility. For example: 

• An enum can be declared public or private, so its visibility outside its parent assembly can be 
controlled. 5 

• The underlying type for an enum can be specified. 

• An enum type and/or its enumerators can have attributes. 

• A new syntax is available for defining enums that are strongly typed and thus do not have integral 
promotion conversions. 

8.12 Namespaces and assemblies 10 
The programs presented so far have stood on their own except for dependence on a few system-provided 
classes such as System::Console. It is far more common, however, for real-world applications to consist 
of several different pieces, each compiled separately. For example, a corporate application might depend on 
several different components, including some developed internally and some purchased from independent 
software vendors.  15 

Namespaces and assemblies enable this component-based system. Namespaces provide a logical 
organizational system. Namespaces are used both as an “internal” organization system for a program, and as 
an “external” organization system—a way of presenting program elements that are exposed to other 
programs. 

Assemblies are used for physical packaging and deployment. An assembly can contain types, the executable 20 
code used to implement these types, and references to other assemblies.  

To demonstrate the use of namespaces and assemblies, this subclause revisits the “hello, world” program 
presented earlier, and splits it into two pieces: a class library that contains a function that displays the 
greeting, and a console application that calls that function.  

The class library will contain a single class named DisplayMessage. For example: 25 
// DisplayHelloLibrary.cpp 
namespace MyLibrary { 
 public ref struct DisplayMessage { 
  static void Display() { 
   Console::WriteLine("hello, world"); 30 
  } 
 }; 
} 

The next step is to write a console application that uses the DisplayMessage class; for example: 
// HelloApp.cpp 35 
#using <DisplayHelloLibrary.dll> 
int main() { 
  MyLibrary::DisplayMessage::Display(); 
} 

No headers need to be included when using CLI library classes and functions. Instead library assemblies are 40 
referenced via a #using directive, with the assembly name enclosed in <…>, as shown. The code written 
can be compiled into a class library containing the class DisplayMessage and an application containing 
the function main. The details of this compilation step might differ based on the compiler or tool being used. 
A command-line compiler might enable compilation of a class library and an application that uses that 
library with the following command-line invocations: 45 

cl /LD DisplayHelloLibrary.cpp 
cl HelloApp.cpp 

which produce a class library named DisplayHelloLibrary.dll and an application named 
HelloApp.exe. 
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8.13 Versioning 
Versioning is the process of evolving a component over time in a compatible manner. A new version of a 
component is source-compatible with a previous version if code that depends on the previous version can, 
when recompiled, work with the new version. In contrast, a new version of a component is binary-
compatible if an application that depended on the old version can, without recompilation, work with the new 5 
version. 

Consider the situation of a base class author who ships a class named Base. In the first version, Base 
contains no function F. A component named Derived derives from Base, and introduces an F. This 
Derived class, along with the class Base on which it depends, is released to customers, who deploy to 
numerous clients and servers. 10 

public ref struct Base {  // version 1 
 … 
}; 

public ref struct Derived : Base { 
 virtual void F() { 15 
  Console::WriteLine("Derived.F");  
 } 
}; 

So far, so good, but now the versioning trouble begins. The author of Base produces a new version, giving it 
its own function F. 20 

public ref struct Base {  // version 2 
 virtual void F() {   // added in version 2 
  Console::WriteLine("Base.F");  
 } 
}; 25 

This new version of Base should be both source and binary compatible with the initial version. (If it weren’t 
possible simply to add a function then a base class could never evolve.) Unfortunately, the new F in Base 
makes the meaning of Derived’s F unclear. Did Derived mean to override Base’s F? This seems unlikely, 
since when Derived was compiled, Base did not even have an F! Further, if Derived’s F does override 
Base’s F, then it must adhere to the contract specified by Base—a contract that was unspecified when 30 
Derived was written. In some cases, this is impossible. For example, Base’s F might require that overrides 
of it always call the base. Derived’s F could not possibly adhere to such a contract. 

C++/CLI addresses this versioning problem by allowing developers to state their intent clearly. In the 
original code example, the code was clear, since Base did not even have an F. Clearly, Derived’s F is 
intended as a new function rather than an override of a base function, since no base function named F exists. 35 

If Base adds an F and ships a new version, then the intent of a binary version of Derived is still clear—
Derived’s F is semantically unrelated, and should not be treated as an override. 

However, when Derived is recompiled, the meaning is unclear—the author of Derived might intend its F 
to override Base’s F, or to hide it. By default, the compiler makes Derived’s F override Base’s F. 
However, this course of action does not duplicate the semantics for the case in which Derived is not 40 
recompiled.  

If Derived’s F is semantically unrelated to Base’s F, then Derived’s author can express this intent by 
using the function modifier new in the declaration of F. 

public ref struct Base {    // version 2 
 virtual void F() {      // added in version 2 45 
  Console::WriteLine("Base.F");  
 } 
}; 

public ref struct Derived : Base { // version 2a: new 
 virtual void F() new { 50 
  Console::WriteLine("Derived.F");  
 } 
}; 
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On the other hand, Derived’s author might investigate further, and decide that Derived’s F should 
override Base’s F. This intent can be specified explicitly by using the function modifier override, as 
shown below. 

public ref struct Base {    // version 2 
 virtual void F() {      // added in version 2 5 
  Console::WriteLine("Base.F");  
 } 
}; 

public ref struct Derived : Base { // version 2b: override 
 virtual void F() override { 10 
  Base::F(); 
  Console::WriteLine("Derived.F");  
 } 
}; 

The author of Derived has one other option, and that is to change the name of F, thus completely avoiding 15 
the name collision. Although this change would break source and binary compatibility for Derived, the 
importance of this compatibility varies depending on the scenario. If Derived is not exposed to other 
programs, then changing the name of F is likely a good idea, as it would improve the readability of the 
program—there would no longer be any confusion about the meaning of F. 

8.14 Attributes 20 
C++/CLI has certain declarative elements. For example, the accessibility of a function in a class can be 
specified by declaring it public, protected, or private. C++/CLI generalizes this capability, so that 
programmers can invent new kinds of declarative information, attach this declarative information to various 
program entities, and retrieve this declarative information at run-time. Programs specify this additional 
declarative information by defining and using attributes. 25 

For instance, a framework might define a HelpAttribute attribute that can be placed on program elements 
such as classes and functions, enabling developers to provide a mapping from program elements to 
documentation for them. The example 

[AttributeUsage(AttributeTargets::All)] 
public ref class HelpAttribute : Attribute { 30 
 String^ url; 
public: 
 HelpAttribute(String^ url) { 
  this->url = url; 
 } 35 
 String^ Topic; 

 property String^ Url {  
  String^ get() { return url; } 
 } 
}; 40 

defines an attribute class named HelpAttribute that has one positional parameter (String^ url) and 
one named parameter (String^ Topic). Positional parameters are defined by the formal parameters for 
public instance constructors of the attribute class, and named parameters are defined by public non-static 
read-write fields and properties of the attribute class. For convenience, usage of an attribute name when 
applying an attribute is allowed to drop the Attribute suffix from the name. 45 

The example 
[Help("http://www.mycompany.com/…/Class1.htm")] 
public ref class Class1 { 
public: 
 [Help("http://www.mycompany.com/…/Class1.htm", Topic = "F")] 50 
 void F() {} 
}; 

shows several uses of the attribute Help.  
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Attribute information for a given program element can be retrieved at run-time by using reflection support. 
The example 

int main() { 
 Type^ type = Class1::typeid; 
 array<Object^>^ arr = 5 
  type->GetCustomAttributes(HelpAttribute::typeid, true); 
 if (arr->Length == 0) 
  Console::WriteLine("Class1 has no Help attribute."); 
 else { 
  HelpAttribute^ ha = (HelpAttribute^) arr[0]; 10 
  Console::WriteLine("Url = {0}, Topic = {1}", ha->Url, ha->Topic); 
 } 
} 

checks to see if Class1 has a Help attribute, and writes out the associated Topic and Url values if that 
attribute is present. 15 

8.15 Generics 
Generic types and functions are a set of features—collectively called generics—defined by the CLI to allow 
parameterized types. Generics differ from templates in that generics are instantiated by the Virtual Execution 
System (VES) at runtime rather than by the compiler at compile-time. A generic declaration must be a ref 
class, value class, interface class, delegate, or function. 20 

8.15.1 Creating and consuming generics 
Below, we create a Stack generic class declaration where we specify a type parameter,  ItemType, using 
the same notation as with templates, except that the keyword generic is used instead of template.  This 
type parameter acts as a placeholder until an actual type is specified at use. 

generic<typename ItemType> 25 
public ref class Stack { 
 array<ItemType>^ items; 
public: 
 Stack(int size) { 
  items = gcnew array<ItemType>(size); 30 
 } 

 void Push(ItemType data) { … } 
 ItemType Pop() { … } 
}; 

When we use the generic class declaration Stack, we specify the actual type to be used by the generic class.  35 
In this case, we instruct the Stack to use an int type by specifying it as a type argument using the angle 
brackets after the name: 

Stack<int>^ s = gcnew Stack<int>(5); 

In so doing, we have created a new constructed type, Stack<int>, for which every ItemType inside the 
declaration of Stack is replaced with the supplied type argument int. 40 

If we wanted to store items other than an int into a Stack, we would have to create a different constructed 
type from Stack, specifying a new type argument.  Suppose we had a simple Customer type and we 
wanted to use a Stack to store it. To do so, we simply use the Customer class as the type argument to 
Stack and easily reuse our code: 

Stack<Customer^>^ s = gcnew Stack<Customer^>(10); 45 
s->Push(gcnew Customer); 
Customer^ c = s->Pop(); 

Of course, once we’ve created a Stack with a Customer type as its type argument, we are now limited to 
storing only Customer objects (or objects of a class derived from Customer). Like templates, generics 
provide strong typing. 50 
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Generic type declarations can have any number of type parameters. Suppose we created a simple 
Dictionary generic class declaration that stored values alongside keys. We could define a generic version 
of a Dictionary by declaring two type parameters, as follows: 

generic<typename KeyType, typename ElementType > 
public ref class Dictionary { 5 
public: 
 void Add(KeyType key, ElementType val) { … } 
 property ElementType default[KeyType] { // indexed property 
  ElementType get(KeyType key) { … } 
  void set(ElementType value, KeyType key) { … } 10 
 } 
}; 

When we use Dictionary, we need to supply two type arguments within the angle brackets. Then when 
we call the Add function or use the indexed property, the compiler checks that we supplied the right types: 

Dictionary<String^, Customer^>^ dict 15 
 = gcnew Dictionary<String^, Customer^>; 
dict->Add("Peter", gcnew Customer); 
Customer^ c = dict["Peter"]; 

8.15.2 Constraints 
In many cases, we will want to do more than just store data based on a given type parameter.  Often, we will 20 
also want to use members of the type parameter to execute statements within our generic type declaration. 
For example, suppose in the Add function of our Dictionary we wanted to compare items using the 
CompareTo function of the supplied key, as follows: 

generic<typename KeyType, typename ElementType > 
public ref class Dictionary { 25 
public: 
 void Add(KeyType key, ElementType val) { 
  … 

  if (key->CompareTo(x) < 0) { … } // compile-time error 
  … 30 
 } 
}; 

Unfortunately, at compile-time the type parameter KeyType is, as expected, generic. As written, the 
compiler will assume that only the operations available to System::Object, such as calls to the function 
ToString, are available on the variable key of type KeyType. As a result, the compiler will issue a 35 
diagnostic because the CompareTo function would not be found. However, we can cast the key variable to a 
type that does contain a CompareTo function, such as an IComparable interface, allowing the program to 
compile: 

generic<typename KeyType, typename ElementType > 
public ref class Dictionary { 40 
public: 
 void Add(KeyType key, ElementType val) { 
  … 

  if (static_cast<IComparable^>(key)->CompareTo(x) < 0) { … } 
  … 45 
 } 
}; 

However, if we now construct a type from Dictionary and supply a key type argument which does not 
implement IComparable, we will encounter a run-time error (in this case, a 
System::InvalidCastException). Since one of the objectives of generics is to provide strong typing 50 
and to reduce the need for casts, a more elegant solution is needed. 

We can supply an optional list of constraints for each type parameter. A constraint indicates a requirement 
that a type must fulfill in order to be accepted as a type argument. (For example, it might have to implement 
a given interface or be derived from a given base class.) A constraint is declared using the word where, 
followed by a type parameter and colon (:), followed by a comma-separated list of class or interface types. 55 
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In order to satisfy our need to use the CompareTo function inside Dictionary, we can impose a constraint 
on KeyType, requiring any type passed as the first argument to Dictionary to implement IComparable, 
as follows: 

generic<typename KeyType, typename ElementType > 
 where KeyType : IComparable 5 
public ref class Dictionary { 
public: 
 void Add(KeyType key, ElementType val) { 
  … 

  if (key->CompareTo(x) < 0) { … } 10 
  … 
 } 
}; 

When compiled, this code will now be checked to ensure that each time we construct a Dictionary type 
we are passing a first type argument that implements IComparable.  Further, we no longer have to 15 
explicitly cast variable key to an IComparable interface before calling the CompareTo function. 

Constraints are most useful when they are used in the context of defining a framework, i.e., a collection of 
related classes, where it is advantageous to ensure that a number of types support some common signatures 
and/or base types. Constraints can be used to help define “generic algorithms” that plug together 
functionality provided by different types. This can also be achieved by subclassing and runtime 20 
polymorphism, but static, constrained polymorphism can, in many cases, result in more efficient code, more 
flexible specifications of generic algorithms, and more errors being caught at compile-time rather than run-
time. However, constraints need to be used with care and taste. Types that do not implement the constraints 
will not easily be usable in conjunction with generic code. 

For any given type parameter, we can specify any number of interfaces as constraints, but no more than one 25 
base class.  Each constrained type parameter has a separate where clause. In the example below, the 
KeyType type parameter has two interface constraints, while the ElementType type parameter has one 
class constraint: 

generic<typename KeyType, typename ElementType > 
 where KeyType : IComparable, IEnumerable 30 
 where ElementType : Customer 
public ref class Dictionary { 
public: 
 void Add(KeyType key, ElementType val) { 
  … 35 
  if (key->CompareTo(x) < 0) { … } 
  … 
 } 
}; 

8.15.3 Generic functions 40 
In some cases, a type parameter is not needed for an entire class, but only when calling a particular function. 
Often, this occurs when creating a function that takes a generic type as a parameter. For example, when 
using the Stack described earlier, we might often find ourselves pushing multiple values in a row onto a 
stack, and decide to write a function to do so in a single call.  

We do this by writing a generic function. Like a generic class declaration, a generic function is preceded by 45 
the keyword generic and a list of type parameters enclosed in angle brackets. As in a template function, 
the type parameters of a generic function can be used within the parameter list, return type, and body of the 
function. A generic PushMultiple function might look like this: 

generic<typename ItemType> 
void PushMultiple(Stack<ItemType>^ s, ... array<ItemType>^ values) { 50 
 for each (ItemType v in values) { 
  s->Push(v); 
 } 
} 



 Language overview 

35 

Using this generic function, we can now push multiple items onto a Stack of any kind. Furthermore, the 
compiler type checking will ensure that the pushed items have the correct type for the kind of Stack being 
used. When calling a generic function, we place type arguments to the function in angle brackets; for 
example: 

Stack<int>^ s = gcnew Stack<int>(5); 5 
PushMultiple<int>(s, 1, 2, 3, 4); 

The call to this function supplies the desired ItemType as a type argument to the function. In many cases, 
however, the compiler can deduce the correct type argument from the other arguments passed to the 
function, using a process called type deduction. In the example above, since the first regular argument is of 
type Stack<int>, and the subsequent arguments are of type int, the compiler can reason that the type 10 
parameter must also be int. Thus, the generic PushMultiple function can be called without specifying the 
type parameter, as follows: 

Stack<int>^ s = gcnew Stack<int>(5); 
PushMultiple(s, 1, 2, 3, 4); 

Based on the rules for type deduction in templates, it seems surprising that you can match 15 
array<ItemType>^ with an argument of type int. Here is a standard C++ example intended to illustrate the 
issue: 

 template <class ItemType> struct Stack {}; 
 template <class ItemType> struct Array { 
  Array(ItemType); 20 
 }; 

 template <class ItemType> 
 void PushMultiple(Stack<ItemType>, Array<ItemType>); 
 int main() { 
         Stack<int> s; 25 
         PushMultiple(s, 1);  // deduction fails 
         PushMultiple<int>(s, 1); 
 } 

Are the rules for generic different in this area? 

[There seems to be information related to this in 30.3.2.  See that subclause for further comments on this 30 
issue.][[#125]] 

End of informative text. 
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9. Lexical structure 

A number of issues are not yet discussed here. Much of this clause is yet to be added. [[#24]] 

9.1 Tokens 

9.1.1 Identifiers 
Certain places in the Standard C++ grammar do not allow identifiers. However, C++/CLI allows a defined 5 
set of identifiers to exist in those places, with these identifiers having special meaning. [Note: Such 
identifiers are colloquially referred to as context-sensitive keywords; none-the-less, they are identifiers. end 
note] The identifiers that carry special meaning in certain contexts are: 

abstract  delegate  event   finally 
generic  in    initonly  literal 10 
override  property  sealed  where 

When referred to in the grammar, these identifiers are used explicitly rather than using the identifier 
grammar production. Ensuring that the identifier is meaningful is a semantic check rather than a syntax 
check. 

When the token generic is found, it has special meaning if and only if it is not preceded by the token :: 15 
and is followed by the token < and then either of the keywords class or typename. [Note: In rare cases, a 
valid Standard C++ program could contain the token sequence generic followed by < followed by class 
where generic should be interpreted as a type name. For example: 

template<typename T> struct generic { 
  typedef int I; 20 
}; 

class X {}; 
generic<class X> x1; 
generic<class X()> x2; 

In such cases, use typename to indicate that the occurrence of generic is a type name: 25 
typename generic<class X> x1; 
typename generic<class X()> x2; 

or, in these particular cases, an alternative would be to remove the keyword class (that is, to not use the 
elaborated-type-specifier), for example: 

generic<X> x1; 30 
generic<X()> x2; 

end note] 

The grammar productions for elaborated-type-specifier (C++ Standard §7.1.5.3, §14.6, and §A.6) that 
mention typename are extended as follows, to make nested-name-specifier optional in the first of the two 
applicable productions:  35 

elaborated-type-specifier: 
. . . 
typename   ::opt   nested-name-specifieropt   identifier 
typename   ::opt   nested-name-specifier   templateopt   template-id 
. . . 40 

The C++ standard (§14.6/3) is amended, as follows:  
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"A qualified-ididentifier that refers to a type and in which the nested-name-specifier depends on a template-
parameter (14.6.2) shall be prefixed by the keyword typename to indicate that the qualified-ididentifier 
denotes a type, forming an elaborated-type-specifier (7.1.5.3)."  

and §14.6/5 is deleted:  

"The keyword typename shall only be used in template declarations and definitions, including in the return 5 
type of a function template or member function template, in the return type for the definition of a member 
function of a class template or of a class nested within a class template, and in the type-specifier for the 
definition of a static member of a class template or of a class nested within a class template. The keyword 
typename shall be applied only to qualified names, but those names need not be dependent. The keyword 
typename shall be used only in contexts in which dependent names can be used. This includes template 10 
declarations and definitions but excludes explicit specialization declarations and explicit instantiation 
declarations. The keyword typename is not permitted in a base-specifier or in a mem-initializer; in these 
contexts a qualified-id that depends on a template-parameter (14.6.2) is implicitly assumed to be a type 
name."  

[Note: The presence of typename lets the programmer disambiguate otherwise ambiguous cases such as the 15 
token sequence property :: X x;. The declaration property :: X x; declares a member variable 
named x of type property::X, as it does in Standard C++. The token sequence property typename 
:: X x; declares a property named x of type ::X. end note]  

When name lookup for any of array, interior_ptr, pin_ptr, or safe_cast fails to find the name, and 
the name is not followed by a left parenthesis, the name is interpreted as though it were qualified with 20 
cli:: and the lookup succeeds, finding the name in namespace ::cli.  

When name lookup for any of array, interior_ptr, pin_ptr, or safe_cast succeeds and finds the 
name in namespace ::cli, the name is not a normal identifier, but has special meaning as described in this 
Standard.  

9.1.2 Keywords 25 
The following keywords are added to those in the C++ Standard (§2.11):  

enum░class   enum░struct   for░each    gcnew 
interface░class interface░struct nullptr    ref░class 
ref░struct   value░class   value░struct 

 The symbol ░ is used in the grammar to signify that white-space appears within the keyword. Any white-30 
space, including comments and new-lines (but excluding documentation comments and newlines in macros), 
is permitted in the position signified by the ░ symbol. Following translation phase 4, a keyword with ░ will 
be a single token. [Note: The ░ symbol is only used in the grammar of the language. Examples will include 
white-space as is required in a well-formed program. end note] [Note: Keywords that include the ░ symbol 
can be produced by macros, but are never considered to be macro names. end note] 35 
Translation phase 4 in the C++ Standard (§2.1/4) is extended as follows: 
Preprocessing directives are executedparsed and stored. Then, in the translation unit and in each macro 
replacement-list, starting with the first token, each pair of adjacent tokens token1 and token2 is successively 
considered, and if token1░token2 is a keyword, then token1 and token2 are replaced with the single token 
token1░token2. and Then macro invocations are expanded. If a character sequence that matches the syntax 40 
of a universal-character-name is produced by token concatenation (16.3.3), the behavior is undefined. A 
#include preprocessing directive causes the named header or source file to be processed from phase 1 
through phase 4, recursively. 
In some places in the grammar, specific identifiers have special meaning, but are not keywords. [Note: For 
example, within a virtual function declaration, the identifiers abstract and sealed have special meaning. 45 
Ordinary user-defined identifiers are never permitted in these locations, so this use does not conflict with a 
use of these words as identifiers. For a complete list of these special identifiers, see §9.1.1. end note] 

9.1.3 Literals 
The grammar for literal in the C++ Standard (§2.13) has been extended as follows:  
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literal: 
… 
null-literal 

9.1.3.1 The null literal 
null-literal:: 5 

nullptr 

The null-literal is the keyword nullptr, whose type is the null type (§12.3.4).  nullptr represents the 
null value constant and is unique.  This literal is not an lvalue. 

The null value constant can be converted to any handle type, with the result being a null handle. The null 
value constant can also be converted to any pointer type, with the result being a null pointer. 10 

9.1.4 Operators and punctuators 
It has been agreed that >> will be handled apprpriately to allow constructs such as List<List<int>> to be 
handled correctly. If a < for a template, for example, is seen, and >> that is not inside parentheses, that >> 
will always be considered to be the closing delimiter of two < symbols, and results in an error if there are 
not two such corresponding < symbols. [[Ed.]] 15 
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10. Basic concepts 

Much of this clause is yet to be added, include application entry point, assembly boundaries, etc. [[#25]] 

#using subclause: When importing functions from an assembly, functions with these names shall be 
renamed with the appropriate C++ identifier for the conversion function. If such a function does not make 
sense as a conversion function (for example, it takes three arguments), the function name is not changed to 5 
the internal conversion function name, and thus the function is callable by the name it has in the assembly. 
[[#95]] 

10.1 Members 

10.1.1 Value class members 
The members of a value class are the members declared in that value class, and the members inherited from 10 
the value class’s direct base class System::ValueType and the indirect base class System::Object. 

The members of a fundamental type correspond directly to the members of the value class type aliased by 
the fundamental type, as follows: This mapping is still under discussion; it is by no means settled yet.[[#93]] 

• The members of signed char are the members of the System::SByte value class. 

• The members of unsigned char are the members of the System::Byte value class. 15 

• If a plain char is signed, the members of char are the members of the System::SByte value 
class; otherwise, they are the members of the System::Byte value class. 

• The members of short int are the members of the System::Int16 value class. 

• The members of unsigned short are the members of the System::UInt16 value class. 

• The members of int are the members of the System::Int32 value class. 20 

• The members of unsigned int are the members of the System::UInt32 value class. 

• The members of long long are the members of the System::Int64 value class. 

• The members of unsigned long long are the members of the System::UInt64 value class. 

• The members of wchar_t are the members of the System::Char value class. 

• The members of float are the members of the System::Single value class. 25 

• The members of double are the members of the System::Double value class. 

• The members of long double are the members of the System::Double value class. 

• The members of bool are the members of the System::Boolean value class. 

10.1.2 Delegate members 
The members of a delegate are the members inherited from class System::Delegate, in addition to the 30 
members added by the C++ compiler. [Note: The compiler needs to add typedef members to the class so that 
template code can use the return type or the parameter types. end note] 
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10.2 Member access 

10.2.1 Declared accessibility 
In the C++ Standard (§10), an access-specifier is used to define member access control. This grammar has 
been extended to accommodate the notion of assemblies, as follows: 

access-specifier: 5 
… 

public private 
private public 
protected public 

public protected 10 
private protected 
protected private 

public public 
protected protected 
private private 15 

It is expected that "public private" (and "private public") will be replaced by "internal", and that those 
access-specifiers containing the same name twice will simply revert to a single occurance of that name. 
[[Ed.]] 

In the C++ Standard (§11/1), member access control for each access-specifier is defined. To accommodate 
the addition of assemblies, these definitions have been extended, as follows: 20 

A member of a class can be 

• private or private private; that is, its name can be used only by members and friends of the 
class in which it is declared. 

• protected or protected protected; that is, its name can be used only by members and friends 
of the class in which it is declared, and by members and friends of classes derived from this class. 25 

• public or public public; that is, its name can be used anywhere without access restriction. 

• public private or private public; that is, its name can be used in its parent assembly. This 
is referred to as assembly access. 

• public protected or protected public; that is, its name can be used in its parent assembly 
or by types derived from the containing class. This is referred to as family or assembly access. . 30 

• private protected or protected private; that is, its name can be used only by types 
derived from the containing class within its parent assembly. This is referred to as family and 
assembly access. . 

For access-specifiers containing two keywords, the more restrictive of the two applies outside the parent 
assembly while the less restrictive of the two applies within the parent assembly. 35 

An overriding name is allowed to have a different accessibility than the name it is overriding. Clarify the 
ordering definition. [[#26]] An ordering is applied to distinguish between greater accessibility. Given the 
two accessibilities A and B, A has narrower access than B if A permits the same or less access than A within 
the assembly and outside the assembly. A has wider access than B if A permits the same or more access than 
A within the assembly and outside the assembly. Narrowing and widening of accessibilities implies a partial 40 
ordering of accessibilities. For example, protected is wider than private, protected is wider than 
protected, protected is narrower than public, protected is narrower than protected, protected 
private is narrower than public protected, and no ordering exists between public private and 
protected. [Note: In general, widening and narrowing accessibility is not CLS compliant. end note] 
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11. Preprocessor 

11.1 Predefined macro names 
In addition to the macros specified in the C++ Standard (§16.8), the following macro name shall be defined 
by the implementation: 

__cplusplus_cli The name __cplusplus_cli is defined to the value 200406L when compiling a 5 
C++/CLI translation unit. [Note: It is intended that future versions of this standard will replace the value of 
this macro with a greater value. end note] 

The value of this predefined macro remains constant throughout the translation unit. 

If this pre-defined macro name is the subject of a #define or a #undef preprocessing directive, the 
behavior is undefined. 10 
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12. Types 

Add a picture of a type tree. [[#13]] 

The C++ Standard (§3.9/10) definition for scalar types has been extended, as follows: 

“Arithmetic types (3.9.1), enumeration types, handles, pointer types, and pointer to member types (3.9.2), 
and cv-qualified versions of these types (3.9.3) are collectively called scalar types.” 5 

The C++ Standard (§7.1.5) definition for type-specifier has been extended, as follows: 

type-specifier: 
… 
delegate-definition 

12.1 Fundamental types 10 
Standard C++ (§3.9.1) is augmented by the following: This mapping is still under discussion; it is by no 
means settled yet.[[#93]] 

• For all fundamental types (not just character types), all bits of the object representation participate in 
the value representation. 

• An object of type char shall have exactly 8 bits. 15 

• There are five signed integer types: “signed char”, “short int”, “int”, “long int”, and 
“long long” 

• For each of the signed integer types, there exists a corresponding (but different) unsigned integer 
type: “unsigned char”, “unsigned short int”, “unsigned int”, “unsigned long 
int”, and “unsigned long long” 20 

• An object of type short int shall have exactly 16 bits. 

• An object of type int shall have exactly 32 bits. 

• An object of type long int shall have exactly 32 bits. 

• An object of type long long shall have exactly 64 bits. 

• The value of an object having a signed integer type shall be stored using twos-complement 25 
representation. 

• An object of type wchar_t shall be unsigned and have exactly 16 bits. 

• An object of type float is represented using the 32-bit single-precision IEC 60559 format. 

• An object of type double is represented using the 64-bit double-precision IEC 60559 format. 

• An object of type long double is represented using the 64-bit double-precision IEC 60559 format. 30 

• An object of type bool shall have exactly 8 bits. 

The type long long will be defined by pointing to the paper WG21 N1565.[[#126]] 
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12.2 Class types 

12.2.1 Native classes 

12.2.2 Value classes 
Is there more to say? What about boxing? [[Ed]] 

All value class types implicitly inherit from the class System::ValueType,  which, in turn, inherits from 5 
class System::Object. [Note: System::ValueType is not itself a value class type. Rather, it is a ref 
class type, from which all value class types are automatically derived. end note] 

12.2.2.1 Simple value classes 
Is this the place to describe the mapping of fundamental types to CLI types? [[Ed]] 

12.2.2.2 Enum classes 10 

12.2.3 Ref classes 
A ref class defines a data structure that contains fields, function members (functions, properties, events, 
operators, instance constructors, destructors, and static constructors), and nested types. Ref classes support 
inheritance. Instances of ref classes are created using new-expressions (§15.4.6.1). 

Ref classes are described in §20. 15 

12.2.4 Interface classes 
An interface defines a contract. A ref or value class that implements an interface must adhere to its contract. 
An interface can inherit from multiple base interfaces, and a ref or value class can implement multiple 
interfaces. 

Interface classes are described in §24. 20 

12.2.5 Delegate types 
A delegate is a data structure that refers to one or more functions, and for instance functions, it also refers to 
their corresponding Object instances. 

Delegate types are described in §26. 

12.2.6 Arrays 25 

12.3 Declarator types 
The WG21 WP says at the end of 8.3.5p3 "The resulting list of transformed parameter types and the 
presence or absence of the ellipsis is the function's parameter-type-list." Since we are using the term 
”parameter-type-list", we need to define it in this clause somewhere. [[Ed]] 

12.3.1 Raw types 30 

12.3.2 Pointer types 
It is possible to declare a pointer to a function that takes a parameter array (§18.3.6). [Example:  

Void F(double, ... array<int>^); 
void (*p)(double, ... array<int>^) = &F; 

end example] 35 

A native pointer cannot point to an Object on the CLI heap unless that Object has been pinned (§12.3.7). 



C++/CLI Language Specification 

44 

12.3.3 Handle types 
Need to add text to indicate the circumstances under which the modreq IsBoxed shall be emitted (i.e., 
passing a handle to a value type). Point to that modreq's spec.[[#127]] 
For any CLI type T, the declaration T^ h declares a handle h to type T, where the Object to which h is 
capable of pointing resides on the CLI heap. A handle tracks, is rebindable, and can point to a whole Object 5 
only. [Note: In general, handles are to the gc heap as pointers are to the native heap. end note] 

The default initial value of a handle is nullptr. 

Objects of CLI type are allocated on the CLI heap via gcnew, and such Objects are referred to by handles. 
[Example: 

R^ r1 = gcnew R; // allocate an Object on the CLI heap 10 
R^ r2 = r1;   // handles r1 and r2 point to the same Object 

end example] If an Object allocated using gcnew is never destroyed (using delete or by an explicit 
destructor call), that Object’s destructor will never be run; however, the garbage collector will reclaim the 
Object’s memory, and the Object’s finalizer (§??), if one exists, will be run. [Example: 

{        // allocate an Object on the CLI heap 15 
 R^ r3 = gcnew R; 
}        // the Object will be garbage-collected and 
        // finalized, but its destructor will not be run 

end example] 

Unlike pointers, handles track; that is, a handle’s value can change as the Object to which it refers gets 20 
moved by the garbage collector. This has the following implications: 

• A handle cannot be converted to and from void*. (A handle can, however, be converted to and 
from Object^.) [Note: There is no void^. end note] 

• A handle cannot be converted to and from an integral type. (A handle cannot be hidden from the 
garbage collector.) 25 

• Handles cannot be ordered. 

• A handle can only point to a whole Object. 

[Example: 
R^ r4 = new R; 
Object^ o = r4;     // ok 30 
R^ r5 = dynamic_cast<R^>(o); // ok, r4 and r5 point to the same Object 
long l = reinterpret_cast<long>(r5); // error, can’t convert to integer 
R^ r6 = reinterpret_cast<R^>(l);   // error, can’t convert from 
integer 
std::set<R^> s;     // error, R^’s can’t be compared with less 35 

end example] 

All handles to the same Object compare equal, even if that Object is moved by the garbage collector. 

A handle can have any storage duration. 

12.3.4 Null type 
The null type is a special type that exists solely to support the null-literal, nullptr (also referred to as the 40 
null value constant).  No instances of this type can be created; the only way to obtain a value of this type is 
via the nullptr literal, whose type is the null type.  

12.3.5 Reference types 
A native reference can bind to any lvalue. 

As an Object on the CLI heap can be moved by the garbage collector, its location must be tracked. As such, 45 
a reference to such an Object is called a tracking reference (%), and it can bind to any gc-lvalue. [Note: 
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Because there is a standard conversion from lvalue to gc-lvalue, a tracking reference can therefore bind to 
any gc-lvalue or lvalue. end note] 

For any type T, the declaration T% r declares a tracking reference r to type T. [Example: 
 R^ h = gcnew R; // allocate on CLI heap 
 R% r = *h;   // bind tracking reference to ref class Object 5 
 void f(V% r); 
 f(*gcnew V);   // bind tracking reference to value class Object 

end example] 

Like an ordinary reference, a tracking reference is not rebindable; once set, its value cannot be changed. 

A program containing a tracking reference that has storage duration other than automatic is ill-formed. 10 
[Note: This limitation directly reflects that of the CLI, because tracking references are in general 
implemented in terms of CLI byrefs. This limitation is not inherent in this language design, and can be 
removed on CLI platforms that support byrefs that can exist in non-stack locations. end note] 

12.3.6 Interior pointers 
The garbage collector is permitted to move Objects that reside on the CLI heap. In order for a pointer to 15 
refer correctly to such an Object, the runtime needs to update that pointer to the Object’s new location. An 
interior_ptr is a pointer that is updated in this manner.  

We need a grammar for this. [[#108]] 

The compiler will need to emit a modopt to distinguish interior_ptr<T> from tracking reference to T (T%) in 
the metatada.[[#28]] Need to add text to indicate the circumstances under which the modopt 20 
IsExplicitlyDereferenced shall be emitted (i.e., interior_ptr as a parameter). Point to that modopt's spec. 

12.3.6.1 Definitions 
An interior pointer shall have an implicit or explicit auto storage-class-specifier. An interior_ptr can 
be used as a parameter and return type. 

An interior pointer shall not be a subObject. 25 

The default initial value for an interior pointer not having an explicit initial value, shall be nullptr. 

