
Debian Firewalls
This is a step by step guide for setting up a custom Debian firewall for your home or office network.

~ ~ ~
Updated 1/11/2006

• Step 0 - Introduction

• Step 1 - Installation

• Step 2 - Initial Configuration

• Step 3 - Apt, Packages, and Upgrading

• Step 4 - Interfaces

• Step 5 - The Firewall

• Step 6 - Firewall Rules

• Step 7 - DNS

• Step 8 - DHCP

• Step 9 - SSH

• Step 10 - NTP

• Step 11 - Proxy

• Step 12 - Dynamic DNS

• Step 13 - IPSec VPN

• Step 14 - Intrusion Detection (IDS) New!

• Step 15 - Diagnostics with IFTop & TCPDump New!

• Step 16 - Custom Kernels New!

• Step 16 - OpenVPN (Road-Warrior) [Coming Soon!]

• Step 17 - QoS Traffic Shaping [Future!]

• Step 18 - Anonymous Routing with Tor [No Stable Debian Package :(]

• Step -1 - The FAQ - Recommended Reading!

• Step -2 - Now by Popular Demand - PDF Download Version!

How did this tutorial work for you? Please leave FEEDBACK!

Did this tutorial help you? Please consider a donation to help support expanding it!

A tutorial by:

Matt LaPlante

CCNP, CCDP, A+, Linux+, Cisco Firewall Specialist

http://www.cyberdogtech.com/firewalls/

 Debian Firewalls – Introduction

 Most networks these days run behind some type of gateway/router/firewall
device. Home office and SOHO networks often use small firewall/routers made by
companies such as Linksys, D-Link, and Netgear to provide their network
connectivity. The problem is these devices are often weak, underpowered, and
feature limited. The solution? Building your own!

 Linux is a wonderfully powerful and versatile operating system. It can run
anything from a full-fledged office workstation, to a server cluster, to a cell
phone. You can also conquer the power of Linux to create a powerful firewall
and router for your home network. Best of all, the hardware required is cheap,
and the software is free.

 Why Debian? Ultimately it comes down to personal preference. Most any Linux
distribution will work. I've built firewall systems with several Linux distros
now, and I've chosen Debian as my favorite for a few reasons:
• Minimal builds are fairly minimal. The "minimal" build on some distros is a
lot larger than on others. It all has to do with how many packages are tied to
the core OS. In this case, smaller is better.
• Huge package selection. Debian has one of the largest selections of pre-built
packages available with the OS. Provides lots of versatility with minimal
effort.
• Supports customization well. While all distros are customizable, some are
inherently more or less flexible than others. Debian generally shows very
little resistance when you decide to go off the beaten path.
• Excellent support. Debian has a huge community. Security updates are released
very quickly, and there's always somebody out there to ask for help.

Alternative Alert! - Distributions
This guide uses the Debian Linux distribution. One of the greatest (and potentially most complicated) parts of
Linux is the variety of operating systems available. The software used in this guide is all free and open source, so
with a little adaptation, you can create a Linux firewall with any brand you desire.

 Things to know before we start: The purpose of this guide is not to be the
end all be all of Linux firewalls, it's merely a starting point. You're
encouraged to go above and beyond the bare minimums shown here. The
possibilities are truly endless, but to get the most out of your machine you
must not be afraid to explore!

Proceed to Step 1 - Installation

 Debian Firewalls -- Installation

 System Requirements: A Linux firewall is a great way to recycle old computer
hardware! You can get a suitable system off of eBay for under $50, or perhaps
even free from your company's dumpster. :) I recommend the following specs:
• Memory: 64-128 mb
• Hard disk: 2-3 gb
• Processor 200mhz+
• 2+ Network Interfaces
• CD-ROM or Floppy drive
• Some type of video output
• A network switch.

 Keep in mind that these are very rough specs. You may want more or less
depending on what exactly you plan on doing with your machine. A bare minimum
firewall will probably run fine on even lower specs. On the other hand, if you
want to do some heavy lifting like IPSec or proxying, you may want a heftier
machine. Of course, you can always upgrade later.

 You will need a simple network switch to allow you to connect all the
computers on your LAN to your new router. Our setup assumes the following
topology:

-- PC 1

-- PC 2 ISP: Cable/DSL/Dialup/Etc --- Linux Router! --- (LAN Switch)

-- PC 3

 Now head over to www.debian.org. Under "Getting Debian" click CD ISO images.
You can choose to download any of the CD (or Floppy) types. A minimal image is
all that's necessary, although the full discs will work just as well. Use your
favorite CD burning application to create the installation CDs. There's lots of
documentation on the site if you need help with this.

 Boot your system from the first installation CD. You should be presented
with the Debian installation screen. By default Debian installs using the 2.4
kernel series. The kernel is the core of the Linux OS. I personally recommend
using the 2.6 series, which is the latest. The 2.4 series, while being more
mature and potentially more stable, is now considered legacy.

 Type "linux26" at the boot: prompt and hit enter.

 Now choose your language of choice. In my case, English.

 ...country and region...

 ...and keymap...

 The installer will now try to detect your hardware, and hopefully be
successful. Assuming you have multiple network cards, and are using the network
installation CDs or Floppys, the installer will ask you to select which card is
connected to your internet connection. If DHCP fails, make sure you've
connected the right interface to your ISP or current router and try again.

 Now, enter a hostname (computer name) for your system. You can call it
whatever you want.

 If your home network isn't part of a domain, or you're not sure what this
is, leave the next screen as it is and hit Enter. You'll know if you need to

change it.

 Now we need to partition the hard disk. This will erase everything on the
hard drive! Don't do it unless you're ready to lose anything on the drive! Hit
Enter to "Erase Entire Disk" and wipe the disk clean.

 Since this drive won't need to contain much in the way of programs, we can
safely choose the first option, "All Files in One Partition."

 The partitioner will automatically create your root and swap partitions. The
defaults should be fine, but you may also choose to use different file systems
or partition sizes if you know what you're doing. Once you're happy with it,
hit Finish.

 Select Yes to Write the changes to disks. This is your last chance to not
erase your drive!

 The partitioner will finish setting up the partitions and start installing
the system base. This will take a couple minutes. Hit Yes to install the Grub
bootloader.

 Setup is almost complete! Remove your CDs and Floppys and hit Continue to
boot into your new system.

Proceed to Step 2 - Initial Configuration

 Debian Firewalls -- Initial Configuration

 Congratulations! If you've made it this far, you should have a working
Debian installation on your new router. Now comes the fun part...setting up the
network services. Go ahead and read the welcome screen, then hit OK. Next,
answer the question regarding your system clock...

 ...select your time zone...

 Now enter a root password. As you should know, root password is the
Unix/Linux equivalent to the system administrator. This password will allow
full, unrestricted system usage. For this reason you should try to make the
password as strong as possible.

 Now we'll create a standard user account. This is a "non-privileged" user
which only has limited ability to change the system. This is the account you
should use normally to avoid accidentally breaking the system. Enter the actual
name, the user name, and the password as it prompts you.

 Next we move on to configuring Apt. Apt is the Debian package manager...if
you plan on using Debian you should learn a bit about Apt. I recommend the
documentation at www.debian.org for that. For now, you can scan your CDs if you
have them, otherwise click No when you're done.

 Select Yes to add another Apt source.

 Apt packages can be downloaded directly from the Debian servers, and since
I chose to use a network install, I have to add the network Apt sources. You
can choose either HTTP or FTP to do this:

 Choose the country nearest you, then choose any mirror site that you like.
They all function the same.

 Unless your ISP uses a proxy, you can just leave the next field blank and
hit Ok. If you don't know what this is, you probably don't need it.

 Apt will now download the list of packages from the server you've chosen.
We will now be prompted to choose which pre-configured system installation we
want. We want to choose ONLY manual package selection! This is the key to
building a custom system, as it will allow is to have a bare system and install
only the programs we need.

 We are now presented with the Aptitude program interface. Aptitude is a
very handy package manager that allows you to browse all the Debian packages
available for install. If you know in advance that you want certain packages,
you may do so here. For the sake of this tutorial, we are simply going to quit
the program for now. Type the lowercase letter 'q' to quit, and select Yes to
close the program.

 On the next screen just select Ok to local delivery only unless you know you
want to use different SMTP settings.

 You should be able to just hit Ok for the next screen as well.

 Congratulations! Initial configuration is now complete and you have a fully
working system. Now we can get on to the fun stuff...setting up our network
services.

Proceed to Step 3 - Apt, Packages, and Updating

Debian Firewalls -- Apt, Packages, & Upgrading

 You should now have a login screen for your new Debian router. Go ahead and
login with the user account you created. Before we continue, you should
familiarize yourself with the Debian package management system, also known as
Apt.

