
A Toolkit and Methods for Internet Firewalls

Marcus J. Ranum

Frederick M. Avolio

Trusted Information Systems, Inc.

Abstract
The purpose of an Internet firewall is to

provide a point of defense and a controlled and
audited access to services, both from within and
without an organization´s private network. This
requires a mechanism for selectively permitting or
blocking traffic between the Internet and the
network being protected1. Routers can control traffic
at an IP level, by selectively permitting or denying
traffic based on source/destination address or port.
Hosts can control traffic at an application level,
forcing traffic to move out of the protocol layer for
more detailed examination. To implement a firewall
that relies on routing and screening, one must permit
at least a degree of direct IP-level traffic between the
Internet and the protected network. Application level
firewalls do not have this requirement, but are less
flexible since they require development of
specialized application forwarders known as
“proxies.” This design decision sets the general
stance of the firewall, favoring either a higher degree
of service or a higher degree of isolation. [1]

As the number of businesses and
government agencies connecting to the Internet
continues to increase, the demand for Internet
firewalls — points of security guarding a private
network from intrusion — has created a demand for
reliable tools from which to build them. We present
the TIS Internet Firewall Toolkit, which consists of
software modules and configuration guidelines
developed in the course of a broader ARPA-
sponsored project. Components of the toolkit, while
designed to work together, can be used in isolation
or can be combined with other firewall components.
The Firewall Toolkit software runs on UNIX®

systems using TCP/IP with the Berkeley socket
interface. We describe the Firewall Toolkit and the
reasoning behind some of its design decisions,
discuss some of the ways in which it may be
configured, and conclude with some observations as
to how it has served in practice.

A proxy for a network protocol is an
application that runs on a firewall host and connects
specific service requests across the firewall, acting as
a gateway. Figure 1 represents a minimal TELNET
service proxy, in which the proxy forwards user´s
keystrokes to a remote system, and maintains audit
records of connections. Proxies can give the illusion
to the software on both sides of a direct point-to-
point connection. Since many proxies interpret the
protocol that they manage, additional access control
and audit may be performed as desired. As an
example, the FTP proxy can block FTP export of
files while permitting import of files, representing a
granularity of control that router-based firewalls
cannot presently achieve. Router-based firewalls can
provide higher throughput, since they operate at a

Overview

Computer networks by their very nature
are designed to allow the flow of information.
Network technology is such that, today, you can sit
at a workstation in Maryland, and have a process
connected to a system in London, with files mounted
from a system in California, and be able to do your
work just as if all of the systems were in the same
room as your computer. Impeding the free flow of
data is contrary to the basic functionality of the
network, but the free flow of information is contrary
to the rules by which companies and governments
need to conduct business. Proprietary information
and sensitive data must be kept insulated from
unauthorized access yet security must have a
minimal impact on the overall useability of the
network.

1 Or, in general, between any two networks where
one needs to be protected from the other.

protocol level, rather than an application level, but
practical experience running firewalls on modern
RISC processors shows that with a T-1 connection,

the bottleneck tends to remain the T-1 link rather
than the firewall itself.

Figure 1: An Application Proxy

User's Workstation

 Telnet
Application

Proxy
User keystrokes

 Telnetd
on remote

system

User keystrokes
forwarded

Server output
Server output

forwarded

Audit Logs
Maintained

Proxies exist for a wide variety of services,
such as X, FTP, TELNET, etc. Perhaps the most
significant security benefit of employing proxies is
that they provide a convenient opportunity to require
authentication. For example, when connecting into a
protected network from the Internet, one must
typically first connect to the proxy, authenticate to it,
and then complete a connection to a host within the
protected network. The proxy protects the firewall
host itself, by eliminating the need for the user to log
into the firewall itself, and it protects the network by
permitting only authenticated users to gain access
from the outside. While hosts on the private network
may still be rife with security holes, restricting the
incoming traffic to authenticated users only is a good
step in the right direction.

systems on which it was running. In our design, we
attempt to sidestep the issue by providing proxies
that can run locked into a specific subdirectory by
means of “chroot” — a UNIX system call that
permanently restricts the working filesystem of a
process. Proxies are also designed to run without
special system privileges, to further reduce the
chance that they might be able to damage the system.
Ideally it should be impossible for an outside user to
ever interact with a privileged process. Practically
speaking, the Internet service master daemon inetd,
which is responsible for starting other service
daemons, needs to run with privileges, but outside
users cannot interact directly with it. There is a
possibility that the kernel may have trapdoors or
hidden network services built into it, but it is
impractical to attempt to obtain and examine kernel
sources for such flaws. Instead, make every effort to
remove unnecessary kernel services at system build
time.