[Note: An interior pointer to a value class can be implemented as a CLI byref. However, a byref can't refer 
to a whole Object, so an interior pointer to a ref class can be implemented using an Object reference (just 
like a handle is implemented); this common implementation need not affect the programmer, who still sees 
distinct semantics for interior_ptr<R> and R^. end note] 30 

12.3.6.2 Target type restrictions 
An interior pointer shall not point to a ref class Object. (However, such a pointer is permitted to point to a 
handle to a ref class Object.) Other target types are permitted. We need to say which types. For example, 
what about pointers to functions? [[#29]] [Example: 

interior_ptr<int> p1;      // OK 35 
interior_ptr<int*> p2 = nullptr;   // OK 
interior_ptr<System::String> p3;   // error, String is a ref class 
interior_ptr<System::String^> p4;  // OK; is a handle to ref class  
interior_ptr<interior_ptr<int> > p5; // OK 
interior_ptr<int^> p6 = nullptr;   // OK 40 

end example] 

12.3.6.3 Operations 
An interior pointer can be involved in the same set of operations as native pointers, as defined by the C++ 
Standard. [Note: This includes comparison and pointer arithmetic. end note] 
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Cover the dangers of pointer arithmetic and interior_ptrs. [[#109]] 

12.3.6.4 Conversion rules 
The following conversion rules apply to interior pointers: 

Conversion from interior_ptr<T1> to interior_ptr<T2> is allowed if and only if conversion from 
T1* to T2* is allowed; 5 

In conversions between types where exactly one type is interior_ptr<T1>, the interior pointer behaves 
exactly as if it were “pointer to cv T1”, with two exceptions: 

• Conversion to any other type “pointer to cv T1” is not allowed. In particular, conversion from 
interior_ptr<T> to T* is not allowed. 

• Conversion from the null pointer constant to interior_ptr<T> is not allowed (but conversion 10 
from nullptr is) 

[Example: 
array<int>^ arr = gcnew array<int>(100); 
interior_ptr<int> ipi = &arr[0]; 
int* p = ipi;   // error; no conversion from interior to non-15 
interior 
int k = 10; 
ipi = &k;    // OK; k is an auto variable 
ipi = 0;     // error; must use nullptr instead 
ipi = nullptr;   // OK 20 
ipi = p;     // OK 
if (ipi) {…}   // OK 

end example] 

12.3.6.5 Data access 
An interior pointer exhibits the usual pointer semantics for data access: 25 

• Operator -> is used to access a member of an Object pointed to by an interior pointer; 

• Operator * is used to dereference an interior pointer. 

[Example: 
value struct V { 
 int data; 30 
}; 

V v; 
interior_ptr<V> pv = &v; 
pv->data = 42; 
interior_ptr<int> pi = &v.data; 35 
assert(*pi == 42); 

end example] 

Taking the address of an interior pointer yields a native pointer. 

Interior pointers can point to Objects inside the CLI heap. As such, taking the address of an Object pointed 
to by an interior pointer yields an interior pointer that cannot be converted to T*, as described in §12.3.6.4. 40 

[Example: 
value struct V { 
 int data; 
}; 
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V v; 
interior_ptr<V> pv = &v; 
V** p = &pv;     // error 
interior_ptr<V>* pi = &pv; // OK, pv is on the stack and so is an lvalue 
int* p2 = &(pv->data);  // error 5 
int* p3 = &(v.data);   // OK, v is on the stack, v.data is an lvalue 

end example] 

12.3.6.6 The this pointer 
In the body of a non-static member-function of a value class V, this is an expression of type 
interior_ptr<V>, whose value is the address of the Object for which the function is called.  10 

[Example: 
value struct V { 
 int data; 
 void f(); 
}; 15 
void V::f() { 
 interior_ptr<V> pv1 = this; // OK 
 V* pv2 = this;      // error 
} 

end example] 20 

12.3.7 Pinning pointers 
Need to add text to indicate the circumstances under which the modopt IsPinned shall be emitted (i.e., 
pin_ptr as a parameter). Point to that modopt's spec.[[#129]] 

Ordinarily, the garbage collector is permitted to move Objects that reside on the CLI heap. However, such 
movement can be blocked temporarily, on a per Object basis. A pinning pointer is one that prevents the 25 
garbage collector from moving the CLI heap-based Object to which that pointer points. This makes it 
possible for code not under the control of the runtime to manipulate memory within the bounds of the CLI 
heap without corrupting that heap. 

Although a pinning pointer can be initialized from an interior pointer, the value of a pinning pointer is never 
changed by the runtime. 30 

12.3.7.1 Definitions 
A pinning pointer shall have an implicit or explicit auto storage-class-specifier. A pin_ptr shall not be 
used as a parameter and return type. 

We need a grammar for this. [[#110]] 

[Note: As a pinning pointer is an interior pointer, the default initial value for a pinning pointer not having an 35 
explicit initial value, is nullptr. (§12.3.6.1) end note] 

12.3.7.2 Target type restrictions 
The target type restrictions for pinning pointers are the same as for interior pointers (§12.3.6.2). 

12.3.7.3 Operations 
The operations that can be formed on pinning pointers are the same as for interior pointers (§12.3.6.3). 40 

12.3.7.4 Conversion rules 
The following conversion rules apply to interior pointers: 

Conversion from pin_ptr<T1> to pin_ptr<T2> is allowed if and only if conversion from T1* to T2* is 
allowed; 
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In conversions between types where exactly one type is cv pin_ptr<T>, the pinning pointer behaves 
exactly as if it were “pointer to cv T”, with the exception that conversion from a null pointer constant to 
pin_ptr<T> is not allowed (but conversion from nullptr is). [Note: In particular, conversion from 
pin_ptr<T> to T* is allowed as a standard conversion. end note] 

[Example: 5 
array<int>^ arr = gcnew array<int>(100); 
pin_ptr<int> ppi = &arr[0]; 
int* p = ppi;    // OK  
int k = 10; 
ppi = &k;     // OK; k is an auto variable 10 
ppi = 0;      // error; must use nullptr instead 
ppi = nullptr;    // OK  
pin_ptr<int> ppi2 = p; // OK 

end example] 

12.3.7.5 Data access 15 
With two exceptions, pinning pointers follow the same data access semantic as interior pointers (§12.3.6.5). 
Since a pinning pointer points to an unmovable Object inside the CLI heap, a pin_ptr<T> can be converted 
to T* (§12.3.7.4). Dereferencing a pinning pointer yields an lvalue. [Example: 

value struct V { 
 int data; 20 
 void f(); 
}; 

void V::f() { 
 int* pi; 
 interior_ptr<V> ipv = this; 25 
 pi = &(ipv->data);    // error 
 pin_ptr<V> ppv = this; 
 pi = &(ppv->data);    // OK 
 
   V* pv; 30 
   pv = ipv;       // error 
   pv = ppv;       // OK 
} 

V v; 
pin_ptr<V> pv = &v; 35 
V** p = &pv;       // error 
int* pi = &pv->data;     // OK 

end example] 

12.3.7.6 Duration of pinning 
As soon as a pinning pointer is initialized or assigned the address of an Object, that Object is guaranteed to 40 
remain at its location on the CLI heap. If the pinning pointer is then made to point to another Object, that 
Object is guaranteed to remain at its location on the CLI heap, and the Object previously pointed to is no 
longer considered pinned, allowing the garbage collector to move it. If a pinning pointer is assigned the 
value nullptr, the Object previously pointed to (if any) is no longer considered pinned 

When the block in which a pinning pointer is defined exits, any Object pointed to by that pinning pointer is 45 
no longer considered pinned by that pinning pointer; however, it might still be pinned by another pinning 
pointer. 

[Example: 
ref struct R { 
 int data; 50 
}; 

R^ r = gcnew R; 
{ 
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 pin_ptr<int> ppi = &r->data; // Object referenced by r is pinned 

} 

// ppi’s parent block has exited, so Object is free to move 

end example] 

12.4 Top-level type visibility 5 
A non-nested class, interface, delegate, or enum definition can optionally specify the accessibility of the 
class, interface, delegate, or enum: 

top-level-type-visibility: 
public 
private 10 

The public top-level-type-visibility specifier indicates that the non-nested class, interface, delegate, or 
enum will be visible outside the assembly. Conversely, the private top-level-type-visibility specifier 
indicates that the class, interface, delegate, or enum will not be visible outside the assembly. However, 
private types are visible within the same assembly. The default visibility for a class, interface, delegate, or 
enum is private. [Example: 15 

public class VisibleClass {};  // visible outside the assembly 
private class InternalClass {}; // visible only within the assembly 

end example] 

Those class, interface, delegate, or enum definitions nested within another type definition have the 
accessibility specified within that type. The use of a top-level-type-visibility modifier on a nested type 20 
definition causes the program to be ill-formed.  
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13. Variables 

To be added.[[#32]] 
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14. Conversions 

14.1 Standard conversions 
The standard conversions in the C++ standard apply to C++/CLI. The following standard conversions are 
added: 

14.1.1 Handle conversions 5 
A handle conversion is similar to a pointer conversion as defined in the C++ Standard (§4.10). A handle 
conversion has conversion rank. 

An rvalue of type “handle to cv D,” where D is a type, can be converted to an rvalue of type “handle to cv B,” 
where B is a base class of D. If B is an inaccessible or ambiguous base class of D, a program that necessitates 
this conversion is ill-formed. The result of the conversion is a handle to the base class sub-Object of the 10 
derived class Object. 

Since the type void^ is ill-formed, there is no handle conversion to it. 

A handle to a type array<S^, n> has a handle conversion to a handle to type array<T^, n> provided S^ 
has a handle conversion to T^ and n (the rank of both Arrays) is the same. Such a conversion is better than 
Separate the list of conversions from the order of preference (such as how Standard C++ separates Standard 15 
Conversions from overload resolution). a conversion from type array<S^, n> to System::Array^. 

The null value constant can be converted to any handle type; the result is a handle with null value of that 
type, and is distinguishable from every other value that is a handle to an Object.  Two null values of the 
same handle type shall compare equal. 

14.1.2 Pointer conversions 20 
The definition of null pointer constant in the C++ Standard (§4.10/1) has been extended, as follows: 

“A null pointer constant is either an integral constant expression rvalue of integer type that evaluates to zero, 
or the null value constant nullptr.” 

[Note: The implication of this is that the null value constant can be converted to any pointer type. end note] 

Need to say more here. Possibly move “Interior pointer conversion rules” (§12.3.6.4) and “Pinning pointer 25 
conversion rules” (§12.3.7.4) here. [[Ed]] 

14.1.3 Lvalue conversions 
There is a standard conversion for each of the following: “cv-qualified lvalue of type T” to “cv-qualified gc-
lvalue of type T,” and “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.” 

14.2 Implicit conversions 30 
The C++ Standard (§4.12) text that describes Boolean conversions has been extended, as follows: 

“An rvalue of arithmetic, enumeration, pointer, pointer to member type, or handle can be converted to an 
rvalue of type bool. A zero value, null pointer value, null member pointer value, or null value is converted 
to false; any other value is converted to true.” 

14.2.1 Implicit constant expression conversions 35 
The following implicit constant expression conversions are permitted: 
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• The null value constant can be converted to any pointer type. 

• The null value constant can be converted to any handle type. 

14.2.2 User-defined implicit conversions 

14.3 Explicit conversions 
The following explicit conversions are permitted: 5 

• The null value constant can be converted to any pointer type. 

• The null value constant can be converted to any handle type. 

14.4 Boxing conversions 
The boxing conversion applies only to value classes (including the simple value classes). The boxing 
conversion cannot be rewritten by the user and is reserved to the implementation. 10 

The boxing conversion is modeled as a preferred UDC. The text of this section should be revised to address 
concerns from the updated conversion proposal. [[#34]] 

A boxing conversion follows the exact same sequence of operations as user-defined conversions (C++ 
Standard §13.3.3.1.2). Boxing conversions are considered before user-defined conversions, and a boxing 
conversion sequence never invokes a user-defined conversion. In other words, given a choice between 15 
applying a boxing conversion or a user-defined conversion, the boxing conversion is selected. Thus, 
§13.3.3.2 of the C++ Standard is revised, as follows: 

We should start off the conversions clause with “Conversion Sequences”, which would cover this 
adjustment to the C++ Standard. That makes Boxing conversions shorter and prevents us from introducing 
parameter array conversions in a sub-clause where it doesn’t belong. [[#34]] 20 

“When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1) 

• a standard conversion sequence (13.3.3.1.1) is a better conversion sequence than a boxing 
conversion sequence, a user-defined conversion sequence, a parameter array conversion sequence,  
or an ellipsis conversion sequence, and 

• a boxing conversion sequence is a better conversion sequence than a user-defined conversion 25 
sequence, a parameter array conversion sequence, or an ellipsis conversion sequence, and 

• a user-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than a parameter 
array conversion sequence or an ellipsis conversion sequence (13.3.3.1.3). 

• a parameter array conversion sequence is a better conversion sequence than an ellipsis conversion 
sequence (13.3.3.1.3).” 30 

The boxing conversion for a value class V is an implicit conversion from V to V^. As stated above, a standard 
conversion is permitted to follow a boxing conversion, and thus a handle conversion is able to convert V^ to 
System::Object^ or a handle to an interface that V implements. The conversion occurs as follows: 

The compiler selects the boxing conversion and emits the BOX instruction as specified in the CLI Standard, 
Partition III, §4.1. This causes a runtime bitwise copy of the value class instance to an Object on the CLI 35 
heap. 

All value classes must be copyable. That is, a value class shall not have a non-public default constructor. 

Ref classes have an explicit conversion from R to R^. (This is described later in §??.) 
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14.5 User-defined conversions 

14.5.1 Constructors 
All constructors in ref and value classes are explicit (C++ Standard, §12.3.1). Using the explicit keyword 
on a constructor in a ref class or value class is permitted, but it is redundant. 

The meaning of an explicit constructor is unchanged from Standard C++. [Note: That is, an explicit 5 
constructor is permitted in direct-initialization syntax (C++ Standard, §8.5) and casts (C++ Standard, §5.2.9, 
§5.4). end note] 

Further changes are needed to effectuate the CLI convention that constructors are never used for 
conversions, whether explicit or implicit.  Making constructors of ref and value classes explicit eliminates 
them from consideration for implicit conversions, but additional changes to the overload resolution rules are 10 
needed to indicate that such constructors should be considered for casts of the form X(c) (which are viewed 
as creating an object) but not for casts of other forms, e.g., (X)(c) or static_cast<X>(c) (which are viewed as 
conversions).  The C++ standard treats those two cases as equivalent direct-initializations.[[#105]] 

14.5.2 Explicit conversion functions 
C++/CLI allows the explicit keyword on conversion functions. Thus, C++ Standard, §7.1.2 is changed, 15 
as follows: 

“The explicit specifier shall be used only in declarations of constructors within a class 
declaration, or on declarations of conversion functions within a class declaration; see 12.3.1.” 

A conversion function that is declared with the explicit keyword is known as an explicit conversion 
function. A conversion function that is declared without the explicit keyword (i.e., every conversion 20 
function in Standard C++) is known as an implicit conversion function. 

An explicit conversion function, like an explicit constructor, can only be invoked by direct-initialization 
syntax (C++ Standard §8.5) and casts (C++ Standard §5.2.9, §5.4). 

A type shall not contain an implicit conversion function and an explicit conversion function that perform the 
same conversion. Only one of these is allowed. 25 

It is possible to write a class that has both an explicit converting constructor and a conversion function that 
can perform the same conversion. In this case, the explicit conversion function is preferred. 

Add an example. [[Ed]] 

14.5.3 Static conversion functions 
C++/CLI allows conversion functions, both implicit and explicit, to be static. Conversion functions shall 30 
not have namespace scope. A static conversion function shall take only one parameter, which is the type to 
convert from (a non-static member conversion function shall have no parameters). Neither static nor non-
static conversion functions shall specify return types. 

Either the source type (parameter type) or the target type (type-specifier-seq) is required to be T, T^, T&, or 
T%, where T is the type of the containing class. (T* is not allowed because conversions are not looked up 35 
through pointers.) 

Implicit conversions can now be found in more than one place: the scope of the type of the source 
expression and the scope of all potential target types. If overload resolution results in a set of conversion 
functions (and possibly converting constructors) that can perform the same conversion, the program is 
ambiguous and ill-formed.  40 

14.6 Parameter array conversions 
The parameter array conversion sequence occurs when overload resolution chooses a function that takes a 
parameter array as its last argument. Such overloads are preferred to C-style variable-argument functions, 
and are not preferred to any other overloads. 
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A parameter array overload is chosen by overload resolution. For the purpose of overload resolution, the 
compiler creates signatures for the parameter array functions by replacing the parameter array argument with 
n arguments of the Array’s element type, where n matches the number of arguments in the function call. 
These synthesized signatures have higher cost than other non-synthesized signatures, and they have lower 
cost than functions whose parameter-declaration-clause terminates with an ellipsis. This is similar to the 5 
tiebreaker rules for template-functions and non-template functions. It would be useful to reference those 
somehow. [[Ed]] 

For example, for the function call f(var1, var2, …, varm, val1, val2, …, valn) 
void f(T1 arg1, T2 arg2, …, Tm argm, ... array<T>^ arr) 

is replaced with 10 
void f(T1 arg1, T2 arg2, …, Tm argm, T t1, T t2, …, T tn) 

Overload resolution is performed with the set containing the synthesized signatures according to the rules of 
Standard C++. If overload resolution selects a C-style variable-argument conversion, it means that none of 
the synthesized signatures was chosen. 

If overload resolution selects one of the synthesized signatures, the conversion sequences needed for each 15 
argument to satisfy the call is performed. For the synthesized parameter array arguments, the compiler 
constructs an Array of length n and initializes it with the converted values. Then the function call is made 
with the constructed parameter array. 

14.7 Compiler-defined explicit conversions 

14.7.1 Unboxing conversions 20 
The unboxing conversion allows a conversion to an unboxed value class directly from a handle to one of the 
following: 

• System::Object 

• System::ValueType 

• an interface that the value class implements 25 

• the value class itself 

The conversion from the boxed form of a value class (V^) to the value class (V) can be done using a 
dereference (i.e., operator*).  It can also be done by any cast notation that invokes user-defined 
conversions. 

The unboxing conversion can be done with any cast notation that invokes user-defined conversions. 30 

14.8 Naming conventions 
Conversion functions shall conform to a particular naming convention. (The names required of conversion 
functions are given by the CLS guidelines.) While all conversion functions have the CLS required name, not 
all conversion functions are CLS-conversion functions. 

During compilation, the name of the conversion function is the C++ identifier used in source code for that 35 
function. For example, the conversion function from A to B could be the static member function of either A 
or B, operator B(A), or the instance function of A, operator B(). The identifier used for the operator 
function in an assembly shall have the CLS name as specified in §14.8.1 and §14.8.2. 

A conversion function inside a native class shall have the names used in §14.8.1 and §14.8.2 prefixed with < 
and suffixed with >. Otherwise, the name specified in these subclauses is unchanged. A C++ program shall 40 
not declare nor define a function within a CLI type using one of the CLS names referred to herein. 

A program shall not refer to the CLS-compliant name given to the conversion function. 
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All conversion functions, regardless of whether they are CLS-compliant functions or not shall be marked as 
SpecialName functions in the metadata. 

14.8.1 CLS-compliant conversion functions 
A conversion function is CLS-compliant when the following conditions occur: 

The conversion function is a static member of a ref class or a value class. 5 

If a value class is a parameter or a target value of the conversion function, the value class shall not be passed 
by reference nor passed by pointer or handle. 

If a ref class is a parameter or a target value of the operator function, the ref class shall be passed by handle. 
The handle shall not be passed by reference. 

If the above criteria are not met, the conversion function is C++-dependent. Table 14-1 lists the name to give 10 
to the function used to represent the operator function in an assembly. 

Table 14-1: CLS Conversion Functions 
Function Name in Assembly C++ Conversion Function 
T op_Implicit(S) operator T(S) 

T op_Explicit(S) explicit operator T(S) 

 

The operators op_Implicit and op_Explicit are permitted to be overloaded on their return type. 

14.8.2 C++-dependent conversion functions 15 
If a conversion function does not match the criteria for CLS compliance, as listed in §14.8, the conversion 
function is C++-dependent. The names in Table 14-1 are also used for C++-dependent conversion functions 
in an assembly. 

Both op_Implicit and op_Explicit are allowed to be overloaded on their return type. 

Converting constructors are emitted as constructors, never as converting functions. (Constructors in CLI 20 
classes are always explicit.) 
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15. Expressions 

15.1 Function members 
The following function member kinds are added to those defined by Standard C++: 

• Properties (both scalar and default indexed) 

• Events 5 

The statements contained in these function members are executed through function member invocations. The 
actual syntax for writing a function member invocation depends on the particular function member category. 

Invocations of default indexed properties employ overload resolution to determine which of a candidate set 
of function members to invoke. 

[Note: The following table summarizes the processing that takes place in constructs involving these three 10 
categories of function members that can be explicitly invoked. In the table, e, x, y, and value indicate 
expressions classified as variables or values, T indicates an expression classified as a type, F is the simple 
name of a function, and P is the simple name of a property. 

 

Construct Example Description 
P P::get() Property access 
P = value P::set(value) 

E += value E::add(value) Event access 
E -= value E::remove(value) 

e[x, y] E::get(x, y) Default indexed property access 
e[x, y] = value E::set(x, y, value) 

 15 

The rewrite rules for e[x] (default indexed accesses) are different where there is only one index. This is 
because there is a potential ambiguity with the C++ operator[]. Is this mentioned elsewhere? [[#35]] 

end note] 

15.2 Primary expressions 
To accommodate the addition of properties, the “Primary expressions” subclause of the C++ Standard (§5.1) 20 
has been extended, as follows: 

“A static property or event is not associated with any instance of a class, and a program is ill-formed 
if it refers to this in the accessor functions of a static property or event.” 

“An instance property or event is associated with a specific instance of a class, and that instance can 
refer to this in the accessor functions of that instance property or event.” 25 

15.3 Postfix expressions 
To accommodate the addition of default indexed properties and Arrays (which are accessed using subscript-
like expressions), the C++ Standard grammar (§5.2) for postfix-expression has been extended, as follows: 
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postfix-expression: 
... 
postfix-expression   [   expression   ] 
indexed-access 

Indexed access is described in §15.3.2. 5 

15.3.1 Subscripting 
Given a class instance X, of a type having a default indexed property and operator[], an expression of the 
form X[i] is ambiguous. In such cases, the operator[] function or default indexed property accessor 
function must be called directly, as appropriate. If a derived class defines only one of operator[] or a 
default indexed property, lookup will use that function rather than making the program ambiguous. 10 

15.3.2 Indexed access 
An indexed-access consists of an indexed-designator, followed by a “[” token, followed by an expression-
list, followed by a “]” token. The expression-list consists of one or more expressions, separated by commas. 

indexed-access: 
indexed-designator   [   expression-list   ] 15 

indexed-designator shall designate an instance that has one or more default indexed properties that are 
applicable with respect to the expression-list of the indexed-access. 

An indexed-access is interpreted as follows: Each default indexed property with only one indexing 
parameter has an associated operator[] synthesized. For the property property int default[int], 
the synthesized “operator[](int)” is created. Overload resolution for the appropriate operator[] is 20 
done for indexed-access expressions where the expression list is not comma-separated. If a class has two 
operator[] operators with the same signature, the expression is ambiguous and the program is ill-formed. 
Otherwise, the rewrite rules for properties and events are used for indexed-access expressions. 

Need to consider how these expressions are interpreted in templates. [[#111]] 

Commas in expression-list are treated as a special case—they are considered punctuators. However, if an 25 
expression in that list is enclosed in parentheses, any commas inside that expression are interpreted as 
operators (and behave as described in §5.18/2 of the C++ Standard). 

struct S { 
 property int default[int index] { … }     // indexed property 
1 30 
 property int default[string idx1, int idx2] { … } // indexed property 
2 
}; 

void f(S& s, string& x, int j) { 
 s[x,j]   = 42; // ok, uses indexed property 2 35 
 s[1,j]   = 42; // error (tries to use indexed property 2, 
       // but there is a type mismatch;  
       // no comma operator is used) 
 s[(1,j)]  = 42; // ok, uses indexed property 1 with j as the 
argument 40 
 s[(1,x),j] = 42; // ok, uses indexed property 2 
} 

[Note: Given a class instance X, of a type having a default indexed property and operator[], an expression 
of the form X[i] can be ambiguous. In such cases, the operator[] function or default indexed property 
accessor function must be called directly, as appropriate. end note] 45 

15.3.3 Function call 
Add text to indicate the circumstances under which the following type modifiers shall be emitted, and point 
to each  modifier's definition: 

• IsBoxed i.e., passing a handle to a value type). 
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• IsByValue (i.e., ref class type passed by value). 

• IsConst (i.e., pointer or reference to a const-qualified type). 

• IsExplicitlyDereferenced (i.e., interior_ptr as a parameter). 

• IsImplicitlyDereferenced (i.e.,  parameter is a reference). 

• IsLong (i.e., long/unsigned long/long double parameters). 5 

• IsExplicitlyDereferenced (i.e., pin_ptr as a parameter). 

• IsSignUnspecifiedByte (i.e., plain char's sigedness). 

• IsUdtReturn (i.e., ref class type returned by value). 

• IsVolatile (i.e., pointer or reference to a volatile-qualified type).[[#131]] 

The C++ Standard (§5.2.2/1) states, “A function call is a postfix expression followed by parentheses 10 
containing a possibly empty, comma-separated list of expressions which constitute the arguments to the 
function.” 

C++/CLI contains support for delegates (§26). As such, the postfix expression can be a delegate type, in 
which case, the whole expression is a delegate invocation (§26.3), and the argument list is passed to each 
function encapsulated by the delegate. 15 

15.3.4 Explicit type conversion (functional notation) 

15.3.5 Pseudo destructor call 

15.3.6 Class member access 
A named indexed property is accessed like any other member of a class. [Note: As expected, an expression 
of the form p->NamedIndexer[index] is equivalent to (*p).NamedIndexer[index]. end note] 20 
If a program attempts to access a default indexed property via a pointer to an Object having that default 
indexed property, and the arrow operator, that program is ill-formed. [Note: Although p->[index] is ill-
formed, the expression (*p)[index] is permitted. end note] 

15.3.7 Increment and decrement 

15.3.8 Dynamic cast 25 
For the expression dynamic_cast<T>(e), in addition to the rules specified by the C++ Standard (§5.2.7), 
the following also applies: 

If T is neither a handle nor a pointer, it is possible for dynamic cast expressions to invoke an unboxing 
conversion. If T is a value class, and e has type T^ or a type U^ (where there is a handle conversion from T^ 
to U^), the dynamic cast invokes the UNBOX instruction from the CLI Standard, Partition III. If T is a V% for 30 
a value class V, and e has type V^ or a type U^ (where there is a handle conversion from V^ to U^), the 
dynamic cast invokes the UNBOX instruction as well. If the unboxed type is not of type T, then an exception 
of type System::InvalidCastException is thrown.  cv-qualification needs to be considered. [[#36]] 

Otherwise, if T is a native reference to a value class, and e has type U^, the program is ill-formed. 
[Rationale: This can open a gc hole in the program as native references do not track what they refer to 35 
during garbage collection. end rationale] 

Otherwise, if T is V^ (where V is a value class) or U^ (where there is a handle conversion from V^ to U^), 
and e has a type V or reference to V, then the expression invokes a boxing conversion sequence. 

Otherwise, if T is a handle type, e shall be an rvalue of a handle to complete class type, and the result is an 
rvalue of type T. 40 

If the value of e is a null value, the result is the null value of type T. 
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If T is “handle to cv1 B” and e has type “handle to cv2 D” such that B is a base class of D, the result is a 
handle to B such that it refers to the same Object as e. The cv-qualification for cv1 shall be the same as or 
greater than that for cv2.Otherwise, a runtime check is required. 

If a run-time check is applied to the cast, and T is a handle or reference to a CLI type, the run-time check is 
performed using the ISINST CIL instruction from the CLI Standard, Partition III, §4.6. 5 

If T is either a handle or a pointer to any type other than a native class, and the cast fails, the result is the null 
value or the required result type. If T is a reference to any type other than a native class and the cast fails, 
then the expression throws System::InvalidCastException. When T is a native class, the rules of 
Standard C++ §5.2.7/9 apply. 

15.3.9 Type identification 10 
C++/CLI adds a new use of the typeid keyword, whereby a given type name can be followed by 
::typeid to get a System::Type^ for the given type name.  

The C++ Standard grammar production for unary-expression (§5.3 and §A.4) is extended with a new 
production as follows:  

unary-expression: 15 
. . . 
typeid-expression 

typeid-expression: 
elaborated-type-specifier   ::   typeid 

In the C++ standard (§14.6.2.2/4), the "Expressions of the following forms" list is extended to include 20 
typeid-expression.  

The result of a typeid-expression is an lvalue of static type System::Type^. There is only one 
System::Type Object for any given type. [Note: This means that for type T, T::typeid == T::typeid 
is always true. end note] As this form is a compile-time expression, it can be used as an argument to an 
attribute constructor.  25 

The type name in the typeid-expression shall be a raw type or a pointer to a raw type.  
Check if long::typeid and char::typeid are allowed (and if so, what do they mean). [[#112]]  

Add a note that discourages the practice of using the result of T::typeid to guard static members with a lock. 
[[Ed]] 

The typeid-expression provides convenient syntactic access to the functionality of the System:: 30 
Type::GetType() library function. Whereas GetType() must be called on an Object of the given type, 
::typeid can be applied to a type directly, and consequently does not require an Object to be created. 
[Example:  

using namespace System::Reflection; 

ref class X { … }; 35 
Console::WriteLine(X::typeid); // does not require an object 
X^ pX = gcnew X; 
Type^ pType = pX->GetType();  // GetType requires an object 
Console::WriteLine(pType); 

Console::WriteLine(Int32::typeid); 40 
Console::WriteLine(array<Int32>::typeid); 
Console::WriteLine(void::typeid); 

Type^ t = String::typeid; 
Console::WriteLine(t->BaseType); 

array<MethodInfo^>^ functions = t->GetMethods(); 45 
for each (MethodInfo mi in functions) 
 Console::WriteLine(mi); 

The output produced is: 
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X 
X 
System.Int32 
System.Single[] 
System.Void 5 
System.Object 
System.String ToString(System.IFormatProvider) 
System.TypeCode GetTypeCode() 
System.Object Clone() 

… 10 
System.String IsInterned(System.String) 
System.CharEnumerator GetEnumerator() 
System.Type GetType() 

end example]  

The ::typeid operator can be applied to a type parameter or to a constructed type: the result is an Object 15 
of type System::Type that represents the runtime type of the type parameter or constructed type. Outside 
of the body of a generic type definition, the ::typeid operator shall not be applied to the bare name of that 
type. [Example: 

generic<typename T> 
ref class X { 20 
public: 
 static void F() { 
  Type^ t1 = T::typeid;  // okay 
  Type^ t2 = X<T>::typeid; // okay 
  Type^ t3 = X::typeid;  // okay 25 
 } 
}; 

int main() { 
 Type^ t4 = int::typeid;   // okay 
 Type^ t5 = X<int>::typeid; // okay 30 
 Type^ t6 = X::typeid;   // error 
} 

Clearly, the initialization of t6 is in error. However, that of t3 is not, as the use of X is really an implicit use 
of X<T> (§30.1.2). end example] 

It might be useful to add an example showing the use of the ::typeid-form with a custom attribute. 35 

What about handles and tracking references? We still need to make sure we have a design for standard 
typeid (that returns std::type_info) in addition to the new ::typeid (that returns System::Type). [[#38]] 

15.3.10 Static cast 
The rules of specified by the C++ Standard (§5.2.9) apply. For the expression, static_cast<T>(e), the 
following also applies. 40 

Unboxing and boxing are described as preferred user-defined conversions. Nothing important about these 
needs to be mentioned in static cast, but those UDCs are not completely specified yet.[[#132]] 

A static cast can invoke a user-defined conversion function as described in the C++ Standard (§5.2.9/2). All 
of the following are considered: explicit conversion functions, implicit conversion functions, explicit 
converting constructors, and implicit converting constructors. 45 

The cast expression discussed in the C++ Standard (§5.2.9/3) is allowed also on tracking references. 

The conversion discussed in the C++ Standard (§5.2.9/7) is allowed for both native and CLI enumerations. 

An rvalue of type “handle to cv1 B”, where B is a type, can be converted to an rvalue of type “handle to cv2 
D”, where D is a class derived from B, if a valid standard conversion from “handle to D” to “handle to B” 
exists (§14.1.1), and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. The null value 50 
is converted to the null value of the destination type. This can be unverifiable and might cause a gc 
hole.[[#133]] 
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15.3.11 Reinterpret cast 
The rules of specified by the C++ Standard (§5.2.10) apply. A reinterpret cast expression that attempts to 
cast from or to a handle type is ill-formed. 

A reinterpret cast will never invoke an unboxing conversion or a boxing conversion sequence. 

15.3.12 Const cast 5 
The rules specified by the C++ Standard (§5.2.11) apply. For the expression, const_cast<T>(v), the 
following also applies. 

Where the C++ Standard discusses the application of const_cast to pointers, the rules shall also apply to 
handles. 

An lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast<T2%> 10 
if a pointer or handle to T1 can be explicitly converted to the type pointer or handle to T2 using a 
const_cast. The result of a reference const_cast refers to the original Object. 

A null value is converted to the null value of the destination type. A program in which v in the const cast 
expression is the nullptr literal is ill-formed. 

A const cast will never invoke an unboxing conversion or a boxing conversion sequence. 15 

15.3.13 Safe cast 
Safe cast performs the optimal cast for CLI frameworks. The name safe_cast is located within the cli 
namespace. The compiler processes a safe_cast expression as follows: 

• The compiler performs a lookup in the current context for the name safe_cast. 

• If the name refers unambiguously to ::cli::safe_cast, then the expression is processed by the 20 
compiler according to the following grammar and interpreted according to the rules specified herein. 

safe_cast   <   type-id   >   (    expression   ) 

The type of the operand and the target type shall be a value class, a handle to a value class, a handle to a ref 
class, or a handle to an interface class. Otherwise, the expression is ill-formed. 

Include the specification for safe_cast from the revised casting proposal. [[#39]] 25 

15.4 Unary expressions 

15.4.1 Unary operators 

15.4.1.1 Unary & 
Since a discussion of lvalue, rvalue, and gc-lvalue has now been included, the above statement is 
generalized by saying that the application of & to an rvalue or a gclvalue is ill-formed. (Is this still true?) 30 
[[#40]] 

When applied to an lvalue of type T, & yields a T* (see Standard C++ §??). When applied to a gc-lvalue of 
type T, & yields an interior_ptr<T> (12.3.6). 

A program that attempts to apply the built-in unary & operator to a literal field, or to a property, or to an 
initonly field outside of the class’s constructor, is ill-formed. 35 

15.4.1.2 Unary * 
The C++ Standard (§5.3.1/1) has been extended to allow for indirection on handles. Specifically, the 
following text: 
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‘The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an 
object type, or a pointer to a function type and the result is an lvalue referring to the object or function to 
which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.”’ 

has been replaced with: 

‘The unary * operator performs indirection: the expression to which it is applied shall be one of the 5 
following: 

• If the expression is a pointer to an object type or a pointer to a function type, then the result is an 
lvalue referring to the object or function to which the expression points. If the type of the expression 
is “pointer to T,” the type of the result is “T.” 

• If the expression is a handle to an object type, then the result is a gc-lvalue referring to the object to 10 
which the expression points. If the type of the expression is “handle to T,” the type of the result is 
“T.”’ 

Dereferencing a T^ yields a gc-lvalue of type T. 