 Debian "packages" are simply pre-compiled software programs designed to work
with your Debian system. The easiest (although not only) way to install these
packages is using the apt program, which comes preinstalled on the system. For
the sake of simplicity, we'll be using Debian packages for the remainder of
this tutorial.

Alternative Alert! - Packages
The wonderful thing about open source software is not only is it free, but the source code is available for
download by anyone who wants it. All of the programs featured here can be downloaded individually as source
code rather than as Debian packages. Compiling programs by hand has several advantages, including greatly
increased customizability, as well as improved performance. Compiling source also has several downsides: First,
you need to know what you're doing to compile it in the first place. You also need to be willing to re-compile the
source every time a security or bug fix update is released. Packages, on the other hand, can be installed and
updated with a couple commands, and are maintained by dedicated members of the Debian community. For
simplicity, we'll be using packages for this tutorial, but it in no way implies you can't or shouldn't compile your
own program if you know how!

 First, we need to know how to update the local Apt cache. The Apt cache
stores a local database of all available packages on your system. You should
update it every time you work with Apt. To update it, run apt-get update from
the command line:

Firewall:~# apt-get update

 Now that your local cache is updated, the first thing you should do is
update all the currently installed applications on your system. This is
accomplished by running apt-get upgrade:

Firewall:~# apt-get upgrade

 Apt will check if any of your installed programs are outdated. Say Y (yes)
if it offers you any upgrades...never turn down upgrades!!

 You should run apt-get update and apt-get upgrade REGULARLY. This keeps all
installed packages on your system up to date. Failure to do so may leave your
system vulnerable to security flaws. Your entire network could be compromised
if your software is not up to date!

 You'll also want to know how to locate new packages that you can install on
your system. Exploring is good! To search for a package, use the apt-cache
search command:

Firewall:~# apt-cache search [searchterm]

 You can use the apt-cache show command to get details about a package:

Firewall:~# apt-cache show [appname]

 To install a package, use apt-get install:

Firewall:~# apt-get install [appname]

 To remove a package, use apt-get remove:

Firewall:~# apt-get remove [appname]

 Finally, the aptitude program will give you a next text-based interface for
searching, installing, and removing packages. If you're a menu-driven person,
try it by running aptitude from the command line:

Firewall:~# aptitude

Proceed to Step 4 - Interfaces

 Debian Firewalls -- Interfaces

 First, we have to configure our network interfaces. For the sake of this
tutorial, we'll be using two ethernet interfaces. One is the internal
interface, and connects to our LAN switch. The second interface is external and
connects to our ISP (cable modem/DSL modem/etc).

 Your LAN can use any private IP address range. We'll be setting up PAT (Port
Address Translation, also known as NAT - Network Address Translation) shortly.
This will allow all the computers on our local network to use internal
addresses. The firewall will automatically translate our internal address into
the external address assigned by our ISP.

 Interfaces are configured in the /etc/network/interfaces configuration file.
We'll be using the nano text editor throughout this tutorial. If you prefer
another editor such as vi or emacs, feel free to use that instead. Open the
networking configuration file in nano:

Firewall:~# nano -w /etc/network/interfaces

 Hopefully the interfaces file will already have your ISP interface
preconfigured from setup. You'll also have a loopback interface (lo) which is
normal. We'll assume for the rest of this tutorial that eth0 is the name of
your ISP interface and eth1 is the name of your internal (LAN) interface. If
you're not sure what your interfaces are named, run the ifconfig command from
the command line...they should be listed.

 The actual configuration file is quite simple. Lets break it down:

auto eth0 - automatically start the interface when the system boots. You'll
want this for any vital interfaces.

iface eth0 inet dhcp - declares that the eth0 interface should get its
information from DHCP. This is what you'll want if you automatically get your
IP Address from your ISP.

 Now we have to add or edit our internal interface, which will have the
static IP address of 192.168.1.1:

auto eth1
iface eth1 inet static
address 192.168.1.1
netmask 255.255.255.0

 These entries tell the system to automatically start eth1 when the system
boots, and use a static ip address of 192.168.1.1 for the interface.

 Once you've made the necessary changes, hit Ctrl+x to close nano, and save
the file.

 Finally, it's good to know how to change interfaces between up and down
state. To bring an interface online manually, use ifup [interface name]:

Firewall:~# ifup eth0

 To shut an interface down, use ifdown [interface name]:

Firewall:~# ifdown eth0

Alternative Alert! - Interfaces
Linux supports a very broad variety of network interfaces. It can run practically anything including ethernet,
dialup, wireless, token ring, atm, and more. This will leave you the ability to get very creative with your network
topology if you so choose. You can add any kind of connection you like, including in combinations that provide
redundancy and multi-homing. For the sake of simplicity, this tutorial only covers a basic ethernet configuration.

Proceed to Step 5 - The Firewall

 Debian Firewalls -- The Firewall

 Version 2.6 of the Linux kernel uses iptables to provide its firewall
facilities. For more information on iptables, see http://www.netfilter.org.
Iptables is a wonderfully robust and functional firewall package, and will form
the core of all of our machine's firewall and routing functionality. Iptables
is installed by default as part of the minimal Debian installation, so there's
no further installation needed.

 The predecessor to iptables, ipchains is also installed by default, but we
don't need it on our system. I recommend removing it to keep things simple and
uncluttered:

Firewall:~# apt-get remove ipchains

 Iptables is wonderfully powerful, but unfortunately that power comes at a
price...namely configuration. While it can technically be configured by hand,
it's a common saying that iptables configuration is not human readable. In
short, it's very complex and can quickly become overwhelming. Luckily, we have
a solution in the form of a program called Shorewall. Shorewall was written by
Tom Eastep, and is available via http://shorewall.sourceforge.net. Of course,
we also have a Debian package for shorewall, so there's no need to download and
install it by hand. To start, use apt-get to install the shorewall package:

Firewall:~# apt-get install shorewall

At this point apt may tell you it has to install a couple extra supporting
package along with shorewall. This is normal and you should accept the prompt
to allow it to install everything. Don't worry about the "suggested" packages,
we won't need those.

Alternative Alert! - Shorewall
The problem of configuring iptables is not new, and as with most things in computing, there's more than one way
to solve the problem. While this tutorial uses Shorewall to do its dirty work, there are other programs out there
that will do the same. One popular alternative is FireHOL (http://firehol.sourceforge.net). If shorewall isn't
floating your boat look around...there are always alternatives.

 Before we move on, let's clear up a couple common misconceptions: Shorewall
is not a firewall, and in fact it's not even an application. The common notion
of a program (or daemon) is that of an application that runs continuously. This
is not the case with Shorewall. Instead, Shorewall is actually just a very
large set of scripts which run once and then exit. Shorewall itself does not
perform any firewalling work; it merely configures iptables to your
specifications, then quits.

 Now on to configuration. You probably noticed a warning message at the end
of the Shorewall installation telling you the program will not start unless you
change the /etc/default/shorewall file. Lets do that now:

Firewall:~# nano -w /etc/default/shorewall

Now simply change
startup = 0
to
startup = 1
save, and exit.

 Shorewall configuration files are stored in two separate places:
/etc/shorewall stores all the program configuration files.
/usr/share/shorewall stores supporting files and action files.

 On the Debian package version of shorewall, /etc/shorewall is rather empty.
Luckily, we're provided with default configuration files in
/usr/share/doc/shorewall/default-config

 Since we will need to use these config files to actually make Shorewall
work, the first thing to do is to copy them over to /etc/shorewall:

Firewall:~# cp /usr/share/doc/shorewall/default-config/* /etc/shorewall/

 Now our /etc/shorewall directory should have default copies of all the
config files. Next we modify a few of them to get our firewall in basic working
order. I'm only going to cover the basic configurations necessary to get the
firewall working. Please read the documentation in each config file you edit so
you can fully understand what each step is really doing!

 First we add our network "zones" Shorewall uses zones as a way of defining
different portions of our routed network. Our simple setup will have two zones:
local and internet (loc & net). Shorewall can easily be extended to support
many more zones such as a DMZ or a VPN zone. This configuration is performed in
/etc/shorewall/zones:

Firewall:~# nano -w /etc/shorewall/zones

 All we have to do here is name our zones:

net Net The Internet
loc Local Local Network

 That's it, save and exit.

 Next, we have to add our physical interfaces. This is done via
/etc/shorewall/interfaces:

Firewall:~# nano -w /etc/shorewall/interfaces

 First we add our internet (net) interface, eth0. We set it to automatically
detect the interface settings, and also tell it to perform some filtering. I
won't go into detail here; everything is explained nicely at the top of the
file.

net eth0 detect dhcp,routefilter,tcpflags,nobogons

 Second is our internal interface (eth1):

loc eth1 detect dhcp

 Notice it's not generally necessary to turn on all the filtering options on
the internal interface, as our local zone is considered "safe". We're only
super cautious about traffic coming into the system from outside. Interface
configuration is done, so save and close the file.