Other services, such as Internet (SMTP)
mail and USENET news, act as store-and-forwarders
already, and fit in with the proxy approach to
firewalls. These service daemons sometimes run with
system privileges and may contain bugs that an
attacker can exploit. Many existing firewalls rely on
approximate assessment of privileged systems
software for their trustworthiness. This is sufficient
if there are “well known working versions” of
common programs such as the FTP server, ftpd. In
some cases, however, the server can itself
compromise security. A recent version of the
WUArchive ftpd[2] contained a bug that permitted
anyone on the Internet to gain super-user access to

Design Philosophy

The TIS Firewall Toolkit (hereafter
referred to as “the toolkit”) is designed to be
informally verified for correctness as a whole or at a
component level. Since the firewall consists of
discrete components, each providing a single service,
each may be examined separately from the rest of the
system. Components of the toolkit are as simple as
possible in their implementation, and are distributed
in source code form to encourage peer review. This

appears to be a fairly novel approach for a network
firewall, as many existing firewall systems rely on
software that is “known to be good” or that is
considered trustworthy because it has been used
extensively for a long time.

minimize risks, the services that are provided on the
external machine, which we will refer to as a
“bastion host”, following the terminology proposed
by Ranum[3]. are sharply curtailed and each service
is subjected to review. On the “standard” firewall
configuration, the only services supported are
SMTP, FTP, NNTP, and TELNET. Other proxies
such as Digital Equipment Corporation´s X Window
System proxy [4] can be added to this architecture.

One problem with the “known to be good”
approach is that historically it hasn´t been very
reliable. Certain software components are frequently
exploited in break-ins, no matter how carefully they
are maintained. Problem programs are usually
complex pieces of software, implemented in tens of
thousands of lines of code, which require system
privileges in order to operate. As a step towards
addressing this, the firewall toolkit operates in
accordance with the following general firewall
design principles:

SMTP service is supported through a non-
privileged front end that runs locked in a “safe
directory” via chroot. FTP is supported via a proxy
that runs without requiring special privileges. NNTP
is supported via a “tunnel” server that permits traffic
between a host on the inside and its news server on
the outside. TELNET service is via a proxy that
runs unprivileged. Since all other services on the
system are disabled selectively, it is only these four
services that must be analyzed for risk. By analyzing
of the security of each service in isolation, we are
able to gain a degree of trust in the system beyond
merely being able to state “Well, we don´t think there
are any bugs.” With all the services running
unprivileged we can make a stronger statement, to
wit, “The security of an individual service is
irrelevant to the overall security, as the server is
running in a captive mode.”

• Even if there is a bug in the implementation of a
network service, it should not be able to compromise
the system. Services that are misconfigured should
not work at all, rather than opening holes.

• Hosts on the untrusted network should not be able
to connect directly to network services that are
running with privileges.

• Network services are implemented with a
minimum of features and complexity. The source
code is simple enough to be reviewed thoroughly and
quickly.

Configuration and Components
• There should be reasonable and pragmatic means
of testing that the system is correctly installed. Figure 2 represents the toolkit installed in

an environment that combines routers and a firewall
bastion host. The implementation of the security
controls is shared (in this example) between the
routers and the firewall: the routers are responsible
for controlling network-level access, and the bastion
host provides application-level control. A simpler
firewall configuration would consist of a dual-homed
gateway, in which a workstation with two network
interfaces is connected to both networks, and has IP
forwarding disabled. Dual homed gateways are less
flexible than firewalls that combine routers and
hosts, since the option to route services at a network
level is generally not available.2 On the other hand,
with a dual-homed gateway, the administrator can
have a higher degree of confidence that no network
traffic will be able to somehow “leak” through a
router, since routers are no longer an integral part of
the security system.