15.4.1.3 Unary % 
When applied to an lvalue of type T or a gc-lvalue of type T, % yields a T^. [Example: 15 

ref class R { }; 
void f(System::Object^); 
R r; 
f(%r); // ok 

end example] 20 

This operator results in a boxing operation. [Note: All handles to the same Object compare equal. For value 
classes, because % is a boxing operation, multiple applications of % results in a handles that do not compare 
equal. end note] 

15.4.1.4 Unary ^ 
No such operator exists; should it?  The only major asymmetry between %/^ and &/* is that unary * is used 25 
to dereference both * and ^, which allows for the writing of templates that can deal with both pointer and 
handle types using a common syntax; however, there is no unary ^. People new to the syntax often expect to 
dereference a ^ using a unary ^. Should unary ^ be allowed as a synonym for unary *? Doing so might 
introduce needless redundancy by having two unary operators with identical semantics. We might also be 
closing a door if we later discover a valid distinct meaning for unary ^ vs. unary *—we can't think of any 30 
meaning but the single "dereference" meaning, but maybe we're just not imaginative enough.)[[Ed.]] 

15.4.2 Increment and decrement 

15.4.3 Sizeof 
The mapping of C++/CLI types to fundamental types is still under discussion; it is by no means settled yet, 
so the sizeof guarantees below may change or be removed.[[#93]]The C++ Standard (§5.3.3/1) has been 35 
extended, as follows: 

“The sizeof operator shall not be applied to an expression that has function or incomplete type, or 
to an enumeration type before all its enumerators have been declared, or to the parenthesized name 
of such types, or to an lvalue that designates a bit-field, or to an expression that has null type, or to a 
handle, or to a tracking reference, or to a ref class. sizeof(char), sizeof(signed char) and 40 
sizeof(unsigned char) are 1; the result of sizeof applied to any other fundamental type 
(3.9.1) is implementation-defined. [Note: in particular, sizeof(bool) and sizeof(wchar_t) are 
implementation-defined. sizeof(short) is 2, sizeof(int) is 4, sizeof(long) is 4, 
sizeof(long long) is 8, sizeof(float) is 4, sizeof(double) is 8, sizeof(long 
double) is 8, sizeof(wchar_t) is 2, sizeof(bool) is 1. end note]” 45 
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The following paragraph is inserted after C++ Standard (§5.3.3/2): 

“When applied to a value class type, the result is not a compile-time constant expression.” 

15.4.4 New 
A program is ill-formed if it attempts to allocate memory using new for an Object of CLI type other than a 
simple value class. 5 

15.4.5 Delete 
The C++ Standard (§5.3.5/1) has been extended to allow for deletion of Objects allocated on the CLI heap, 
as follows: 

“The operand shall have a pointer type, a handle type, or a class type having a single conversion 
function (12.3.2) to a pointer type.” 10 

“In the first alternative (delete object), the value of the operand of delete shall be a pointer or 
handle to a non-array object or a pointer to a sub-object (1.8) representing a base class of such an 
object (clause 10). If not, the behavior is undefined.” 

“If the delete-expression calls the implementation deallocation function (3.7.3.2), and if the operand 
of the delete expression is not the null pointer constant, the deallocation function will deallocate the 15 
storage referenced by the pointer or handle thus rendering the pointer or handle invalid.” 

The array form of delete cannot be used on a handle type. 

15.4.6 The gcnew operator 
The gcnew operator is similar to the new operator, except that the former creates an Object on the CLI heap. 
The type of the result of the gcnew operator is a handle to the type of the Object allocated. In out-of-20 
memory situations, gcnew throws System::OutOfMemoryException. 

There is no array form of gcnew. There is no placement form of gcnew. The gcnew operator cannot be 
overloaded or replaced. There is no class-specific form of gcnew. 

A program is ill-formed if it attempts to allocate memory for an Object of native type using gcnew. 

15.4.6.1 gcnew Object creation expressions 25 
In the C++ Standard (§5.3.4), a new-expression is used to allocate memory for an Object at runtime. This 
grammar has been extended to accommodate the addition of the gcnew operator, as follows: 

new-expression: 
… 
gcnew   new-type-id   new-initializeropt 30 
gcnew   (   type-id   )   new-initializeropt 

Add the array case to this grammar. [[#42]] 

The type of the Object being allocated shall not be an abstract class type. The type shall not be incomplete. 
[Note: The gcnew operator applied to a value class creates a boxed value class. end note] 

15.4.6.2 Array creation expressions 35 
Does new-initializer need to be changed? [[#114]] 

15.5 Explicit type conversion (cast notation) 
The rules in the C++ Standard (§5.4/5) have been extended for C++/CLI by including safe casts before static 
casts. 

• a const_cast 40 
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• a safe_cast 

• a safe_cast followed by a const_cast 

• a static_cast 

• a static_cast followed by a const_cast 

• a reinterpret_cast 5 

• a reinterpret_cast followed by a const_cast 

[Note: Standard C++ programs remain unchanged by this, as safe casts are ill-formed when either the 
expression type or target type is a native class. end note] 

Provide background on the expected behavior and rationale. (Get this from the updated casting proposal.) 
[[Ed]] 10 

15.6 Pointer-to-member operators 

15.7 Multiplicative operators 

15.8 Additive operators 

15.8.1 Delegate combination 
Every delegate type provides the following predefined operator, where D is the delegate type: 15 

static D^ operator +(D^ x, D^ y); 

The binary + operator performs delegate combination when both operands are of the same delegate type D. 
The result of the operator is the result of calling System::Delegate::Combine on both arguments, and 
casting the result to D^. [Note: For examples of delegate combination, see §15.8.2 and §26.3. Since 
System::Delegate is not a delegate type, operator+ is not defined for it. end note] 20 

15.8.2 Delegate removal 
Every delegate type provides the following predefined operator, where D is the delegate type: 

static D^ operator –(D^ x, D^ y); 

The binary - operator performs delegate removal when both operands are of the same delegate type D. The 
result of the operator is the result of calling System::Delegate::Remove(x, y), and casting the result 25 
to D^.  [Note: the += and -= operator are defined via assignment operator synthesis. end note] [Example: 

delegate void D(int x); 
ref struct Test { 
 static void M1(int i) { /* … */ } 
 static void M2(int i) { /* … */ } 30 
}; 

int main() {  
 D^ cd1 = gcnew D(&Test::M1); 
 D^ cd2 = gcnew D(&Test::M2); 

 D^ cd3 = cd1 + cd2; 35 
 cd3 -= cd1; 

 cd3 += cd1; 
 cd3 = cd3 – (cd1 + cd2); 
} 

end example] 40 
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15.9 Shift operators 

15.10 Relational operators 

15.11 Equality operators 

15.11.1 Ref class equality operators 
Add support for handle equality comparison, and handle ==/!= nullptr, and vice versa. [[#43]] 5 

15.11.2 Delegate equality operators 
Every delegate type provides the following predefined comparison operators: 

bool operator ==(Delegate^ x, Delegate^ y); 
bool operator !=(Delegate^ x, Delegate^ y); 

These are implemented in terms of System::Delegate::Equals. 10 

15.12 Bitwise AND operator 

15.13 Bitwise exclusive OR operator 

15.14 Bitwise inclusive OR operator 

15.15 Logical AND operator 

15.16 Logical OR operator 15 

15.17 Conditional operator 
With regard to expressions of the following forms 

e ? p : nullptr 
e ? nullptr : p 
e ? h : nullptr 20 
e ? nullptr : h 

where e is an expression that can be implicitly converted to bool, p has pointer type, and h has handle type, 
the C++ Standard (§5.16/6) is changed to 

“The second and third operands have pointer type, or one has pointer type and the other is a null 
pointer constant or null value constant; pointer conversions and qualification conversions are 25 
performed to bring them to their composite pointer type.  The result is of the composite pointer type.  
If either the second or the third operands have a handle type, and the other operand is the null value 
constant, the result is of the handle type.” 

15.18 Assignment operators 
Add words here to discuss assignment for properties and events from the point of view of the rewrite rules. 30 
[[#44]] 

The left operand of an assignment shall be an lvalue or a gclvalue. 

15.19 Comma operator 

15.20 Constant expressions 
The C++ Standard (§5.19/2) provides a list of “Other expressions [that] are considered constant-expressions 35 
only for the purpose of non-local static object initialization.”  That list has been extended by the addition of 
the following: 
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• the null value constant. 

A literal field can be used in any context that permits a literal of the same type. As such, a literal field can be 
present in a compile-time constant expression. 

To accommodate the addition of literal fields, the following is inserted in the C++ Standard, after §5.19/3: 

“A literal constant expression includes arithmetic constant expression, string literals of type 5 
System::String, and the null value constant nullptr.” 

Investigate whether string literals include compile-time expressions, such as string concatenation. [[#115]] 
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16. Statements 

Unless stated otherwise in this clause, all existing statements are supported and behave as specified in the 
C++ Standard (§6). 

16.1 Selection statements 

16.1.1 The switch statement 5 
A program is ill-formed if it uses a switch statement to transfer control in to a finally-clause. 

16.2 Iteration statements 
In addition to the three iteration statements specified by Standard C++ (§6.5), the iteration-statement 
production has been extended to include foreach-statement. 

iteration-statement: 10 
… 
foreach-statement 

16.2.1 The for each statement 
The for each statement enumerates the elements of a collection, executing the statement for each element 
of that collection. 15 

foreach-statement: 
for   each   (   type   ??-declaratoropt   identifier   in   expression   )   statement 

The type, declarator, and identifier of a for each statement declare the iteration variable of the statement. 
The iteration variable corresponds to a local variable with a scope that extends over the substatement. 
During execution of a for each statement, the iteration variable represents the collection element for 20 
which an iteration is currently being performed. The program is ill-formed if the substatement attempts to 
assign to the iteration variable or to pass the iteration variable by reference. 

The type of expression shall be a collection type (as defined below), and an explicit conversion (§??) must 
exist from the element type of the collection to the type of the iteration variable. If expression has the value 
nullptr, a System::NullReferenceException is thrown. 25 

A type C is said to be a collection type  if it implements the System::Collections.IEnumerable 
interface or implements the collection pattern by meeting all of the following criteria: 

• C contains a public instance function with the signature GetEnumerator(), that returns a struct-
type, class-type, or interface-type, which is called E in the following two points. 

• E contains a public instance function with the signature MoveNext() and the return type bool. 30 

• E contains a public instance property named Current that permits reading the current value. The 
type of this property is said to be the element type of the collection type. 

A type that implements IEnumerable is also a collection type, even if it doesn't satisfy the conditions 
above. (This is possible if it implements IEnumerable via explicit interface member implementations.) 

The System::Array type (§23.1.1) is a collection type, and since all Array types derive from 35 
System::Array, any Array type expression is permitted in a for each statement. For single-dimensional 
Arrays, the for each statement enumerators traverses the Array elements in increasing order, starting with 
index 0 and ending with index Length - 1. For multi-dimensional Arrays, elements are traversed such that 
the indices of the rightmost dimension are increased first, then the next left dimension, and so on to the left. 
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A for each statement is executed as follows: 

• The collection expression is evaluated to produce an instance of the collection type. This instance is 
referred to as c in the following. 

• An enumerator instance is obtained by evaluating the function invocation c.GetEnumerator(). 
The returned enumerator is stored in a temporary local variable, in the following referred to as e. It 5 
is not possible for the statement to access this temporary variable. 

• The enumerator is advanced to the next element by evaluating the function invocation 
e.MoveNext(). 

• If the value returned by e.MoveNext() is true, the following steps are performed: 

o The current enumerator value is obtained by evaluating the property access e.Current, and the 10 
value is converted to the type of the iteration variable by an explicit conversion (§??). The 
resulting value is stored in the iteration variable such that it can be accessed in the statement. 

o Control is transferred to the statement. When and if control  reaches the end point of the 
statement (possibly from execution of a continue statement), another for each iteration is 
performed, starting with the step above that advances the enumerator. 15 

• If the value returned by e.MoveNext() is false, control is transferred to the end point of the for 
each statement. 

[Example: The following program pushes the values 0 through 9 onto an integer stack and then uses a for 
each loop to display the values in top-to-bottom order. 

int main() { 20 
 Stack<int>^ s = gcnew Stack<int>; 
 for (int i = 0; i < 10; ++i) 
  s->Push(i); 
 for each (int i in s) 
  Console::Write("{0} ", i); 25 
 Console::WriteLine(); 
} 

The output produced is: 
9 8 7 6 5 4 3 2 1 0 

An Array is an instance of a collection type, so it too can be used with for each: 30 
int main() { 
 array<double>^ values = {1.2, 2.3, 3.4, 4.5}; 
 for each (double value in values) 
  Console::WriteLine(value); 
} 35 

The output produced is: 
1.2 2.3 3.4 4.5 

end example] 

16.3 Jump statements 

16.3.1 The break statement 40 
A program is ill-formed if it uses a break statement to transfer control out of a finally-clause. 

16.3.2 The continue statement 
A program is ill-formed if it uses a continue statement to transfer control out of a finally-clause. 
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16.3.3 The return statement 
A program is ill-formed if it has a return statement in a finally-clause. 

Need to add text to indicate the circumstances under which the modreq IsUdtReturn shall be emitted (i.e., 
ref class type retruned by value). Point to that modreq's spec.[[#134]] 

16.3.4 The goto statement 5 
A program is ill-formed if it uses a goto statement to transfer control in to or out of a finally-clause. 

16.3.5 The throw statement 
As control passes from a throw-expression to a handler, finally-clauses, if any, are invoked for all try-block 
or function-try-blocks entered since the try-block or function-try-block containing the handler was entered. 
The finally-clauses are invoked in the reverse order of the invocation of their parent try-block or function-10 
try-blocks. 

The automatic destruction of objects in any given try-block or function-try-block required by the 
C++ Standard (15.2) takes place prior to the invocation of any finally-clause associated with that try-block or 
function-try-block. 

For an example, see §16.4 15 

16.4 The try statement 
A program that attempts to throw nullptr is ill-formed. 

In the grammar specified by Standard C++ (§15), the try-block and function-try-block productions have been 
extended to include an optional finally-clause, as follows: 

try-block: 20 
try   compound-statement   handler-seq 
try   compound-statement   finally-clause 
try   compound-statement   handler-seq   finally-clause 

function-try-block: 
try   ctor-initializeropt   function-body   handler-seq 25 
try   ctor-initializeropt   function-body   finally-clause 
try   ctor-initializeropt   function-body   handler-seq   finally-clause 

finally-clause:  
finally   compound-statement 

The statements in a finally-clause are always executed when control leaves the associated try-block's or 30 
function-try-block's compound-statement. This is true whether the control transfer occurs as a result of 
normal execution, as a result of executing a break, continue, goto, or return statement, or as a result of 
propagating an exception out of that try-block's or function-try-block's compound-statement. 

If an exception is thrown during execution of the statements in a finally-clause, the exception is propagated 
to the next enclosing try-block or function-try-block. If another exception was in the process of being 35 
propagated, that exception is lost.  

[Example: 
class MyException {}; 
void f1(); 
void f2(); 40 
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int main() { 
 try { 
  f1(); 
 } 
 catch (const MyException& re) { 5 
  … 
 } 
} 

void f1() { 
 try { 10 
  f2(); 
 }  
 finally { 
  … 
 } 15 
} 

void f2() { 
 if ( … ) throw MyException(); 
} 

If the call to f2 returns normally, the finally block is executed after f1's try block terminates. If the call to 20 
f2 results in an exception, the finally block is executed before main's catch block gets control. end example] 

A program is ill-formed if it: 

• uses a break, continue, or goto statement to transfer control out of a finally-clause. 

• has a return statement in a finally-clause. 

• uses goto or switch statement to transfer control into a finally-clause. 25 
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17. Namespaces 

To be added. [[#47]] 
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18. Classes and members 

This clause specifies the features of a class that are new in C++/CLI. However, not all of these features are 
available to all classes. The class-related features that are supported by native classes (§19), ref classes 
(§20), value classes (§21), and interfaces (§24), are specified in the clauses that define those types. [Note: A 
summary of that support is shown in the following table: 5 

This table and corresponding sections should include Special Member Functions (SMFs) like destructors, 
copy constructors, default constructors, assignment operators, conversion to special bool, handle equality. 
Many of these are not supported for value classes.[[#135]] 

Feature Native class Ref class Value class Interface 
Class modifier X X X  
Reserved member names X X X X 
Function modifiers X X X n/a 
Override specifier X X X n/a 
Parameter arrays X X X X 
Properties  X X X 
Events  X X X 
Static operators X X X X 
Static constructor  X X X 
Literal field  X X X 
Initonly field  X X X 
Delegate definitions X X X X 
Member of delegate type  X X  
 

end note] 10 

18.1 Class definitions 
In the C++ Standard (§9), a class-specifier is used to define a class. This grammar has been extended to 
accommodate the addition of public and private classes, as follows: 

class-specifier: 
top-level-type-visibilityopt   class-head   {   member-specificationopt   } 15 

top-level-type-visibility is described in §12.4 

To accommodate the addition of initonly and literal fields, delegates, events, and properties, the syntactic 
class member-declaration in the C++ Standard (§9.2) has been extended, as follows: 

member-declaration: 
attributesopt   initonly-or-literalopt   decl-specifier-seqopt   member-declarator-listopt   ; 20 
… 
delegate-definition 
event-definition 
property-definition 
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initonly-or-literal: 
initonly 

literal 

Attributes are described in §28, initonly fields are described in §18.10, literal fields in §18.9, delegates in 
§26, events in §18.5, and properties in §18.4.  5 

18.1.1 Class modifiers 
To accommodate the addition of sealed and abstract classes, the grammar for class-head in the C++ 
Standard (§9) has been extended to include an optional sequence of class modifiers, as follows: 

class-head: 
class-key   identifieropt   class-modifiersopt   base-clauseopt 10 
class-key   nested-name-specifier   identifier   class-modifiersopt   base-clauseopt 
class-key   nested-name-specifieropt   template-id   class-modifiersopt   base-clauseopt 

class-modifiers: 
class-modifier 
class-modifiers   class-modifier 15 

class-modifier: 
abstract 
sealed 

If the same modifier appears multiple times in a class definition, the program is ill-formed. 

[Note: abstract and sealed can be used together; that is, they are not mutually exclusive. As non-20 
member functions are not CLS-compliant, a substitute is to use an abstract sealed class, which can contain 
static member functions. This is the utility class pattern. end note] 

The abstract and sealed modifiers are discussed in §18.1.1.1 and §18.1.1.2, respectively. 

18.1.1.1 Abstract classes 
An abstract class follows the rules of Standard C++ for abstract classes (§10.4); however, a class definition 25 
containing the abstract class modifier need not contain any abstract functions. [Example:  

struct B abstract { 
 void f() { } 
}; 

struct D : B { }; 30 
int main() { 
 B b;     // error: B is abstract 
 D d;     // ok 
} 

end example] 35 

18.1.1.2 Sealed classes 
The sealed modifier is used to prevent derivation from a class. The program is ill-formed if a sealed class 
is specified as the base class of another class. [Example:  

struct B sealed { 
}; 40 
struct D : B {   // error, cannot derive from a sealed class 
}; 

end example] 

Whether or not a class is sealed has no effect on whether or not any of its member functions are, themselves, 
sealed. 45 
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[Note: The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain 
runtime optimizations. In particular, because a sealed class is known never to have any derived classes, it is 
possible to transform virtual function member invocations on sealed class instances into non-virtual 
invocations. end note] 

18.2 Reserved member names 5 
To facilitate the underlying C++/CLI runtime implementation, for each member definition that is a property 
or event, the implementation must reserve several names based on the kind of the member definition 
(§18.2.1, §18.2.2). A program is ill-formed if it contains a class that declares a member whose name matches 
any of these reserved names, even if the underlying runtime implementation does not make use of these 
reservations. If a particular name is reserved within a class, that name is also reserved in all classes that 10 
derive from that class. 

The reserved names do not introduce definitions, thus they do not participate in member lookup. 

[Note: The new modifier cannot be used to circumvent the restriction that a member with a reserved name 
shall not be declared. end note] 

[Note: The reservation of these names serves several purposes: 15 

• To allow other languages to interoperate using an ordinary identifier as a function name for get or 
set access. 

• Partition I of the CLI standard requires these names for CLS-producer languages. 

end note] 

In order to accommodate the CLI notion of finalizers, several names are reserved for functions (§18.2.3). 20 

18.2.1 Member names reserved for properties 
For a scalar or named indexed property P (§18.4), the following names are reserved: 

get_P 
set_P 

Both names are reserved, even if the scalar or named indexed property is read-only or write-only. 25 

[Example: 
ref struct A { 
 property int P { 
  int get() { return 123; } 
 } 30 
}; 

ref struct B : A { 
 int get_P() {   // error 
  return 456; 
 } 35 
}; 

end example] 

For a default indexed property (§18.4), the following names are reserved: 
get_Item 
set_Item 40 

Both names are reserved, even if the default indexed property is read-only or write-only. 

Need to address the following: C++/CLI uses the System::Reflection::DefaultMemberAttribute attribute to 
specify that something other than the default name, “Item”, should be used. Given that, the text describes 
what happens if no name is chosen; that is, Item is used by default. Once the name has been set with 
DefaultMember, it cannot be changed in a derived class. If two interfaces have different DefaultMember 45 
attributes, implementing both interfaces is ill-formed.[[#136]] 
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18.2.2 Member names reserved for events 
For an event E (§18.5), the following names are reserved: 

add_E 
remove_E 
raise_E 5 

18.2.3 Member names reserved for functions 
For CLI types, the following name is reserved: 

Finalize 

18.3 Functions 
Extend the grammar to accommodate attributes on functions.[[#137]] 10 

The addition of overriding specifiers and function modifiers requires a change to the Standard C++ grammar 
for direct-declarator. [Note: The two new optional syntax productions, function-modifier and override-
specifier, appear in that order, after exception-specification, but before function-body or function-try-block. 
end note] 

One of the productions for the Standard C++ grammar for member-declarator (§9.2) has been extended, as 15 
follows: 

override-specifier should support 0 for compatibility with pure-specifier.[[Ed.]] 

member-declarator: 
declarator   function-modifiersopt   override-specifieropt 

function-modifiers: 20 
function-modifier 
function-modifiers   function-modifier 

function-modifier: 
abstract 

new 25 
override 
sealed 

function-modifiers are discussed in the following subclauses: abstract in §18.3.3, new in §18.3.4, 
override in §18.3.1, and sealed in §18.3.2. override-specifier is discussed in §18.3.1. 

A member function declaration containing any of the function-modifiers abstract, override, or sealed, 30 
or an override-specifier, shall explicitly be declared virtual. [Rationale: A major goal of this new syntax 
is to let the programmer state his intent, by making overriding more explicit, and by reducing silent 
overriding. The virtual keyword is required on all virtual functions, except in the one case where 
backwards compatibility with Standard C++ allows the virtual keyword to be optional. end rationale] 

If a function contains both abstract and sealed modifiers, or it contains both new and override 35 
modifiers, it is ill-formed. 

An out-of-class member function definition shall not contain a function-modifier or an override-specifier. 

The Standard C++ grammar for parameter-declaration-clause (§8.3.5) has been extended to include support 
for passing parameter arrays, as follows: 

parameter-declaration-clause: 40 
… 
parameter-array 
parameter-declaration-list   ,   parameter-array 

There shall be only one parameter array for a given function or instance constructor, and it shall always be 
the last parameter specified. 45 
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Parameter arrays are discussed in §18.3.6. 

18.3.1 Override functions 
The Standard C++ grammar for direct-declarator has been extended (see §18.2.3) to allow the function 
modifier override as well as override specifiers. 

override-specifier: 5 
=   overridden-name-list 

overridden-name-list: 
id-expression 
overridden-name-list   ,   id-expression 

In Standard C++, given a derived class with a function that has the same name,parameter-type-list, and cv-10 
qualification of a virtual function in a base class, the derived class function always overrides the one in the 
base class, even if the derived class function is not declared virtual. This is known as implicit overriding.  A 
program containing an implicitly overridden function is ill-formed. [Note: A programmer can eliminate the 
diagnostic by using explicit or named overriding. end note] 

With the addition of the function modifier override and override specifiers, C++/CLI provides the ability 15 
to indicate explicit overriding and named overriding, respectively. (Each named override corresponds 
exactly to a single MethodImpls in metadata. See “Explicit method overrides” in CLI Partition II.) 

If either the function-modifier override or an override-specifier, or both, are present in the derived class 
function declaration, no implicit overriding takes place. [Example:  

struct A { 20 
 virtual void f() abstract; 
}; 

struct B { 
 virtual void f() abstract; 
}; 25 
struct D : A, B { 
 virtual void f();       // overrides A::f and B::f 
}; 

struct E : A, B { 
 virtual void g() = B::f;    // overrides B::f only, E is 30 
abstract 
}; 

struct F : A, B { 
 virtual void f() override;    // overrides A::f and B::f 
}; 35 

end example] 

Explain the difference between using ‘override’ and ‘= function-name’; one creates an .override directive in 
CIL, the other does not. [[#48]] 

[Note: A member function declaration containing the function-modifier override or an override-specifier 
shall explicitly be declared virtual (§18.2.3). end note] 40 

An override-specifier contains a comma-separated list of names designating the virtual functions from one 
or more direct or indirect base classes that are to be overridden. 

An id-expression that designates an overridden name shall designate a single function to be overridden and 
shall include that function’s base class name. Further qualification is necessary if the base class name is 
ambiguous. That function shall have the same parameter-type-list and cv-qualification as the overriding 45 
function, and the return types of the two functions shall be covariant. 

 [Example:  
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struct A { 
 virtual void f(); 
}; 

struct B { 
 virtual void f(); 5 
}; 

struct D : A, B { 
 virtual void g() = A::f, B::f; // override A::f and B::f 
}; 

end example] 10 

 [Note: The same overriding behavior can sometimes be achieved in different ways. For example, given a 
base class A with a virtual function f, an overriding function might have an override-specifier of A::f, have 
no override specifier or override function modifier, have the function-modifier override, or a 
combination of the two, as in override = A::f. All override A::f. end note] 

The name of the overriding function need not be the same as that being overridden. [Example:  15 
struct A { 
 virtual void f(); 
 virtual void g(); 
 virtual void x(); 
}; 20 
struct B { 
 virtual void f(); 
 virtual void g(); 
}; 

struct D : A, B { 25 
 virtual void x() override = A::f;  // x overrides A:;f 
 virtual void y() = A::g, B::f;  // y overrides A::g and B::f 
}; 

end example] 

A derived class shall not override the same virtual function more than once. If an implicit or explicit 30 
override does the same thing as a named override, the program is ill-formed. [Example: 

struct A { 
 virtual void f(); 
}; 

struct B { 35 
 virtual void f(); 
 virtual void g(); 
}; 

struct D : A, B { 
 virtual void g() = B::f; 40 
 virtual void f();    // error, would override A::f and B::f, but 
          // B::f is already overridden 
 virtual void f() override = B::g; 
          // error, B::g is overridden twice, 
          // once by the explicit override, and 45 
          // once by the named override. 
 virtual void f() = B::f; // error, B::f is overridden twice, 
          // once by the implicit override, and 
          // once by the named override. 
}; 50 

end example] 

A class is ill-formed if it has multiple functions with the same name,parameter-type-list, and cv-qualification 
even if they override different inherited virtual functions. [Example: 
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struct D : B1, B2 { 
 void f() = B1::f { /*…*/ }  // ok 
 void f() = B2::f { /*…*/ }  // error, duplicate declaration 
}; 

end example] 5 

A function can both hide and override at the same time: [Example: 
struct A { 
   virtual void f(); 
}; 

struct B { 10 
   virtual void f(); 
}; 

struct D : A, B { 
   virtual void f() new = A::f; 
}; 15 

The presence of the new function modifier (§18.3.4) indicates that D::f does not override any method f 
from its bases classes. The named override then goes on to say that D::f actually overrides just one 
function, A::f. end example] 

A member function that is an explicit override cannot be called directly (except with explicit qualification) 
or have its address taken. [Example: 20 

struct I { 
 virtual void v(); 
}; 

struct J { 
 virtual void w(); 25 
}; 

struct A : I, J { 
 virtual void f() = I::v, J::w; 
}; 

struct C : A { 30 
  virtual void g() = I::v; 
  virtual void h() = J::w; 
}; 

void Test(A* pa) {// pa could point to an A, a C, or something else 
 pa->f();   // ambiguous: I::v or J::w? 35 
 pa->v();   // ok, virtual call 
 pa->w();   // ok, virtual call 
 pa->I::v();  // ok if I::v is implemented, nonvirtual call to I::v 
 pa->J::w();  // ok if J::w is implemented, nonvirtual call to J::w 
 pa->A::v();  // ok if I::v is implemented, nonvirtual call to I::v 40 
 pa->A::w();  // ok if J::w is implemented, nonvirtual call to J::w 
 pa->A::f();  // ok (classes derived from A might need to do this, 
      //  and there’s no ambiguity in this case) 
} 

end example][Rationale: Even though technically it is possible to allow a call to such an f when the type of 45 
the Object is statically known to be an A, for example in: 

A a; 
a.f();     // ambiguous (even though it could work) 

there does not seem to be sufficient utility to offset the user confusion about “When can I do this and when 
can’t I?” end rationale] 50 

If a destructor or finalizer (§??) contains an override specifier, the program is ill-formed. 

18.3.2 Sealed function modifier 
A virtual member function marked with the function-modifier sealed cannot be overridden in a derived 
class. [Example: 
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struct B { 
 virtual int f() sealed; 
}; 

struct D : B { 
 virtual int f();  // error: cannot override a sealed function 5 
}; 

end example] 

[Note: A member function declaration containing the function-modifier sealed shall explicitly be declared 
virtual (§18). end note] If there is no virtual function to implicitly override in the base class, the 
derived class introduces the virtual function and seals it. 10 

Whether or not any member functions of a class are sealed, has no effect on whether or not that class itself is 
sealed. 

An implicit, explicit, or named override can succeed as long as there is a non-sealed virtual function in at 
least one of the bases. [Example: Consider the case in which A::f is sealed, but B::f is not. If C inherits 
from A and B, and tries to implement f, it will succeed, but will only override B::f. end example] 15 

18.3.3 Abstract function modifier 
Standard C++ permits virtual member functions to be declared abstract by using a pure-specifier. C++/CLI 
provides an alternate approach via the function-modifier abstract. The two approaches are equivalent; 
using both is well-formed, but redundant.” [Example: A class shape can declare an abstract function draw 
in any of the following ways: 20 

virtual void draw() = 0;    // Standard C++ style 
virtual void draw() abstract;   // function-modifier style 
virtual void draw() abstract = 0; // okay, but redundant 

end example] 

[Note: A member function declaration containing the function-modifier abstract shall be declared 25 
virtual (§18). end note] 

18.3.4 New function modifier 
A member function declaration containing the function-modifier new shall not contain an override-specifier. 

The new function modifier corresponds exactly to the CLI’s predefined attribute newslot (see the CLI 
Standard, Partition II, an excerpt of which is shown as a note below.). A function’s metadata will have the 30 
newslot attribute if that function’s declaration included the new function modifier. A function need not be 
declared virtual to have the new function modifier. If a function is declared virtual and has the new 
function modifier, that function does not override another function. It can, however, override another 
function with a named override. A function that is not declared virtual and is marked with the new 
function modifier does not become virtual and does not implicitly override any function. 35 

[Example: 
ref struct B { 
   virtual void F() { System::Console::WriteLine("B::F"); } 
   virtual void G() { System::Console::WriteLine("B::G"); } 
}; 40 
ref struct D : B { 
   virtual void F() new { System::Console::WriteLine("D::F"); } 
}; 

int main() { 
   B^ b = gcnew D; 45 
   b->F(); 
   b->G(); 
} 

The output produced is 
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B::F 
B::G 

In the following example, hiding and overriding occur together: 
struct A { 
   virtual void f(); 5 
}; 

struct B { 
   virtual void f(); 
}; 

struct D : A, B { 10 
   virtual void f() new = A::f; 
}; 

The presence of the new function modifier indicates that D::f does not override any method f from its base 
classes. The named override (§18.3.1) then goes on to say that D::f actually overrides just one function, 
A::f. The net result is that A::f is overridden, but B::f is not. 15 

end example] 

Static functions can use the new modifier to hide an inherited member. [Example: 
ref class B { 
public: 
 virtual void F() { … } 20 
}; 

ref class D : B { 
public: 
 static void F() new { … } 
}; 25 

end example] 

[Note: According to the CLI Standard, Partition II:  

“A virtual method is introduced in the inheritance hierarchy by defining a virtual method. The 
versioning semantics differ depending on whether or not the definition is marked as newslot: 

If the definition is marked newslot then the definition always creates a new virtual method, even if a 30 
base class provides a matching virtual method.  Any reference to the virtual method created before 
the new virtual function was defined will continue to refer to the original definition. 

If the definition is not marked newslot then the definition creates a new virtual method only if there 
is no virtual method of the same name and signature inherited from a base class.  If the inheritance 
hierarchy changes so that the definition matches an inherited virtual function, the definition will be 35 
treated as a new implementation of that inherited function.” 

end note] 

18.3.5 Function overloading 
The C++ Standard (§13.3.2) has been extended to incorporate parameter arrays (§18.3.6), as follows: 

“For every parameter array function, two signatures are submitted to the overload candidate set: the 40 
expanded form and the exact signature.” 

18.3.6 Parameter arrays 
Standard C++ supports variable-length argument lists for both member and non-member functions; however, 
the approach used is not type-safe. C++/CLI adds a type-safe way using parameter arrays. A parameter 
array is defined as follows: 45 

parameter-array: 
attributesopt   ...   parameter-declaration 
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Re the following: For functions outside CLI types, if they happen to have a parameter array, it is okay to 
have a default parameter. That parameter can be any Array -- the parameter array part of it is just ignored 
and instead for the purposes of the default parameter is just a plain Array. 

A parameter-array consists of an optional set of attributes (§28), an ellipsis punctuator, and a parameter-
declaration. A parameter array declares a single parameter of the given Array type with the given name. The 5 
Array type of a parameter array must be a single-dimensional Array type (§23.1). In a function invocation, 
either a parameter array permits a single argument of the given Array type to be specified, or it permits zero 
or more arguments of the Array element type to be specified. The program is ill-formed if the parameter-
declaration contains an assignment-expression. 

void f(... array<Object^>^); 10 
 
int main() { 
 f(); 
 (nullptr); 
 f(1, 2); 15 
 f(nullptr, nullptr); 
 f(gcnew array<Object^>(1)); 
 f(gcnew array<Object^>(1), gcnew array<Object^>(2)); 
} 

end example] 20 

[Example:  
void F1(... array<String^>^ list) { 
 for (int i = 0 ; i < list->Length ; i++ ) 
  Console::Write(“{0} ”, list[i]); 
 Console::WriteLine(); 25 
} 

void F2(... array<Object^>^ list) { 
 for each (Object^ element in list)  
  Console::Write(“{0} ”, element); 
 Console::WriteLine(); 30 
} 

int main() { 
 F1(“1”, “2”, “3”); 
 F2(1, ‘a’, “test”); 
 array<String^>^ myarray 35 
  = gcnew array<String> {“a”, “b”, “c” }; 
 F1(myarray); 
} 

The output produced is as follows: 
1 2 3 40 
1 a test 
a b c 

end example] 

When a function with a parameter array is invoked in its expanded form, the invocation is processed exactly 
as if an Array creation expression with an Array initializer (§??) was inserted around the expanded 45 
parameters. [Example: Given the declaration 

void F(int x, int y, ... array<Object^>^ args); 

the following invocations of the expanded form of the function 
F(10, 20); 
F(10, 20, 30, 40); 50 
F(10, 20, 1, "hello", 3.0); 

correspond exactly to 
F(10, 20, nullptr); 
F(10, 20, gcnew array<System::Object^> {30, 40}); 
F(10, 20, gcnew array<System::Object^> {1, "hello", 3.0}); 55 
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In particular, nullptr is passed when there are zero arguments given for the parameter array. end example] 

Parameter array parameters can be passed to functions that take non-parameter Array arguments of the 
corresponding type. [Example:  

void f(array<int>^ pArray); // not a parameter array 
void g(double value, ... array<int>^ p) { 5 
 f(p);        // Ok 
} 

end example] 

An argument of type array<type> can be passed to a function having a parameter ... array<type>. In 
the case of passing an array<Object^> argument A to a parameter P (declared using ... 10 
array<Object^>), P binds to A (that is, P is not an Array whose first Object^ element refers to A). 