 Our system uses PAT (port address translation). This is featured as the
default on most small home and SOHO firewall devices. Basically, PAT allows our
router to translate between our external IP address (on eth0) and all our
internal addresses (connecting to eth1). This feature is often referred to
(incorrectly) as NAT, or Network Address Translation. Please note that PAT/NAT
are not required to operate a firewall, but you will have to set up alternative
methods of routing instead. In Shorewall, PAT is configured in
/etc/shorewall/masq:

Firewall:~# nano -w /etc/shorewall/masq

 We have to tell shorewall that we want all traffic coming from inside the
network (on eth1) to be translated out through the interface on eth0). We do
this simply by specifying the interfaces:

eth0 eth1

 It is important to note that as always, there are more advanced
possibilities here than what we're using...read the documentation! Also, don't
be fooled by /etc/shorewall/nat. This file is for providing Network Address
Translation, which translates internal IP addresses to external IP addresses
directly, rather than using a single external address and translating the
ports. I recommend Wikipedia and Google if you want to learn more.

 Now comes the ever important firewall policy. The policy forms the basis for
how all traffic on our network will be treated. This is not for fine grained
control, we'll get to that later. This just sets the baseline actions for a
zone.

Firewall:~# nano -w /etc/shorewall/policy

 We trust our local traffic, so we want to accept traffic that comes from our
LAN, no matter where it's going:

loc all ACCEPT

 Note that there is also a built-in zone for the firewall machine itself,
which is "fw" by default. You have the option of adding that to the policy as
well. While this rule is optional, I recommend adding it. It says all traffic
generated by the machine is allowed. You can also leave this out and configure
a more strict rule (in the rules file) to only allow certain traffic, but keep
in mind if you do not add some type of policy or rule, you will not be able to
use any network based features of the system. For example apt will no longer

work if fw traffic is not ACCEPTed. The rest of this tutorial assumes this
option is added.

fw all ACCEPT

 We don't trust external traffic from the internet. When we see internet
traffic that doesn't match any specific rules (later), we want it DROPPED:

net all DROP

 Finally, any traffic not matching the above is rejected (this must be the
last rule):

all all REJECT

 Finally we get to the last necessary file, /etc/shorewall/shorewall.conf.
This file manages global shorewall options, and you should read it through
completely.

Firewall:~# nano -w /etc/shorewall/shorewall.conf

 Most importantly, change IP_FORWARDING to "On". If you don't, your packets
won't be able to get out of the local network:

IP_FORWARDING=On

 For security, I suggest setting DROPINVALID to "Yes" as well:

DROPINVALID=Yes

 Read through the whole file and customize it as you wish. When you're done,
save your work. That should complete the basic firewall configuration. You
should run "shorewall check" to see if you've made any typos. It won't catch
all possible errors, but it helps:

Firewall:~# shorewall check

 If you get "Configuration Validated" you can go ahead and start Shorewall:

Firewall:~# /etc/init.d/shorewall start

 Note that Shorewall should run automatically every time the system boots, so
you won't have to do it manually. If you want to change your settings without
rebooting, just use "restart" instead of start in the above command.

Proceed to Step 6 - Firewall Rules

Debian Firewalls -- Firewall Rules

 The firewall we've set up so far is quite strict, it won't allow any traffic
in at all. Often, there are times when we need to make exceptions to the
firewall policy we set up early. To accomplish this, we use the
/etc/shorewall/rules file.

Firewall:~# nano -w /etc/shorewall/rules

 Say we have an internal web server that we want the world to be able to
access. Well right off the bat we have two problems: First, the firewall policy
denies any traffic initiated by the internet. Second, our internal web server
has an internal address that's not associated with our global (outside) IP
address. We can overcome both these problems by making a DNAT (dynamic NAT)
rule in shorewall. For this example, lets assume our web server's internal
address is 192.168.1.100.

DNAT net loc:192.168.1.100 tcp 80

 Let's break this down: We're telling the firewall to use DNAT, which will
dynamically redirect a request to our external address to one of our internal
machines. net says this applies to traffic coming from our "net" zone.
loc:192.168.1.100 tells the firewall to send this traffic to a specific machine
in our local zone, 192.168.1.100. Then we have to specify the protocol
(tcp,udp,etc), and the destination port number (80 for http, etc). You can set
any protocol and port number supported by the kernel. Now, when the firewall
receives traffic to its external interface with a destination port of 80, it
will automatically translate the traffic and send it to our internal web
server. Pretty cool.

 Next, let's say we have a server running on the firewall machine itself, for
example SSH. Rather than deny or redirect connections, we want the firewall to
pass the traffic to one of it's own servers. For this we use the ACCEPT option:

ACCEPT net fw tcp 22

 This example will tell the firewall to accept any connections coming from
the internet (net) zone to itself on port 22 (SSH). In other words, you can
connect to an SSH server on your firewall with this rule.

 Warning: Be careful when authorizing any inbound traffic! Rules such as this
can be useful, but they can also be very dangerous. Any time you leave open
services on the internet, you're making yourself vulnerable to attack. If a
malicious person can connect to your ssh server at all, then there's a chance
they can also get full access to your machine. Only use such options if you're
well aware of the potential consequences!

 Another popular option would be to allow people to ping your firewall, which
is disabled by our default policy. To do this, allow the firewall to accept
ICMP protocol traffic from the net zone:

ACCEPT net fw icmp

 There are many potential applications for rules, even in basic usage. If
you're a P2P user, look up what ports your favorite P2P app uses for incoming
traffic, and create a DNAT rule to your local machine. This will allow you to
get full connectivity to the P2P network without the hassles of the software
knowing you're behind a firewall.

 By default, whenever the firewall drops unauthorized traffic it is logged.
To view the logs, run less /var/log/syslog. If you have traffic that is

constantly bombarding your firewall and filling up your logs, you can use the
rules to silently drop the traffic without logging it. Just create a DROP
entry:

DROP net fw udp 1026:1029

 This will cause the firewall to drop any incoming traffic to the firewall on
udp ports 1026-1029 without logging it. You can set any protocol and port
numbers you wish.

 Once you've finished setting up all your rules, don't forget to save the
file, run shorewall check, and restart shorewall to apply the new
configuration.

 Finally, as always, read all of the options in the rules file. It's a very
powerful tool, and you should study how to configure it properly.

Proceed to Step 7 - DNS

 Debian Firewalls -- DNS

 Now that we have a functioning firewall, lets add some basic network
services to get our network really running at full throttle. First off, we can
add a DNS proxy. This step is totally optional.

 Basically a proxy works as a "man in the middle" between the client and the
server computers. Proxies serve many purposes, some of the most common of which
are providing fast access to popular material, and allowing filtering of data.
The purpose of the DNS proxy is rather straight forward. Rather than having all
the computers on the local network send traffic to our ISP's DNS servers, we
have the local machines send their requests to our firewall. Our firewall then
looks up the DNS information on the behalf of the machines, and returns the
information to them. This allows for one specific benefit: speed. Our server is
often referred to as a caching name server, because it stores the DNS records
after it looks them up. Even if clients on your network request www.debian.org
20 times, the firewall only has to request the information from the ISP
once...it uses its own memory to answer the other 19 queries. And since the
local network is always faster than the internet connection, this should boost
the speed of our DNS lookups. For our DNS Proxy we'll be using the dnsmasq
package (http://www.thekelleys.org.uk/dnsmasq).

Alternative Alert! - DNSMasq
Once again, DNSMasq is just one of the potential solutions to the problem; there are several other options
available. One popular one might be BIND (the Berkeley Internet Name Domain). In fact, just about any DNS
server will fill the role. DNSMasq was chosen because it's lightweight, easy to configure, and was create with just
this job in mind.

 Let's get started by installing dnsmasq:

Firewall:~# apt-get install dnsmasq

 With dnsmasq we only have one configuration file: /etc/dnsmasq.conf

Firewall:~# nano -w /etc/dnsmasq.conf

 As is the running theme, there's lots of options here we won't touch on.
Read the documentation completely so you know what the package is capable of.
DNSMasq should work for us straight "out of the box" so there's no need to
change any configurations unless you want to. If you change the config, restart
it up with:

Firewall:~# /etc/init.d/dnsmasq restart

 Debian Firewalls -- DHCP

 DHCP is another one of our key services. The Dynamic Host Control Protocol
as it is known, is the service that assigns all the local IP addresses to our
internal computers. This is the default for most firewalled networks. To start
off, we'll install DHCPD, the DHCP daemon:

Firewall:~# apt-get install dhcp

Alternative Alert! - DHCPD
You guessed it, more options. We've got loads of alternatives here, just do an apt-cache search dhcp if you don't
believe me. Other available options are dhcp3-server, the newer version of the ISC we're going to use, as well as
others. Even DNSMasq that we installed earlier can do DHCP serving if you wish.