The toolkit is designed to be used with a
host-based security policy, but its components can be
used with router-based firewalls. In this paper, we
will focus on the former. In a host-based firewall, the
security of the host is crucial; once it is compromised
the entire network is open to attack. Still, we believe
that a host-based firewall is superior to other
solutions because of the ease with which it can be
maintained, configured, customized and audited.
When the toolkit is used with router-based firewalls,
it is assumed that the toolkit software is running on a
secure host that is permitted some degree of access
between the protected network and the Internet, by
means of routers. This leaves the option of
configuring the routers to provide additional avenues
between the protected network and the Internet for
whatever reason; such additional avenues are outside
the scope of the toolkit and should be provided only
after careful security analysis.

The toolkit may be used in conjunction
with router-based screening as extra security. To

2 Some versions of UNIX support packet screening
within the operating system.

Figure 2: A Screened Host Firewall

 Internet
 Private

Network

Bastion Host

Traffic Permitted

Traffic to Other Nodes Blocked

Other Hosts
Screening Router

SMTP
FTP
TELNET
rlogin

Applications
relayed via
proxies

The toolkit is designed to build a host-
based firewall, with security being enforced by a
single bastion host. For ease of management, all the
proxies and access control tools use a single
configuration file with a regular syntax. We thought
this was useful due to the generally complex
configuration of various publicly available firewall
tools, of which no two are configured in the same

way. The configuration rules are designed to provide
both configuration and service and access
permissions information, being read top-to-bottom
and left-to-right. Hostnames or IP addresses
including simple wildcards can be used in
configuration rules, but IP addresses are preferred
since DNS addresses are vulnerable to spoofing.

Example ftp gateway rules:

ftp-gw: authserver 127.0.0.1 7777
ftp-gw: denial-msg /usr/local/etc/ftp-deny.txt
ftp-gw: welcome-msg /usr/local/etc/ftp-welcome.txt
ftp-gw: help-msg /usr/local/etc/ftp-help.txt
ftp-gw: timeout 3600
ftp-gw: permit-hosts 192.33.112.100
ftp-gw: deny-hosts 128.52.46.*
ftp-gw: permit-hosts 192.33.112.* -log { retr stor } -auth { stor }
ftp-gw: permit-hosts * -authall

The firewall toolkit functionality can be
broken down into six areas: logging, electronic mail,
the Domain Name Service, FTP, TELNET, and TCP
access control.

“net2” sources, with some modifications to support
pattern-matching and program execution on matched
patterns. Many systems administrators have batch
processes set up on their systems to alert them of
possible security problems by searching the system
logs at regular intervals. By permitting the system
manager to add regular expressions to the syslogd
configuration, security-related log messages can be
identified instantly. Syslogd contains further
modifications that permit an arbitrary command to
be invoked with any specified logging rule, so that,

Logging

Significant security events and audit
records are logged to a protected host on the internal
network via the syslog facility. The version of
syslogd that the toolkit uses is based on the BSD

for example, vitally important security log events can
be delivered to the system manager´s beeper or
delivered by electronic mail. Adding command
execution to syslogd implies that the syslogd
configuration file must be protected against
unauthorized modification.

bugs is a sizable task when compared to analyzing
smap´s 700 lines. Smap is not a panacea, however, as
firewalls remain vulnerable to data-driven attacks in
which messages may be mailed to hosts on the
private network, possibly triggering security holes in
internal mailers. Since many of these attacks have a
distinctive signature, smap or the firewall´s mailer
can be configured to attempt to identify these letter-
bombs, but the security administrator is forced into
the unfortunate position of an arms-race in which a
reactive role must be taken as new attacks are
invented. To reduce the risk of attacks that exploit
mailing through programs, the mailer on the firewall
itself is configured so that program execution is
disabled. Disabling program execution is often an
unacceptable solution on a multi-user system, but
since the firewall is not a general use host, we prefer
to reduce the risk of someone being able to execute
arbitrary commands from afar.

Electronic Mail

Mailers are one of the favorite points of
attack against UNIX systems. The Morris Internet
worm exploited a well-known hole in the standard
UNIX SMTP server, sendmail. Many systems
running sendmail, including those with Internet
firewalls, were penetrated by the worm. A few that
had replaced sendmail with other SMTP servers
were not. Since that time, a variety of other security
holes have been identified in sendmail and fixed in
more recent releases.