Parameter arrays can contain either native or CLI type elements. [Example: 
void g(... array<Object^>% v); // CLI type held by ^ 
g(1, 2, “abc”);        // creates a container of 3 boxed 
             // Objects, having type Int32,  15 
             // Int32, and String. 
void h(... array<std::string>% a);  // native type held by value 
h(“abc”, “def”, “xyzzy”, string2);  // creates a container of 4 
strings 

end example] 20 

18.4 Properties 
1. Can a trivial (scalar) property be static or virtual? Yes  
2. Does a property member always make a class a non-POD? No  
3. Can the value of a property be passed by reference or by const reference even if the type of the property is 
not a reference? No  25 
4. Is compound assignment to the result of a property access allowed? Yes, a += b allowed, but a = b = c is 
not because CLS require that the setter have a void return type.  
5. Can accessor functions be cv-qualified (examples in this paper const-qualify getters)? No  
6. Can a property have reference type? No for CLS properties; otherwise, Yes. 
[[Ed.]] 30 
A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and 
indexed. A scalar property  enables scalar field-like access to an Object or class. Examples of scalar 
properties include the length of a string, the size of a font, the caption of a window, and the name of a 
customer. An indexed property  enables Array-like access to an Object. An example of an index property is 
a bit-array class. 35 

Properties are an evolutionary extension of fields—both are named members with associated types, and the 
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing Arrays and 
indexed properties. However, unlike fields, properties do not denote storage locations. Instead, properties 
have accessor functions that specify the statements to be executed when their values are read or written. 

Properties are defined using property-definitions: 40 

Extend declarator-id’s by adding a new production that allows default. [[#50]] 

property-definition: 
attributesopt   property-modifiers   simple-type-specifier   declarator 
  property-indexesopt   function-modifiersopt   override-specifieropt 
  {   accessor-specification   } 45 
attributesopt   property-modifiers   simple-type-specifier   declarator 
  function-modifiersopt   override-specifieropt   ; 



 Classes and members 

83 

property-modifiers: 
property-modifier 
property-modifiers   property-modifier 

property-modifier: 
property 5 
static 
virtual 

property-indexes: 
[   indexer-parameter-list   ] 

indexer-parameter-list: 10 
indexer-parameter-declaration 
indexer-parameter-list   ,    indexer-parameter-declaration 

indexer-parameter-declaration: 
type-specifier 

The grammar for indexer-parameter-declaration does not allow handles or pointers, but full declarators are 15 
not needed. The grammar should allow a simpler sequence of ptr-operator. [[#51]] 

A property-definition can include a set of attributes (§28), property-modifiers (§18.4.1, §18.4.3), property-
indexes, function-modifiers (§18.2.3), and an override-specifier (§18.3.1). It must include the property-
modifier property. 

A property-definition that does not contain a property-indexes is a scalar property, while a property-20 
definition that contains a property-indexes is an indexed property. 

A property-definition ending with a semicolon (as opposed to brace-delimited accessor-specification) 
defines a trivial scalar property (§18.4.4). [Note: There is no such thing as a trivial indexed property. end 
note]Need to write up the restrictions on trivial properties.[[#138]]  

Property definitions are subject to the same rules as function declarations with regard to valid combinations 25 
of modifiers, with the one exception being that the static modifier is not permitted on a default indexed 
property definition. (Default indexed properties are introduced later in this subclause.) 

The simple-type-specifier of a scalar property definition specifies the type of the scalar property introduced 
by the definition, and the identifier specifies the name of the scalar property. The simple-type-specifier of an 
indexed property definition specifies the element type of the indexed property introduced by the definition.  30 

property-name specifies the name of the property. For an indexed property, if property-name is default, 
that property is a default indexed property. If property-name is identifier, that property is a named indexed 
property. 

We probably should say something about the reserved names get_Item and set_Item, and their relationship 
with default indexed properties. Also, add a forward pointer to the corresponding attribute.[[#139] 35 

The accessor-specification declares the accessor functions (§18.4.2) of the property. The accessor functions 
specify the executable statements associated with reading and writing the property. An accessor function, 
qualified with the property name, is considered a member of the class. For a default indexed property, the 
parent property name is default. As such, the full names of the accessor functions for this indexed 
property are default::get and default::set. 40 

The address of an accessor function can be taken and yields a pointer-to-member of the enclosing type. 
However, it is not possible to bind a pointer-to-member value to a property. [Note: A property is a group of 
one or more accessor functions, not an Object. end note] 

An indexed property cannot have the same name as a scalar property. Overloading of indexed properties on 
different index parameters is allowed, as long as none has the same name as a scalar property. 45 
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18.4.1 Static and instance properties 
When a property definition includes a static modifier, the property is said to be a static property.  [Note: 
An indexed property cannot be static. end note] When no static modifier is present, the property is said to 
be an instance property.  All accessor functions in a static property are static, and writing static on such a 
function is allowed but redundant. All accessor functions in an instance property are instance accessor 5 
functions. [Example: 

struct C { 
 static property C* MyStaticProperty { /* … */ } // static property 
 property int default[int k] { /* … */ };   // instance property 
}; 10 

end example]  

[Note: Like a field, when a static property is referenced using the form E::M, E must denote a type that has a 
property M. When an instance property is referenced using the form E.M, E must denote an instance having a 
property M. When an instance property is referenced through a pointer or handle, the form E->M is used. end 
note] 15 

18.4.2 Accessor functions 
The accessor-specification of a property specifies the executable statements associated with reading and 
writing that property. 

accessor-specification: 
accessor-declaration   accessor-specificationopt 20 
access-specifier   :   accessor-specificationopt 

accessor-declaration: 
decl-specifier-seqopt   member-declarator-listopt   ; 
function-definition   ; 

A property must have at least one accessor function. The name of a property accessor function must be 25 
either get or set. A property shall have no more than one get accessor function and no more than one set 
accessor function. An accessor function of a property can be defined inline with the property definition, or 
out-of-class. 

If a property has the static modifier, all of its accessor functions are implicitly static; nevertheless, 
declaring static on one or more of those accessor functions is allowed but redundant. 30 

If a property is abstract, the accessor functions of the property can be abstract. If an accessor function is not 
declared abstract, it must be defined. If any accessor function of a property is declared abstract, the property 
must also be declared abstract. 

The get accessor function of a scalar property takes no parameters and its return type shall match exactly the 
type of the property, simple-type-specifier. A get accessor function shall not return an array. For an indexed 35 
property, the parameters of the get accessor function shall correspond exactly to the types of the property’s 
property-indexe. 

This subclause only covers how the accessor functions must be defined. The expressions clause needs to 
cover the rewrite rules that call these functions. [[#52]] 

The set accessor function of a scalar property has one parameter that corresponds exactly to the type of the 40 
property, simple-type-specifier. For an indexed property, the parameters of the set accessor function shall 
correspond exactly to the types of the property’s property-indexes, followed by the last parameter, which 
shall correspond exactly to the type of the property, simple-type-specifier. The return type of the set accessor 
function for both scalar and indexed properties shall be void. 

Based on the presence or absence of the get and set accessor functions, a property is classified as follows: 45 

• A property that includes both a get accessor function and a set accessor function is said to be a read-
write property. 
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• A property that has only a get accessor function is said to be a read-only property.  

• A property that has only a set accessor function is said to be a write-only property.  

Like all class members, a property has an explicit or implicit access-specifier. Either or both of a property’s 
accessor functions can also have an access-specifier, which specifies a narrower access than the property’s 
accessibility for that accessor function. access-specifiers on accessor functions specify access for those 5 
accessor functions only; they have no effect on the accessibility of members in the parent class subsequent to 
the parent property. The accessibility following the property is the same as the accessibility before the 
property. 

[Note: If the get and set accessor functions in a read-write property have different implicit or explicit access-
specifiers, that property is not CLS-compliant. end note] 10 

[Example: In the example 
public ref class Button : Control { 
private: 
 String^ caption; 

public: 15 
 property String^ Caption { 
  String^ get() { 
   return caption; 
  } 
  void set(String^ value) { 20 
   if (caption != value) { 
    caption = value; 
    Repaint(); 
   } 
  } 25 
 } 
}; 

the Button control declares a public Caption property. This property does nothing more than a field 
except when the property is set, in which case, the control is repainted when a new value is supplied. 

Given the Button class above, the following is an example of use of the Caption property: 30 
Button^ okButton = gcnew Button; 
okButton->Caption = "OK";    // Invokes set accessor function 
String^ s = okButton->Caption;  // Invokes get accessor function 

Here, the set accessor function is invoked by assigning a value to the property, and the get accessor function 
is invoked by referencing the property in an expression. end example]  35 

In the paragraph above, add a cross-reference to the rewrite rules for properties and events. (They will be 
somewhere in the expressions clause.) [[Ed]] 

When a derived class declares a property by the same name as an inherited property, the derived property 
hides the inherited property with respect to both reading and writing. [Example: In the example 

struct A { 40 
 property int P { 
  void set(int value) {…} 
 } 
}; 

struct B : A { 45 
 property int P { 
  int get() {…} 
 } 
}; 

the P property in B hides the P property in A with respect to both reading and writing. Thus, in the 50 
statements 
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B b; 
b.P = 1;       // Error, B.P is read-only 
b.A::P = 1;      // Ok, reference to A.P 

the assignment to b.P causes the program to be ill-formed, since the read-only P property in B hides the 
write-only P property in A. Note, however, that a cast can be used to access the hidden P property. end 5 
example] 

[Note: Exposing state through properties is not necessarily less efficient than exposing fields directly. In 
particular, accesses to a property are the same as calling that property’s accessor functions. When 
appropriate, an implementation can inline these function calls. Using properties is a good mechanism for 
maintaining binary compatibility over several versions of a class. end note] 10 

Add some discussion of how accesses to properties are rewritten into accessor functions. This should be 
covered in rewrite rules in the expressions clause. Note that access checking for whether a property can be 
written to or read to is done after rewriting and overload resolutions. [[#116]] 

Accessor functions can be defined inline or out-of-class. [Example: 
public class point { 15 
private: 
 int Xor; 
 int Yor; 

public: 
 property int X { 20 
  int get() { return Xor; }       // inline definition 
  void set(int value);         // declaration only 
 } 

 property int Y { 
  int get();            // declaration only 25 
  void set(int value) { return Yor = value; } // inline definition 
 } 
 … 
}; 

void point::X::set(int value) { Yor = value; } 30 
int point::Y::get() { return Yor; } 

end example] 

The qualified name of a property needs to be described somewhere. Once that happens, how an out-of-class 
definition is done will already be covered by existing rules. [[#117]] 

18.4.3 Virtual, sealed, abstract, and override accessor functions 35 
A virtual property definition specifies that the accessor functions of the property are virtual. Declaring 
virtual on an accessor function of a virtual property is allowed but redundant. If the virtual modifier 
appears on every accessor function in a property not itself having such a modifier, then that modifier applies 
implicitly to the property. 

A sealed property definition specifies that the accessor functions of the property are sealed.  A property 40 
definition containing the function-modifier sealed shall explicitly be declared virtual. Use of this 
modifier prevents a derived class from further overriding the property. Declaring sealed on an accessor 
function of a sealed property is allowed but redundant.  If the sealed modifier appears on every accessor 
function in a property not itself having such a modifier, then that modifier applies implicitly to the property. 

An abstract property definition specifies that the accessor functions of the property are abstract and 45 
virtual, but does not provide an actual implementation of the accessor functions. Instead, non-abstract 
derived classes are required to provide their own implementation for the accessor functions by overriding the 
property. A property definition containing the function-modifier abstract shall explicitly be declared 
virtual. All of the accessor functions of an abstract property can also individually contain an abstract 
and/or virtual modifier; however, such modifiers are redundant. If the abstract modifier appears on 50 
every accessor function in a property not itself having such a modifier, then that modifier applies implicitly 
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to the property. A virtual property can have abstract accessor functions, and the property need not be 
explicitly declared abstract. 

[Example: 
struct B { 
 virtual property string Name {  // virtual property 5 
  virtual string get() abstract; // property is implicitly abstract 
 } 
}; 

struct D : B { 
 virtual property string Name sealed { /*…*/ } // Name is now sealed  10 
}; 

end example] 

Any properties defined in an interface are implicitly abstract. However, those properties can redundantly 
contain the virtual and/or abstract modifiers, and a pure-specifier. [Example: 

interface class X abstract { 15 
 property int Size { /*…*/ }; // (implicit) abstract property 
 virtual property string Name abstract = 0 { /*…*/ }; 
  // “virtual”, abstract” and “= 0” 
  // permitted but are redundant 
}; 20 

end example] 

A property definition that includes the abstract modifier as well as an override modifier or an override-
specifier, specifies that the property is abstract and overrides a base property.  The accessor functions of 
such a property are also abstract. 

[Note: Abstract property definitions are only permitted in abstract classes (§18.1.1.1). end note] 25 

The accessor functions of an inherited virtual property can be overridden in a derived class by including a 
property definition that specifies an override modifier or an override-specifier (§18.3.1). This is known as 
an overriding property definition. An overriding property definition does not declare a new property. 
Instead, it simply specializes the implementations of the accessor functions of an existing virtual property. 
[Example:  30 

struct B1 { 
 virtual property string Name { /*…*/ } 
}; 

struct B2 { 
 virtual property string MyName { /*…*/ } 35 
}; 

struct D : B1, B2 { 
 // override both 
 virtual property string HelloIAm = B1::Name, B2::MyName { /*…*/ } 
}; 40 

end example]  

An accessor function can override accessor functions in other properties; it can also override non-accessor 
functions. [Example: 

struct B { 
 virtual property string Name { 45 
  string get(); 
  void set(string value); 
 } 
}; 

struct C { 50 
 virtual string getLabel(); 
}; 
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struct D : B, C { 
 virtual property string MyName = B::Name { 
  string get() = C::getLabel; // implicitly overrides Name::get and 
 }           // explicitly overrides C::getLabel 
}; 5 

end example] 

An overriding property definition must specify wider accessibility modifiers and exactly the same type and 
name as the inherited property. If the inherited property is a read-only or write-only property, the overriding 
property must be a read-only or write-only property respectively, or a read-write property. If the inherited 
property is a read-write property, the overriding property must be a read-write property. 10 

A trivial scalar property shall not override another property. 

Except for differences in definition and invocation syntax, virtual, sealed, override, and abstract accessor 
functions behave exactly like virtual, sealed, override, and abstract functions, respectively. Specifically, the 
rules described in the C++ Standard (§10.3) and §18.3.2, §18.3.1, and §18.3.3 of this Standard apply as if 
accessor functions were functions of a corresponding form: 15 

[Example: In the example 
class A abstract { 
 int y; 

public: 
 virtual property int X { 20 
  int get() { return 0; } 
 } 

 virtual property int Y { 
  int get() { return y; } 
  void set(int value) { y = value; } 25 
 } 

 virtual property int Z abstract { 
  int get(); 
  void set(int value); 
 } 30 
}; 

X is a virtual read-only property, Y is a virtual read-write property, and Z is an abstract read-write property.  

18.4.4 Trivial scalar properties 
A trivial scalar property is defined by a property-definition ending with a semicolon (as opposed to a brace-
delimited accessor-specification). [Example: 35 

struct S { 
 property int P; 
}; 

end example]  

A trivial scalar property is read-write and has implicitly defined accessor functions. The implied access-40 
specifier for these accessor functions is the same as for the parent property. Private backing storage for a 
trivial scalar property is automatically allocated with the name of that storage being unspecified, but in the 
implementer’s namespace. [Example: A compiler might treat the above trivial scalar property definition as if 
it was written like the following: 

struct S { 45 
 property int P { 
  int get() { return __P; } 
  void set(int value) { __P = value; } 
 } 
private: 50 
 int __P; 
}; 

end example] 
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18.5 Events 
An event is a member that enables an Object or class to provide notifications. Clients can add a delegate to 
an event, so that the Object will invoke that delegate. Events are declared using event-definitions: 

event-definition: 
attributesopt   event-modifiers  event-type   identifier 5 
  function-modifiersopt   override-specifieropt   {   accessor-specification   } 
attributesopt   event-modifiers   event-type   identifier 
  function-modifiersopt   override-specifieropt   ; 

event-modifiers: 
event-modifier 10 
event-modifiers   event-modifier 

event-modifier: 
event 

static 
virtual 15 

An event-definition can include a set of attributes (§28), property-modifiers (§18.4.1, §18.4.3), function-
modifiers (§18.2.3, §18.4.3), and an override-specifier (§18.3.1). It must include the event-modifier event. 

The event-type of an event definition shall be a delegate type, and that type shall be at least as accessible as 
the event itself. identifier designates the name of the event. 

The production event-type has not yet been defined. The syntactic category of this element needs to be 20 
reviewed.[[#140]] 

The accessor-specification declares the accessor functions (§18.5.2) of the event. The accessor functions 
specify the executable statements associated with adding handlers to, and removing handlers from, the event, 
as well as raising that event.  

An event-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification) 25 
defines a trivial event (§18.5.4). The three accessor functions for a trivial event are supplied automatically 
by the compiler along with a private backing store. An event-definition ending with a brace-delimited 
accessor-specification defines a non-trivial event.  

[Example: The following example shows how event handlers are attached to instances of the Button class: 
public delegate void EventHandler(Object^ sender, 30 
 EventArgs^ e); 

public ref struct Button : Control { 
 event EventHandler^ Click; 
}; 

public ref class LoginDialog : Form 35 
{ 
 Button^ OkButton; 
 Button^ CancelButton; 

public: 
 LoginDialog() { 40 
  OkButton = gcnew Button(…); 
  OkButton->Click += gcnew EventHandler(&OkButtonClick); 
  CancelButton = gcnew Button(…); 
  CancelButton->Click += gcnew EventHandler(&CancelButtonClick); 
 } 45 
 void OkButtonClick(Object^ sender, EventArgs^ e) { 
  // Handle OkButton->Click event 
 } 

 void CancelButtonClick(Object^ sender, EventArgs^ e) { 
  // Handle CancelButton->Click event 50 
 } 
}; 
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Here, the LoginDialog constructor creates two Button instances and attaches event handlers to the Click 
events. end example] 

The address of an event accessor function can be taken and bound to a suitably typed pointer-to-member 
function (subject to the usual C++ rules, such as that the calling code must have access to the function’s 
name). However, it is not possible to bind a pointer-to-member Object to an event. [Note: An event is a 5 
group of one or more accessor functions, not an Object. end note] 

18.5.1 Static and instance events 
When an event declaration includes a static modifier, the event is said to be a static event. When no 
static modifier is present, the event is said to be an instance event. 

18.5.2 Accessor functions 10 
The accessor-specification for an event specifies the executable statements associated with adding handlers 
to, and removing handlers from, the event, as well as raising that event. 

The accessor-specification for an event shall contain no more than three function-definitions: 

It is a bit strange to define grammar productions for these functions. We probably should either make these 
terms (and change the style accordingly) or just call them the add function, remove function, and raise 15 
function.[[#141]] 

• one for a function called add, herein called the add-accessor-function, 

• one for a function called raise, herein called the raise-accessor-function, and 

• one for a function called remove, herein called the remove-accessor-function. 

A non-trivial event shall contain both an add-accessor-function and a remove-accessor-function. If that 20 
event has no raise-accessor-function, one is not supplied automatically by the compiler. 

A program is ill-formed if it contains an event having only one of add-accessor-function and remove-
accessor-function. 

add-accessor-function and remove-accessor-function shall each take one parameter, of type event-type, and 
their return type shall be void. 25 

The parameter list of raise-accessor-function shall correspond exactly to the parameter list of event-type, and 
its return type shall be the return type of event-type. 

[Note: Trivial envents are generally better to use because use of the non-trivial form requires consideration 
of thread safety. end note] 

When an event is invoked, the raise function is called. 30 

[Example:  … end example] [[Ed]] 

18.5.3 Virtual, sealed, abstract, and override accessor functions 
A virtual event declaration specifies that the accessor functions of that event are virtual. The virtual 
modifier applies to all accessor functions of an event. 

An abstract event declaration specifies that the accessor functions of the event are virtual, but does not 35 
provide an actual implementation of the accessor functions. Instead, non-abstract derived classes are 
required to provide their own implementation for the accessor functions by overriding the event. 

An event declaration that includes both the abstract and override modifiers specifies that the event is 
abstract and overrides a base event.  The accessor functions of such an event are also abstract. 

[Note: Having an abstract event makes the enclosing class abstract. end note] The accessor functions of an 40 
inherited virtual event can be overridden in a derived class by including an event declaration of the same 
name. This is known as an overriding event declaration. An overriding event declaration does not declare a 
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new event. Instead, it simply specializes the implementations of the accessor functions of an existing virtual 
event. 

An overriding event declaration can include the sealed modifier.  Use of this modifier prevents a derived 
class from further overriding the event. The accessor functions of a sealed event are also sealed. 

An event with the new modifier introduces a new event that does not override an event from a base class. 5 
Make sure the complete specification is provided in the clause for the new modifier.[[#142]] Except for 
differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessor functions 
behave exactly like virtual, sealed, override and abstract functions. 

When a trivial event overrides an event, the trivial event’s raise is implicitly declared and defined. 

18.5.4 Trivial events 10 
A trivial event is defined by an event-definition ending with a semicolon (as opposed to a brace-delimited 
accessor-specification). [Example: 

ref struct S { 
 event SomeDelegateType^ E; 
}; 15 

end example]  

Within the class that contains the declaration of an event, certain events can be used like fields. To be used 
in this way, an event must be trivial. Such an event can be used in any context that permits a field. The field 
contains a delegate, which refers to the list of event handlers that have been added to the event. If no event 
handlers have been added, the field contains nullptr. 20 

[Example: In the example 
public delegate void EventHandler(Object^ sender, 
 EventArgs^ e); 

public ref class Button : Control { 
public: 25 
 event EventHandler^ Click; 
 void Reset() { 
  Click = nullptr; 
 } 

protected: 30 
 void OnClick(EventArgs^ e) { 
  Click(this, e);  // raise tests for nullptr 
 } 
}; 

Click is used as a field within the Button class. As the example demonstrates, the field can be examined, 35 
modified. The OnClick function in the Button class “raises” the Click event.  

Outside the declaration of the Button class, the Click member can only be used on the left-hand side of 
the += and –= operators, as in 

b->Click += gcnew EventHandler(…); 

which appends a delegate to the invocation list of the Click event, and 40 
b->Click –= gcnew EventHandler(…); 

which removes a delegate from the invocation list of the Click event. end example] 

When compiling a trivial event, the compiler automatically creates storage to hold the delegate, and creates 
accessor functions for the event that add event handlers to, and remove them from, the delegate field. The 
compiler also automatically generates a raise accessor function. The access-specifier for the generated add 45 
and remove accessor functions is the same as that for the whole event. The access-specifier for the generated 
raise accessor function is protected. In order to be thread-safe, the addition and removal operations shall 
be done while holding the lock on the containing Object for an instance event, or the type Object for a static 
event.  Such a lock is specified using the attribute 
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MethodImpl(MethodImplOptions::Synchronized). The compiler-generated raise accessor function 
shall not have this attribute. 

[Note: Thus, an instance event declaration of the form: 
delegate int D(int); 

ref class X { 5 
public: 
 event D^ Ev; 
}; 

could be compiled to something equivalent to:  
ref class X { 10 
 D^ __Ev;    // field to hold the delegate 

public: 
 event D^ Ev { 
  [MethodImpl(MethodImplOptions::Synchronized)] 
  void add(D^ value) { 15 
   __Ev += value; 
  } 

  [MethodImpl(MethodImplOptions::Synchronized)] 
  void remove(D^ value) { 
   __Ev -= value; 20 
  } 

protected: 
  int raise(int arg) { return __Ev(arg); } 
 } 
}; 25 

Within the class X, references to Ev are compiled to reference the hidden field __Ev instead. (The name 
“__Ev” is arbitrary; the hidden field could have any name or no name at all.) 

Similarly, a static event declaration of the form: 
delegate int D(int); 

ref class X { 30 
public: 
 static event D^ Ev; 
}; 

could be compiled to something equivalent to:  
ref class X { 35 
 static D^ __Ev;    // field to hold the delegate 

public: 
 static event D^ Ev { 
  [MethodImpl(MethodImplOptions::Synchronized)] 
  void add(D^ value) { 40 
   __Ev += value; 
  } 

  [MethodImpl(MethodImplOptions::Synchronized)] 
  void remove(D^ value) { 
   __Ev -= value; 45 
  } 
 protected: 
  int raise(int arg) { return __Ev(arg); } 
 } 
}; 50 

end note] 
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18.5.5 Event invocation 
Events having a programmer-supplied or compiler-generated raise accessor function can be invoked using 
function call syntax. Specifically, an event E can be invoked using E(delegate-argument-list), which results 
in the raise accessor function’s being called with delegate-argument-list as its argument list. 

Events without a raise accessor function cannot be invoked using function call syntax. Instead, the delegate’s 5 
Invoke function must be called directly.  

18.6 Static operators 
Add examples throughout this clause. [[Ed]] 

To support the definition of operators in CLI types, C++/CLI allows for static operator functions. 

The rules for operators remain largely unchanged from Standard C++; however, the following rule in 10 
Standard C++ (§13.5/6) is relaxed to allow static member functions: 

(The restriction below does not apply to non-static member operators – that need not have a 
parameter of the type of the class.)[[#143]]“A static member or a non-member operator function 
shall either be a non-static member function or be a non-member function and have at least one 
parameter whose type is a class, a reference to a class, a handle to a class, an enumeration, a 15 
reference to an enumeration, or a handle to an enumeration.” 

The requirements of non-member operator functions apply to static operator functions. 

The following rule in Standard C++ (§13.5.1/1) is relaxed to allow static member functions:  

“A prefix unary operator shall be implemented by a non-static member function with no parameters 
or a non-member or static function with one parameter.”  20 

The following rule in Standard C++ (§13.5.2/1) is relaxed to allow static member functions:  

“A binary operator shall be implemented either by a non-static member function with one parameter 
or by a non-member or static function with two parameters.”  

However, operators required by Standard C++ to be instance functions shall continue to be instance 
functions. [Note: Standard C++ specifies that these operators are: operator= (§13.5.3), operator() 25 
(§13.5.4), operator[] (§13.5.5), and operator-> (§13.5.6). end note]  

18.6.1 Homogenizing the candidate overload set 
Provide an example.[[#144]] 

Standard C++ (§13.3.1/2) describes how all member functions are considered to have an implicit Object 
parameter for the purpose of overload resolution. C++/CLI expands upon this notion by creating two 30 
signatures for every member function (including static member functions) in which the difference between 
the two signatures is the type of the implicit Object parameter. For a type T, the type of the implicit Object 
parameter in the first signature is T, whereas the type for the second signature is T^. These signatures exist 
only for the purpose of overload resolution, and both signatures refer exactly to the one member function 
from which the signatures were created. 35 

[Rationale: This allows functions to be called using variables that have the raw type and using variables that 
are handles to the raw type. (This is necessary to compare operator overloads where the candidate set 
includes member functions and operator functions from namespace scope.) end rationale] 

18.6.2 Operators on Handles 
Unlike pointers, some user-defined operators can be defined for handles. For example, the addition of an 40 
integer to a handle does not attempt to add an offset to the handle (as is done with pointer arithmetic); rather, 
lookup for a user-defined operator is performed. The Standard C++ operator lookup rules are modified in the 
following ways: 
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Standard C++ (§13.5.1/1) is changed, as follows:  

“Thus, for any prefix unary operator@, @x can be interpreted as either x->operator@() if x is a 
handle, x.operator@() if x is not a handle, or operator@(x).” 

Standard C++ (§13.5.2/1) is changed, as follows:  

“Thus for any binary operator@, x@y can be interpreted as either x->operator@(y) if x is a 5 
handle, x.operator@(y) if x is not a handle, or operator@(x,y).” 

[Note: In C++/CLI, equality operators for handles behave as if they were compiler-generated or user-defined 
operators. See §18.6.6.1. end note] 

The rules in Standard C++ (§13.5.3/1) continue to apply—an assignment operator shall be a instance 
function. An assignment to a handle never invokes the user-defined assignment operator. 10 

In Standard C++ (§13.5.4/1), although function call operators continue to be allowed only as instance 
functions, the text is changed, as follows:  

“Thus, a call x(arg1,...) is interpreted as x->operator()(arg1, ...) if x is a handle, or 
x.operator()(arg1,...) if x is not a handle, for a class object x of type T if 
T::operator()(T1, T2, T3) exists and if the operator is selected as the best match function by 15 
the overload resolution mechanism.” 

In Standard C++ (§13.5.5/1), although subscript operators continue to be allowed only as instance functions, 
the text is changed, as follows:  

“Thus, a subscripting expression x[y] is interpreted as x->operator[](y) if x is a handle, or 
x.operator[](y) if x is not a handle, for a class object x of type T if T::operator[](T1) 20 
exists and if the operator is selected as the best match function by the overload resolution 
mechanism.” 

In Standard C++ (§13.5.6), the member access operator does not apply to a handle. Like a pointer, x->y is 
defined as (*x).y. A member access to a handle never invokes the user defined member access operator. 

[Note: The increment and decrement operators described in Standard C++ (§13.5.7), have significant 25 
differences from the CLS increment and decrement operators. (See §18.6.3 for details.) end note] 

18.6.3 Increment and decrement operators 
In C++/CLI, the static operators operator++ and operator-- behave as both postfix and prefix 
operators. Neither of these static operators shall be declared with the dormant int parameter described by 
Standard C++ (§13.5.7). 30 

For the expressions x++ and x--, where the postfix operator is non-static, the following processing occurs: 

• If x is classified as a property or indexed access:  

o The expression x is evaluated and the results are used in subsequent get and set accessor 
function calls. 

o The get accessor function of x is invoked and the return value is saved.  35 

o The selected operator is invoked with the saved value of x as its argument and the literal 0 as the 
argument to select the postfix operator overload. 

o The set accessor function of x is invoked with the value returned by the operator as its 
argument. 

o The saved value of x is the result of the expression. 40 

• Otherwise: 

o The operator is processed as specified by Standard C++. 

Add an example.[[Ed.]] 
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For the expressions ++x and --x, where the prefix operator is non-static, the following processing occurs: 

• If x is classified as a property or indexed access:  

o The expression x is evaluated and the results are used in subsequent get and set accessor 
function calls. 

o The get accessor function of x is invoked. 5 

o The selected operator is invoked with the result of get accessor function of x as its argument and 
the return value is saved. 

o The set accessor function of x is invoked with the saved value from the operator invocation. 

o The saved value from the operator invocation is the result of the expression. 

• Otherwise: 10 

o The operator is processed as specified by Standard C++. 

Add an example. [[Ed.]] 

For the expressions x++ and x--, where the operator is static, the following processing occurs: 

• If x is classified as a property or indexed access, the expression is evaluated in the same manner as if 
the operator were a non-static postfix operator with the exception that no dormant zero argument is 15 
passed to the static operator function. 

• Otherwise: 

o x is evaluated. 

o The value of x is saved. 

o The selected operator is invoked with the value of x as its only argument. 20 

o The value returned by the operator is assigned in the location given by the evaluation of x. 

o The saved value of x becomes the result of the expression. 

Add an example. [[Ed.]] 

For the expression ++x or --x, where the operator is static, the following processing occurs: 

• If x is classified as a property or indexed access, the expression is evaluated in the same manner as if 25 
the operator were a non-static prefix operator. 

• Otherwise: 

o x is evaluated. 

o The selected operator is invoked with the value of x as its only argument. 

o The value returned by the operator is assigned in the location given by the evaluation of x. 30 

o x becomes the result of the expression. 

[Example: The following example shows an implementation and subsequent usage of operator++ for an 
integer vector class: 

public ref class IntVector { 
public: 35 
   // ... 
 static IntVector^ operator++(IntVector^ iv) { /*...*/ } 
}; 
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int main() { 
 IntVector^ iv1 = gcnew IntVector; 
 IntVector^ iv2; 
 
 iv2 = iv1++; 5 
     // equivalent to: 
     //   IntVector^ __temp = iv1; 
     //   iv1 = IntVector::operator++( iv1 ); 
     //   iv2 = __temp; 

 iv2 = ++iv1; 10 
     // equivalent to: 
     //   iv1 = IntVector::operator++( iv1 ); 
     //   iv2 = iv1; 
} 

Note: Unlike traditional operator versions in Standard C++, this operator need not, and in fact should not, 15 
modify the value of its operand directly. end example] 

18.6.4 Operator synthesis 
The compound assignment operators (+=, -=, *=, /=, %=, ^=, &=, and |=) are synthesized from other 
operators. For the expression x @= y (where @ denotes one of the operators listed above): If lookup for 
operator@= succeeds, the rules specified so far are applied. Otherwise, the expression x @= y is rewritten 20 
as x = x @ y, and the transformed expression is interpreted with the rules specified so far. Identify when 
synthesis would and would not occur. [[#56]] 

If no overload for operator@= applies after overload resolution or synthesis, the program is ill-formed. 

Synthesis shall not occur for operators defined inside native classes. 

18.6.5 Naming conventions 25 
During compilation, the name of every operator function is the C++ identifier used in source code for that 
function. For example, the addition operator’s identifier is operator+. When the compiler emits the 
program to an assembly, the metadata name for the operator function is the CLS-compliant name as 
specified herein. 

The CLS-compliant name for the operator function is only used in the compiled assembly. A program shall 30 
not refer to the CLS-compliant name given to the operator function. When the compiler imports functions 
from metadata, it shall rewrite the CLS-compliant name into the respective C++ operator function identifier. 
Likewise, when the compiler emits metadata for the program, it translates the C++ operator function 
identifier to the respective CLS-compliant name. 

A C++ program shall not declare nor define a function using one of the CLS-compliant identifiers referred to 35 
herein. 

The CLS recommends certain operators upon which CLS consumer and producer languages can agree. The 
set of CLS-compliant operators overlaps with the set of operators supported by C++ (see Partition I, §9.3, of  
the CLI Standard) as described in §18.6.5.1. The C++ operators that do not overlap with the CLS-compliant 
operators are known as C++-dependent operators (§0). 40 

All operator functions, regardless of whether they are CLS-compliant operators or C++-dependent operators, 
shall be marked as SPECIALNAME functions in the metadata. 

18.6.5.1 CLS-compliant operators 
An operator is CLS-compliant when the following conditions occur: 

1. The operator function is one listed in either Table 18-1: CLS-Recommended Unary Operators or 45 
Table 18-2: CLS-Recommended Binary Operators. 

2. The operator function is a static member of a ref class or a value class. 
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3. If a value class is a parameter or a return value of the operator function, the value class is not passed 
by reference nor passed by pointer or handle. 

4. If a ref class is a parameter or a return value of the operator function, the ref class is passed by 
handle. The handle shall not be passed by reference. 

If the above criteria are not met, the operator function is C++-dependent (§18.6.5.4). Table 18-1: CLS-5 
Recommended Unary Operators and Table 18-2: CLS-Recommended Binary Operators list the name that 
shall be given to the function used to represent the operator function in an assembly. 