 Our configuration file for this daemon is /etc/dhcpd.conf

Firewall:~# nano -w /etc/dhcpd.conf

 If you're running a network on a domain you can set the domain-name option.
If not, or you don't know what it is, comment it out. As usual, any line
starting with a # is a comment, and won't be processed.

 The DHCP server configuration file has two "sections". The global options
are configured outside of everything else, and are applied by default to any
subnets you may configure. Then there are the "subnet" subsections. The rules
in these sections only apply to the specific subnet in question, and override
the global settings.

 For starters, let’s make the default-lease-time and max-lease-time longer.
These settings simply tell the server and the client how long an address is
valid on the network. After this time, the address must be renewed with the
server. On a corporate network with lots of changing hosts, this value should
be smaller to allow for better use of the address space. On our home network,
computers rarely change, so a small number just creates extra traffic. Make the
number larger reduces network overhead since computers can keep their addresses
longer. I use the following:

default-lease-time 86400;
max-lease-time 604800;

 This should default to one day and one week respectively.

 Now we have to configure our local subnet. If you remember, our internal IP
address was 192.168.1.1, meaning all our local computers should be on the
192.168.1.0/24 subnet. Here's the full configuration:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.10 192.168.1.99;
 option domain-name-servers 192.168.1.1;
 option netbios-name-servers 192.168.1.110;
 option routers 192.168.1.1;
}

 Let's break this down: the first line declares that we're servicing subnet
192.168.1.0/24, our local network. These rules override global rules and apply
only to that network.

 The 1st option, range tells the server what range of addresses it should
assign from. Here, clients will receive addresses between 192.168.1.10 and
192.168.1.99 inclusively.

 The 2nd option, domain-name-servers, tells the hosts what DNS servers to
use. This option gives hosts the firewall's address. This is assuming you have
a DNS proxy set up as we did in the last step with DNSMasq. If there is no DNS
service running on your firewall, you will need to use your ISPs DNS server
addresses instead. You can also skip this step entirely and manually configure
every client with DNS settings.

 The 3rd rule, netbios-name-servers specifies what are often better known as
WINS servers. These servers allow local clients to look up local machines based
on their netbios names. This option should be left out unless you have a
WINS/Netbios server on your local network. If you don't know what this is, skip
it.

 The final option, routers, is very important. It specifies the address of
your gateway, 192.168.1.1. This tells all hosts which machine is the default
gateway for the network, ie where to send all outgoing traffic.

 Don't forget to close the subnet with a closing bracket "}".

 By nature, DHCP may assign any address in the pool to any machine. Say you
have a machine whose address you want to remain constant over time. Our DHCP
server can accommodate that as well. To do so, we have to create a host record:

host webserver {
 hardware ethernet 0:0:A0:B1:D3:C4;
 fixed-address 192.168.1.130;
}

 This creates a static host entry. It should go outside of any subnets in the
configuration file. The hardware ethernet line must match the MAC address of
the computer you want the IP address assigned to. The fixed-address portion
simply assigns the given address to the computer with the matching MAC.

 Finally, you'll want to tell DHCP which interface to listen to on startup.
This can be done in /etc/default/dhcp.

Firewall:~# nano -w /etc/default/dhcp

 Look for the INTERFACES= line near the top. Make sure the interface between
the quotes matches the name of our internal interface, not our internet
interface.

INTERFACES="eth1"

 Once that's taken care of, you can start DHCPD.

Firewall:~# /etc/init.d/dhcp start

 Your hosts should now be able to pull valid local addresses from the
firewall. If you get any errors, check /var/log/syslog to see what went wrong.

Proceed to Step 9 - SSH

 Debian Firewalls -- SSH

 One of the most popular ways to remotely administer a Linux system is using
SSH. SSH provides an encrypted command line session from any remote machine.
It's the secure replacement for the once ubiquitous telnet application. These
days using telnet is frowned upon since it sends all data unencrypted in clear
text. This step is totally optional, but if you want to work on your machine
remotely, this is one of the best methods. First, install the ssh package:

Firewall:~# apt-get install ssh

 The Debian package will prompt you for a few options. Select Yes to all
three options: allow SSH version 2 only, run setuid, and install the server.

 Our configuration file for this daemon is /etc/ssh/sshd_config

Firewall:~# nano -w /etc/ssh/sshd_config

 Most of the defaults should be fine here. Personally I like to change
PasswordAuthentication to yes, assuming you want to log in using your account
password. Read through the configuration files, and change anything you want.

 Depending on the firewall policy you set up earlier, you may or may not need
to make adjustments. If you used the example policy of accepting all local
traffic to anywhere, then SSH should be accessible from any local machine. You
can also allow access from the internet by creating an instance in the
/etc/shorewall/rules file, if you're feeling brave. Finally, if you want to
tighten security, you can adjust the rules to only allow specific local
machines to access the SSH port. This is great in an office network where only
the administrator's workstation should have access.

Proceed to Step 10 - NTP

 Debian Firewalls -- NTP

 NTP is a handy little service to have running. Also known as the Network
Time Protocol, it will keep both your firewall's clock synchronized, and allow
any clients on your LAN to synchronize their clocks with the firewall:

Firewall:~# apt-get install ntp-server

 The configuration file is /etc/ntp.conf.

Firewall:~# nano -w /etc/ntp.conf

 The default settings should be ok. If you choose to synchronize your entire
network to the firewall, you will probably want to add option time-servers to
your dhcp configuration file. Set the server address as your firewall's
internal address.

Proceed to Step 11 - Proxying

 Debian Firewalls -- Proxy

 Proxies can fulfill several different functions on network gateways. Two of
the most popular are increasing speed, and increasing security and control. A
proxy acts as a "middle man" between the client PC and the internet server.
When a client requests a connection to a source outside the gateway, it sends
the request to the proxy. The proxy examines the request, and forwards it to
the server. The proxy then receives the response, and performs the appropriate
actions before passing it on to the original host. A caching proxy will store
the data, allowing it to be retrieved very quickly the next time it is
requested. A security based proxy will examine the outgoing and incoming
traffic for malevolent data and either block it or sanitize it.

 One of the most popular Linux proxy programs is Squid (http://www.squid-
cache.org). We'll be using this as our caching proxy. Later, we'll check out
Privoxy (http://www.privoxy.org), which is a lighter solution designed to act
as a security proxy.

 System Requirements Notice: Toward the beginning of the tutorial series we
noted how well a small obsolete computer can run a Linux gateway. While it
remains true that a proxy will technically run fine on any small system,
proxies often demand larger systems to really perform well. A caching proxy
needs a lot of space to effectively store all the data that it requests from
the internet. Any proxy needs RAM and processing power to parse all that data
mid-stream. That said, if you really want to benefit from a proxy you'll want
bigger hard disks, more RAM, and faster processing than a bare-bones router.
How much you need is ultimately up to you and how you plan on using your new
proxy.

 First, we install Squid:

Firewall:~# apt-get install squid

Alternative Alert! - Squid
Proxying is anything but a small field, so of course there are a lot of alternatives. I personally recommend
checking out Privoxy (covered below) if you're looking for security vs. caching. In both fields, there are plenty of
alternatives.

 Our configuration file for this daemon is /etc/squid/squid.conf

Firewall:~# nano -w /etc/squid/squid.conf

 As with a lot of our services, proxies are powerful tools, so there's lots
you can configure. As always, I recommend reading the configuration, and in
this case check out the FAQ on the Squid website as well.

 In this case, we're just going to change the listening interface and port.
By default Squid listens on all its interfaces, on port 3128. We're going to
change this to listen on only the internal interface, on the standard proxy
port of 8080. To do this, uncomment and change the http_port parameter.

http_port 192.168.1.1:8080

 Squid supports a lot of authentication options and access control lists
(acls). These are important when your proxy is exposed to untrusted clients.
For this example, we'll be running only on our trusted home network, so there's
no need to restrict access. By default, Squid only accepts connections from the
local machine. To change this, we have to tell it to accept all connections
from local IP addresses:

 Find this line in the configuration:

acl localhost src 127.0.0.1/255.255.255.255

 and change it to this:

acl localhost src 192.168.1.0/255.255.255.0

 This will allow any client on the 192.168.1.0 network to access the proxy.
Only do this if you trust all your local machines. If you do not, read the
comments and adjust the ACL to restrict access to certain machines only!