The problem with mailers is twofold: they
are complex and perform file system activity, and
they require privileges so that they can manipulate
mailboxes or execute mail processing programs on
the behalf of users. To help secure mail service,
direct network access to sendmail is prevented. A
simple program that implements a skeleton of the
SMTP protocol is presented on the SMTP port on the
mail server. This SMTP proxy, called smap, is small
enough to be subjected to a code review for
correctness (unlike sendmail) and simply accepts all
incoming messages and writes them to disk in a
spool area. Rather than running with permissions,
the proxy runs with a restricted set of permissions
and runs “chrooted” to the spool area. A second
process is responsible for scanning the spool area
and delivering the mail messages to the real
sendmail for delivery — a mode of operation in
which sendmail can operate with reduced
permission. Many Internet firewalls run sendmail
and rely on “trustworthy” versions of the software;
running the mail software in a reduced-permissions
mode is a more general solution to the problem, side-
stepping the issue of whether or not a given version
of sendmail contains bugs.

Domain Name Service (DNS)

The name service software available for
UNIX implements an in-memory read-only database.
As such, it cannot be used to gain unauthorized
access to a system. Some past attacks on firewalls
have used name service spoofing as a technique for
impersonating trusted network hosts. In order to
remove the threat of name service spoofing, the
firewall does not rely on name service for any
security related information. The name server
software is necessary for high performance large-
scale mail systems and is configured so that the only
application that relies on name service for
addressing is the electronic mail system. DNS names
are also used in audit records, but are always
presented along with host network addresses;
mismatches are flagged as possible spoofing
attempts.

FTP

The FTP application gateway is a single
process that mediates FTP connections between two
networks. Since it performs no disk access other
than reading its configuration file and is a small and
relatively uncomplicated program, it can be argued
that it is not capable of compromising the security of
the system. Just to be certain, the application
gateway runs as a non-privileged user, after
“chrooting” itself to a private directory on the
system. To control FTP access, the application
gateway reads a configuration file, containing a list
of FTP commands that should be logged, and a
description of what systems are allowed to engage in

While smap answers all valid SMTP
commands sent to it, it does not execute any of them
except those directly involved with mail exchange:
HELO, FROM, RCPT, DATA, and QUIT. Other
commands, such as VRFY and EXPN return a polite
error message. Smap preserves sendmail´s
functionality, while preventing an arbitrary user on
the network from communicating directly with it.
Analyzing sendmail´s 20,000 lines of source code for

FTP traffic. All traffic can be logged and
summarized. Optionally, the gateway can permit
FTP traffic from the Internet to the campus network
for users who first authenticate themselves to the
system.

as, but there is no provision for limiting access based
on the source of the request. A variety of
implementations of “wrapper” processes are
available on the Internet with varying
functionality[5].

TELNET The toolkit uses a “wrapper” process
called netacl, which provides support for all TCP-
based services. (If only TCP-based services are
supported, UDP services are disabled and are no
longer a threat worth worrying about.) Netacl has
no great advantages over other versions of TCP
wrappers, other than its minimal size (240 lines of
code, including a large copyright header and
comments), its lack of support for UDP (purposely),
and its sharing a common configuration mechanism
with the other tools in the toolkit.

The TELNET application gateway is a
small, simple application that mediates TELNET
traffic. As with the FTP application gateway, the
only file accessed is the configuration file that is read
at start-up. Immediately after the configuration file is
read, the TELNET application gateway is “chrooted”
to a restricted directory, where it runs as a non-
privileged process. The TELNET gateway´s
configuration file allows specification of which
systems or networks can use it, and what systems or
networks it will permit connection to. Initially, it
will be configured to permit campus systems to use
the gateway to connect to Internet systems, but not
vice-versa. Optionally, the TELNET gateway can
require authentication before permitting use. All
connections and their durations are logged.

TCP Plug-Board Connection
Server

Certain services such as Usenet news are
often provided through a firewall. In such a
situation, the administrator has the choice of either
running the service on the firewall machine itself or
installing a proxy server. Since running news on the
firewall itself might expose the system to any bugs in
the news software, it is safer to use a proxy to
gateway the service onto a “safe” system on the
campus network. Plug-gw is a general purpose proxy
that “plugs” two services together transparently. Its
primary use is for supporting Usenet news, but it can
be employed as a general-purpose proxy if desired.
Plug-gw is configurable, as are the other proxy
servers. Since it only acts as a data pipe, it performs
no local disk I/O and invokes no subshells or
processes. Like the other proxy servers, it logs all
connections.