When importing a class from an assembly, each static member function with a name listed in Table 18-1: 
CLS-Recommended Unary Operators and Table 18-2: CLS-Recommended Binary Operators shall be 
renamed with its corresponding C++ identifier for the operator function. 10 

Table 18-1: CLS-Recommended Unary Operators 
Function Name in Assembly C++ Operator Function Name 
op_UnaryNegation operator- 

op_UnaryPlus operator+ 

op_LogicalNot operator! 

op_AddressOf operator& 

op_OnesComplement operator~ 

op_PointerDereference operator* 

Table 18-2: CLS-Recommended Binary Operators 
Function Name in Assembly C++ Operator Function Name 
op_Decrement operator-- 

op_Increment operator++ 

op_Addition operator+ 

op_Subtraction operator- 

op_Multiply operator* 

op_Division operator/ 

op_Modulus operator% 

op_ExclusiveOr operator^ 

op_BitwiseAnd operator& 

op_BitwiseOr operator| 

op_LogicalAnd operator&& 

op_LogicalOr operator|| 

op_LeftShift operator<< 

op_RightShift operator>> 

op_Equality operator== 

op_GreaterThan operator> 

op_LessThan operator< 

op_Inequality operator!= 

op_GreaterThanOrEqual operator>= 

op_LessThanOrEqual operator<= 

op_Comma operator, 

 

18.6.5.2 Non-C++ operators 
The CLS recommends some operators that Standard C++ does not support. [Note: Compilers for other 15 
languages might not be tolerant to functions with these names. It is recommended that a C++/CLI 
implementation issue a compatibility diagnostic if a user-defined function is given one of these names listed 
in §E.1. end note] 
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The ability to define operator true and operator false will be provided. [[#57]] 

Function Name in Assembly C++ Operator Function Name 
op_True Not yet defined[[#145]] 
op_False Not yet defined 
 

18.6.5.3 Assignment operators 
Given that assignment operators take a parameter by value and return a result by value, with regard to these 
operators, the CLS recommendations are incompatible with C++. As C++ requires assignment operators to 5 
be instance functions, the C++ compiler does not generate or consume CLS assignment operators (as listed 
in Table 18-3: CLS-Recommended Assignment Operators). As such, user-defined functions with names 
from Table 18-3: CLS-Recommended Assignment Operators are not given special treatment. 

Table 18-3: CLS-Recommended Assignment Operators 
Function Name in Assembly C++ Operator Function Name 
op_Assign No equivalent 
op_UnsignedRightShiftAssignment No equivalent 
op_RightShiftAssignment No equivalent 
op_MultiplicationAssignment No equivalent 
op_SubtractionAssignment No equivalent 
op_ExclusiveOrAssignment No equivalent 
op_LeftShiftAssignment No equivalent 
op_ModulusAssignment No equivalent 
op_AdditionAssignment No equivalent 
op_BitwiseAndAssignment No equivalent 
op_BitwiseOrAssignment No equivalent 
op_DivisionAssignment No equivalent 
 10 

18.6.5.4 C++-dependent operators 
If an operator function does not match the criteria for a CLS-compliant operator, as listed in §18.6.5.1, the 
operator is C++-dependent. Table 18-4: C++-Dependent Unary Operators and Table 18-5: C++-Dependent 
Binary Operators list the metadata name for each function. 

When importing functions from an assembly, functions with the names listed in Table 18-4: C++-Dependent 15 
Unary Operators and Table 18-5: C++-Dependent Binary Operators shall be treated during compilation 
using their corresponding C++ identifiers. If such a function does not make sense as an operator function 
(for example, it takes three arguments), the function name shall not be changed to the internal operator 
function name, and the function is callable by the name it has in the assembly. 

These operator names are, in most cases, those recommended by the CLS even though they are not CLS-20 
compliant. 

Some operator names listed below are not part of the CLS recommendations. These are op_FunctionCall 
and op_Subscript. 

[Note: The postfix increment and decrement operators are identified in C++ via a dormant int parameter. 
Static member increment and decrement operators shall not have such a dormant int parameter. Instead, a 25 
single static increment and decrement operator is used for both pre and post operations. (See §18.6.3 for 
more details.) end note] 
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Table 18-4: C++-Dependent Unary Operators 
Function Name in Assembly C++ Operator Function Name 
op_UnaryNegation operator- 

op_UnaryPlus operator+ 

op_LogicalNot operator! 

op_AddressOf operator& 

op_OnesComplement operator~ 

op_PointerDereference operator* 

Table 18-5: C++-Dependent Binary Operators 
Function Name in Assembly C++ Operator Function Name 
op_Addition operator+ 

op_Subtraction operator- 

op_Multiply operator* 

op_Division operator/ 

op_Modulus operator% 

op_ExclusiveOr operator^ 

op_BitwiseAnd operator& 

op_BitwiseOr operator| 

op_LogicalAnd operator&& 

op_LogicalOr operator|| 

op_LeftShift operator<< 

op_RightShift operator>> 

op_Equality operator== 

op_GreaterThan operator> 

op_LessThan operator< 

op_Inequality operator!= 

op_GreaterThanOrEqual operator>= 

op_LessThanOrEqual operator<= 

op_MemberSelection operator-> 

op_PointerToMemberSelection operator->* 

op_Comma operator, 

op_Decrement operator-- 

op_Increment operator++ 

op_Assign operator= 

op_RightShiftAssignment operator>>= 

op_MultiplicationAssignment operator*= 

op_SubtractionAssignment operator-= 

op_ExclusiveOrAssignment operator^= 

op_LeftShiftAssignment operator<<= 

op_ModulusAssignment operator%= 

op_AdditionAssignment operator+= 

op_BitwiseAndAssignment operator&= 

op_BitwiseOrAssignment operator|= 

op_DivisionAssignment operator/= 

op_FunctionCall operator() 

op_Subscript operator[] 
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18.6.6 Compiler-defined operators 

18.6.6.1 Equality 
Reword this subclause similarly to the way special member functions are described. [[#58]] 

Every type has an equality operator that works on handles. Every type behaves as if it had both a static 
operator== and operator!= where both arguments are handles to the containing type. That is, for type 5 
T, it is as if every type had the following operators:  

static bool operator==(T^ lhs, T^ rhs); 
static bool operator!=(T^ lhs, T^ rhs); 

The purpose of these “as if” operators is to determine reference equality. Specifically, the return value of 
operator== is true if and only if both arguments are handles referring to the same Object. Conversely, the 10 
return value of operator!= is true if and only if both arguments are handles referring to different Objects. 

If a type has a user-defined static operator== or operator!= with the same signature as the “as if” 
equality operators, then the user-defined operator is used. The user-defined operator is actually emitted to 
the assembly, whereas the “as if” operators are not. 

Add another subclause to cover the compiler-generated conversion from handle to unspecified bool type. 15 
[[#59]] 

18.7 Instance constructors 
Since C++/CLI has added the notion of a static constructor, all uses of the term “constructor” in the C++ 
Standard refer to what C++/CLI refers to as “instance constructor”. 

18.8 Static constructors 20 
A static constructor is a function member that implements the actions required to initialize a ref or value 
class. A static constructor is declared just like an ordinary (that is, instance) constructor in Standard C++ 
(§8.4), except that the former is specified with the storage class static. 

A static constructor shall not have a ctor-initializer-list. 

Static constructors are not inherited, and cannot be called directly. 25 

The static constructor for a class is executed as specified in the CLI standard, Partition II (§10.5.3). 

If a class contains any static fields (including initonly fields) with initializers, those fields are initialized 
immediately prior to the static constructor’s being executed and in the order in which they are declared. 

[Example: The example  
ref struct A { 30 
 static A() { 
  cout << "Init A" << “\n”; 
 } 
 static void F() { 
  cout << "A::F" << “\n”; 35 
 } 
}; 

ref struct B : A { 
 static B() { 
  cout << "Init B" << “\n”; 40 
 } 
 static void F() { 
  cout << "B::F" << “\n”; 
 } 
}; 45 
int main() { 
 A::F(); 
 B::F(); 
} 
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shall produce one of the following outputs:  
Init A Init A Init B 
A::F  Init B Init A 
Init B A::F  A::F 
B::F  B::F  B::F 5 

because A's static constructor must be run before accessing any static members of A, and B's static 
constructor must be run before accessing any static members of B, and A::F is called before B::F. end 
example] 

A static constructor can be defined outside its parent class using the same syntax for a corresponding out-of-
class instance constructor, except that a static prefix shall also be present. [Example: 10 

ref class X { 
public: 
 static X();   // static constructor declaration 
 X();     // instance constructor declaration 
 X(int) {…}   // inline instance constructor definition 15 
}; 
static X::X() {…}  // out-of-class static constructor definition 
X::X() {…}    // out-of-class instance constructor definition 

end example] 

[Note: In Standard C++, an out-of-class constructor definition is not permitted to have internal linkage; that 20 
is, it is not permitted to be declared static. end note] 

A static constructor can have any access-specifier. [Note: However, for security reasons, a static constructor 
should have a private access-specifier. end note] 

If a ref or value class has no user-defined static constructor, a default static constructor is implicitly defined. 
It performs the set of initializations that would be performed by a user-written static constructor for that 25 
class with an empty function body. 

The static constructor cannot be explicitly invoked. A nontrivial static constructor is emitted as a private 
member of its class in metadata. 

18.9 Literal fields 
Literal fields are defined by including the literal storage-class-specifier. 30 

add literal to storage-class-specifier[[#146]] 

Add grammar for literal-constant-initializer = Standard C++ constant-initializer + float/double + String + 
nullptr. [[#60]] 

A literal field is a named compile-time constant rvalue having the type of the literal field and having the 
value of its literal-constant-initalizer. 35 

Each member-declarator in the member-declarator-list shall contain a literal-constant-initializer. The decl-
specifier-seq shall not contain a cv-qualifier. 

Even though literal fields are accessed like static members, a literal field definition shall not contain the 
keyword static. 

Whenever a compiler comes across a valid usage of a literal field, the compiler shall replace that usage with 40 
the value associated with that literal field.  

A literal field shall have one of the following types: a scalar type or System::String. A literal-constant-
expression shall yield a value of the target type, or if the literal-constant-expression is not a string literal, it 
can be a value of a type that can be converted to the target type by a standard conversion sequence. 

[Note: A literal-constant-expression is an expression that can be fully evaluated at compile-time. Since the 45 
only way to create a non-null value of a handle type other than System::String^ is to apply the gcnew 
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operator, and since that operator is not permitted in a literal-constant-expression, the only possible value for 
literal fields of handle type other than System::String^ is nullptr. end note] 

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in a 
literal field declaration, or when the value cannot be computed at compile-time by a constant-expression, an 
initonly field (§18.10) can be used instead. [Note: The versioning semantics of literal and initonly 5 
differ (§18.10.2). end-note] 

Literal fields are permitted to depend on other literal fields within the same program as long as the 
dependencies are not of a circular nature.  

[Example: 
ref struct X { 10 
 literal double PI = 3.1415926; 
 literal int MIN = -5, MAX = 5; 
 literal int COUNT = MAX – MIN + 1; 
 literal int Size = 10; 
 enum Color {red, white, blue}; 15 
 literal Color DefaultColor = red; 
}; 

int main() { 
 double radius; 
 cout << “Enter a radius: “; 20 
 cin >> radius; 
 cout << "Area = " << X::PI * radius * radius << "\n"; 

 static double d = X::PI; 
 for (int i = X::MIN; i <= X::MAX; ++i) {…} 
 float f[Size]; 25 
} 

end example] 

For a discussion of versioning and literal fields, see §18.10.2. 

18.10 Initonly fields 
Initonly fields are defined by including the initonly storage-class-specifier. 30 

add initonly to storage-class-specifier[[#147]] 

Initialization of initonly fields shall occur only as part of their definition. Assignments (via an assignment 
operator or a postfix or prefix increment or decrement operator) to initonly fields shall occur only in an 
instance constructor or static constructor in the same class. [Note: Of course, such assignment could be done 
via a constructor’s ctor-initializer. end note] (Although an initonly field can be assigned to multiple times in 35 
a given context, it shall be assigned in only one context.) Specifically, initialization of, and assignments to, 
initonly fields are permitted only in the following contexts: 

• In the constant-initializer of a member-declarator. 

• For an instance field, in the instance constructors of the class containing the initonly field definition; 
for a static field, in the static constructor of the class containing the initonly field definition. 40 

A program that attempts to assign to an initonly field in any other context, or that attempts to take its address 
or to bind it to a reference in any context, is ill-formed. 

[Example: 
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ref class X { 
 initonly static int svar1 = 1;// Ok 
 initonly static int svar2; 
 initonly static int svar3; 
 5 
 initonly int mvar1 = 1;   // Error 
 initonly int mvar2; 
 initonly int mvar3; 
public: 
 static X(){ 10 
  svar3 = 3; 
  svar1 = 4;      // Ok: but overwrites the value 1 
  smf2(); 
 } 

 static void smf1() { 15 
  svar3 = 5;      // Error; not in a static constructor 
 } 

 static void smf2() { 
  svar2 = 5;      // Error; not in a static constructor 
 } 20 
 X() : mvar2(2) {     // Ok 
  mvar3 = 3;      // Ok 
  mf1(); 
 } 

 void mf1() { 25 
  mvar3 = 5;      // Error; not in an instance constructor 
 } 

 void mf2() { 
  mvar2 = 5;      // Error; not in an instance constructor 
 } 30 
}; 

end example] 

18.10.1 Using static initonly fields for constants 
A static initonly field is useful when a symbolic name for a constant value is desired. 

Add a description that for any value class we have to make the copy before calling member functions. 35 
[[#62]] 

18.10.2 Versioning of literal fields and static initonly fields 
Literal fields and initonly fields have different binary versioning semantics. When an expression references a 
literal field, the value of that member is obtained at compile-time, but when an expression references an 
initonly field, the value of that member is not obtained until run-time. [Example: Consider an application 40 
with the following source: 

namespace Program1 { 
 public ref struct Utils 
 { 
  static initonly int X = 1; 45 
  literal int Y = 1; 
 }; 
} 

namespace Program2 { 
 int main() { 50 
  Console::WriteLine(Program1::Utils::X); 
  Console::WriteLine(Program1::Utils::Y); 
 } 
} 

The Program1 and Program2 namespaces denote two source files that are compiled separately, each 55 
generating its own assembly. Because Program1::Utils::X is declared as a static initonly field, the value 
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output by Console::WriteLine is not known at compile-time, but rather is obtained at run-time. Thus, if 
the value of X is changed and Program1 is recompiled, Console::WriteLine will output the new value 
even if Program2 isn’t recompiled. However, because Y is a literal field, the value of Y is obtained at the 
time Program2 is compiled, and remains unaffected by changes in Program1 until Program2 is 
recompiled. end example] 5 

18.11 Destructors and finalizers 
Any native class or ref class can have a user-defined destructor. Such destructors are run at the times 
specified by the C++ Standard:  

• An Object of any type allocated on the stack is destroyed when that Object goes out of scope. 

• An Object of any type allocated in static storage is destroyed during program termination. 10 

• An Object that is allocated on the native heap using new, is destroyed when a delete is performed 
on a pointer to that Object. 

• An Object that is allocated on the CLI heap using gcnew, is destroyed when a delete is performed 
on a handle to that Object. 

• An Object that is a member of another Object is destroyed as part of the destruction of the enclosing 15 
Object. 

For the purposes of destruction, the native and CLI heaps are treated the same. The only difference between 
the two heaps is the automation and timing of memory reclamation. In the case of the native heap, memory 
is reclaimed manually at the same time as the delete, while in the case of the CLI heap, memory is 
reclaimed automatically during garbage collection whether or not there was a delete. In addition, Objects 20 
on the CLI heap are finalized, if a finalizer exists. 

Any ref class can have a user-defined finalizer. The finalizer is run zero or more times by the garbage 
collector, as specified by the CLI. 

Say more about finalizers (including Dispose/~T and Finalize/!T) and add some examples. [[#63]] 
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19. Native classes 

The accessibility of a non-nested native class can optionally be specified via a top-level-type-visibility 
(§12.4). 

A native class can optionally have a class-modifiers (§18.1.1). 

19.1 Functions 5 
A virtual member function in a native class can contain: 

• the function-modifier override, or an override-specifier, or both (§18.3.1). 

• the function-modifier sealed (§18.3.2). 

• the function-modifier abstract (§18.3.3). 

Member functions in a native class can optionally have a parameter-array (§18.3.6) in their parameter-10 
declaration-clause. 

19.2 Properties 
Support for properties in native classes. 

19.3 Static operators 
Native classes support static operators (§18.6). 15 

19.4 Instance constructors 

19.5 Delegates 
Native classes support delegate-definitions (§26); however, a native class shall not contain a field having a 
delegate type. 
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20. Ref classes 

A ref class is a data structure known to the CLI runtime. It can contain fields, function members, and nested 
types. 

20.1 Ref class declarations 
A reference-class-declaration introduces a declaration of a ref class. 5 

reference-class-declaration: 
ref-class-key   identifier   ; 

ref-class-key: 
ref░class 
ref░struct 10 

A ref░class declaration and ref░struct declaration differ in the default accessibility of members. The 
members of a ref░class are private by default. On the other hand, the members of a ref░struct are 
public by default. 

A reference-class-definition defines a ref class. 

reference-class-definition: 15 
attributesopt   top-level-type-visibilityopt   ref-class-key   identifier 
      class-modifiersopt   base-clauseopt   {   member-specificationopt   }   ; 

A reference-class-definition can include a set of attributes (§28), top-level-type-visibility (§12.4), class-
modifiers (§18.1.1), and base-clause (§20.1.1). 

20.1.1 Ref class base specification 20 
A reference-class-definition can include a base-clause specification, which defines the direct base class of 
the ref class, and the interfaces implemented by the ref class. 

If a base-specifier contains an access-specifier, that access-specifier shall be public. If a base-specifier 
does not contain an access-specifier, the access-specifier is implicitly public, even if the ref class is 
defined with the ref░class keyword. 25 

A ref class type shall have at most one class as its direct base, and that class type shall be a ref class type. If 
no direct base class is specified, the direct base class is assumed to be System::Object. 

The direct base class of a ref class type shall not be a native class, a sealed ref class, or any of the 
following types:  System::Array, System::Delegate, System::Enum, or System::ValueType. 

The direct base class of a ref class type shall be at least as accessible as the ref class type itself. 30 

If a reference-class-definition contains one or more base-specifiers that specify interface types, the ref class 
is said to implement those interface types. (Interface implementations are discussed further in §24.4.) Those 
interface types shall be at least as accessible as the ref class itself. 

20.2 Ref class members 
Add text to indicate the circumstances under which the following type modifiers shall be emitted, and point 35 
to each modifier's definition:[[#148]] 

• IsConst (i.e., data member involves a cv type). 

• IsImplicitlyDereferenced (i.e., has a reference type). 
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• IsLong (i.e., long/unsigned long/long double type). 

• IsSignUnspecifiedByte (i.e., plain char's sigedness). 

• IsVolatile (i.e., data member involves a cv type). 

The members of a ref class consist of all the members introduced by its member-specification and the 
members inherited from the direct base class. 5 

A member function of a ref class shall not have a cv-qualifier-seq.  

20.2.1 Variable initializers 
The definition of zero-initialize in the C++ Standard (§8.5/5) has been extended, as follows: 

 “To zero-initialize an object of type T means: 

• if T is a handle type, the object is set to the value of the null value constant converted to T; 10 

• if T is a scalar type other than a handle type, the object is set to the value of 0 (zero) converted to T; 

• …” 

The default initial value as described in the C++ Standard (§8.5/9) has been extended, as follows:  

“If no initializer is specified for a handle, the handle is always zero-initialized. Otherwise, if no 
initializer is specified for a nonstatic object, the object and its subobjects, if any, have an 15 
indeterminate initial value);” 

 [Rationale: Handles must always have a valid value, as they are used as roots by the garbage collector. If a 
handle had an invalid value, the runtime could fail. Thus, a handle that has not been initialized is always 
zeroed to prevent runtime failure. end rationale] 

Tracking references are treated like Standard C++ references—they are always initialized. 20 

20.3 Functions 
Add text to indicate the circumstances under which the following type modifiers shall be emitted, and point 
to each  modifier's definition: 

• IsBoxed i.e., passing a handle to a value type). 

• IsByValue (i.e., ref class type passed by value). 25 

• IsConst (i.e., pointer or reference to a const-qualified type). 

• IsExplicitlyDereferenced (i.e., interior_ptr as a parameter). 

• IsImplicitlyDereferenced (i.e.,  parameter is a reference). 

• IsLong (i.e., long/unsigned long/long double parameters). 

• IsExplicitlyDereferenced (i.e., pin_ptr as a parameter). 30 

• IsSignUnspecifiedByte (i.e., plain char's signedness). 

• IsUdtReturn (i.e., ref class type returned by value). 

• IsVolatile (i.e., pointer or reference to a volatile-qualified type). 

A virtual member function in a ref class can contain: 

• the function-modifier override, or an override-specifier, or both (§18.3.1). 35 

• the function-modifier sealed (§18.3.2). 

• the function-modifier abstract (§18.3.3). 
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Virtual function overrides in ref classes shall not have covariant return types. [Rationale: This is a restriction 
imposed by the CLI. end rationale]  

Member functions in a ref class can optionally have a parameter-array (§18.3.6) in their parameter-
declaration-clause. 

For each ref class, the implementation shall reserve several names (§18.2.3). A program is ill-formed if it 5 
declares a member whose name matches any of these reserved names. 

20.4 Properties 
Ref classes support properties (§18.4). 

For each property definition, the implementation shall reserve several names (§18.2.1). A program is ill-
formed if it declares a member whose name matches any of these reserved names. 10 

20.5 Events 
Ref classes support events (§18.5). 

For each event definition, the implementation shall reserve several names (§18.2.2). A program is ill-formed 
if it declares a member whose name matches any of these reserved names. 

20.6 Static operators 15 
Ref classes support static operators (§18.6). 

20.7 Instance constructors 

20.8 Static constructor 
Ref classes support static constructors (§18.8). 

20.9 Literal fields 20 
Ref classes support literal fields (§18.9). 

20.10 Initonly fields 
Ref classes support initonly fields (§18.10). 

20.11 Destructors and finalizers 
See §18.11. 25 

20.12 Delegates 
Ref classes support delegate-definitions (§26). 

A ref class is permitted to contain a field having a delegate type. 
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21. Value classes 

Introduce value classes -- Discuss the following: value classes are optimized for small data structures. As 
such, value classes do not allow inheritance from anything but interface classes. [[#66]] 

[Note: As described in §12.2.2, the fundamental types provided by C++/CLI, such as int, double, and 
bool, are, in fact, all value classes. Just as these predefined types are value classes, it is also possible to use 5 
value classes and operator overloading to implement new “primitive” types in this specification. Two 
examples of such types are given at the end of this clause (§??). end note] 

21.1 Value class declarations 
A value-class-declaration introduces a declaration of a value class. 

value-class-declaration: 10 
value-class-key   identifier   ; 

value-class-key: 
value░class 
value░struct 

A value░class declaration and value░struct declaration differ in the default accessibility of members. 15 
The members of a value░class are private by default. The members of a value░struct are public by 
default. 

A value-class-definition defines a value class. 

value-class-definition: 
attributesopt   top-level-type-visibilityopt   value-class-key   identifier 20 
      value-class-modifieropt   base-clauseopt   {   member-specificationopt   }   ; 

A value-class-definition can include a set of attributes (§28), top-level-type-visibility (§12.4), value-class-
modifier (§21.1.1), and base-clause(§21.1.2). 

21.1.1 Value class modifiers 
A value-class-definition can optionally include a modifier: 25 

value-class-modifier: 
sealed 

The sealed modifier is discussed in §18.1.1.2. All value classes are implicitly sealed (so the explicit use of 
this modifier in this context is redundant). 

21.1.2 Value class base specification 30 
A value-class-definition can include a base-clause specification, which defines the interfaces implemented 
by the value class. Can the base class System::ValueType redundantly be specified? No [[Ed.]] 

If a base-specifier contains an access-specifier, that access-specifier shall be public. If a base-specifier 
does not contain an access-specifier, the access-specifier is implicitly public, even if the value class is 
defined with the value░class keyword. 35 

If a value-class-definition contains one or more base-specifiers that specify interface types, the value class is 
said to implement those interface types. (Interface implementations are discussed further in §24.4.) Those 
interface types shall be at least as accessible as the value class itself. 
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21.2 Value class members 
The members of a value class include all the members introduced by its member-specification and the 
members inherited from the type System::ValueType. 

A member function of a value class shall not have a cv-qualifier-seq. 

Except for the differences noted in §21.3, the descriptions of class members provided in §20.2 through 5 
§20.10, and §20.12 apply to value class members as well. 

21.3 Ref class and value class differences 
To be added. [[Ed]] 

21.4 Simple value classes 
Is this subclause intended to do the same thing as §12.2.2.1? If so, which one shall we keep? [[Ed]] 10 

21.4.1 Constructors 
Add words about instance constructors and static constructor.[[#150]] 

Value classes cannot have SMFs (specifically, default constructor, copy constructor, assignment operator, 
destructor, or finalizer. Need to add specification for this along with rationale. [[#67]] 
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22. Mixed classes 

This clause is reserved for possible future use. Consider writing text for here. [[#68]] 
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23. Arrays 

An Array is a data structure that contains a number of variables, which are accessed through computed 
indices. The variables contained in an Array, also called the elements of the Array, are all of the same type, 
and this type is called the element type of the Array. 

An Array in C++/CLI differs from a native Array (§8.3.4) in that the former is allocated on the CLI heap, 5 
and can have a rank other than one. The rank determines the number of indices associated with each Array 
element. The rank of an Array is also referred to as the dimensions of the Array. An Array with a rank of 
one is called a single-dimensional Array, and an Array with a rank greater than one is called a multi-
dimensional Array.  

Throughout this Standard, the term Array is used to mean an array in C++/CLI. A C++-style array is 10 
referred to as a native array or, more simply, array, whenever the distinction is needed. 

Each dimension of an Array has an associated length, which is an integral number greater than or equal to 
zero. The dimension lengths are not part of the type of the Array, but, rather, are established when an 
instance of the Array type is created at run-time. The length of a dimension determines the valid range of 
indices for that dimension: For a dimension of length N, indices can range from 0 to N – 1, inclusive. The 15 
total number of elements in an Array is the product of the lengths of each dimension in the Array. If one or 
more of the dimensions of an Array have a length of zero, the Array is said to be empty. 

The element type of an Array can be any type, including an Array type. 

23.1 Array types 
An Array type is declared using a pseudo-template ref class with the following declaration: 20 

namespace cli { 
 template<typename T, int rank = 1> 
 ref class array : Array { 
 }; 
} 25 

The class is a pseudo-template because aspects of an Array type cannot be implemented in a library using 
the facilities of the language. An array-type is any specialization of the cli::array  pseudo-template 
class. For example: 

array<int>^ arr1D = gcnew array<int>(10); 
array<int, 3>^ arr3D = gcnew array<int, 3>(10, 20, 30); 30 

23.1.1 The System::Array type 
The System::Array type is the abstract base type of all Array types. An implicit reference conversion 
(§??) exists from any Array type to System::Array, and an explicit reference conversion (§??) exists from 
System::Array to any Array type. Note that System::Array is not itself an array-type. Rather, it is a 
reference-class-type from which all array-type are derived. 35 

Is reference conversion the correct term? [[#118]] 

23.2 Array creation 
Array instances are created by array-creation-expressions (§??) or by field or local variable declarations that 
include an array-initializer (§23.6). 

When an Array instance is created, the rank and length of each dimension are established and then remain 40 
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an 
existing Array instance, nor is it possible to resize its dimensions. 
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An Array instance created by an array-creation-expression is always of an Array type. The 
System::Array type is an abstract type, so it cannot be instantiated. 

Elements of Arrays created by array-creation-expressions are always initialized to their default value (§??). 

23.3 Array element access 
Array elements are accessed using element-access expressions (§??) of the form A[I1, I2, …, IN], 5 
where A is an expression having an Array type, and each IX is an expression of integral type or a type that 
can be implicitly converted to an integral type. 

An element-access expression differs from subscript expressions in Standard C++ (§5.2.1) in that in the 
former case, commas are not treated as operators. Rather, commas separate individual expressions that 
respectively match the dimension of the Array being accessed. However, parentheses can be used to force 10 
the use of the comma operator in an expression. The result of an Array element-access is a variable, namely 
the Array element selected by the indices. Add examples. [[Ed]] 

The elements of an Array can be enumerated using a for each statement (§16.2.1). 

23.4 Array members 
Every Array type inherits the members declared by the type System::Array. In addition, Arrays have 15 
iterators compatible with Standard C++’s template library. 

Provide details for Array members. [[#73]] 

23.5 Array covariance 
For any two types A and B, if an implicit reference conversion (§??) or explicit reference conversion (§??) 
exists from A to B, then the same reference conversion also exists from the Array type array<A, R> to the 20 
Array type array<B, R>, where R is any given rank-specifier (but is the same for both Array types). This 
relationship is known as array covariance. In particular, Array covariance means that a value of an Array 
type array<A, R> might actually be a reference to an instance of an Array type array<B, R>, provided 
an implicit reference conversion exists from B to A. 

Because of Array covariance, assignments to Arrays where the elements are ref classes will include a run-25 
time check, which ensures that the value being assigned to the Array element is actually of a permitted type 
(§??). 

Array covariance does not extend to boxing conversions. For example, no conversion exists that permits an 
array<int> to be treated as an array<Object^> or array<int^>. 

Array covariance really only applies to handles of Arrays, not direct Arrays – in other words, do Arrays 30 
have copy constructors? [[#74]] 

23.6 Array initializers 
To be added. [[#76]] 
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24. Interfaces 

An interface defines a set of virtual members that an implementing class must define. An interface can also 
require an implementing class to implement other interfaces. A class can implement multiple interfaces. 

The interface does not provide a definition for any of its members. Instead, classes that implement the 
interface supply these definitions. 5 

24.1 Interface declarations 
An interface-class-declaration introduces a declaration of an interface. 

interface-class-declaration: 
interface-class-key   identifier   ; 

interface-class-key: 10 
interface░class 

interface░struct 

An interface░class and interface░struct declaration are equivalent. The default accessibility of 
members within an interface is public, and the accessibility cannot be changed. 

An interface-class-definition defines an interface. 15 

interface-class-definition: 
attributesopt   top-level-type-visibilityopt   interface-class-key   identifier 
      interface-class-basesopt   {   member-specificationopt   }   ; 

An interface-class-definition can include a set of attributes (§28), top-level-type-visibility (§12.4), and 
interface-class-bases (§24.1.1). 20 

24.1.1 Interface base specification 
An interface-class-definition can include an interface-class-bases specification, which defines the explicit 
base interfaces of the interface being defined. 

interface-class-bases: 
:   interface-class-base-list 25 

interface-class-base-list: 
publicopt   interface-type 
interface-class-base-list   ,   publicopt   interface-type 

The explicit base interfaces of an interface shall be at least as accessible as the interface itself (§??). [Note: 
A program is ill-formed if it specifies a private interface in the interface-class-base-list of a public 30 
interface. end note] 

The base interfaces of an interface are the explicit base interfaces and their base interfaces. That is, the set 
of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base 
interfaces, and so on. 

An interface inherits all members of its base interfaces. 35 

A type that implements an interface also implicitly implements all that interface’s base interfaces. 

24.2 Interface members 
The members of an interface are the members inherited from its base interfaces, and the members declared 
by the interface itself. 
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An interface definition can declare zero or more members. The members of an interface shall be instance 
functions, instance properties, instance events, or nested types of any kind. An interface cannot contain 
fields, operators, constructors, destructors, finalizers, or static members of any kind. 

All interface members have public access. pickup the restrictions from page 333 

All members declared in an interface are implicitly abstract. However, those members can redundantly 5 
contain the virtual and/or abstract modifiers, and/or a pure-specifier. [Example: 

interface class I { 
 property int Size { /*…*/ }; // (implicit) abstract property 
 virtual property string Name abstract = 0 { /*…*/ }; 
           // “virtual”, “abstract” and “= 0” 10 
           // permitted but are redundant 
}; 

end example] 

24.2.1 Interface functions 
A function in an interface is declared exactly the same way as a function in a class. An interface function 15 
declaration is not permitted to specify a function definition; therefore, the declaration always ends with a 
semicolon. 

If the function is declared virtual, it shall also be declared abstract, and vice versa. 

Member functions in an interface class can optionally have a parameter-array (§18.3.6) in their parameter-
declaration-clause. 20 

For each interface class, the implementation shall reserve several names (§18.2.3). A program is ill-formed 
if it declares a member whose name matches any of these reserved names. 

24.2.2 Interface properties 
Interface classes support properties (§18.4). 

The accessor functions of an interface property definition correspond to the accessor functions of a class 25 
property definition (§18.4.2), except that in an interface the accessor functions must be declarations that are 
not definitions. Thus, the accessor functions simply indicate whether the property is read-write, read-only, or 
write-only.  

 [Example: 
interface class I { 30 
 property int Size { int get(); void set(int value); };  
 property bool default[int j] { bool get(int); 
   void set(int k, bool value); };  
}; 

end example] 35 

A property-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification) 
declares a trivial scalar property (§18.4.4). Such a declaration declares an abstract virtual property with get 
and set accessor functions. 

An accessor function with an inline definition in an interface is ill-formed. 

For each property definition, the implementation must reserve several names (§18.2.1). A program is ill-40 
formed if it declares a member whose name matches any of these reserved names. 

24.2.3 Interface events 
Interface classes support events (§18.5). 
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The accessor functions of an interface event declaration correspond to the accessor functions of a class event 
definition (§18.5.2), except that the accessor functions must be function declarations that are not function 
definitions. 

As events in interfaces cannot have a raise accessor function (because everything in an interface is public), 
such events cannot be invoked using function call syntax. 5 

For each event definition, the implementation must reserve several names (§18.2.2). A program is ill-formed 
if it declares a member whose name matches any of these reserved names. 

24.2.4 Delegates 
Interface classes support delegate-definitions (§26). 

24.2.5 Interface member access 10 
Do we need this subclause? [[Ed]] 

24.3 Fully qualified interface member names 

24.4 Interface implementations 
Interfaces can be implemented by classes. To indicate that a class implements an interface, the interface 
identifier is included in the base class list of the class. [Example: 15 

interface class ICloneable { 
 Object^ Clone(); 
}; 

interface class IComparable { 
 int CompareTo(Object^ other); 20 
}; 

ref class ListEntry : ICloneable, IComparable { 
public: 
 Object^ Clone() {…} 
 int CompareTo(Object^ other) {…} 25 
}; 

end example] 

An interface in the base class list is always and implicitly inherited public. The public keyword is 
allowed but not required as a base class access specifier for an interface. A program is ill-formed if it 
contains the private, protected, or virtual keywords as base class specifiers for an interface. 30 

A class that implements an interface also implicitly implements all of the interface’s base interfaces. This is 
true even if the class doesn’t explicitly list all base interfaces in the base class list. [Example: 

interface class IControl { 
 void Paint(); 
}; 35 
interface class ITextBox : IControl { 
 void SetText(String^ text); 
}; 

ref class TextBox : ITextBox { 
public: 40 
 void Paint() {…} 
 void SetText(String^ text) {…} 
}; 

Here, class TextBox implements both IControl and ITextBox. end example] 

Address what happens when a ref class does not implement an interface function (and what happens when a 45 
base class has a non-virtual function with the same name). [[#76]] 
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25. Enums 

An enum type is a distinct type with named constants. C++/CLI includes two kinds of enum types: native 
enums that are compatible with Standard C++ enums (§7.2), and CLI enums, which are new, and that are 
preferred for frameworks programming. Native and CLI enum types are collectively referred to as enum 
types. A native enum can only be generated by a C++ compiler. To languages other than C++, a native enum 5 
and a CLI enum appear to be exactly the same; they both cause the same metadata to be generated, and they 
both inherit from System::Enum (§25.3). 