 That's all we need. Save the file and exit, then run:

Firewall:~# /etc/init.d/squid restart

 Now all you have to do is change the proxy settings for the web browser on
your PC. Change the HTTP proxy host to 192.168.1.1, and the port to 8080
(assuming you change it as we did above). The next time you request a website,
the browser will query the proxy rather than the website itself. If the process
fails, check the log files in /var/log/squid/ (any errors should be printed
there).

Alternative Alert! - HTTP Proxy
We just configured a passive proxy...you have to manually configure each web browser to access it. Squid can
also be configured as a transparent proxy. Transparent proxies run on the standard HTTP port (80) and intercept
all traffic to the web, without needing the browser to be specially configured. Transparent proxying is out of the
scope of this article, but if you read the configuration files you can probably figure it out fairly easily.

 Now that we've covered content caching, lets take a quick look at privacy
caching with Privoxy. Keep in mind these are totally separate solutions and you
can choose to implement one, both, or none, depending on your needs.

Firewall:~# apt-get install privoxy

 Privoxy uses several configuration files in /etc/privoxy and you should
explore all of them. /etc/privoxy/config provides the general program options.
Open this file, and change listen-address to the address of your LAN interface:

listen-address 192.168.1.1:8118

 Now restart Privoxy:

Firewall:~# /etc/init.d/privoxy restart

 This is all you need for the base configuration. Direct your browser to the
new proxy port (8118) and Privoxy will kick in. Privoxy is configured to
protect your browsing privacy in several ways by default, including filtering
certain fields out of your HTTP requests, and by blocking unwanted data from
some much maligned advertising websites. For full details, check out the config
files and http://www.privoxy.org. Of course, all of this is highly
customizable. Check out the filters and customize them to meet your needs.
Privoxy also has a cool web-based administration interface should you choose to
enable it.

Proceed to Step 12 - Dynamic DNS

 Debian Firewalls -- Dynamic DNS

 Most hosts running internet based services use DNS to make their machines
easily accessible by name. If you're running some type of server behind your
firewall, you'll probably want to give it a domain name (www.mysite.com) to
make it easily accessible. Domain names can also be handy for personal use,
like if you need to connect to your machine remotely (with PPTP for example).
For we humans, names are just simply easier to remember than numbers.

 A dedicated server usually runs DNS with a static IP address. It would be a
problem if Google's IP address changed constantly, wouldn't it? Unfortunately
for those of us running personal servers on basic broadband connections, we
have dynamic IP addresses, which are designed to change every so often. To
compensate for this, we can use Dynamic DNS. The principle is simple: an extra
service runs on the host machine and monitors the IP Address. When it changes,
the Dynamic DNS service automatically takes notice, and updates the DNS record
on the DNS server. This keeps downtime to a minimum and eliminates the need for
you to constantly be updating your records. Best of all, it's free and easy to
set up!

 Lots of companies offer free Dynamic DNS hosting. For this tutorial we'll be
using the popular DynDNS service. DynDNS offers many DNS services, including a
reliable and FREE dynamic DNS service.

Alternative Alert! - DynDNS
DynDNS is only one possibility. Just Google "dynamic dns" for lots more! Best of all, the free dynamic dns client
we're covering supports just about any of them!

 To start off, you'll need to register an account with any internet based
dynamic dns service. If you choose DynDNS, you can sign up here:
http://www.dyndns.com/services/dns/dyndns/. Registration should be simple and
painless, just sign up with any username and password. Make sure not to use a
password you've used for other accounts! More on this later... Once you've
created your account, you need to add a host record to your account. You'll
have to name your new site, most likely it will be in the form of
[mysite].dyndns.org. That should be all the account configuration necessary.

 The program we'll be using as our client is called ez-ipupdate. It's a very
light dynamic dns client written in c that supports lots of different DNS
services. I'll spare you another Alternative Alert, but just know there are a
lot of other clients you could choose if you want.

Firewall:~# apt-get install ez-ipupdate

 ez-ipupdate comes with lots of example configurations for various dynamic
dns services. To view them, list the files in /usr/share/doc/ez-
ipupdate/examples/:

Firewall:~# ls -al /usr/share/doc/ez-ipupdate/examples/

 The actual examples are stored in /etc/ez-ipupdate. To start, copy one of
the example configs there, or just create your own:

Firewall:~# cp /usr/share/doc/ez-ipupdate/examples/example-dyndns.conf /etc/ez-
ipupdate/ez-ipupdate.conf
Firewall:~# nano -w /etc/ez-ipupdate/ez-ipupdate.conf

 Now we just need to give the program some basic information. Here's the
entire config first:

#!/usr/sbin/ez-ipupdate -c

service-type=dyndns
user=MyUserName:MyPassword
host=myhostname.dyndns.org
interface=eth0
max-interval=2073600
run-as-user=ez-ipupd
cache-file=/var/cache/ez-ipupdate/default-cache
daemon

 Now lets break it down: The first line is necessary because this file will
actually be used as an executable. service-type=dyndns defines the type of
service we're working with, in my case dyndns (see other files in the examples
directory for more). user=MyUserName:MyPassword tells ez-ipupdate how to log
into the dynamic dns service. This should be the account information you used
when you signed up. This is also why you should use a unique password...it will
be stored and transmitted in clear text! host=myhostname.dyndns.org should
match the host name you chose on with the dynamic dns service. You can have
more than one per account, so you need to specify which one you're updating.
interface specifies the interface with the IP address you're tracking...make
sure to use your ISP interface! max-interval controls how often updates must be
made...don't make it too small or your service provider may not be happy. run-
as-user=ez-ipupd is a security feature telling the program not to run as a
privileged user. Finally, daemon tells the service to run in the background.
Uncomment this for daily use.

 Now we can start the service to test it:

Firewall:~# /etc/init.d/ez-ipupdate start

 That should do it. Check /var/log/syslog for the program messages. It will
tell you if you've successfully updated your record or if there was an error
that needs fixing. Your IP will now (soon) be accessible via your domain name,
anywhere in the world! One important note: DNS records take some time to
propagate globally. Even if your client works perfectly it may take an hour or
two to actually see changes around the internet. Sometimes you just have to be
patient.

Proceed to Step 13 - IPSec VPN

 Debian Firewalls -- IPSec

 In this section we will work toward creating a basic site-to-site VPN using
IPSec. First, we should get a few technical points out of the way. IPSec can be
used in multiple arrangements: the most common are site-to-site and access.
What we'll be creating here is the site-to-site version. In essence, we'll be
bridging two remote locations transparently using the internet. All the VPN
work is done by the firewall computer...the host computers on the LAN don't
need to do anything to participate, it's completely transparent. That said, for
this to work you will obviously need two firewalls at different locations, both
capable of IPSec VPN traffic. In this example, we will assume we have a remote
location that's using a Linux firewall just as we have at our original
location. In other words, it will be a mirrored version of our original network
diagram, with the internet in the middle:

PC

1

-

-

-

-

PC

1

PC

2

-

-

[[VPN

Tunnel]]

-

-

PC

2

PC

3

-

-

(LAN

Switch)

--

-

Linux

Router!

--

-

-- The

Internet--

--

-

Linux

Router!

--

-

(LAN

Switch)

-

-

PC

3

 An important note on topology: The remote network must be on a different
subnet than the local network. For example, you can not have both networks
using 192.168.1.0/24.

 Now hopefully, when you consider that you're about to attempt sending local
traffic over the public internet, the question of security will come to mind.
After all, you don't want everybody watching your LAN traffic, do you? Well
fear not, IPSec was designed with security in mind...the fact that it's short
for IP Security should tell you that. :) In fact, major corporations use this
same technology every day to transport data between remote business locations.
And since Linux is so versatile, we'll be using some of the most powerful
encryption on the market today (at no additional cost!). Another cool fact is
since we're using standard IPSec traffic your firewall should be interoperable
with IPSec devices from any number of vendors.

Alternative Alert! - IPSec
A number of readers have pointed out to me that a competing product, known as OpenVPN, is also available for
creating VPNs. I chose IPSec for a couple reasons: First of all, I've never used OpenVPN, so it might be tough
writing a tutorial about it! Even so, I think IPSec is implemented so widely that it's an important topic for any
would be net-admin to cover. Even though the implementation differs, the core fundamentals are the same
whether it’s a simple Linux box or a high-end VPN concentrator. On the other hand, I don't want to discourage
anyone from trying OpenVPN...In fact I always encourage branching out!

 First we need to install a couple IPSec packages. Racoon is responsible for
the key exchange portion of our IPSec connections, and will be used to
configure our kernel with all the necessary IPSec information. The ipsec-tools
package provides just what it sounds like...supporting tools for our IPSec
implementation.