UDP-Based Services

Since we decided that no direct traffic
would be permitted between an outside system and
an inside system, and since UDP is connectionless
and point-to-point (and so cannot be used through
network proxies), UDP services are not allowed.
Many UDP-based services such as NTP and DNS
can be provided transparently through a firewall by
configuring the servers to act as forwarders for
queries originating within the protected network.

TCP Access and Use

On BSD-based UNIX systems, most
network processes are started up by an initial
connection to a general-purpose network listener
inetd, which establishes a connection between the
incoming request and the program to service the
request. For example, an incoming request for the
TELNET service is “heard” by the running network
listener. The program, according to inetd´s
configuration file and the entry for TELNET, is
executed and connected to the incoming request.

Plug-boarding TCP connections through
one´s firewall should be undertaken with a degree of
caution, since plug-gw uses no authentication other
than the host address of the client, and does no
examination of the traffic passing across it. In the
case of NNTP, for example, a security flaw in the
NNTP server on the internal host could still be
exploited. The firewall will make it much harder for
an attacker to gain access to the internal system to
further exploit the hole; if the flawed NNTP server
were running on the firewall bastion host itself, the
entire firewall might be vulnerable. Alternate
approaches, such as engineering the news server to
run “chrooted” are potential areas for future
research. From a standpoint of systems
administration, we have found that news

Inetd, the Internet services daemon,
performs no function other than to invoke specified
processes to manage network services when a system
attempts to connect to them. Some vendor
implementations permit a systems administrator to
specify the user-id that the service should be invoked

administration is simplified by running it a readily
accessible internal server.

this operation properly, all files will be created in the
proper directory, with the proper user permissions. If
the administrator verifies that this is indeed the case,
he can rely on the security of the operating system´s
support for “chroot” and user file permissions. By
examining the assumptions of each service proxy, a
degree of assurance that the firewall is well protected
can be gained. This does not address the problem of
possible bugs or protocol errors in the proxy
implementations that might still permit a service to
pass through the firewall. To attempt to address this,
every effort is made to keep the implementation of
the proxies, especially the parts that deal with access
control, as simple as possible.

User Authentication

The network authentication server authsrv
provides a generic authentication service for toolkit
proxies. Its use is optional, required only if the
firewall FTP and TELNET proxies are configured to
require authentication. Authsrv acts as a piece of
“middleware” that integrates multiple forms of
authentication, permitting an administrator to
associate a preferred form of authentication with an
individual user. This permits organizations that
already provide users with authentication tokens to
enable the same token for authenticating users to the
firewall. A secondary goal of authsrv was to provide
a simple programming interface for authentication
service, since commercial authentication systems
tend to have unique, nonstandard, interfaces. Several
forms of challenge/response cards are supported,
along with software-based one-time password
systems, and plaintext passwords. Use of plaintext
passwords over the internet is strongly discouraged,
due to the threat of password sniffing attackers.

Firewall administration requires a
seasoned UNIX systems manager. While the toolkit
is fairly easy to install, it assumes an amount of
expertise on the part of the administrator, since he
must know how to interpret error conditions,
configure the system, and disable potentially
threatening services. While it is a temptation to
make the toolkit software self-installing and self-
configuring, doing so raises the possibility that
someone might install it who lacks the basic skills
necessary to know if they have in fact secured their
network. Packaging the toolkit as a set of
components that can be used freely has proven
effective, since it fills a need on the part of those
experienced system managers who would have had
to design, write, debug, and test their own
implementations if ours were not available.

A simple administrative shell is included
that permits the authentication database to be
manipulated over a network, with optional support
for encryption of authentication transactions. The
authsrv database supports a basic form of group
management; one or more users can be identified as
the administrator of a group of users, and can add,
delete, enable, or disable users within that group.
Authsrv internally maintains information about the
last time a user authenticated to the server and how
many failed attempts have been made. It can
automatically disable or time-lock accounts that have
multiple failures. Extensive logs are maintained of
all authsrv transactions. Authsrv is intended to run
on a secured host, such as the bastion host itself,
since its database must be protected from attack.