[Example: The example 
public enum Suit : short { Hearts = 1, Spades, Clubs, Diamonds}; 

defines a publicly accessible native enum type named Suit with enumerators Hearts, Spades, Clubs, and 10 
Diamonds, whose values are 1, 2, 3, and 4, respectively. The underlying type for Suit is short int.  

The example 
enum class Direction { North, South = 10, East, West = 20 }; 

defines a CLI enum type named Direction with enumerators North, South, East, and West, whose 
values are 0, 10, 11, and 20, respectively. By default, the underlying type for Direction is int.end 15 
example] 

25.1 Native enums 
A native enum is an enum type.  

Enumerations as defined by the C++ Standard (§7.2) continue to have exactly the same meaning. Native 
enums have extensions to allow the following: declaration of the underlying type, the placement of attributes 20 
on enumerators, and access to enumerators within the scope of the enum-name. 

25.1.1 Native enum declarations 
The enum-specifier production in the C++ standard (§7.2) has been extended, as follows: 

enum-specifier: 
attributesopt   top-level-type-visibilityopt   enum   identifieropt   enum-baseopt   {   enumerator-listopt   25 
} 

An enum-specifier can optionally include a set of attributes (§28), top-level-type-visibility (§12.4), enum-
base (§25.1.3), and enumerator-list. 

25.1.2 Native enum visibility 
A non-nested native enum can optionally specify the accessibility of the native enum by using a top-level-30 
type-visibility of public or private (§12.4). 

25.1.3 Native enum underlying type 
As in Standard C++, each enum type has a corresponding underlying type, which shall be able to represent 
all the enumerator values defined in the enumeration. Unlike Standard C++, C++/CLI allows that underlying 
type to be specified. 35 

enum-base: 
:   ??-type[[#152]] 

The underlying type of a native enum can be explicitly declared via enum-base, as one of the following 
types: bool, char, unsigned char, signed char, short, unsigned short, int, unsigned int, 
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long long, unsigned long long, float, or double. wchar_t cannot be used as an underlying type. If no 
underlying type is given for a native enum, the rules specified in the C++ Standard (§7.2) apply. 

25.1.4 Native enum members 
The enumerator production in the C++ Standard (§7.2) has been extended, as follows: 

enumerator: 5 
attributesopt   identifier 

The values assigned to enumerators are either explicit or implicit, as defined by the C++ Standard when the 
underlying type is an integral value. 

25.2 CLI enums 
A CLI enum is an enum type. All enumerations generated by CLI-based languages other than C++ are CLI 10 
enums. CLI enums are different from native enums in that the names of the former’s enumerators are only 
found by looking in the scope of the named CLI enum, and that integral promotion as defined by the C++ 
standard (§4.5) do not apply to a CLI enum. 

25.2.1 CLI enum declarations 
A cli-enum-declaration introduces a declaration of a CLI enum type. 15 

cli-enum-declaration: 
cli-enum-class-key   identifier   ; 

cli-enum-class-key: 
enum░class 

enum░struct 20 

An enum░class and enum░struct declaration are equivalent. 

A cli-enum-definition defines a CLI enum. 

cli-enum-definition: 
attributesopt  top-level-type-visibilityopt  cli-enum-class-key  identifier  enum-baseopt 
  {  enumerator-listopt  }  ; 25 

A cli-enum-definition can optionally include a set of attributes (§28), top-level-type-visibility (§12.4), cli-
enum-class-key, enum-base (§25.1.3), and enumerator-list. 

25.2.2 CLI enum visibility 
A non-nested CLI enum can optionally specify the accessibility of the CLI enum by using a top-level-type-
visibility of public or private (§12.4). 30 

25.2.3 CLI enum underlying type 
A CLI enum can explicitly declare an underlying type, following the same rules for explicit underlying type 
as native enums (§25.1.3). A CLI enum definition that does not explicitly declare an underlying type has an 
underlying type of int. 

25.2.4 CLI enum members 35 
See §25.1.1. 

25.2.5 CLI enum values and operations 
Each CLI enum type defines a distinct type; an explicit enumeration conversion is required to convert 
between a CLI enum type and an integral type, or between two enum types. The set of values that a CLI 
enum type can take on is not limited by its enum members. In particular, any value of the underlying type of 40 
an enum can be cast to the enum type, and is a distinct valid value of that enum type. 
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CLI enumerators have the type of their containing enum type (except within other enumerator initializers). 
The value of an enumerator declared in enum type E with associated value v is static_cast<E>(v). 

The following operators can be used on values of CLI enum types: ==, !=, <, >, <=, >=, +, -, ^, &, |, ~, ++, 
--, sizeof. Some members in this set require an underlying integral type.  

25.3 The System::Enum type 5 
The type System::Enum is the abstract base class of both native and CLI enum types (this is distinct and 
different from the underlying type of the enum type), and the members inherited from System::Enum are 
available in any enum type. A boxing conversion (§??) exists from any enum type to System::Enum, and 
an unboxing conversion (§??) exists from System::Enum to any enum type. 

Note that System::Enum is not itself an enum type; it is a value class type from which all enum types are 10 
derived. The type System::Enum inherits from the type System::ValueType, which, in turn, inherits 
from System::Object. 
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26. Delegates 

A delegate definition defines a class that is derived from the class System::Delegate. A delegate instance 
encapsulates one or more member functions in an invocation list, each of which is referred to as a callable 
entity. For instance functions, a callable entity consists of an instance and a member function on that 
instance. For static functions, a callable entity consists of just a member function. 5 

Given a delegate instance and an appropriate set of arguments, one can invoke all of that delegate instance’s 
functions with that set of arguments.  

[Note: Unlike a pointer to member function, a delegate instance can be bound to members of arbitrary 
classes, as long as the function signatures are compatible (§26.1) with the delegate’s type. This makes 
delegates suited for “anonymous” invocation. end note] 10 

26.1 Delegate definitions 
A delegate-definition is a type-declaration[[Ed.]] (§??) that defines a new delegate type. 

delegate-definition: 
attributesopt    top-level-type-visibilityopt   delegate   decl-specifier-seqopt   identifier 
  (   decl-specifier-seq   )   ; 15 

Redo this grammar. [[#78]] 

A delegate-definition can include a set of attributes (§28).  

The return type of each of the functions that can be encapsulated by the delegate is indicated by return-type. 

A non-nested delegate can optionally specify the accessibility of the class by using a top-level-type-visibility 
of public or private (§12.4). 20 

The delegate’s type name is identifier. 

The optional delegate-parameter-list specifies the parameters of the delegate, and return-type indicates the 
return type of the delegate. The parameter list of a delegate corresponds to that of a function, except that at 
least one parameter must be specified. [Note: no C-style “vararg” argument is allowed, nor is a parameter 
array. end note] 25 

A function and a delegate type are compatible if both of the following are true: 

• They have the same number of parameters, with the same types, in the same order, with the same 
parameter modifiers. 

• Their return-types are the same. 

Delegate types are name equivalent, not structurally equivalent. Specifically, two different delegate types 30 
that have the same parameter lists and return type are considered different delegate types. [Example: 

delegate int D1(int i, double d); 

ref struct A { 
 static int M1(int a, double b) {…} 
}; 35 
ref struct B { 
 delegate int D2(int c, double d); 
 static int M2(int f, double g) {…} 
 static void M3(int k, double l) {…} 
 static int M4(int g) {…} 40 
 static void M5(int g) {…} 
}; 
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D1^ d1;  
d1 =  gcnew D1(&A::M1); // ok 
d1 += gcnew D1(&B::M2); // ok  
d1 += gcnew D1(&B::M3); // error; types are not compatible 
d1 += gcnew D1(&B::M4); // error; types are not compatible 5 
d1 += gcnew D1(&B::M5); // error; types are not compatible 

B::D2^ d2;  
d2 =  gcnew B::D2(&A::M1); // ok 
d2 += gcnew B::D2(&B::M2); // ok  
d2 += gcnew B::D2(&B::M3); // error; types are not compatible 10 
d2 += gcnew B::D2(&B::M4); // error; types are not compatible 
d2 += gcnew B::D2(&B::M5); // error; types are not compatible 

d1 = d2; // error; different types 

end example] 

The only way to define a delegate type is via a delegate-definition. A delegate type is a class type that is 15 
derived from System::Delegate. Delegate types are implicitly sealed, so it is not permissible to derive 
any type from a delegate type. It is also not permissible to derive a non-delegate class type from 
System::Delegate. System::Delegate is not itself a delegate type; it is a class type from which all 
delegate types are derived. 

C++/CLI provides syntax for delegate instantiation and invocation. Except for instantiation, any operation 20 
that can be applied to a class or class instance can also be applied to a delegate class or instance, 
respectively. In particular, it is possible to access members of the System::Delegate type via the usual 
member access syntax. 

The set of functions encapsulated by a delegate instance is called an invocation list. When a delegate 
instance is created (§26.2) from a single function, it encapsulates that function, and its invocation list 25 
contains only one entry. However, when two non-nullptr delegate instances are combined, their 
invocation lists are concatenated—in the order left operand then right operand—to form a new invocation 
list, which contains two or more entries. 
Delegates are combined using the binary + (§15.8.1) and += operators (§15.18). A delegate can be removed 
from a combination of delegates, using the binary - (§15.8.2) and -= operators (§15.18). Delegates can be 30 
compared for equality (§15.11.2).  

An invocation list can never contain a sole or embedded entry that encapsulates nullptr. Any attempt to 
combine a non-nullptr delegate with a nullptr delegate, or vice versa, results in the handle to the non-
nullptr delegate's being returned; no new invocation list is created. Any attempt to remove a nullptr 
delegate from a non-nullptr delegate, results in the handle to the non-nullptr delegate's being returned; 35 
no new invocation list is created. 

Once it has been created, an invocation list cannot be changed. Combination and removal operations 
involving two non-nullptr delegates result in the creation of new invocation lists. A delegate list can never 
be empty; either it contains at least one entry, or the list doesn’t exist.  

An invocation list can contain duplicate entries, in which case, invocation of that list results a duplicate 40 
entry's being called once per occurance.  

When a list of entries is removed from an invocation list, the first occurance of the former list found in the 
latter list is the one removed. If no such list is found, the result is the list being searched. 

[Example: The following example shows the instantiation of a number of delegates, and their corresponding 
invocation lists: 45 

delegate void D(int x); 
ref struct Test { 
 static void M1(int i) {…} 
 static void M2(int i) {…} 
}; 50 
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int main() {  
 D^ cd1 = gcnew D(&Test::M1);  // M1 
 D^ cd2 = gcnew D(&Test::M2);  // M2 
 D^ cd3 = cd1 + cd2;     // M1 + M2 
 D^ cd4 = cd3 - cd1;      // M2 5 
} 

end example] 

26.2 Delegate instantiation 
Each delegate type shall have two constructors, as follows: 

A constructor taking one argument, del-con-arg1, to create a delegate from a static member function or a 10 
namespace scope function. Here del-con-arg1 shall be the address of a static member function or a 
namespace scope function that is compatible with the type of the delegate being instantiated. 

A constructor taking two arguments, del-con-arg2 and del-con-arg3, respectively. This is used to create a 
delegate to a instance function. Here, del-con-arg2 shall be a reference to an Object instance and del-con-
arg3 shall be the address of an instance function directly defined in that instance’s type. 15 

[Example: 
delegate void D(int x); 
ref struct Test { 
 static void M1(int i) {…} 
 void M2(int i) {…} 20 
}; 

int main() {  
 D^ cd1 = gcnew D(&Test::M1);  // static function 
 Test^ t = gcnew Test; 
 D^ cd2 = gcnew D(t, &Test::M2); // instance function 25 
} 

end example] 

Once instantiated, delegate instances always refer to the same target Object and function. [Note: Remember, 
when two delegates are combined, or one is removed from another, a new delegate results with its own 
invocation list; the invocation lists of the delegates combined or removed remain unchanged. end note] 30 

When a delegate is created from a member function name, the formal parameter list and return type of the 
delegate determine which of the overloaded functions to select. [Example: In the example 

delegate double DoubleFunc(double x); 

ref struct A { 
 static float Square(float x) { 35 
  return x * x; 
 } 

 static double Square(double x) { 
  return x * x; 
 } 40 
}; 

int main() { 
 DoubleFunc^ f = gcnew DoubleFunc(&A::Square); 
} 

the variable f is initialized with a delegate that refers to the second Square function because that function 45 
exactly matches the formal parameter list and return type of DoubleFunc. Had the second Square function 
not been present, the program would have been ill-formed. end example] 

26.3 Delegate invocation 
Given delegate void D(), the function call D() is shorthand for the call D->Invoke(). Invocation of a 
delegate has the semantics specified for the Invoke member in the CLI Standard. [Note: Here is a summary 50 
of what that standard requires:  
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When a delegate instance whose invocation list contains one entry, is invoked, it invokes the one function 
with the same arguments it was given, and returns the same value as the referred to function. If an exception 
occurs during the invocation of such a delegate, and that exception is not caught within the function that was 
invoked, the search for an exception catch clause continues in the function that called the delegate, as if that 
function had directly called the function to which that delegate referred. 5 

Invocation of a delegate instance whose invocation list contains multiple entries, proceeds by invoking each 
of the functions in the invocation list, synchronously, in order. Each function so called is passed the same set 
of arguments as was given to the delegate instance. If such a delegate invocation includes parameters passed 
by non-const address, reference, or handle, each function invocation will occur with the address, reference, 
or handle to the same variable; changes to that variable by one function in the invocation list will be visible 10 
to functions further down the invocation list. If the delegate invocation includes a return value, its final value 
will come from the invocation of the last delegate in the list. If an exception occurs during processing of the 
invocation of such a delegate, and that exception is not caught within the function that was invoked, the 
search for an exception catch clause continues in the function that called the delegate, and any functions 
further down the invocation list are not invoked. end note] 15 

Attempting to invoke a delegate instance whose value is nullptr results in an exception of type 
System::NullReferenceException. 
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27. Exceptions 

To be added. (Cover unification of CLI and Standard C++ exception-handling models.) [[#79]] 

27.1 Common exception classes 
The following exceptions are thrown by certain C++/CLI operations. 

Exception Name Description 
System::NullReferenceException Thrown when a null-valued handle is dereferenced. 

System::TypeInitializationException 
Thrown when a static constructor throws an 
exception, yet no catch clauses exists to catch it. 

 5 
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28. Attributes 

The CLI enables programmers to invent new kinds of declarative information, called attributes.  
Programmers can then attach attributes to various program entities, and retrieve attribute information in a 
run-time environment. [Note: For instance, a framework might define a HelpAttribute attribute that can 
be placed on certain program elements (such as classes and functions) to provide a mapping from those 5 
program elements to their documentation. end note] 

Attributes are defined through the declaration of attribute classes (§28.1), which can have positional and 
named parameters (§28.1.2). Attributes are attached to entities in a C++ program using attribute 
specifications (§28.2), and can be retrieved at run-time as attribute instances (§28.3). 

28.1 Attribute classes 10 
A class that derives from the abstract ref class System::Attribute, whether directly or indirectly, is an 
attribute class.  The declaration of an attribute class defines a new kind of attribute that can be placed on a 
declaration. [Note: By convention, attribute classes are named with a suffix of Attribute. Uses of an 
attribute can either include or omit this suffix. end note] 

28.1.1 Attribute usage 15 
The attribute System::AttributeUsageAttribute (§28.4.1) is used to describe how an attribute class 
can be used. [Note: When the name of an attribute type ends in the suffix Attribute, the suffix can be 
omitted when it is being used in an attribute and there is no other attribute having the name without the 
suffix. See §??. end note] 

AttributeUsage has a positional parameter (§28.1.2) that enables an attribute class to specify the kinds of 20 
declarations on which it can be used. [Example: The example 

[AttributeUsage(AttributeTargets::Class | AttributeTargets::Interface)] 
public ref class SimpleAttribute : Attribute {}; 

defines an attribute class named SimpleAttribute that can be placed on reference-class-declarations and 
interface-class-declarations only. The example  25 

[Simple] ref class Class1 {…}; 
[Simple] interface class Interface1 {…}; 

shows several uses of the Simple attribute. Although this attribute is defined with the name 
SimpleAttribute, when this attribute is used, the Attribute suffix can be omitted, resulting in the short 
name Simple. Thus, the example above is semantically equivalent to the following 30 

[SimpleAttribute] ref class Class1 {…}; 
[SimpleAttribute] interface class Interface1 {…}; 

end example]  

AttributeUsage has a named parameter (§28.1.2), called AllowMultiple, which indicates whether the 
attribute can be specified more than once for a given entity. If AllowMultiple for an attribute class is true, 35 
then that class is a multi-use attribute class,  and can be specified more than once on an entity. If 
AllowMultiple for an attribute class is false or it is unspecified, then that class is a single-use attribute 
class,  and can be specified at most once on an entity. 

[Example: The example 
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[AttributeUsage(AttributeTargets::Class, AllowMultiple = true)] 
public ref class AuthorAttribute : Attribute { 
 String^ name; 
public: 
 AuthorAttribute(String^ name) : name(name) { } 5 
 property String^ Name { String^ get() { return name;} } 
}; 

defines a multi-use attribute class named AuthorAttribute. The example  
[Author("Brian Kernighan"), Author("Dennis Ritchie")]  
ref class Class1 {…}; 10 

shows a class declaration with two uses of the Author attribute. end example] 

AttributeUsage has another named parameter (§28.1.2), called Inherited, which indicates whether the 
attribute, when specified on a base class, is also inherited by classes that derive from that base class. If 
Inherited for an attribute class is true, then that attribute is inherited. If Inherited for an attribute class 
is false then that attribute is not inherited. If it is unspecified, its default value is true. 15 

An attribute class X not having an AttributeUsage attribute attached to it, as in 
ref class X : Attribute { … }; 

is equivalent to the following: 
[AttributeUsage(AttributeTargets::All, AllowMultiple = false, 
Inherited = true)] ref class X : Attribute { … }; 20 

28.1.2 Positional and named parameters 
Attribute classes can have positional parameters and named parameters.  Each public instance constructor 
for an attribute class defines a valid sequence of positional parameters for that attribute class. Each non-
static public read-write field and property for an attribute class defines a named parameter for the attribute 
class. 25 

[Example: The example 
[AttributeUsage(AttributeTargets::Class)] 
public ref class HelpAttribute : Attribute { 
public: 

 HelpAttribute(String^ Url) { // Url is a positional parameter 30 
  … 
 } 

 property String^ Topic {  // Topic is a named parameter 
  String^ get() {…} 
  void set(String^ value) {…} 35 
 } 

 property String^ Url { String^ get() {…} } 
}; 

defines an attribute class named HelpAttribute that has one positional parameter (String^ Url) and 
one named parameter (String^ Topic). Although it is non-static and public, the property Url does not 40 
define a named parameter, since it is not read-write.  

This attribute class might be used as follows: 
[Help("http://www.mycompany.com/…/Class1.htm")] 
ref class Class1 { 
}; 45 
[Help("http://www.mycompany.com/…/Misc.htm", Topic ="Class2")] 
ref class Class2 { 
}; 

end example] 

Neither a type parameter (§30.1.1) nor an open constructed type (§30.2.1) shall be an argument to the 50 
constructor of a custom attribute. 
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28.1.3 Attribute parameter types 
The types of positional and named parameters for an attribute class are limited to the attribute parameter 
types, which are: 

• One of the following types: bool, char, wchar_t, short, int, long, long long, float, 
double, and System::String^. 5 

• The type System::Object^. 

• The type System::Type^. 

• An enum class type, provided it has public accessibility and the types in which it is nested (if any) 
also have public accessibility. 

• Single-dimensional cli::arrays of the above types. 10 

28.2 Attribute specification 
Attribute specification is the application of a previously defined attribute to a declaration. An attribute is a 
piece of additional declarative information that is specified for a declaration. Attributes can be specified at 
file scope (to specify attributes on the containing assembly) and for type-declarations (§??), class member-
declarations, struct member-declarations, interface member-declarations, enum member-declarations, 15 
accessor-specification (§??), and formal-parameters (§??). 

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets, which 
surround a comma-separated list of one or more attributes. The order in which attributes are specified in 
such a list, and the order in which sections attached to the same program entity are arranged, is not 
significant. For instance, the attribute specifications [A][B], [B][A], [A, B], and [B, A] are equivalent. 20 

global-attributes: 
global-attribute-sections   ; 

global-attribute-sections: 
global-attribute-section 
global-attribute-sections  global-attribute-section 25 

global-attribute-section: 
[   global-attribute-target   :   attribute-list   ] 

global-attribute-target: 
assembly 
module 30 

attributes: 
attribute-sections 

attribute-sections: 
attribute-section 
attribute-sections   attribute-section 35 

attribute-section: 
[   attribute-target-specifieropt   attribute-list   ] 

attribute-target-specifier: 
attribute-target   : 
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attribute-target: 
class 

constructor 
delegate 
enum 5 
event 
field 
interface 
method 
parameter 10 
property 
returnvalue 
struct 

attribute-list: 
attribute   , opt 15 
attribute   ,   attribute-list 

attribute: 
attribute-name   attribute-argumentsopt 

attribute-name: 
 type-name 20 

attribute-arguments: 
(   positional-argument-listopt   ) 
(   positional-argument-list   ,   named-argument-list   ) 
(   named-argument-list   ) 

positional-argument-list: 25 
positional-argument 
positional-argument-list   ,   positional-argument 

positional-argument: 
attribute-argument-expression 

named-argument-list: 30 
named-argument 
named-argument-list   ,   named-argument 

named-argument: 
identifier   =   attribute-argument-expression 

attribute-argument-expression: 35 
expression 

An attribute consists of an attribute-name and an optional list of positional and named arguments. The 
positional arguments (if any) precede the named arguments. A positional argument consists of an attribute-
argument-expression; a named argument consists of a name, followed by an equal sign, followed by an 
attribute-argument-expression, which, together, are constrained by the same rules as simple assignment. The 40 
order of named arguments is not significant. 

[Note: A trailing comma is allowed in a global-attribute-section and an attribute-section; this provides 
flexibility in adding or deleting members from the list, and simplifies machine generation of such lists. end 
note] 

[Note: In the CLI, functions are called methods, so the target specifier for a function is method. end note] 45 

The attribute-name identifies an attribute class. type-name shall refer to an attribute class. [Example: The 
example 

ref class Class1 {}; 
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[Class1] ref class Class2 {}; // Error 

results in an ill-formed program because it attempts to use Class1 as an attribute class when Class1 is not 
an attribute class. end example] 

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly 
specify the target by including an attribute-target-specifier.  When an attribute is placed at file scope, a 5 
global-attribute-target is required. In all other locations, a reasonable default is applied, but an attribute-
target-specifier can be used to affirm or override the default in certain ambiguous cases (or just to affirm the 
default in non-ambiguous cases).  Thus, typically, attribute-target-specifiers can be omitted. The potentially 
ambiguous contexts are resolved as follows:  

• An attribute specified on a delegate declaration can apply either to the delegate being declared or to 10 
its return value. In the absence of an attribute-target-specifier, the attribute applies to the delegate. 
The presence of the delegate attribute-target-specifier indicates that the attribute applies to the 
delegate; the presence of the returnvalue attribute-target-specifier indicates that the attribute 
applies to the return value. 

• An attribute specified on a function declaration can apply either to the function being declared or to 15 
its return value. In the absence of an attribute-target-specifier, the attribute applies to the function. 
The presence of the method attribute-target-specifier indicates that the attribute applies to the 
function; the presence of the returnvalue attribute-target-specifier indicates that the attribute 
applies to the return value. 

• An attribute specified on an operator declaration can apply either to the operator being declared or to 20 
its return value. In the absence of an attribute-target-specifier, the attribute applies to the operator. 
The presence of the method attribute-target-specifier indicates that the attribute applies to the 
operator; the presence of the returnvalue attribute-target-specifier indicates that the attribute 
applies to the return value. 

• An attribute specified on a trivial event declaration can apply to the event being declared, to the 25 
associated field (if the event is not abstract), or to the associated add and remove functions. In the 
absence of an attribute-target-specifier, the attribute applies to the event declaration. The presence 
of the event attribute-target-specifier indicates that the attribute applies to the event; the presence 
of the field attribute-target-specifier indicates that the attribute applies to the field; and the 
presence of the method attribute-target-specifier indicates that the attribute applies to the functions. 30 

An implementation can accept other attribute target specifiers, the purpose of which is implementation-
defined. However, an implementation that does not recognize such a target, shall issue a diagnostic. 

By convention, attribute classes are named with a suffix of Attribute. An attribute-name can either 
include or omit this suffix. When attempting to resolve an attribute reference from which the suffix has been 
omitted, if an attribute class is found both with and without this suffix, an ambiguity is present, and the 35 
program is ill-formed. [Example: The example 

[AttributeUsage(AttributeTargets::All)] 
public ref class X : Attribute {}; 

[AttributeUsage(AttributeTargets::All)] 
public ref class XAttribute : Attribute {}; 40 
[X]     // error: ambiguity 
ref class Class1 {}; 

[XAttribute]  // refers to XAttribute 
ref class Class2 {}; 

shows two attribute classes named X and XAttribute. The attribute reference [X] is ambiguous, since it 45 
could refer to either X or XAttribute. The attribute reference [XAttribute] is not ambiguous (although 
it would be if there was an attribute class named XAttributeAttribute!). If the declaration for class X is 
removed, then both attributes refer to the attribute class named XAttribute, as follows: 

[AttributeUsage(AttributeTargets::All)] 
public ref class XAttribute : Attribute {}; 50 
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[X]     // refers to XAttribute 
ref class Class1 {}; 

[XAttribute]  // refers to XAttribute 
ref class Class2 {}; 

end example] 5 

A program is ill-formed if it uses a single-use attribute class more than once on the same entity. [Example: 
The example 

[AttributeUsage(AttributeTargets::Class)] 
public ref class HelpStringAttribute : Attribute { 
 String^ value; 10 
public: 
 HelpStringAttribute(String^ value) { 
  this->value = value; 
 } 

 property String^ Value { String^ get() {…} } 15 
}; 

[HelpString("Description of Class1")] 
[HelpString("Another description of Class1")] // error 
public ref class Class1 {}; 

results in the programs’ being ill-formed because it attempts to use HelpString, which is a single-use 20 
attribute class, more than once on the declaration of Class1. end example] 

An expression E is an attribute-argument-expression if all of the following statements are true: 

• The type of E is an attribute parameter type (§28.1.3). 

• At compile-time, the value of E can be resolved to one of the following: 

• A constant value. 25 

• A System::Type^ object. 

• A one-dimensional cli::array of attribute-argument-expressions. 

[Example: 
[AttributeUsage(AttributeTargets::Class)] 
public ref class MyAttribute : Attribute { 30 
public: 
 property int P1 { 
  int get() {…} 
  void set(int value) {…} 
 } 35 
 property Type^ P2 { 
  Type^ get() {…} 
  void set(Type^ value) {…} 
 } 

 property Object^ P3 { 40 
  Object^ get() {…} 
  void set(Object^ value) {…} 
 } 
}; 

[My(P1 = 1234, P3 = gcnew array<int>{1, 3, 5}, P2 = float::typeid)] 45 
ref class MyClass {}; 

end example] 

28.3 Attribute instances 
An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an 
attribute class, positional arguments, and named arguments. An attribute instance is an instance of the 50 
attribute class that is initialized with the positional and named arguments. 
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Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the 
following subclauses. 

28.3.1 Compilation of an attribute 
The compilation of an attribute with attribute class T, positional-argument-list P and named-argument-list N, 
consists of the following steps: 5 

• Follow the compile-time processing steps for compiling a new-expression of the form gcnew T(P). 
These steps either result in the program being ill-formed, or determine an instance constructor on T 
that can be invoked at run-time. Let us call this instance constructor C. 

• If C does not have public accessibility, then the program is ill-formed. 

• For each named-argument Arg in N: 10 

o Let Name be the identifier of the named-argument Arg. 

o Name must identify a non-static read-write public field or property on T. If T has no such field or 
property, then the program is ill-formed. 

• Keep the following information for run-time instantiation of the attribute: the attribute class T, the 
instance constructor C on T, the positional-argument-list P and the named-argument-list N. 15 

28.3.2 Run-time retrieval of an attribute instance 
This is governed by the CLI standard (see §??). 

28.4 Reserved attributes 
A small number of attributes affect the language in some way. These attributes include: 

• System::AttributeUsageAttribute (§28.4.1), which is used to describe the ways in which an 20 
attribute class can be used. 

• System::ObsoleteAttribute (§28.4.2), which is used to mark a member as obsolete. 

Need to document C++/CLI-specific attribute ScopelessEnumAttribute. What about 
HasCopySemanticsAttribute? [[Ed]]  

28.4.1 The AttributeUsage attribute 25 
The attribute AttributeUsage is used to describe the manner in which the attribute class can be used. 

A ref class that is decorated with the AttributeUsage attribute must derive from System::Attribute, 
either directly or indirectly. Otherwise, the program is ill-formed. 

The constructor for class AttributeUsageAttribute takes an argument of type AttributeTargets. 
This enumeration type has a number of enumerators defined, several of which need further explanation:  30 

• Class indicates that the attribute can be applied to a ref class.  

• Enum indicates that the attribute can be applied to a native or CLI enum.  

• Struct indicates that the attribute can be applied to a value class.  

• Method indicates that the attribute can be applied to a function.  

• [Note: For an example of using this attribute, see §28.1.1. end note] 35 

28.4.2 The Obsolete attribute 
The attribute Obsolete is used to mark types and members of types that should no longer be used. 

If a program uses a type or member that is decorated with the Obsolete attribute, then the compiler shall 
issue a diagnostic in order to alert the developer, so the offending code can be fixed. Specifically, the 
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compiler shall issue a diagnostic if no error parameter is provided, or if the error parameter is provided and 
has the value false. The program is ill-formed if the error parameter is specified and has the value true.  

[Example: In the example 
[Obsolete("This class is obsolete; use class B instead")] 
ref struct A { 5 
 void F() {} 
}; 

ref struct B { 
 void F() {} 
}; 10 
int main() { 
 A^ a = gcnew A();  // diagnostic 
 a->F(); 
} 

the class A is decorated with the Obsolete attribute. Each use of A in main results in a diagnostic that 15 
includes the specified message, “This class is obsolete; use class B instead.” end example] 

28.5 Attributes for interoperation 

28.5.1 Interoperation with other CLI-based languages 

28.5.1.1 The DefaultMember attribute 
The attribute System::Reflection::DefaultMemberAttribute is used to provide the underlying 20 
name to the default indexed property. The attribute is placed on the class, and all overloads of a default 
indexed property share the same name. 

Check this name; this attribute might have been renamed in the CLI standard. [[#119]] 

28.5.1.2 The MethodImplOption attribute 
Synchronized function for compiler-generated add/remove event accessor functions. [[#113]] 25 
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29. Templates 

This clause is incomplete.[[#82]] 

The template syntax is the same for all types, including CLI types. Templates on CLI types can be partially 
specialized, fully specialized, and non-type parameters of any type (subject to all the constant-expression 
and type rules in the C++ Standard) can be used, with the same semantics as specified by the C++ Standard. 5 

Templates are fully resolved and compiled at compile time, and reside in their own assemblies. 

Within an assembly, templates are implicitly instantiated only for the uses of that template within the 
assembly. 

29.1 Attributes 
Given that the grammars for ref class, value class, and interface class already include the possibility of 10 
attributes, review what is stated below and modify as necessary. (Support for attributes has yet to be added 
to the grammar for functions.) [[#82]] 

Classes within templates can have attributes, with those attributes being written after the template parameter 
list and before the class-key. A template parameter is allowed as an attribute, and also as an argument to an 
attribute. [Example:  15 

template<typename T> 
[attributes] 
ref class R { }; 

end example]  

Functions within templates can have attributes, with those attributes being written after the template 20 
parameter list and before the function definition. [Example:  

template <typename T> 
[attributes] 
void f(const T& t) { /* … */ } 

end example] 25 

Explicit and partial specializations of a class template must have the same class kind as the primary 
template. For example, an explicit specialization of a ref class template cannot be a value class. [[#82]] 

 

Are there any issues with metadata name emission? Is it even necessary to standardize this since template 
specializations are really only useful inside an assembly. [[#82]]  30 

29.2 Type deduction 
There is no ordering among %, ^, &, or *. 

Template type deduction of nullptr literal is not possible. 

Non-type template parameters will not include %, ^, or nullptr. [[#82]] 
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30. Generics 

Some issues to consider are: (1) using templates inside of generics, (2) overloading rules, and (3) dynamic 
cast to type parameters. The high level goal with generics (as with other parts of C++/CLI) is to provide a 
close mapping of the underlying capabilities of the CLI, which means that C++ can potentially create 
generics that other languages might not be able to consume. Not all languages support all capabilities, but 5 
C++/CLI supports more than most. (However, C++/CLI does not support array co- or contra-
variance.)[[#98]] 
Generic types and functions are a set of features—collectively called generics—defined by the CLI to allow 
parameterized types. Generics differ from Standard C++’s templates in that generics are instantiated by the 
Virtual Execution System (VES) at runtime rather than by the compiler at compile-time. 10 

A generic declaration defines one or more type parameters for a declaration of a ref class, value class, 
interface class, delegate, or function. To instantiate a generic type or function from a generic declaration, 
type arguments that correspond to that generic declaration’s type parameters must be supplied. The set of 
type arguments that is permitted for any given type parameter can be restricted via the use of one or more 
constraints. 15 

30.1 Generic declarations 
To accommodate the addition of generics, the grammar for declaration in the C++ Standard (§7) has been 
extended, as follows: 

declaration: 
… 20 
generic-declaration 

A generic declaration is defined as follows: 

generic-declaration: 
generic   <   generic-parameter-list   >   constraint-clause-listopt   declaration 

generic-parameter-list: 25 
generic-parameter 
generic-parameter-list   ,   generic-parameter 

Type parameters are defined via a generic-parameter-list, which is a sequence of one or more generic-
parameters (§30.1.1). Constraints are defined via a constraint-clause-list (§30.4). 

If the declaration of a generic-declaration is other than a ref class, value class, interface class, delegate, or 30 
function (excluding constructors and destructors), the program is ill-formed. 

A program is ill-formed if it declares a property or event as a generic. The constituent functions of a property 
or event shall not be generic. 

A generic-declaration is a declaration. A generic-declaration is also a definition if its declaration defines a 
ref class, a value class, an interface class, a delegate, or a function. 35 

A generic-declaration shall appear only as a namespace scope or class scope declaration. 

The text indicates that a generic-declaration may appear in a class scope, but the syntax of member-
declaration has not been extended to permit a generic-declaration. [[#153]] 

Generic declarations that are also definitions can have public or private assembly visibility (§10.2.1), except 
that a non-member function definition shall never have public visibility.  40 
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A generic type shall not have the same name as any other generic type, template, class, delegate, function, 
object, enumeration, enumerator, namespace, or type in the same scope (C++ Standard 3.3), except as 
specified in 14.5.4 of the C++ Standard. Except that a generic function can be overloaded either by non-
generic functions with the same name or by other generic functions with the same name, a generic name 
declared in namespace scope or in class scope shall be unique in that scope. Doesn't the text "a generic name 5 
declared in namespace scope or in class scope shall be unique in that scope" make the first sentence of this 
paragraph redundant?  Re the reference to 14.5.4: That is the section on partial specialization.  Generics can't 
be partially specialized, can they? The spec. should probably answer that explicitly. [[#154]] 

Generic type declarations follow the same rules as non-generic type declarations except where noted. What 
is a non-generic type? Does it mean that the rules are the same as classes?  As template classes? Something 10 
else? [[#155]] Generic type declarations can be nested inside non-generic type declarations. Can generic 
types be nested in native classes? [[#156]] 

Generic functions are discussed further in (§30.3). 