Firewall:~# apt-get install racoon ipsec-tools

 You will now be prompted with two options: direct configuration or using the
racoon-tool program.

 We'll be using racoon-tool which nicely automates most of the configuration
needed to make our IPSec connection. I recommend everyone start with racoon-
tool. If you want to learn the lower-level configuration, just look at the
files generated after we run racoon-tool, and you will know what the "direct
configuration" files will look like. Most likely on a non-Debian system you
would just be using the direct configuration method.

 Now that our program is installed, we'll have to tackle the configuration.
Since we're using racoon-tool, we can do this from a single file:
/etc/racoon/racoon-tool.conf

Firewall:~# nano -w /etc/racoon/racoon-tool.conf

 You will see that there are nice example configurations already commented
into the config file. This file will need to be edited on both the local and
remote networks, assuming you're setting both up at once. Keep in mind that all
settings must match on both sides! If they don't, IPSec won't be able to
negotiate a connection.

For the remainder of the configuration examples we'll pretend the local network
has the following properties:
ISP (external) address: 10.1.1.1
LAN (internal) address: 192.168.1.1 (same as always)

For the remainder of the configuration examples we'll pretend the remote
network has the following properties:
ISP (external) address: 10.100.100.1
LAN (internal) address: 192.168.100.1

 Let's show the entire racoon-tool.conf configurations first, then break them
down:

Local Configuration Remote Configuration

connection(ToRemote):

src_range: 192.168.1.0/24

dst_range: 192.168.100.0/24

src_ip: 10.1.1.1

dst_ip: 10.100.100.1

authentication_algorithm: hmac_sha1

admin_status: yes

peer(10.100.100.1):

passive: off

connection(ToLocal):

src_range: 192.168.100.0/24

dst_range: 192.168.1.0/24

src_ip: 10.100.100.1

dst_ip: 10.1.1.1

authentication_algorithm: hmac_sha1

admin_status: yes

peer(10.1.1.1):

passive: off

verify_identifier: on

lifetime: time 30 min

hash_algorithm[0]: sha1

encryption_algorithm[0]: aes

my_identifier: address 10.1.1.1

peers_identifier: address 10.100.100.1

verify_identifier: on

lifetime: time 30 min

hash_algorithm[0]: sha1

encryption_algorithm[0]: aes

my_identifier: address 10.100.100.1

peers_identifier: address 10.1.1.1

 As you can see, the only settings that vary are the IP addresses configured
on each side. Each configuration file also has roughly two parts, the
connection entry and the peer entry. The connection entry defines which peers
are involved, which the peer entry defines specific settings for the peer. Keep
in mind that you don't need to limit yourself to one of each; you can
potentially run many different IPSec connections and peers just by adding
additional entries. Now we'll explain the configuration:

connection(ToRemote):

Defines a connection. You can have

as many of these as you want. The

name in () is arbitrary.

src_range: 192.168.1.0/24

The range of IP addresses on the

local LAN (internal network). Must

be in a separate range from the

remote network.

dst_range: 192.168.100.0/24

The range of IP addresses on the

remote LAN (internal network).

Must be in a separate range from

the local network.

src_ip: 10.1.1.1
The ISP (external) IP address of our

local firewall.

dst_ip: 10.100.100.1
The ISP (external) IP address of our

remote firewall.

authentication_algorithm: hmac_sha1

Defines hmac_sha1 as the algorithm

used for authentication. Options

include hmac_sha1 and hmac_md5.

SHA1 is generally considered

stronger.

peer(10.100.100.1):

Defines a peer configuration. The IP

address should match the dst_ip

defined in the connection.

passive: off

If passive is on, the router won't

initiate the connection. With passive

off, a connection will be attempted.

verify_identifier: on
Verify the identity of your remote

endpoint (probably a good idea).

lifetime: time 30 min

The lifetime after which the

connection must be renegotiated. A

shorter lifetime gives malicious

parties less time to crack into a

given session.

hash_algorithm[0]: sha1

Hashing is used to verify all traffic

has not been tampered with en-

route. Each packet is hashed as it

leaves, and hashed again when it

arrives at the remote endpoint. If the

hashes don't match, the packet has

been altered and is dropped. MD5

and SHA1 are available. You can

also specify more than one.

encryption_algorithm[0]: aes

Here you specify the encryption

algorithm used. This is what keeps

your data unreadable by 3rd parties

as it travels over public networks.

You should have lots of options for

this. I've chosen AES as it is one of

the stronger types available.

Options include aes, des, 3des,

blowfish, cast128. You can also

specify more than one.

my_identifier: address 10.1.1.1

How you identify yourself to the

remote host. Can include IP

Addresses, domain names, and

others.

peers_identifier: address 10.100.100.1
How to identify the peer (same opts

as above).

 There are multiple options for how to authenticate the two peers with each
other. The most secure (and also most complex) are to use certificate files.
The simpler option (but less secure) is to use a pre-shared key. We'll be using
a preshared key here. I recommend generating a long string of random characters
to use as your key. Do not use words or short keys as it's a high security
risk!

 By default, racoon-tool configures racoon to use the pre-shared key file
/etc/racoon/psk.txt:

Firewall:~# nano -w /etc/racoon/psk.txt

 The format of the file is very simple, the IP address of the remote peer's
ISP (external) interface, followed by the key. The key should match between the
two peers (and ONLY between two peers!).

On the remote firewall:
10.1.1.1 G9KuwsuiuBHGu92S7AC4eKHt5dnpL8548Q46Rdiuke9zCb8U

On the local firewall:
10.100.100.1 G9KuwsuiuBHGu92S7AC4eKHt5dnpL8548Q46Rdiuke9zCb8U

 That's the end of our racoon configuration. Now we have to "reload" the
tool. Racoon-tool will parse the config, and generate configuration files for
the underlying IPSec apps:

Firewall:~# /etc/init.d/racoon reload

 If you've made any invalid entries, racoon-tool should tell you. Even though
IPSec is now configured, we can't quite start our connection yet. First we have
to configure our firewall to allow the IPSec traffic through.

 First we have to add a new zone called "VPN" to shorewall:

Firewall:~# nano -w /etc/shorewall/zones

vpn VPN VPN to remote network

 Now we have to define an IPSec tunnel using the /etc/shorewall/tunnels file.
Remember to use the remote IP address as the gateway:

Firewall:~# nano -w /etc/shorewall/tunnels

ipsec net 10.100.100.1

 Now we have to define the vpn zone as a sub-section of the net zone (since
they use the same physical interface on the firewall). We do this by
identifying the interface the VPN traffic comes in on (our ISP interface), and
the subnet the remote network is using. This way when the firewall sees traffic
coming in on our ISP interface using the remote LAN subnet, we classify it as
part of the VPN zone.

Firewall:~# nano -w /etc/shorewall/hosts

vpn eth0:192.168.100.1

 We also need to exclude our remote subnet from being translated as NAT/PAT
traffic as it leaves the external interface. The VPN creates an exception where
we want our internal IP addresses to remain intact as they leave the firewall,
rather than being converted to external addresses. We only have to add on to
our original masq config, this is not a new line:

Firewall:~# nano -w /etc/shorewall/masq

eth0 eth1

becomes

eth0:!192.168.100.0/24 eth1

 Last but not least, our policy needs to account for the VPN traffic. As
always, you may choose to permit all using the policy, or to restrict the
policy and make specific rules for the VPN zone in the rules file. In a
corporate environment, a restrictive policy remains best...perhaps you only
want to permit access to a specific server over the VPN. In a home environment,
you may wish to just permit all VPN traffic. Make sure this setting goes before
the net and all statements in the policy.

Firewall:~# nano -w /etc/shorewall/policy

vpn all ACCEPT

 That should be the final configuration! Now we have to restart shorewall to
take the new configs, followed by starting racoon to begin our IPSec
connection:

Firewall:~# /etc/init.d/shorewall restart
Firewall:~# /etc/init.d/racoon start

 The best way to test is to send some simple traffic between the local and
remote LANs. Try pinging a remote computer or accessing a remote service. Since

there was a lot of room for error here, there's a good chance you may have a
problem. If traffic fails to cross successfully, there are two good places to
search for errors. /var/log/syslog will show you any errors with racoon. Check
closely for errors negotiating the IPSec link. Also, check the firewall logs
for dropped traffic from the remote network. If you see this, the firewall is
still blocking your incoming VPN traffic and needs to be adjusted.

 One last important note: Traffic that relies on broadcast will not work over
the VPN link. Typing "ping [computer name]" will fail; you must use "ping [ip
address]". This is because broadcast traffic only works within your local
subnet, and the remote VPN is on a different subnet. To be able to use
hostnames across the VPN link you will need to use a local DNS or WINS server
to resolve the names.