Future Directions

In the future we will focus on the problem
of adding newer interactive information retrieval
services such as Gopher, WAIS and World Wide
Web and broadcast services such as MBONE.
Possible avenues for future research include
integrating cryptography with the firewall software
to permit firewall-to-firewall service and firewall-to-
firewall authentication, possibly using kerberos
protocols. Support for IP-on-demand services like
PPP pose a problem for firewalls: is the dial-up user
to be treated as an untrusted Internet host or as a part
of the protected network? Adding support for
authenticated and encrypted PPP service on the
firewall itself is being examined.

Testing Firewalls

Throughout the design of the toolkit, we
tried to design each component so that it relied
wherever possible on protections in the UNIX
environment, rather than on elaborate code designed
to check and deter threats. While the toolkit software
doesn´t include a test suite, it is designed to be easy
to verify that each component operates as it is
intended. As an example, the SMTP proxy smap
runs “chrooted” to a subdirectory as an unprivileged
process. It stands to reason that if the proxy performs

Observations

In practice, we find that running servers
without special system privileges increases our
assurance that the firewall is secure. More

importantly, the methodology of turning off all
services but a minimum, and then auditing each one
on a case-by-case basis further increases confidence
that the system is harder to break into. The basic
design decisions in setting up a firewall (to route or
not to route, to rely on the host or the router) remain
unchanged, but the toolkit will work with either
model.

[4] G. Winfield Treese and Alec Wolman, “X
Through the Firewall, and Other Application
Relays,” Proceedings of USENIX Summer
Conference, 1993. Also available as Cambridge
Research Lab Technical Report 93/10, Digital
Equipment Corporation, May 3, 1993.

[5] Wietse Venema, “TCP WRAPPER, network
monitoring, access control, and booby traps,” UNIX
Security Symposium III Proceedings (Baltimore),
September 1992

Firewalls are a stop-gap measure that is
needed because many services are developed that
operate either with poor security or no security at all.
Perhaps the most important lesson we can learn from
firewalls is the need for strong session-level
authentication in applications and well-designed
application protocols.

[6] Frederick M. Avolio and Marcus J. Ranum, “A
Network Perimeter With Secure External Access,”
Internet Society Symposium on Network and
Distributed Systems Security, February 1994.

William Cheswick, “The Design Of a Secure
Internet Gateway,” Proceedings of the 3rd USENIX
Security Symposium, September 1992.

Availability

The TIS Internet Firewall Toolkit is
available in source form via anonymous FTP from
ftp.tis.com: /pub/firewall/toolkit/fwtk.tar.Z.
Information is available from the authors at fwall-
support@tis.com. Send mail to fwall-users-
request@tis.com to be added to the firewall toolkit
user´s mailing list. Future enhancements to the
toolkit will be announced on fwall-users and other
relevant mailing lists.

Stephen M. Bellovin and William Cheswick,
“Firewalls and Internet Security: Repelling the Wily
Hacker,” Addison-Wesley, Spring 1994

Frederick M. Avolio is a principal
analyst with Trusted Information Systems,
Incorporated, and active in network security
consulting and product development. He has
lectured on the subject of Internet gateways and
firewalls and electronic mail configuration and has
performed consulting services in these areas, both for
government and in the private sector. He has
worked in the UNIX and TCP/IP communities since
1979.

Acknowledgements

This work was done, in part, under a
contract from the U. S. Department of Defense,
Advanced Research Projects Agency (ARPA),
number DABT 63-92-C-0020. [6]

References Mr. Avolio has an undergraduate degree
in Computer Science from the University of Dayton
and a Master of Science from Indiana University.[1] Marcus J. Ranum, “Thinking About Firewalls,”

Proceedings of Second International Conference on
Systems and Network Security and Management
(SANS-II), April, 1993

Marcus Ranum is a senior scientist at
Trusted Information Systems. He is the chief
architect of the firewall toolkit and spends most of
his time on Internet security issues.

[2] Washington University Saint Louis, FTP server
daemon. Available for FTP from
wuarchive.wustl.edu

[3] Marcus J. Ranum — “An Internet Firewall,”
Proceedings of First International Conference on
Systems and Network Security and Management
(SANS-I), Nov, 1992

UNIX is a registered trademark of X/Open
Company, Ltd.