Type Overloading – This involves overloading on arity, and is currently under investigation. Such a feature 
permits the following: [[#157]] 15 

ref class X {}; 
generic<typename T> 
ref class X {}; 
generic<typename T, typename U> 
ref class X {}; 20 

30.1.1 Type parameters 
A type parameter can be defined in one of the following ways: 

generic-parameter: 
attributesopt   class   identifier 
attributeopt   typename   identifier 25 

There is no semantic difference between class and typename in a generic-parameter. A generic-
parameter can optionally have one or more attributes (§28). 

A generic-parameter defines its identifier to be a type-name. The equivalent wording for template 
parameters in the working paper has been changed to "defines its identifier to be a typedef-name".  The 
revised wording should probably be used here too (see core issue 283) [[#158]]. 30 

The scope of a generic-parameter extends from its point of declaration until the end of the declaration to 
which its generic-parameter-list applies. 

[Note: Unlike templates, generics has no equivalent to a non-type template-parameter or a template 
template-parameter. Neither does generics support default generic-parameters; instead, generic type 
overloading is used. end note] 35 

As a type, type parameters are purely a compile-time construct. At run-time, each type parameter is bound to 
a run-time type that was specified by supplying a type argument to the generic type declaration. Thus, the 
type of a variable declared with a type parameter will, at run-time, be a closed constructed type (§30.2). The 
run-time execution of all statements and expressions involving type parameters uses the actual type that was 
supplied as the type argument for that parameter. 40 

30.1.2 Referencing a generic type by name 
Like templates in Standard C++, within the body of a generic type any usage of the unqualified unadorned 
name of that type is assumed to refer to the current instantiation. 30.1.3 describes "The instance type".  
These seem like two different ways of describing the same concept.  Can they be unified in some 
way?[[#159]] [Example: 45 
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generic<typename T> 
ref class X { 
public: 
   X() {}  // ok: means X<T> 
   void f(X^); // ok: means X<T> 5 
   ::X g();    // error 
}; 

end example] 
Outside its declaration, a generic type is referenced using a constructed type (§30.2). [Example: Given the 
following, 10 

generic<typename T> 
ref class List {}; 

generic<typename U> 
void f() { 
 List<U>^ l1 = gcnew List<U>; 15 
 List<int>^ l2 = gcnew List<int>; 
 List<List<String^>^>^ l3 = gcnew List<List<String^>^>; 
} 

some examples of constructed types are List<U>, List<int>, and List<List<String^>^>. A 
constructed type that uses one or more type parameters, such as List<U>, is an open constructed type 20 
(§30.2.1). A constructed type that uses no type parameters, such as List<int>, is called a closed 
constructed type (§30.2.1). end example] 

30.1.3 The instance type 
Each type declaration has an associated constructed type, the instance type. For a generic type declaration, 
the instance type is formed by creating a constructed type (§30.2) from the type declaration, with each of the 25 
supplied type arguments being the corresponding type parameter. Since the instance type uses the type 
parameters, it can only be used where the type parameters are in scope; that is, inside the type declaration. 
Inside the declaration of a ref class, this is a const-qualified handle to the instance type. Inside the 
declaration of a value class, this is a const-quafied interior_ptr to the instance type. For non-generic 
types, the instance type is simply the declared type. [Example: The following shows several class 30 
declarations along with their instance types:   

generic<typename T> 
ref class A {   // instance type: A<T> 
 class B {};   // instance type: A<T>::B 
 generic<typename U> 35 
 ref class C {}; // instance type: A<T>::C<U> 
}; 

class D {};    // instance type: D 

end example] 

30.1.4 Base classes and interfaces 40 
The base class and interfaces of a generic type declaration shall not be a type parameter, though they can be 
a constructed type using a type parameter. [Example:  

ref class B1 {}; 
 
generic<typename T> 45 
ref class B2 {}; 
 
generic<typename T> 
interface class I1 {}; 
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generic<typename T> 
ref class R1 : T {};      // error 
 
generic<typename T> 
ref class R2 : B1 {};     // ok 5 
 
generic<typename T> 
ref class R3 : B2<int>, I1<int> {}; // ok (closed constructed types) 

generic<typename T> 
ref class R4 : B2<T>, I1<T> {};   // ok (open constructed types) 10 

end example] 
A generic class declaration shall not use System::Attribute as a direct or indirect base class. 

30.1.5 Class members 
All members of a generic type can use type parameters from any enclosing type, either directly or as part of 
a constructed type. When a particular closed constructed type (§30.1.2) is used at run-time, each use of a 15 
type parameter is replaced with the actual type argument supplied to the constructed type.  

Properties, events, constructors, and destructors shall not themselves have explicit type parameters (although 
they can occur in generic classes, and use the type parameters from an enclosing class).   

When the type of a member is a type parameter, the declaration of that member shall use that type 
parameter’s name without any pointer, reference, or handle declarators. Member access on a member whose 20 
type is a type parameter shall use the -> operator. [Example:  

interface class I1 { 

 void F(); 

}; 

generic<typename T> 25 
 where T : I1 
ref class A { 
 T t;   // no *, &, or ^ declarator allowed 
public: 
 void F() {} 30 
 void G() { 
  t->F(); // -> must be used, not . 
 } 
}; 

end example] 35 
[Note: The compiler only generates one definition for a generic class in metadata. Generics allow value 
classes as generic type parameters. Textual substitution of a value class parameter would lead to an ill-
formed program as the -> operator is not allowed for member access. As the VES is responsible for 
instantiations of generics, textual substitution is the wrong way of thinking about generic instantiation. end 
note]  40 

As a member whose type is a parameter type will be a value class, or a handle to a ref class, interface class, 
delegate, or Array, the destructor of a generic class will not invoke the destructor on such a member. 

Within a generic class declaration, access to inherited protected instance members is permitted through an 
instance of any class type constructed from that generic class. [Example: In the following code 

generic<typename T> 45 
ref class B { 
protected: 
 T x; 
}; 

generic<typename T> 50 
ref class D : B<T> { 
 static void F() { 
  D<T>^ dt = gcnew D<T>; 
  dt->x = T(); 
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  D<int>^ di = gcnew D<int>; 
  di->x = 123; 

  D<String^>^ ds = gcnew D<String^>; 
  ds->x = "test"; 
 } 5 
}; 

the three assignments to x are permitted because they all take place through instances of class types 
constructed from the generic type. end example] 

Static operators are discussed in (§30.1.7), other static members are discussed in (§30.1.6), nested types are 
discussed in (§30.1.10), and generic functions, in general, are discussed in (§30.3). 10 

30.1.6 Static members 
This subclause describes when a static constructor is invoked.  In 18.8, it references the CLI Standard 
Partition II (10.5.3).  Are the rules the same?  Should this subclause also just reference the CLI 
spec?[[#160]] 

A static data member in a generic class declaration is shared amongst all instances of the same closed 15 
constructed type (§30.1.2), but is not shared amongst instances of different closed constructed types. These 
rules apply regardless of whether the type of the static data member involves any type parameters or not.  

A static constructor in a generic class is used to initialize static data members and to perform other 
initialization for each different closed constructed type that is created from that generic class declaration. 
The type parameters of the generic type declaration are in scope, and can be used, within the body of the 20 
static constructor. 

A new closed constructed class type is initialized the first time that either: 

• An instance of the closed constructed type is created. 

• Any of the static members of the closed constructed type are referenced. 

To initialize a new closed constructed class type, first a new set of static data members for that particular 25 
closed constructed type is created. Each of the static data members is initialized to its default value. Next, 
the static data members’ initializers are executed for those static fields. Finally, the static constructor is 
executed. [Example: 

generic<typename T> 
ref class C { 30 
 static int count = 0; 
public: 
 static C() { 
  Console::WriteLine(typeid<C<T> >); 
 } 35 
 C() { 
  count++; 
 } 

 static property int Count { 
  int get() { return count; } 40 
 } 
}; 

int main() { 

 C<int>^ x1 = gcnew C<int>; 
 Console::WriteLine(C<int>::Count); 45 
 C<double>^ x2 = gcnew C<double>; 
 Console::WriteLine(C<double>::Count); 
 Console::WriteLine(C<int>::Count); 

 C<int>^ x3 = gcnew C<int>; 
 Console::WriteLine(C<double>::Count); 50 
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 Console::WriteLine(C<int>::Count); 
} 

The output produced is: 
C[System.Int32] 
1 5 
C[System.Double] 
1 
1 
1 
2 10 

end example] 
Static operators are discussed in (§30.1.7) 

30.1.7 Operators  
Generic class declarations can define operators, following the same rules as non-generic class declarations. 
The instance type (§30.1.3) of the class declaration must be used in the declaration of operators in a manner 15 
analogous to the normal rules for operators, as follows: 

• A unary operator shall take a single parameter of a handle to the instance type.  

• The unary ++ and -- operators shall take a single parameter of a handle to the instance type and 
return a handle to the same type. 

• At least one of the parameters of a binary operator shall be a handle to the instance type. 20 

[Example: The following shows some examples of valid operator declarations in a generic class: 
generic<typename T> 
public ref class Vector { 
public: 
 Vector(int size) { … }; 25 
 static Vector<T>^ operator-(Vector<T>^ v) { … } 
 static Vector<T>^ operator++(Vector<T>^ v) { … } 
 static Vector<T>^ operator+(Vector<T>^ v1, Vector<T>^ v2) { … } 
 // … 
}; 30 
int main() { 
 Vector<int>^ iv1 = gcnew Vector<int>(5); 
 Vector<int>^ iv2; 
 
 iv2 = iv1++; 35 
 iv2 = ++iv1 + -iv1; 
} 

end example] 
What to say about explicit conversion functions (which can only occur in managed class types)?[[#161]]  

30.1.8 Member overloading 40 
Functions, instance constructors, and static operators within a generic class declaration can be overloaded; 
however, this can lead to an ambiguity for some closed constructed types. [Example: 

generic<typename T1, typename T2> 
ref class X { 
public: 45 
 void F(T1, T2) { } 
 void F(T2, T1) { } 
 void F(int, String^) { } 
}; 

int main() { 50 
 X<int, double>^ x1 = gcnew X<int, double>; 
 x1->F(10, 20.5);          // okay 

 X<double, int>^ x2 = gcnew X<double, int>; 
 x2->F(20.5, 10);          // okay 
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 X<int, int>^ x3 = gcnew X<int, int>; 
 x3->F(10, 20);           // error, ambiguous 

 X<int, String^>^ x4 = gcnew X<int, String^>; 
 x4->F(10, "abc");          // error, ambiguous 

} 5 

end example] 
A generic class is allowed to have this potential ambiguity; however, a program is ill-formed if it uses a 
constructed type to create such an ambiguity. 

30.1.9 Member overriding 
Function members in generic classes can override function members in base classes, as usual. If the base 10 
class is a non-generic type or a closed constructed type, then any overriding function member cannot have 
constituent types that involve type parameters. However, if the base class is an open constructed type, then 
an overriding function member can use type parameters in its declaration. When determining the overridden 
base member, the members of the base classes shall be determined by substituting type arguments, as 
described in §30.2.4. Once the members of the base classes are determined, the rules for overriding are the 15 
same as for non-generic classes. [Example: 

generic<typename T> 
ref class C abstract { 
public: 
 virtual T F() { … } 20 
 virtual C<T>^ G() { … } 
 virtual void H(C<T>^ x) { … } 
}; 

ref class D : C<String^> { 
public: 25 
 String^ F() override { … }   // Ok 
 C<String^>^ G() override { … } // Ok 
 void H(C<int>^ x) override { … } // Error, should be C<String^> 
}; 

generic<typename T, typename U> 30 
ref class E : C<U> { 
public: 
 U F() override { … }     // Ok 
 C<U>^ G() override { … }   // Ok 
 void H(C<T>^ x) override { … } // Error, should be C<U> 35 
}; 

end example] 

30.1.10 Nested types 
A generic class declaration can contain nested type declarations, except that a generic class declaration shall 
not contain a native class. The type parameters of the enclosing class can be used within the nested types. A 40 
nested type declaration can contain additional type parameters that apply only to the nested type. A generic 
type can be nested within a non-generic type. 

Every type declaration contained within a generic class declaration is implicitly a generic type declaration. 
When writing a reference to a type nested within a generic type, the containing constructed type, including 
its type arguments, must be named. However, from within the outer class, the nested type can be used 45 
without qualification; the instance type of the outer class can be implicitly used when constructing the nested 
type. [Example: The following example shows three different correct ways to refer to a constructed type 
created from Inner; the first two are equivalent: 

generic<typename T> 
ref class Outer { 50 
 generic<typename U> 
 ref class Inner { 
 public: 
  static void F(T t, U u) { } 
 }; 55 
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 static void F(T t) { 
  Outer<T>::Inner<String^>::F(t, "abc");  // These two statements 
have 
  Inner<String^>::F(t, "abc");     // the same effect 
  Outer<int>::Inner<String^>::F(3, "abc"); // This type is different 5 
 } 
}; 

end example] 
A type parameter in a nested type can hide a member or type parameter declared in the outer type. [Example: 

generic<typename T> 10 
ref class Outer { 
 generic<typename T> // Valid, hides Outer’s T 
 ref class Inner { 
  T t;     // Refers to Inner’s T 
 }; 15 
}; 

end example] 

30.2 Constructed types 
A generic type declaration, by itself, does not denote a type. Instead, a generic type declaration is used as a 
blueprint to form many different types, by way of applying type arguments (§30.2.1). A type that is named 20 
with at least one type argument is called a constructed type. A constructed type can be open or closed, as we 
shall see in (§30.2.1) 

To accommodate the addition of generics, the grammar for unqualified-id in the C++ Standard (§5.1) has 
been extended, as follows: 

unqualified-id: 25 
… 
generic-id 

A constructed type is referred to by a generic-id: 

generic-id: 
generic-name   <   generic-argument-list   > 30 

generic-name: 
identifier 

generic-argument-list is discussed in (§30.2.2). 

30.2.1 Open and closed constructed types 
All types can be classified as either open constructed types or closed constructed types. An open 35 
constructed type is a type that involves type parameters. More specifically: 

• A type parameter defines an open constructed type. 

• An Array type is an open constructed type if and only if its element type is an open constructed type. 

• A constructed type is an open constructed type if and only if one or more of its type arguments is an 
open constructed type. A constructed nested type is an open constructed type if and only if one or 40 
more of its type arguments (§30.2.2) or the type arguments of its containing type(s) is an open 
constructed type. 

A closed constructed type is a type that is not an open constructed type. 

[Example: Given the following, 
generic<typename T> 45 
ref class List {}; 
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generic<typename U> 
void f() { 
 List<U>^ l1 = gcnew List<U>; 
 List<int>^ l2 = gcnew List<int>; 
 List<List<String^>^>^ l3 = gcnew List<List<String^>^>; 5 
} 

List<U>, List<int>, and List<List<String^>^> are examples of constructed types are, where 
List<U> is an open constructed type, and List<int> and List<List<String^>^> are closed 
constructed types. end example] 

At run-time, all of the code within a generic type declaration is executed in the context of a closed 10 
constructed type that was created by applying type arguments to the generic declaration. Each type 
parameter within the generic type is bound to a particular run-time type. The run-time processing of all 
statements and expressions always occurs with closed constructed types, and open constructed types occur 
only during compile-time processing. 

Each closed constructed type has its own set of static variables, which are not shared with any other closed 15 
constructed types. Since an open constructed type does not exist at run-time, there are no static variables 
associated with an open constructed type. Two closed constructed types are the same type if they are 
constructed from the same type declaration, and their corresponding type arguments are the same type. 

A constructed type has the same accessibility as its least accessible type argument. 

30.2.2 Type arguments 20 
This subclause lists the types that can and cannot be generic arguments.  Fundamental types are not included 
in either set, neither are function types.  The subclause does not say whether or not cv-qualified types are 
allowed.[[#162]]  

A generic type or function is instantiated from a generic declaration by specifying type arguments that 
correspond to that generic declaration’s type parameters. Type arguments are specified via a generic-25 
argument-list: 

generic-argument-list: 
generic-argument 
generic-argument-list   ,   generic-argument 

generic-argument: 30 
type-id  

The arguments for an instantiation of a generic class shall always be explicitly specified. The arguments for 
an instantiation of a generic function (§30.3) can either be specified explicitly, or they can be determined by 
type deduction.  

A generic-argument shall be a constructed type that is a value class, a handle to a ref class, a handle to a 35 
delegate, a handle to an interface, a handle to an Array, or it shall be a type parameter from an enclosing 
generic. [Note: It is not possible to use a native class, a pointer, a reference, a handle to a value class, or a ref 
class by value as a generic argument. end note] 

Each generic-argument shall satisfy any constraints (§30.4) on the corresponding type parameter. 

30.2.3 Base classes and interfaces 40 
A constructed class type has a direct base class. If the generic class declaration does not specify a base class, 
the base class is System::Object. If a base class is specified in the generic class declaration, the base class 
of the constructed type is obtained by substituting, for each generic-parameter in the base class declaration, 
the corresponding generic-argument of the constructed type. [Example: Given the generic class declarations 

generic<typename T, typename U> 45 
ref class B { … }; 

generic<typename T> 
ref class D : B<String^, array<T> > { … }; 
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the base class of the constructed type D<int> would be B<String^, array<int> >. end example] 

Similarly, constructed ref class, value class, and interface types have a set of explicit base interfaces. The 
explicit base interfaces are formed by taking the explicit base interface declarations on the generic type 
declaration, and substituting, for each generic-parameter in the base interface declaration, the corresponding 
generic-argument of the constructed type. 5 

The set of all base classes and base interfaces for a type is formed, as usual, by recursively getting the base 
classes and interfaces of the immediate base classes and interfaces. [Example: For example, given the 
generic class declarations: 

ref class A { … }; 

generic<typename T> 10 
ref class B : A { … }; 

generic<typename T> 
ref class C : B<IComparable<T>^> { … }; 

generic<typename T> 
ref class D : C<array<T> > { … }; 15 

the base classes of D<int> are C<array<int> >, B<IComparable<array<int>^> >, A, and 
System::Object. end example] 

30.2.4 Class members 
The non-inherited members of a constructed type are obtained by substituting, for each generic-parameter in 
the member declaration, the corresponding generic-argument of the constructed type. The substitution 20 
process is based on the semantic meaning of type declarations, and is not simply textual substitution. It 
would be helpful to explain this in more detail and/or give an example where this makes a difference. 

[Example: Given the generic class declaration 
generic<typename T, typename U> 
ref class X { 25 
 array<T>^ a; 
 void G(int i, T t, X<U,T> gt); 
 property U P { U get(); void set(U value); } 
 int H(double d); 
}; 30 

the constructed type X<int, bool> has the following members: 
array<int>^ a; 
void G(int i, int t, X<int,bool>^ gt); 
property bool P { bool get(); void set(bool value); } 
int H(double d); 35 

end example] 

The inherited members of a constructed type are obtained in a similar way. First, all the members of the 
immediate base class are determined. If the base class is itself a constructed type, this might involve a 
recursive application of the current rule. Then, each of the inherited members is transformed by substituting, 
for each generic-parameter in the member declaration, the corresponding generic-argument of the 40 
constructed type. [Example: 

generic<typename U> 
ref class B { 
public: 
 U F(long index); 45 
}; 

generic<typename T> 
ref class D : B<array<T>^> { 
public: 
 T G(String^ s); 50 
}; 
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In the above example, the constructed type D<int> has a non-inherited member int G(String^ s) 
obtained by substituting the type argument int for the type parameter T. D<int> also has an inherited 
member from the class declaration B. This inherited member is determined by first determining the members 
of the constructed type B<array<T>^> by substituting array<T>^ for U, yielding array<T>^ F(long 
index). Then, the type argument int is substituted for the type parameter T, yielding the inherited member 5 
array<int>^ F(long index). end example] 

30.2.5 Accessibility 
A constructed type C<T1, ...,TN> is accessible when all its parts C, T1, ..., TN are accessible.  For instance, 
if the generic type name C is public and all of the generic-arguments T1, ...,TN are accessible as public, 
then the constructed type is accessible as public, but if either the type name C or any of the generic-10 
arguments has accessibility private then the accessibility of the constructed type is private.  If one 
generic-argument has accessibility protected, and another has accessibility private protected, then 
the constructed type is accessible only in this class and its subclasses in this assembly.   

More precisely, the accessibility domain for a constructed type is the intersection of the accessibility 
domains of the open type and its type arguments. 15 

30.3 Generic functions 
Can a generic function be declared inside a native class? (No) Can generic functions (and member functions 
of generic classes, for that matter) have exception specifications? (No) If so, can they refer to open 
constructed types?[[#164]] 

Member functions and non-member functions can be declared generic (§30.1). When a generic function is 20 
declared inside a ref class, value class, or interface declaration, the enclosing type can itself be either generic 
or non-generic. If a generic function is declared inside a generic type declaration, the body of the function 
can refer to both the type parameters of the function, and the type parameters of the containing declaration. 
Not all generic type parameters to a generic function need appear as a parameter type or return type of that 
function. [Example: 25 

generic<typename T> 
void f1(T); 

ref class C1 { 
 generic<typename T, typename U> 
 T f2(T t) { 30 
  U u; 
  … 
 } 

generic<typename T> 
 T f2(T); 35 
}; 

generic<typename T1> 
ref class C2 { 
 generic<typename T2> 
 void f3(T1, array<T2>^); 40 
}; 

end example] 
Types not used as a parameter type to a generic function cannot be deduced. Are the nondeduced context 
rules the same as Standard C++ or not?  The sentence before this is true, but not complete if the rules are the 
same as Standard C++.[[#165]] 45 

What, if anything, does it mean for a generic function to be static/extern or inline?[[#166] 
When the type of a parameter or variable is a type parameter, the declaration of that parameter or variable 
shall use that type parameter’s name without any pointer, reference, or handle declarators. What about cv-
qualifiers?[[#167]] Member access on a parameter or variable whose type is a type parameter shall use the -
> operator. [Example:  50 
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interface class I1 { 

 void F(); 

}; 

generic<typename T> 
 where T : I1 5 
void H(T t1) {  // no *, &, or ^ declarator allowed 
 T t2 = t1;  //  “  “  “  “  “ 
 t1->F();   // -> must be used, not . 
 t2->F();   //  “  “  “ 
} 10 

end example] 
Type parameters can be used in the type of a parameter array. 

Can you take the address of a generic function instance?[[#168]]  

30.3.1 Function signature matching rules 
For the purposes of signature comparisons in function overloading, any constraint-clause-lists are ignored, 15 
as are the names of the function’s generic-parameters; however, the number of generic type parameters is 
relevant. [Example: 

ref class A {}; 
ref class B {}; 

interface class IX { 20 
 generic<typename T> 
  where T : A 
 void F1(T t);  
 generic<typename T> 
  where T : B 25 
 void F1(T t);   // error, constraints are ignored 

 generic<typename T> 
 T F2(T t, int i);  
 generic<typename U> 
 void F2(U u, int i);  // error, parameter names and return  30 
         // type are ignored 

 void F3(int x);   // no type parameters 
 generic<typename T> 
 void F3(int x);   // okay, different type parameter count 
 generic<typename T, typename U> 35 
 void F3(int x);   // okay, different type parameter count 
 generic<typename U, typename T> 
 void F3(int x);   // error, type parameter names are ignored 
}; 

end example] 40 

Functions can be overloaded; however, this can lead to an ambiguity for certain calls. [Example: 
generic<typename T1, typename T2> 
void F(T1, T2) { } 

generic<typename T1, typename T2> 
void F(T2, T1) { } 45 
int main() { 
 F<int, double>(10, 20.5); // okay 
 F<double, int>(20.5, 10); // okay 
 F<int, int>(10, 20);   // error, ambiguous 
} 50 

end example] 

Although a program is permitted to have generic function declarations that could lead to such ambiguities, 
that program is ill-formed if it uses function calls to create such an ambiguity. 
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Generic functions can be declared abstract, virtual, and override. The signature matching rules 
described above are used when matching functions for overriding or interface implementation. When a 
generic function overrides a generic function declared in a base class, or implements a function in a base 
interface, the constraints given for each function type parameter must be the same in both declarations. 
[Example: 5 

ref struct B abstract { 
 generic<typename T, typename U> 
 virtual T F(T t, U u) abstract; 

 generic<typename T> 
  where T : IComparable 10 
 virtual T G(T t) abstract; 
}; 

ref struct D : B { 
 generic<typename X, typename Y> 
 virtual X F(X x, Y y) override; // Okay 15 
 generic<typename T> 
 virtual T G(T t) override;   // error, constraint mismatch 
}; 

The override of F is valid because type parameter names are permitted to differ. The override of G is invalid 
because the given type parameter constraints (in this case none) do not match those of the function being 20 
overridden. end example] 

30.3.2 Type deduction 
This subclause uses both the terms "type deduction" and "type inference".  "Type deduction" should be used 
uniformly.[[#Ed.]] 

A call to a generic function can explicitly specify a type argument list via a generic-id, or it can omit that 25 
type argument list using a generic-name only and rely on type deduction to determine the type arguments. 
[Example: 

ref struct X { 
 generic<typename T> 
 static void F(T t) { 30 
  Console::WriteLine("one"); 
 } 

 generic<typename T> 
 static void F(T t1, T t2) { 
  Console::WriteLine("two"); 35 
 } 

 generic<typename T> 
 static void F(T t1, int t2) { 
  Console::WriteLine("three"); 
 } 40 
}; 

int main() { 
 X::F<int>(1);    // explicit, prints "one" 
 X::F(1);      // deduced,  prints "one" 

 X::F<double>(5.0, 6.0); // explicit, prints "two" 45 
 X::F(5.0, 6.0);   // deduced,  prints "two" 

 X::F<double>(5.0, 3); // explicit, prints "three" 
 X::F(5.0, 3);    // deduced,  prints "three" 

 X::F<int>(1, 2);   // error, ambiguous 
 X::F(1, 2);     // error, ambiguous 50 
 X::F<double>(1, 2);  // explicit, prints "three" 
} 

end example] [Example: 
interface class IX {}; 
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ref class R : IX {}; 

generic<typename T> 
void f(T) {} 

void g(R^ hR) { 
 f<IX^>(hR); // T is specified to be IX 5 
 f(hR);  // T is deduced to be R 
} 

end example] 

Type inference allows a more convenient syntax to be used for calling a generic function, and allows the 
programmer to avoid specifying redundant type information. 10 

Type deduction within generics is handled like type deduction within templates (C++ Standard §14.8.2). 

If the generic function was declared with a parameter array, then type deduction is first performed against 
the function using its exact signature. If type deduction succeeds, and the resultant function is applicable, 
then the function is eligible for overload resolution in its normal form. Otherwise, type deduction is 
performed against the function in its expanded form (§18.3.6). The issue raised in 8.15.3 is somewhat 15 
answered here. 18.3.6 seems to deal with expanded forms of calls, not expanded forms of function 
declarations.  I interpret the text above as saying that deduction is done as if the function were declared like 
this: 

   generic <typename ItemType> 
   void PushMultiple(Stack<ItemType>^, ItemType i1, ItemType i2,/* ... */); 20 

Is that correct?  I think this requires a more detailed description.[[#169]] 

An instance of a delegate can be created that refers to a generic function declaration. The type arguments 
used when invoking a generic function through a delegate are determined when the delegate is instantiated. 
The type arguments can be given explicitly or be determined by type deduction. If type deduction is used, 
the parameter types of the delegate are used as argument types in the deduction process. The return type of 25 
the delegate is not used for deduction. [Example: The following example shows both ways of supplying a 
type argument to a delegate instantiation expression: 

delegate int D(String^ s, int i); 
delegate int E(); 

ref class X { 30 
public: 
 generic<typename T> 
 static T F(String^ s, T t); 

 generic<typename T> 
 static T G(); 35 
}; 

int main() { 
 D^ d1 = gcnew D(X::F<int>);// okay, type argument given explicitly 
 D^ d2 = gcnew D(X::F);  // okay, int deduced as type argument 
 E^ e1 = gcnew E(X::G<int>);// okay, type argument given explicitly 40 
 E^ e2 = gcnew E(X::G);  // error, cannot deduce from return type 
} 

end example] 

A non-generic delegate type can be instantiated using a generic function. It is also possible to create an 
instance of a constructed delegate type using a generic function. In all cases, type arguments are given or 45 
deduced when the delegate instance is created, and a type argument list shall not be supplied when that 
delegate is invoked.  

Something needs to be said about instantiating a generic delegate using a generic function.[[#170]] 
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30.4 Constraints 
The set of type arguments that is permitted for any given type parameter in a generic type or function 
declaration can be restricted via the use of one or more constraints. Such constraints are specified via a 
constraint-clause-list: 

constraint-clause-list: 5 
constraint-clause 
constraint-clause-list   constraint-clause 

constraint-clause: 
where   identifier   :   constraint-item-list 

constaint-item-list: 10 
constraint-item 
constraint-item-list   ,   constraint-item 

constraint-item: 
type-id 

Each constraint-clause consists of the token where, followed by an identifier that shall be the name of a 15 
type parameter in the generic type declaration to which this constraint-clause applies, followed by a colon 
and the list of constraints for that type parameter. There shall be no more than one constraint-clause for each 
type parameter in any generic declaration, and the constraint-clauses can be listed in any order. The token 
where is not a keyword. 

A constraint-item-list can include any of the following constraint-items, in any order: a single class 20 
constraint and one or more interface constraints (with each being specified via a type-id). 

If a constraint-item is a class type or an interface type, that type specifies a minimal “base type” that every 
type argument used for that type parameter shall support. Whenever a constructed type or generic function is 
used, the type argument is checked against the constraints on the type parameter at compile-time. The type 
argument supplied shall derive from or implement all of the constraints given for that type parameter.  25 

The type specified by type-id in a class constraint shall be a ref class type that is not sealed, and that type 
shall not be any of the following: System::Array, System::Delegate, System::Enum, or 
System::ValueType. A constraint-item-list shall contain no more than one constraint that is a class type. 

The type specified by type-id in an interface constraint shall be an interface class type. The same interface 
type shall not be specified more than once in a given constraint-clause. 30 

A class or interface constraint can involve any of the type parameters of the associated type or function 
declaration as part of a constructed type, and can involve the type being declared, but the constraint shall not 
be a type parameter alone. 

Any class or interface type specified as a type parameter constraint shall be at least as accessible as the 
generic type or function being declared. 35 

[Example: The following are examples of constraints: 
generic<typename T> 
interface class IComparable { 
 int CompareTo(T value); 
}; 40 
generic<typename T> 
interface class IKeyProvider { 
 T GetKey(); 
}; 

generic<typename T> 45 
 where T : IPrintable 
ref class Printer 
{ … }; 
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generic<typename T> 
 where T : IComparable<T> 
ref class SortedList 
{ … }; 

generic<typename K, typename V> 5 
 where K : IComparable<K> 
 where V : IPrintable, IKeyProvider<K> 
ref class Dictionary  
{ … }; 

end example] 10 

If a type parameter has no constraints associated with it then it is implicitly constrained by 
System::Object. [Note: having a type parameter constrained in this manner severely limits what you can 
do with the type within the body of the generic. end note] 

30.4.1 Satisfying constraints 
Whenever a constructed type is used or a generic function is referenced, the supplied type arguments are 15 
checked against the type parameter constraints declared on the generic type or function. For each constraint-
clause, the type argument A that corresponds to the named type parameter is checked against each constraint 
as follows. Let C represent that constraint with the supplied type arguments substituted for any type 
parameters that appear in the constraint. To satisfy the constraint, it must be the case that type A is 
convertible to type C by one of the following: 20 

• An identity conversion (§??) 

• An implicit reference conversion (§??) 

• A boxing conversion (§14.4) 

• An implicit conversion from a type parameter A to C (§??). 

A program is ill-formed if it contains a generic type one or more of whose type parameters’ constraints are 25 
not satisfied by the given type arguments. 

Since type parameters are not inherited, constraints are never inherited either. [Example: In the code below, 
D must specify a constraint on its type parameter T, so that T satisfies the constraint imposed by the base 
class B<T>. In contrast, class E need not specify a constraint, because List<T> implements IEnumerable 
for any T. 30 

generic<typename T> 
 where T: IEnumerable 
ref class B { … }; 

generic<typename T> 
 where T: IEnumerable 35 
ref class D : B<T> { … }; 

generic<typename T> 
ref class E : B<List<T>^> { … }; 

end example] 

30.4.2 Member lookup on type parameters 40 
The results of member lookup in a type given by a type parameter T depends on the constraints, if any, 
specified for T. If T has no constraints, then member lookup on T returns the same set of members as 
member lookup on System::Object. Otherwise, the first stage of member lookup considers all the 
members in each of the types that are constraints for T. After performing the first stage of member lookup 
for each of the type constraints of T, the results are combined, and then hidden members are removed from 45 
the combined results. When are members considered hidden?  Is it using the rules described later?  Those 
are described as applying only when a type parameter has both a class constraint and one or more interface 
constraints though.[[#171]] 
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When a type parameter has both a class constraint and one or more interface constraints, member lookup can 
return a set of members, some of which were declared in the class, and others of which were declared in an 
interface. The following additional rules handle this case. 

• During member lookup, members declared in a class other than System::Object hide members 
declared in interfaces. 5 

• During overload resolution of functions, if any applicable member was declared in a class other than 
System::Object, all members declared in an interface are removed from the set of considered 
members. 

These rules only have effect when doing binding on a type parameter with both a class constraint and an 
interface constraint. Informally, members defined in a class constraint are always preferred over members in 10 
an interface constraint. 

30.4.3 Type parameters and boxing 
When a value class type overrides a virtual method inherited from System::Object (such as Equals, 
GetHashCode, or ToString), invocation of the virtual function through an instance of the value class type 
doesn’t cause boxing to occur. This is true even when the value class is used as a type parameter and the 15 
invocation occurs through an instance of the type parameter type.  

Boxing never implicitly occurs when accessing a member on a constrained type parameter. For example, 
suppose an interface ICounter contains a function Increment which can be used to modify a value. If 
ICounter is used as a constraint, the implementation of the Increment function is called with a reference 
to the variable that Increment was called on, never a boxed copy. 20 

30.4.4 Conversions involving type parameters 
The conversions that are allowed on a type parameter T depend on the constraints specified for T.  

For a generic type or function have both class and interface constraints, type conversions defined in a class 
constraint are always preferred over those in an interface constraint 

 25 

Miscellaneous generics issues: 

1. I seem to recall discussions of other kinds of constraints (I believe one of them concerned whether you 
could do a "new T()"). 

2. Doesn't there need to be some discussion of how overload resolution works when a function argument has 
a type parameter as its type? 30 

3. Are the typename and template rules for syntactic disambiguation the same in generics as in templates?  
Presumably, the lack of specialization would eliminate the need for these. 

4. If scope contains a set of overloaded generic functions, is partial ordering used to choose between them? 

5. I assume since there is nothing that says otherwise, that generics can be friends of other classes and 
generics can make other classes, functions, (including generics) friends? 35 

6. If friendship is supported, can a generic first be declared in a friend declaration (suggested answer: no). 

7. Standard C++ has restrictions on type parameters such as prohibiting types with no linkage.  Does this 
rule apply to generic arguments? 

8. Are there generic conversion functions?[[#172]] 
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31. Standard C and C++ libraries 

Describe synchronization of standard C++ streams and System::Console. [[#7]]  

What else should go here? [[#84]] 
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32. CLI libraries 

32.1 Custom modifiers 
Implementations of Standard C++ distinguish between different signatures by using name mangling; 
however, not only is this a language-specific solution, the mangling scheme used varies from one 
implementation to the next. As such, this approach is not viable in C++/CLI, where interoperability between 5 
different C++ implementations is required, and interoperability between different languages is desired. 
Custom modifiers address this issue. 