Proceed to Step 14 - Intrusion Detection (IDS)

 Debian Firewalls -- IDS

 An Intrusion Detection System (IDS) is a security application or appliance
that can be deployed at different levels in a network. A host-based IDS resides
on a network endpoint such as a workstation, and attempts to detect malicious
activity on the machine. Alternatively, a network-based IDS is deployed
transparently on a network and listens to the network traffic for malicious
packets. IDS can use different methods of detecting problems, but the most
basic method is using signatures. Like an antivirus program checks files for
virus signatures, and IDS will check network traffic for patterns associated
with malicious network activity.

 By far the most popular and powerful of the free IDS solutions is Snort
(http://www.snort.org). It's important to note that Snort is not a firewall.
Our Snort configuration is intended to only detect problem traffic, not block
it (although with some work it can be configured otherwise - see inline mode in
the Snort manual).

 Configuration Notice: While all the examples in this tutorial are designed
to be rather basic, the Snort configuration here is very minimal. The idea is,
as always, to let you get up and running and allow you to research and expand
the configuration to suit your needs later on. The way an IDS is useful will be
different for everyone based on their needs, so it's up to you to identify
which detections you need and which you don't. I HIGHLY recommend everyone
attempting this step in the guide visit Snort.org for two reasons:

• Documentation: Learn how to take advantage of the multitude of features
built into Snort. The documentation is long, but valuable.

• Updates: The Debian package comes with a pre-defined rule set, but the
rules are updated regularly. The community rules are free for download
and will allow your IDS to detect the latest threats.

 To start off, we need to install the snort package:

Firewall:~# apt-get install snort

 Debian will do some Snort config for you at run time.

 You will be prompted to select an interface for Snort to listen on. We'll be
configuring it on our internet interface, since that's where we expect the
threats to come from. It can also be run on the internal interface to inspect
outgoing traffic.

 You have to set the IP address range of your home network. In our example,
this will be the 192.168.1.0/24 subnet.

 A script will mail IDS statistics to the specified user(s). Make sure they
have some way of receiving the information.

 Snort has several configuration files to be aware of. Some of the most
important are:

• /etc/snort/snort.conf: This is the primary configuration file, and
deserves a read through and usually some tweaking.

• /etc/snort/snort.debian.conf: This file is created by the Apt installer.
Your initial options are placed here leaving snort.conf unchanged.

• /etc/snort/threshold.conf: This file lets you rate-limit alerts if you're
seeing a lot of the same warning. It also lets you supress warnings
completely.

• /etc/snort/rules/: This directory contains the snort rules (signatures).
These can be manually updated with new rules from Snort.org, or edited by
hand to provide new detections.

 When a new detection is made, it will be logged in /var/log/snort/alert by
default. These logs aren't very pretty, but you can find a lot of log
interpreters available to supplement the installation. When Snort starts, it
will give a lot of information in /var/log/syslog about its configuration, what
is enabled, and what isn't.

 Now let's do some Snort tweaking to match our network! Keep in mind that
this is just a sampling to get you started. We won't attempt to cover all the
included features, that's up to you.

Firewall:~# nano -w /etc/snort/snort.conf

 The VAR_* options at the beginning allow you to limit what addresses are
scanned for certain types of vulnerabilities. For example, you can set it to
only scan traffic to your web server at 192.168.1.10 for HTTP vulnerabilities:

var HTTP_SERVERS 192.168.1.10/32

 The middle of the config contains the preprocessor configs. The
preprocessors are Snort modules that run before the actual snort detection
engine, and can extend Snort's core capabilities with features like port scan
detection, http traffic inspection, ip defragmentation, and much more. You
should read through each and configure it to your needs...the Snort website
documents all the options well.

 At the bottom you will find lots of file includes. The rulesets are
included, as well as some additional configuration files. If you want to
exclude a certain rule set from being processed, simply comment it out:

#include $RULE_PATH/tftp.rules

 Keep in mind if you only want to avoid a single rule, rather than the entire
set, you should use the threshold.conf file to suppress it by signature. Once
you're happy with the configuration, sit back and watch everything work. Don't
forget to monitor your new IDS for unexpected results...high traffic networks
can quickly generate a lot of detections if not configured properly.

Proceed to Step 15 - Diagnostics with IFTop & TCPDump

Debian Firewalls -- Diagnostics with IFTop &
TCPDump

 One of the fun parts about building your own firewall is having the ability
to use diagnostic tools to monitor your traffic. Here we'll take a quick look
at two tools, IFTop and TCPDump, which are quite useful for troubleshooting.

 Linux and Unix users are probably familiar with the ubiquitous top program
which monitors processes. IFTop (http://www.ex-parrot.com/~pdw/iftop/) is a
network-centric take on the top program which lets you monitor network
connections in and out of your machine.

 Incase you haven't noticed the running theme, all the packages we've used so
far are available in Apt. To start off, let's install IFTop:

Firewall:~# apt-get install iftop

 There's no configuration necessary, just run iftop from the command line.

Firewall:~# iftop

 IFTop will display a list of connections on your console/terminal screen,
showing the two machines involved in each connection, and the bandwidth for
each. Commands are entered with single keys: Hit 'h' for the help screen to
view available settings. When you're finished, hit 'q' to return to the command
line.

 TCPDump (http://www.tcpdump.org) is the premiere packet sniffer of the 'nix
world. An extremely powerful (and potentially complex) tool, TCPDump can
monitor, capture, and decode all packets crossing a given interface. While not
very fun to watch, it is indispensable when it comes to troubleshooting
connections.

Firewall:~# apt-get install tcpdump

 TCPDump is generally configured from the command line at run time. There are
far too many commands to cover here, so check out the manpage and online
documentation. Here's a few quick examples:

 Capture all traffic involving host 192.168.1.20:

Firewall:~# tcpdump host 192.168.1.20

 Capture HTTP packets on eth0:

Firewall:~# tcpdump -i eth0 port 80 and tcp

 Capture HTTP packets on eth0, and decode packets in ASCII:

Firewall:~# tcpdump -Ai eth0 port 80 and tcp

 Capture packets on eth0 on port 80 or 8080:

Firewall:~# tcpdump -i eth0 port 80 or port 8080

 Capture UDP packets to port 53 (DNS) originating from 192.168.1.20:

Firewall:~# tcpdump dst port 53 and udp and src host 192.168.1.20

 Dump the packets to a file instead of the screen...:

Firewall:~# tcpdump -w dump.txt host 192.168.1.20

 ...then read in the packets to process later:

Firewall:~# tcpdump -r dump.txt

Proceed to Step 16 - Custom Kernels

Debian Firewalls -- Custom Kernels

 The Linux kernel is the core of the Linux operating system. The Kernel
controls all the central system functions and is the heart of your firewall
system. Each distribution comes with its own specially designed version of the
kernel, based on the feature set the designers wish to offer. Unlike many
commercial operating systems however, the kernel source itself is freely
available, and you can download and create your own specialized versions.

Why should you build a custom kernel?

� The kernel developers are a great group that work tirelessly improving
the operating system. Each new version brings literally thousands of bug
fixes and enhancements that your system can benefit from.

� Streamline your system! When building a specialized system like a
firewall, there are a lot of features your operating system doesn't need
to support. Why waste memory and clock cycles running an operating system
with multimedia and peripheral support that it will never use? Instead, a
custom kernel will be extra efficient by supporting only the necessary
hardware and features, allowing you to make the most of your resources.

� Patch in new features: lots of development is done outside the official
kernel. Building your own allows you to add external patches for non-
official features.

� Cutting edge technology: most distributions (including Debian) stick with
the same kernel version for a prolonged period of time. This isn't a bad
thing if you're looking for stability and support, but if you like the
latest and greatest, the best way to get it is straight from the (kernel)
source.

Why should you not build a custom kernel?

� The distribution kernels are usually expertly planned to be stable.
While kernel developers do a great job fixing bugs, the cutting edge
kernel releases are far from perfect. If you're not willing to accept
some occasional bugs and down time, stick with a more mature and
professional kernel build.

� If you're really new to Linux. Of course, you can't learn unless you
try! And with proper caution, this is all perfectly safe. However if you
have no previous Linux experience, you may be well advised to spend a
little time poking around with the generic system before you dive too
deep.

� If you're not familiar with the hardware and software already in your
system. Customizing the kernel requires you pick and choose what
features your system will support. If you don't know what elements you
need, you won't have much of a chance designing a functional kernel.

 You can always retrieve the latest source from the kernel website:
http://www.kernel.org. The 2.6 branch is the latest, while the 2.4 branch is
the previous series. I recommend 2.6 for all new systems. I also recommend
running the "stable" releases, unless you really know what you're doing and are
willing to report bugs to the developers. As of the time of this writing
2.6.15 is the current stable release.