Custom modifiers (CLI Standard, Partition II, “Types and signatures”), defined in ILasm using modreq 
(“required modifier”) and modopt (“optional modifier”),  are similar to custom attributes except that custom 
attributes are attached to a declaration, while custom modifiers are part of that declaration’s signature.  Each 10 
custom modifer associates a type reference with an item in the signature. Two signatures that differ only by 
the addition of a custom modifier (required or optional) shall not be considered to match.  Signature 
matching is discussed further in §32.1.1. Custom modifiers have no other effect on the operation of the VES. 

32.1.1 Signature matching 
Consider the following class definition: 15 

public ref class X { 
public: 
 static void F(int* p1) {…} 
 static void F(const int* p2) {…} 
private: 20 
 static int* p3; 
 static const int* p4; 
}; 

The signatures of these four members are recorded in metadata as follows: 
.method public static void F(int32* p1) … { … } 25 
.method public static void F(int32 modopt([a]n.IsConst)* p2) … { … } 
.field private static int32* p3 
.field private static int32 modopt([a]n.IsConst)* p4 

where a designates the parent assembly of the IsConst type, while n designates that type’s namespace. 
(These can vary by modifier, and are provided as part of each modifier’s specification (§32.1.5).) [Note: 30 
Within the CLI context, the fully qualified name of a type uses dot (.) separators, while within a 
C++ context, a double colon (::) is used instead. end note] 

Clearly, the two signatures for F differ, allowing these declarations as overloads. 

Calls to these functions, and the corresponding code they generate, are as follows: 
int* q1 = 0; 35 
X::F(q1); 
//  call void X::F(int32*) 

const int* q2 = 0; 
X::F(q2); 
//  call void X::F(int32 modopt([a]n.IsConst)*) 40 

The correct function is called by using an exactly matching signature in the call instruction. (If no 
matching signature is found at runtime, an exception of type System::MissingMethodException is 
thrown.) 

Accesses to the data members are matched in a similar fashion: 



 CLI libraries 

153 

static void F(int* p1) { 
 p3 = p1; 
 p4 = p1; 
} 

// code generated: 5 
.method public static void F(int32* p1) … { 
  … 
  ldarg.0 
  stsfld int32* X::p3 
  ldarg.0 10 
  stsfld int32 modopt([a]n.IsConst)* X::p4 
  … 
} 

static void F(const int* p2) { 
 p4 = p2; 15 
} 

// code generated: 
.method public static void F(int32 modopt([a]n.IsConst)* p2) … { 
  … 
  ldarg.0 20 
  stsfld int32 modopt([a]n.IsConst)* X::p4 
  … 
} 

The fields are accessed using an exactly matching signature in the stsfld instruction. (If no matching 
signature is found at runtime, an exception of type System::MissingFieldException is thrown.) 25 

32.1.2 modreq vs. modopt 
The distinction between required and optional modifiers is important to tools (such as compilers) that deal 
with metadata.  A required modifier indicates that there is a special semantic to the modified item, which 
should not be ignored, while an optional modifier can simply be ignored. For example, volatile-qualified 
data members must be marked with the IsVolatile modreq. The presence of this modifier cannot be 30 
ignored, as all dereferences of such members must involve the use of the volatile. prefixed instruction 
(see §32.1.5.10 for an example). On the other hand, the const qualifier can be modelled with a modopt 
since a const-qualified data member or parameter that is a pointer to a const-qualified object, requires no 
special treatment.   

The CLI itself treats required and optional modifiers in the same manner. 35 

32.1.3 Modifier syntax 
The following grammar is a subset of that defined by the CLI Standard for fields and methods. For 
expository purposes, this extract has been significantly simplified. (For the complete, non-simplified, 
version, refer to Partition II of the CLI Standard.) 

Field: 40 
.field   Type   Id 

Method: 
.method   Type   MethodName   (   Parameters   )   {   MethodBody   } 

Parameters: 
[   Param   [   ,   Param   ]*   ] 45 

Param: 
Type   [   Id   ] 
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Type: 
… 
int32 
Type   * 
Type   [   ] 5 
Type   modreq   (   [   AssemblyName   ]   NamespaceName   .   Id   ) 
Type   modopt   (   [   AssemblyName   ]   NamespaceName   .   Id   ) 

The Id in Field refers to the name of the data member. The Id in Param refers to the name of the optional 
function parameter; this name is not part of that function’s signature. The Id in Type for a modopt and 
modreq refers to the name of the custom modifier type. This type shall be a ref class having public 10 
accessibility. (Typically, a modifier class is sealed and has no public members.)  [Example: Here are data 
and function member definitions, and the metadata produced for each of their declarations: 

public ref class X { 
 int f1; 
 //  .field private int32 f1 15 
 const int f2; 
 //  .field private int32 modopt([a]n.IsConst) f2 

 const int* f3; 
 //  .field private int32 modopt([a]n.IsConst)* f3 

 const int** f4; 20 
 //  .field private int32 modopt([a]n.IsConst)** f4 

 const int* const* f5; 
 //  .field private int32 modopt([a]n.IsConst)* 
 //  modopt([a]n.IsConst)* f5 

 array<int>^ f6; 25 
 //  .field private int32[] f6  

 array<int*>^ f7; 
 //  .field private int32*[] f7  

 const array<int>^ f8; 
 //  .field private int32[] modopt([a]n.IsConst) f8  30 
 array<const int>^ f9; 
 //  .field private int32 modopt([a]n.IsConst)[] f9 

 const int* F() { … } 
 //  .method private instance int32 modopt([a]n.IsConst)* F() … { … } 

 void F(int x, const int*y, array<int>^ z) { … } 35 
 //  .method private instance void F(int32 x, 
 //   int32 modopt([a]n.IsConst)* y, int32[] z) … { … } 
}; 

end example] 

32.1.4 Types having multiple custom modifiers 40 
A Type can contain multiple modreqs and/or modopts. [Example: 

public ref class X { 
 const volatile int m; 
}; 
//  .field private int32 modreq([a1]n1.IsVolatile) 45 
//  modopt([a2]n2.IsConst) m 

end example] 
To ensure that signatures for the same Type produced by different implementations match, the ordering in 
such a set of modreqs and modopts is as follows: first modreqs in ascending order by name, then modopts in 
ascending order by name, with case being significant. [We need some rule here; is this the one?][[#173]].  50 
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If IsBoxed is retained for the standard, we have an ordering issue to consider: Currently, the value-type 
special modopt is emitted before the IsBoxed modreq. For example, class [mscorlib]System.ValueType 
modopt([mscorlib]System.Int32) modreq([a]n.IsBoxed). That puts a modopt before a modreq. [[#174]] 

32.1.5 Standard custom modifiers 
With the exception of IsVolatile (which is defined by the CLI Standard), all of the modifiers documented 5 
in this subclause are C++-specific. 

32.1.5.1 IsBoxed 
This modifier is a workaround for the MS implementation. Does it have any long-term value for the 
standard, even if only as an historical note?[[#175]] 
This type supports the handle type punctuator ^ when used with value types. 10 

Modreq or modopt: modreq 

Assembly: ?? 

Namespace: ?? 

Description:  

This type is used in the signature of any data member to indicate that member is a handle to a value type. It 15 
is also used in a function signature to indicate parameters that are handles to value types. [Example: 

public value class V {}; 
public ref class C {}; 

public ref class X { 
 int* m1; 20 
 int^ m2; 
 V^   m3; 
 C^   m4; 

public: 
 void F(int* x) { … } 25 
 void F(int^ x) { … } 
 const signed char^ F(V^ v, C^ c) { … } 
}; 

// code generated: 
.field private int32* m1 30 
.field private class [mscorlib]System.ValueType 
 modopt([mscorlib]System.Int32) modreq([a]n.IsBoxed) m2 

.field private class [mscorlib]System.ValueType modopt(V) 
 modreq([a]n.IsBoxed) m3 

.field private class C m4 35 
// code generated: 
.method public instance void F(int32* x) … { … } 

.method public instance void F(class [mscorlib]System.ValueType 
 modopt([mscorlib]System.Int32) modreq([a]n.IsBoxed) x) … { … } 

.method public instance class [mscorlib]System.ValueType 40 
 modopt([a]n.IsConst) modopt([mscorlib]System.SByte) 
 modreq([a]n.IsBoxed) F(class [mscorlib]System.ValueType modopt(V) 
 modreq([a]n.IsBoxed) v, class C c) … { … } 

In the case of m2, the signature indicates that the field is a handle to type System::ValueType. The 
particular kind of value type is then indicated by the value-type special modopt that follows, 45 
[mscorlib]System.Int32; that is, type int. Similarly, in the case of m3, this value-type special modopt 
is the user-defined type V. The second and third overloads of F also use value-type special modopts, namely 
[mscorlib]System.Int32 and [mscorlib]System.SByte, to indicate int and signed char, 
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respectively. As suggested by this example, a value-type special modopt can be any value type. As such, C 
does not result in modopt generation, as that type is a ref type, not a value type. 

The IsBoxed modopt is what indicates that the signature involves a handle to a boxed value type. end 
example] 

32.1.5.2 IsByValue 5 
This type supports the passing of objects of a ref class type by value. 

Modreq or modopt: modreq 

Assembly: ?? 

Namespace: ?? 

Description:  10 

This type is used in the signature of a function. This modreq is not used to indicate that a ref class value is 
returned by a function; for that, see IsUdtReturn (§32.1.5.9). [Example: Pending end example] 

32.1.5.3 IsConst 
This type supports the const qualifier. 

Modreq or modopt: modopt 15 

Assembly: ?? 

Namespace: ?? 

Description:  

This type can be used in the signature of any data member or function. 

Numerous examples of the use of this modifier are shown in §32.1.1, §32.1.3, and §32.1.4. 20 

32.1.5.4 IsExplicitlyDereferenced 
This type supports the use of the type interior_ptr as a parameter. 

Modreq or modopt: modopt 

Assembly: ?? 

Namespace: ?? 25 

Description:  

This type is used in the signature of any function. [Example: 
public ref class X { 
public: 

 void F(interior_ptr<int> x) { … } 30 
 void F(interior_ptr<unsigned char> x) { … } 
}; 

// code generated: 
.method public instance void F(int32& 
 modopt([a]n.IsExplicitlyDereferenced) x) … { … } 35 
.method public instance void F(uint8& 
 modopt([a]n.IsExplicitlyDereferenced) x) … { … } 

end example] 

32.1.5.5 IsImplicitlyDereferenced 
This type is supports the reference type punctuator &. 40 
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Modreq or modopt: modopt 

Assembly: ?? 

Namespace: ?? 

Description:  

This type is used in the signature of any data member to indicate that member is a reference. It is also used 5 
in a function signature to indicate parameters that are passed by reference. [Example: 

public ref class X { 
 int* m1; 
 int& m2; 
public: 10 
 void F(int* x) { … } 
 void F(int& x) { … } 
}; 

// code generated: 
.field private int32* m1 15 
.field private int32* modopt([a]n.IsImplicitlyDereferenced) m2 

.method public instance void F(int32* x) … { … } 

.method public instance void F(int32* 
 modopt([a]n. IsImplicitlyDereferenced) x) … { … } 

end example] 20 

32.1.5.6 IsLong 
As to whether or not this standard will map long, unsigned long, and long double to CLI types, is yet to be 
determined. However, if any/all of them are, here’s how this modifier would be used.[[Ed.]] 
This type is used for two unrelated purposes: supporting the types long int and unsigned long int as 
synonyms for int and unsigned int, respectively, and supporting the type long double as a synonym 25 
for double. 

Modreq or modopt: modopt 

Assembly: ?? 

Namespace: ?? 

Description: 30 

IsLong can be used in the signature of any data member or function. [Example: 
public ref class X { 
 int i; 
 long int li; 
 double d; 35 
 long double ld; 
public: 
 unsigned int F(unsigned int* pu) { … } 
 unsigned long int F(unsigned long int* pul) { … } 
 40 
 double F(double* pd) { … } 
 long double F(long double* pld) { … } 
}; 
 

// code generated: 45 
.field private int32 i 

.field private int32 modopt([a]n.IsLong) li 
 
.field private float64 d 

.field private float64 modopt([a]n.IsLong) ld 50 

.method public instance uint32 F(uint32* pu) … { … } 
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.method public instance uint32 modopt([a]n.IsLong) 
 F(uint32 modopt([a]n.IsLong)* pul) … { … } 

.method public instance float64 F(float64* pd) … { … } 

.method public instance float64 modopt([a]n.IsLong) 
 F(float64 modopt([a]n.IsLong)* pld) … { … } 5 

end example] 

32.1.5.7 IsPinned 
This type supports the use of the type pin_ptr as a parameter. 

Modreq or modopt: modopt 

Assembly: ?? 10 

Namespace: ?? 

Description:  

This type is used in the signature of any function. [Example: 
public ref class X { 
public: 15 
 void F(pin_ptr<int> x) { … }  // won’t compile, yet[[Ed.]] 
}; 

// code generated: 
… 

end example] 20 

32.1.5.8 IsSignUnspecifiedByte 
This type supports plain char’s being a type separate from signed char and unsigned char. 

Modreq or modopt: modopt 

Assembly: ?? 

Namespace: ?? 25 

Description: 

IsSignUnspecifiedByte can be used in the signature of any data member or function. [Example: 
public ref class x { 
 char c; 
 signed char sc; 30 
 unsigned char uc; 
public: 
 char* F(char* p1) { … } 
 char* F(signed char* p2) { … } 
 char* F(unsigned char* p2) { … } 35 
}; 

The code generated from an implementation in which a plain char is signed, as as follows: 
.field private int8 modopt([a]n.IsSignUnspecifiedByte) c 

.field private int8 sc 

.field private uint8 uc 40 

.method public instance int8 modopt([a]n.IsSignUnspecifiedByte)* 
 F(int8 modopt([a]n.IsSignUnspecifiedByte)* p1) … { … } 

.method public instance int8 modopt([a]n.IsSignUnspecifiedByte)* 
 F(int8* p2) … { … } 

.method public instance int8 modopt([a]n.IsSignUnspecifiedByte)* 45 
 F(uint8* p2) … { … } 
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while that generated from an implementation in which a plain char is unsigned, is shown below: 
.field private uint8 modopt([a]n.IsSignUnspecifiedByte) c 

.field private int8 sc 

.field private uint8 uc 

.method public instance uint8 modopt([a]n.IsSignUnspecifiedByte)* 5 
 F(uint8 modopt([a]n.IsSignUnspecifiedByte)* p1) … { … } 

.method public instance uint8 modopt([a]n.IsSignUnspecifiedByte)* 
 F(uint8* p2) … { … } 

.method public instance uint8 modopt([a]n.IsSignUnspecifiedByte)* 
 F(uint8* p2) … { … } 10 

end example] 

32.1.5.9 IsUdtReturn 
This type supports the returning of objects of a ref class type by value. 

Modreq or modopt: modreq 

Assembly: ?? 15 

Namespace: ?? 

Description:  

This type is used in the signature of a function. This modreq is not used to indicate a ref class value is passed 
to a function; for that, see IsByValue (§32.1.5.2). [Example: Pending [[Ed.]] end example] 

32.1.5.10 IsVolatile 20 
This type supports the volatile qualifier. (Although IsVolatile is part of the CLI Standard, it is 
documented here as well, for convenience.) 

Modreq or modopt: modreq 

Assembly: mscorlib 

Namespace: System::Runtime::CompilerServices 25 

Description:  

This type can be used in the signature of any data member or function. 

Any compiler that imports metadata having signature items that contain the volatile modreq is required to 
use volatile. prefixed instructions when accessing memory locations that are volatile-qualified. 
[Example: 30 

public ref class x { 
 volatile int* p1; 
public: 
 void F(volatile int* p2, int* p3) 
 { 35 
  *p1 = 1; 
  *p2 = 2; 
  *p3 = 3; 
  p1 = 0; 
 } 40 
}; 

// code generated: 
.field private int32 
 modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile)* p1 

.method public instance void F(int32 45 
 modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile)* p2, 
 int32* p3) cil managed { 
   … 
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  ldarg.0 
  ldfld int32 modreq([mscorlib] 
  System.Runtime.CompilerServices.IsVolatile)* 
  IsVolatileEx::p1 
  ldc.i4.1 5 
  volatile.  // prefix instruction needed when dereferencing p1 
  stind.i4 

  ldarg.1 
  ldc.i4.2 
  volatile.  // prefix instruction needed when dereferencing p2 10 
  stind.i4 

  ldarg.2 
  ldc.i4.3 
  stind.i4  // No prefix instruction needed when dereferencing p3 

  ldarg.0 15 
  ldc.i4.0 
  stfld int32 modreq([mscorlib] 
  System.Runtime.CompilerServices.IsVolatile)* IsVolatileEx::p1 
     // No prefix instruction needed; not dereferencing p1 
  ret 20 
} 

Note that given the declaration volatile int* p1, p1 is not itself volatile-qualified; however, *p1 is. 
end example] 
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Annex A. Verifiable code 

To be added. [[#87]] 
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Annex B. Documentation comments 

To be added. [[#88]] 
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Annex C. Non-normative references  

ISO/IEC 23270:2003, Programming languages — C#. 
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Annex D. CLI naming guidelines 

This annex is informative. 

Add guidelines for generics. [[Ed]] 

One of the most important elements of predictability and discoverability is the use of a consistent naming 
pattern. Many of the common user questions don’t even arise once these conventions are understood and 5 
widely used. There are three elements to the naming guidelines: 

1. Casing – use of the correct capitalization style 

2. Mechanical – use nouns for classes, verbs for functions, etc. 

3. Word choice – use consistent terms across class libraries. 

The following subclause lays out rules for the first two elements, and some philosophy for the third. 10 

D.1 Capitalization styles 
The following subclause describes different ways of capitalizing identifiers. 

D.1.1 Pascal casing 
This convention capitalizes the first character of each word. For example: 

Color    BitConverter 15 

D.1.2 Camel casing 
This convention capitalizes the first character of each word except the first word. For example: 

backgroundColor    totalValueCount 

D.1.3 All uppercase 
Only use all uppercase letters for an identifier if it contains an abbreviation. For example: 20 

System::IO 
System::WinForms::UI 

D.1.4 Capitalization summary 
The following table summarizes the capitalization style for the different kinds of identifiers: 

 25 

Type Case Notes 
Class PascalCase  
Class, attribute PascalCase Has a suffix of Attribute 
Class, exception PascalCase Has a suffix of Exception 
Literal PascalCase  
Enum type PascalCase  
Enum value PascalCase  
Event PascalCase  
Field, non-public instance camelCase  
Field, public instance  PascalCase Rarely used (use a property instead) 
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Type Case Notes 
Function PascalCase  
Interface PascalCase Has a prefix of I 
Local variable camelCase  
Namespace PascalCase  
Parameter camelCase  
Property PascalCase  
 

D.2 Word choice 
• Do avoid using class names duplicated in heavily used namespaces. For example, don’t use the 

following for a class name. 
System    Collections    Forms    UI 5 

• Do not use abbreviations in identifiers. 

• If you must use abbreviations, do use camelCase for any abbreviation containing more than two 
characters, even if this is not the usual abbreviation. 

D.3 Namespaces 
The general rule for namespace naming is CompanyName::TechnologyName. 10 

• Do avoid the possibility of two published namespaces having the same name, by prefixing 
namespace names with a company name or other well-established brand. For example, 
Microsoft::Office for the Office Automation classes provided by Microsoft.  

• Do use PascalCase, and separate logical components with two colons (as in 
Microsoft::Office::PowerPoint). If your brand employs non-traditional casing, do follow 15 
the casing defined by your brand, even if it deviates from normal namespace casing (for example, 
NeXT::WebObjects, and ee::cummings). 

• Do use plural namespace names where appropriate. For example, use System::Collections 
rather than System::Collection. Exceptions to this rule are brand names and abbreviations. For 
example, use System::IO not System::IOs. 20 

• Do not have namespaces and classes with the same name.  

D.4 Classes 
• Do name classes with nouns or noun phrases. 

• Do use PascalCase. 

• Do use sparingly, abbreviations in class names. 25 

• Do not use any prefix (such as “C”, for example). Where possible, avoid starting with the letter “I”, 
since that is the recommended prefix for interface names. If you must start with that letter, make 
sure the second character is lowercase, as in IdentityStore.  

• Do not use any underscores. 
public ref class FileStream { … }; 30 
public ref class Button { … }; 
public ref class String { … }; 
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D.5 Interfaces 
• Do name interfaces with nouns or noun phrases, or adjectives describing behavior. For example, 

IComponent (descriptive noun), ICustomAttributeProvider (noun phrase), and 
IPersistable (adjective). 

• Do use PascalCase. 5 

• Do use sparingly, abbreviations in interface names. 

• Do not use any underscores. 

• Do prefix interface names with the letter “I”, to indicate that the type is an interface.  

• Do use similar names when defining a class/interface pair where the class is a standard 
implementation of the interface. The names should differ only by the “I” prefix in the interface 10 
name. This approach is used for the interface IComponent and its standard implementation, 
Component. 
public interface class IComponent { … }; 
public ref class Component : IComponent { … }; 
public interface class IServiceProvider{ … }; 15 
public interface class IFormatable { … }; 

D.6 Enums 
• Do use PascalCase for enums. 

• Do use PascalCase for enum value names.  

• Do use sparingly, abbreviations in enum names. 20 

• Do not use a family-name prefix on enum. 

• Do not use any “Enum” suffix on enum types. 

• Do use a singular name for enums. 

• Do use a plural name for bit fields. 

• Do define enumerated values using an enum if they are used in a parameter or property. This gives 25 
development tools a chance at knowing the possible values for a property or parameter.  
public enum class FileMode 
{ 
 Create, 
 CreateNew, 30 
 Open, 
 OpenOrCreate, 
 Truncate 
}; 

• Do use the Flags custom attribute if the numeric values are meant to be bitwise ored together. 35 
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[Flags] 
public enum class Bindings 
{ 
 CreateInstance, 
 DefaultBinding, 5 
 ExcatBinding, 
 GetField, 
 GetProperty, 
 IgnoreCase, 
 InvokeMethod, 10 
 NonPublic, 
 OABinding, 
 SetField, 
 SetProperty, 
 Static 15 
}; 

• Do use int as the underlying type of an enum. (An exception to this rule is if the enum represents 
flags and there are more than 32 flags, or the enum might grow to that many flags in the future, or 
the type needs to be different from int for backward compatibility.) 

• Do use enums only if the value can be completely expressed as a set of bit flags. Do not use enums 20 
for open sets (such as operating system version). 

D.7 Static members 
• Do name static members with nouns, noun phrases, or abbreviations for nouns. 

• Do name static members using PascalCase. 

• Do not use Hungarian-type prefixes on static member names. 25 

D.8 Parameters 
• Do use descriptive names such that a parameter’s name and type clearly imply its meaning. 

• Do name parameters using camelCase. 

• Do prefer names based on a parameter’s meaning, to names based on the parameter’s type. It is 
likely that development tools will provide the information about type in a convenient way, so the 30 
parameter name can be put to better use describing semantics rather than type. 

• Do not reserve parameters for future use. If more data is need in the next version, a new overload 
can be added. 

• Do not use Hungarian-type prefixes. 
Type GetType(String^ typeName) 35 
string Format(String^ format, array<Object^>^ args) 

D.9 Functions 
• Do name functions with verbs or verb phrases. 

• Do name functions with PascalCase. 
RemoveAll()    GetCharArray()    Invoke() 40 

D.10 Properties 
• Do name properties using noun or noun phrases. 

• Do name properties with PascalCase. 
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D.11 Events 
• Do name event handlers with the EventHandler suffix.  

public delegate void MouseEventHandler(Object^ sender, MouseEvent^ e); 

• Do use two parameters named sender and e. The sender parameter represents the Object that raised 
the event, and this parameter is always of type Object, even if it is possible to employ a more 5 
specific type. The state associated with the event is encapsulated in an instance e of an event class. 
Use an appropriate and specific event class for its type. 
public delegate void MouseEventHandler(Object^ sender, MouseEvent^ e); 

• Do name event argument classes with the EventArgs suffix. 
public ref class MouseEventArgs : EventArgs { 10 
 int x; 
 int y; 

public:  
 MouseEventArgs(int x, int y) { 
  this->x = x; 15 
  this->y = y; 
 } 

 property int X { int get() { return x; } } 
 property int Y { int get() { return y; } } 
}; 20 

• Do name event names that have a concept of pre- and post-operation using the present and past tense 
(do not use BeforeXxx/AfterXxx pattern). For example, a close event that could be canceled 
would have a Closing and Closed event.  
event ControlEventHandler^ ControlAdded; 

• Consider naming events with a verb. 25 

D.12 Case sensitivity 
• Don’t use names that require case sensitivity. Components might need to be usable from both case-

sensitive and case-insensitive languages. Since case-insensitive languages cannot distinguish 
between two names within the same context that differ only by case, components must avoid this 
situation. 30 

Examples of what not to do: 

• Don’t have two namespaces whose names differ only by case. 
namespace ee::cummings; 
namespace Ee::Cummings; 

• Don’t have a function with two parameters whose names differ only by case. 35 
void F(String^ a, String^ A) 

• Don’t have a namespace with two types whose names differ only by case. 
System::WinForms::Point p; 
System::WinForms::POINT pp; 

• Don’t have a type with two properties whose names differ only by case. 40 
property int f { int get(); void set(int value); } 
property int F { int get(); void set(int value); } 

• Don’t have a type with two functions whose names differ only by case. 
void f(); 
void F(); 45 
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D.13 Avoiding type name confusion 
Different languages use different names to identify the fundamental CLI types, so in a multi-language 
environment, designers must take care to avoid language-specific terminology. This subclause describes a 
set of rules that help avoid type name confusion. 

• Do use semantically interesting names rather than type names. 5 

• In the rare case that a parameter has no semantic meaning beyond its type, use a generic name. For 
example, a class that supports writing a variety of data types into a stream might have: 
 
void Write(double value); 
void Write(float value); 10 
void Write(long long value); 
void Write(int value); 
void Write(short value); 
 
rather than a language-specific alternative such as: 15 
 
void Write(double doubleValue); 
void Write(float floatValue); 
void Write(long long longlongValue); 
void Write(int intValue); 20 
void Write(short shortValue); 

• In the extremely rare case that it is necessary to have a uniquely named function for each 
fundamental data type, do use the following universal type names: SByte, Byte, Int16, UInt16, 
Int32, UInt32, Int64, UInt64, Single, Double, Boolean, Char, String, and Object. For 
example, a class that supports reading a variety of data types from a stream might have: 25 
 
double ReadDouble(); 
float ReadSingle(); 
long long ReadInt64(); 
int ReadInt32(); 30 
short ReadInt16(); 
 
rather than a language-specific alternative such as: 
 
double ReadDouble(); 35 
float ReadFloat(); 
long long ReadLongLong(); 
int ReadInt(); 
short ReadShort(); 

End of informative text 40 
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Annex E. Future directions 

This annex is informative. 

This annex contains information about features that might be considered for a future revision of this 
Standard. 

E.1 Static members in interfaces 5 
Yet to come.[[#176]] 

E.2 Mixed types 
Yet to come. [[#176]] 

E.3 gcnew of unmanaged types 
Yet to come. [[#176]] 10 

E.4 new of managed types 
Yet to come. [[#176]] 

E.5 Unsupported CLS-recommended operators 
 

Function Name in Assembly C++ Operator Function Name 
op_SignedRightShift undefined 
op_UnsignedRightShift undefined 
op_MemberSelection undefined 
op_PointerToMemberSelection undefined 
 15 

Regarding op_MemberSelection and op_PointerToMemberSelection, the C++ Standard only 
permits non-static member declarations of these operators. 

E.6 Literals 
Investigate whether string literals can include compile-time expressions, such as concatenation of strings 
with non-strings using the + operator. 20 

E.7 Delegating constructors 
Tutorial: When implementing a class, it is not unusual to have a number of constructors share some common 
code. For example, consider the case of the following point class: 
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class point { 
 int x_; 
 int y_; 
 void commonCode(); 
public: 5 
 point(); 
 point(int x, int y); 
 point(const point& p); 
 
 // ... 10 
}; 

All three constructors need to initialize the two private members, x_ and y_; they might also perform other 
actions, some of which they share, and some of which are unique. One approach is as follows: 

point::point() : x_(0), y_(0) { 
 commonCode(); 15 
 // ... custom code goes here 
} 

point::point(int x, int y) : x_(x), y_(y) { 
 commonCode(); 
} 20 
point::point(const point& p) : x_(p.x_), y_(p.y_) { 
 commonCode(); 
 // ... custom code goes here 
} 

Certainly, the constructor with no parameters can be eliminated by adding default argument values to the 25 
constructor having two. However, that is not an entirely satisfactory approach for all classes. Specifically, it 
allows the two-argument constructor to be called with only the first argument, but not with only the second, 
which, philosophically, is asymmetric. 

As shown above, a common approach to implementing such a family of constructors is to place their 
common code in a private member function, such as commonCode, and have each of them call that function. 30 

C++/CLI helps solve this problem by providing delegating constructors. Simply stated, prior to executing 
its body, a delegating constructor can call one of its sibling constructors as though it were a base constructor. 
That is, it delegates part of the Object’s initialization to another constructor, gets control back, and then 
optionally performs other actions as well. Using this approach, the constructors shown earlier can be re-
implemented as follows: 35 

point::point() : point(0, 0) { 
 // ... custom code goes here 
} 

point::point(int x, int y) : x_(x), y_(y) { 
 // ... common code goes here 40 
} 

point::point(const point& p) : point(p.x_, p.y_) { 
 // ... custom code goes here 
} 

Note how the ctor-initializer construct has been extended to accommodate a call to a sibling constructor, 45 
using the exact same approach as for a call to a base class constructor. The common code statements can 
now be part of the body of the second constructor, where they will be executed by calls to all three 
constructors. When the first and third constructors are called, they transfer control to the second. When that 
returns control to its caller, that caller’s body is executed. 

Any constructor can delegate to any of its siblings; however, a class must have at least one non-delegating 50 
constructor (no diagnostic is required), and that constructor can still have a ctor-initializer that calls one or 
more base class constructors. A delegating constructor cannot also have a ctor-initializer that contains a 
comma-separated list of member initializers.  
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Specification: The definition of ctor-initializer has been extended to accommodate the addition of delegating 
constructors to C++/CLI; however, no change is necessary in the Standard C++ (§8.4) grammar. 

Prior to executing its body, a constructor can call one of its sibling constructors to initialize members. That 
is, it delegates the Object’s initialization to another constructor, gets control back, and then optionally 
performs other actions as well. A constructor that delegates in this manner is called a delegating 5 
constructor, and the constructor to which it delegates is called a target constructor. A delegating constructor 
can also be a target constructor of some other delegating constructor. [Example: 

class FullName { 
 string firstName_; 
 string middleName_; 10 
 string lastName_; 
public: 
 FullName(string firstName, string middleName, string lastName); 
 FullName(string firstName, string lastName); 
 FullName(const FullName& name); 15 
}; 

FullName::FullName(string firstName, string middleName, string lastName) 
 : firstName_(firstName), middleName_(middleName), lastName_(lastName)  
{ 
 // ... 20 
} 

// delegating copy constructor 
FullName::FullName(const FullName& name) 
 : FullName(name.firstName, name.middleName, name.lastName) 
{ 25 
 // ... 
} 

// delegating constructor 
FullName::FullName(string firstName, string lastName) 
 : FullName(firstName, "", lastName) 30 
{ 
 // ... 
} 

end example] 

If a mem-initializer-id designates the class being defined, it shall be the only mem-initializer. The resulting 35 
ctor-initializer signifies that the constructor being defined is a delegating constructor. 

A delegating constructor causes a constructor from the class itself to be invoked. The target constructor is 
selected by overload resolution and template argument deduction, as usual. If a delegating constructor 
definition includes a ctor-initializer that directly or indirectly invokes the constructor itself, the program is 
ill-formed; however, no diagnostic is required. 40 

[Example: When using constructors that are templates, deduction works as usual: 
class X { 
 template<class T> X(T, T) : l_(first, last) { /* Common Init */ } 
 list<int> l_; 
public: 45 
 X(vector<short>&); 
}; 

X::X(vector<short>& v) : X(v.begin(), v.end()) { } 
 // T is deduced as vector<short>::iterator 

end example] 50 

The Object’s lifetime begins when all construction is successfully completed. For the purposes of the C++ 
Standard (§3.8), “the constructor call has completed” means the originally invoked constructor call. 
[Rationale:  Even if a target constructor completes, an outer delegating constructor can still throw an 
exception, and if so the caller did not get the Object that was requested. The foregoing decision also 
preserves the Standard C++ rule that an exception emitted from a constructor means that the Object’s 55 
lifetime never began.  end rationale] 
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Add text to show the behavior in the CLI (including CIL). 

E.8 The checked and unchecked statements 
Statements of the form checked { … } and unchecked { … } could be used to control the overflow-
checking context for integral-type arithmetic operations and conversions. 
 5 

End of informative text 
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Annex F. Incompatibilities with Standard 
C++ 

This annex is informative. 

This annex contains information about aspects of C++/CLI that are incompatible with Standard C++. 

 5 

1. Commas in [], but not having enclosing parentheses, being treated as punctuators rather than as 
operators.[[Ed.]] 

2. New keywords: gcnew, nullptr. [[Ed.]] 

3. Exception handling stuff.[[#178]] 

4. Treatment of >> and >>=.[[Ed.]] 10 

 

End of informative text 
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Annex G. Index 

This annex is informative. 

... ..........................................................See ellipsis 
[] 

indexed access................................................57 5 
+= 

event handler addition ....................................23 
-= 

event handler removal ....................................23 
abstract class............... See class modifier, abstract 10 
abstract function ....See function modifier, abstract 
access 

assembly.........................................................40 
family and assembly.......................................40 
family or assembly .........................................40 15 
narrower .........................................................40 
wider...............................................................40 

accessor function 
add.............................See add accessor function 
get.............................. See get accessor function 20 
property .......... 21, 82, 84, See also get accessor 

function; set accessor function 
remove................ See remove accessor function 
set ...............................See set accessor function 

add accessor function .........................................24 25 
add_* reserved names ........................................75 
application ............................................................4 
application domain ...............................................4 
argument list 

function call....................................................58 30 
variable length....................See parameter array 

array .................................................................112 
covariance ....................................................113 
creation.........................................................112 
element access..............................................113 35 
initialization..................................................113 
members .......................................................113 
parameter........................................................75 
Standard C++ ...............................................112 

Array ..................................................67, 112, 113 40 
array pseudo-template class .............................112 
assembly.........................................................4, 29 
attribute ................... 4, 31, 125, See also Attribute 

class naming convention ..............................125 
compilation of an..........................................131 45 
delegate ........................................................129 
event .............................................................129 
function ........................................................129 
instance of an................................................130 

name of an ................................................... 128 50 
reserved........................................................ 131 
specification of an........................................ 127 

Attribute................................................... 125, 131 
attribute class ................................................... 125 

multi-use .............................................. 125, 126 55 
parameter 

named....................................................... 126 
positional ................................................. 126 

single-use ..................................................... 125 
attribute section................................................ 127 60 
Attribute suffix ................................................ 129 
attribute target.................................................. 129 

assembly ...................................................... 129 
event............................................................. 129 
field.............................................................. 129 65 
method ......................................................... 129 
param ........................................................... 129 
property........................................................ 129 
return............................................................ 129 
type .............................................................. 129 70 

AttributeUsage..........See AttributeUsageAttribute 
AttributeUsageAttribute .......................... 125, 131 
block 

finally 
exception thrown from............................... 69 75 

Boolean.............................................................. 39 
members of .................................................... 39 

boxing ............................................................ 4, 13 
Byte.................................................................... 39 

members of .................................................... 39 80 
C++ standard ............................................... 3, 163 
callable entity................................................... 120 
Char ................................................................... 39 

members of .................................................... 39 
class 85 
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