 First, we need to install some software that will be necessary to compile
the kernel. Bzip2 is needed to unpack the source. libncurses5-dev is needed by
the configuration menus. GCC and make are needed to compile the source.

Firewall:~# apt-get install bzip2
Firewall:~# apt-get install libncurses5-dev

Firewall:~# apt-get install gcc
Firewall:~# apt-get install make

 Now we download the full source package (the "F" link on the source page).
You should change the URL below to match the address for the current stable
source package.

Firewall:~# cd /usr/src
Firewall:/usr/src# wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-
2.6.15.tar.bz2

 Unpack the source (using the appropriate filename):

Firewall:/usr/src# tar -xjf linux-2.6.15.tar.bz2

 Change into the source directory:

Firewall:/usr/src# cd linux-2.6.15

 The kernel configuration is stored in the .config file. Luckily, the kernel
comes with a handy text-based configuration menu which makes navigating the
hundreds of options much simpler. To enter the menus, run a "make menuconfig":

Firewall:/usr/src/linux-2.6.15# make menuconfig

 Now you should be in a text-based menu. What you do from here is largely up
to you. There's little point in attempting to cover all the options, as
everyone will want a different configuration. Instead, here are some important
guidelines and tips:

� There are two ways to include a feature in the kernel. All items can be
built directly into the kernel by placing an asterisk next to the item
[*]. Items preceded with angled brackets <> can also be built as
modules. Modules can be dynamically loaded and unloaded, and are the
preferred method of building device drivers and optional system
components. To build as a module, place an <M> next to the item.

� When you wish to exclude an item from your kernel, simply clear the
brackets next to it.

� Certain critical system features must be built directly into the kernel
(not as modules)! Do not build support for any devices needed to boot
the system as modules. This includes (but is not limited to), the
motherboard, processor, IDE devices (hard drives), and the hard drive
filesystems. If you use PCI controller cards for your drives, they need
to be included too. Examples of optional system devices that can be
built as modules are sound cards, network cards, video cards, firewall
components, and any peripherals (printers, etc).

� By default, Debian 3.1 uses the ext3 filesystem for the system disks.
This means you must build ext3 support directly into the kernel, or it
will not boot. This is done by placing an asterisk [*] next to the ext3
option. Of course if you chose a different filesystem at install time,
you should select the appropriate filesystem support in your kernel.

� Do not uninstall the kernel that came with your distribution.
Customizing kernels is prone to error and oversight, even if you've done
it before. Always keep one known working kernel installed at all times.
That way, if you make a mistake or find a bug and your new kernel won't
boot, you can revert to the old kernel straight from the boot menu.

� Try working in steps. If you make major changes, it can be hard to track
down an error. Start with a lot of features enabled and remove only a
few functions at a time, so you can easily backtrack to a working
version.

� Keep backup copies of your configuration files. Once you get a working
kernel, simply copy the .config file to a safe place, and you can copy it

back whenever you need it.

� The menuconfig includes help documentation for most of the items. If
you're not sure what an entry does, try typing an ? to access the help
entry. If all else fails, Google it!

� You can easily tell what modules your original system is running by
executing the "lsmod" program from the command line. This will, as the
name suggests, list all the currently loaded modules. Keep in mind, this
won't tell you which options are built directly into the stock kernel.

� The kernel doesn't just support hardware, software functions can be
affected as well. For example, make sure to leave some iptables/netfilter
options enabled...if you disable them your firewall apps won't run!

 When you finish, exit the menu and save your configuration. You are now
ready to compile the new kernel. This is done simply by running "make":

Firewall:/usr/src/linux-2.6.15# make

 The kernel will now build. If you're using an old machine, this can take
awhile (an hour or two, depending on how large of a kernel you're building).
Once it finishes, first install the new modules:

Firewall:/usr/src/linux-2.6.15# make modules_install

 Finally, install the kernel itself:

Firewall:/usr/src/linux-2.6.15# make install

 Your new kernel has now been copied to the /boot directory and your modules
are now in the /lib/modules directory. The final step is to update your
bootloader. Debian uses the grub bootloader, and comes with a handy script that
will take care of this for you:

Firewall:/usr/src/linux-2.6.15# update-grub

 That’s it! It’s really that simple. Now just reboot your system, and choose
the new kernel from the boot screen. If you get an error during booting, try to
make note of the error message. Then select your original kernel from the boot
prompt, and try again.

 When you finish, you can save disk space by deleting the compiled binaries
from the source directory. You should also do this after changing the
configuration, before re-compiling the kernel.

Firewall:/usr/src/linux-2.6.15# make clean

 Kernel updates come out frequently. When you wish to upgrade, download and
extract the new source. Copy the .config into the new source directory. Then
run "make oldconfig" against the new source:

Firewall:/usr/src/linux-2.6.15# make oldconfig

 This command will prompt you for any new, relevant options that may have
appeared in the new source, and will make sure your old configuration is
appropriate for the new version. After this, simply make and install again.

Back to the Table of Contents

 Debian Firewalls -- FAQ

Q: A Linux router sounds great, but I don't want to build my own from scratch.
Are there any prebuilt firewall systems available?

A: Yes! This is not exactly a new field and there are lots of professionally
developed options. Among the most notable are Smoothwall:

http://www.smoothwall.org, IPCop: http://www.ipcop.org, and ClarkConnect:

http://www.clarkconnect.org. All of these are quality Linux-based operating systems
designed for use as network firewalls/routers/gateways.

Q: I have a wireless firewall and I don't want to give up my wireless for a
Linux router! What can I do?

A: Easy, keep it! I currently run a Linksys Wireless G firewall/router behind
my Linux firewall as a wireless access point. They key is to just ignore the
firewalling capabilities of the wireless routers. Turn off it's DHCP and
firewall services via the management interface. The, connect the gateway and
your host machines on the general switching ports...this allows your wireless
devices to continue functioning as a wireless access point and leaves the power
lifting to your Linux box.

Q: So what is the advantage of those commercial hardware firewalls that cost so
much more?

A: As I point out in the introduction, Linux firewalls have lots of
benefits...power, flexibility, and low cost at the top of the list. Just like
everything else in computing, however, it's not a perfect solution.
 Most hardware firewalls perform at least some, if not most, of their
functions using ASICs (Application Specific Integrated Circuits). ASICs perform
system operations in physical circuits rather than in software, making it
possible to process data at raw hardware speed. When you're running an internet
backbone or the core routing for a major corporation, this kind of raw speed is
important. When you're running a home or small office connection via broadband,
or even an average LAN connection, you will never reach the kind of network
speeds where you'll notice a difference. I've maxed out the LAN connection at
my college residence without noticing a performance hit on my Linux gateway.
 In a similar way, the software involved is also an issue. Linux is basically
a general purpose operating system, meaning even with customization you've got
at bare minimum application software running on top of an operating system,
which is a potentially unnecessary layer of abstraction. A dedicated network
device on the other hand may run software designed specifically for that
device. This often improves stability and performance since the entire OS is
designed specifically for the hardware. Don't be fooled though...many consumer
devices, such as the Linksys WRT54G series wireless firewalls...run a Unix
derived operating system under the hood. I personally run custom Linux kernels
on all my routers to maximize speed and efficiency and eliminate overhead.

Q: How about providing the guide in a single file format?

A: Now, by popular demand, a PDF version is available! Keep in mind that the
quality may not be as good as the actual web version, but it's better than
nothing. :)

Q: Can one of these firewalls be run with a GUI? Why don't you add a GUI to
your installation?

A: GUIs are wonderful for workstations, but as any Linux/Unix administrator
worth their salt will tell you, a GUI doesn't really belong on a network
device. This is a very common topic in server administration, and it applies to
firewalls and routers too. Of course you can run any GUI you want on your
system. But when it comes down to it, a firewall (or server) is not meant to be
interacted with on a regular basis. After configuration, they usually just
facelessly perform their given functions. So for that 98% of the time that no
one is using the user interface, it's doing nothing more than wasting memory

and sucking up processor cycles better used elsewhere.

Q: What about webmin?

A: Same principle as above, basically. You really don't need a graphical
interface to get the job done, and the servers required to run it just waste
computing power and resources. Not to mention the fact that if you intend to
use it remotely over the internet, you may be exposing yourself to a serious
security threat! So of course, use it if you want it, just know the possible
consequences.

Q: Is this a stateful firewall?

A: Yes, starting with Linux kernel 2.4 the netfilter/iptables package has
provided stateful packet filtering capabilities. Since this tutorial assumes
that iptables is in use with either kernel 2.4 or 2.6, your firewall will have
full stateful packet filtering ability.

Back to the Table of Contents

