
Physical Memory Forensics

Mariusz Burdach



Overview

• Introduction

• Anti-forensics

• Acquisition methods

• Memory analysis of Windows & Linux

– Recovering memory mapped files

– Detecting hidden data

– Verifying integrity of core memory components 

• Tools

• Q & A



Analysis Types

Physical Storage Media Analysis Network Analysis

Volume Analysis Memory Analysis

File System 
Analysis

Database
Analysis

Swap Space
Analysis

Application
Analysis

Source: „File System Forensic Analysis”, Brian Carrier



RAM Forensics

• Memory resident data

• Correlation with Swap Areas

• Anti-Forensics against the data:

– Data contraception

– Data hiding

– Data destruction

• Anti-Forensic methods:

– Data contraception against File System Analysis

– Data hiding against Memory Analysis



In-memory data

• Current running processes and terminated processes

• Open TCP/UDP ports/raw sockets/active connections

• Memory mapped files

– Executable, shared, objects (modules/drivers), text files

• Caches

– Web addresses, typed commands, passwords, clipboards, 
SAM database, edited files

• Hidden data and many more

• DEMO
Klip wideo



Persistence of Data in Memory

*Source: „Forensic Discovery”, Dan Farmer, Wietse Venema

• Factors:

• System activity 

• Main memory size

• Data type

• Operating system
Above example*: Long-term verification of DNS server: (OS: Solaris 8, 

RAM: 768 MB)

Method: Tracking page state changing over time.

Result: 86 % of the memory never changes.



Anti-forensics

• Syscall proxying - it transparently „proxies” a 
process’ system calls to a remote server:
– CORE Impact

• MOSDEF - a retargetable C compiler, x86 
assembler & remote code linker
– Immunity CANVAS

• In-Memory Library Injection – a library is 
loaded into memory without any disk activity:
– Metasploit’s Meterpreter (e.g. SAM Juicer)

– DEMO
Klip wideo

Obraz - mapa 
bitowa



Anti-forensics

• Anti-forensic projects focused on data 
contraception:
– „Remote Execution of binary without creating a file on disk” 

by grugq (Phrack #62)

– „Advanced Antiforensics : SELF”  by Pluf & Ripe (Phrack
#63)

– DEMO

• In memory worms/rootkits

– Their codes exist only in a volatile memory and 
they are installed covertly via an exploit

– Example: Witty worm (no file payload)

Klip wideo



Anti-forensics

• Hiding data in memory:

– Advanced rootkits 

• Evidence gathering or incident response tools 
can be cheated

• Examples: 

– Hacker Defender/Antidetection – suspended

– FUTo/Shadow Walker

– Offline analysis will defeat almost all 
methods



Anti-forensics

• DKOM (Direct Kernel Object Manipulation)
– Doubly Linked List can be abused 

– The FU rootkit by Jamie Butler

– Examples: Rootkit technologies in the wild*

Worms that uses DKOM & Physical Memory:

• W32.Myfip.H@mm

• W32.Fanbot.A@mm

EPROCESS

BLINK

FLINK

EPROCESS

BLINK

FLINK

EPROCESS

BLINK

FLINK

Pro
ce

ss
 to

 h
id

e

EPROCESS

BLINK

FLINK

EPROCESS

BLINK

FLINK

EPROCESS

BLINK

FLINK

*Source: „Virus Bulletin” December, 2005, Symantec Security Response, Elia Florio

BEFORE    AFTER



Identifying anti-forensic tools in 
memory image

• AF tools are not designed to be hidden 
against Memory Analysis
– Meterpreter

• Libraries are not shared

• Server: metsrv.dll

• Libraries with random name ext??????.dll

– SELF
• Executed in memory as an additional process –
memory mapped files can be recovered even 
after process termination



Acquisition methods

• All data in a main memory is volatile – it refers to 
data on a live system. A volatile memory loses its 
contents when a system is shut down or rebooted

• It is impossible to verify an integrity of data

• Acquisition is usually performed in a timely manner 
(Order of Volatility - RFC 3227)

• Physical backup instead of logical backup

• Volatile memory acquisition procedures can be:

– Hardware-based

– Software-based



Hardware-based methods

• Hardware-based memory acquisitions
– We can access memory without relying on the 
operating system, suspending the CPU and using 
DMA (Direct Memory Access) to copy contents of 
physical memory (e.g. TRIBBLE – PoC Device)
• Related work (Copilot Kernel Integrity Monitor, EBSA-
285)

– The FIREWIRE/IEEE 1394 specification allows 
clients’ devices for a direct access to a host 
memory, bypassing the operating system (128 MB 
= 15 seconds)
• Example: Several demos are available at 
http://blogs.23.nu/RedTeam/stories/5201/ by RedTeam



Software-based method

• Software-based memory acquisitions: 
– A trusted toolkit has to be used to collect volatile 
data
• DD for Windows - Forensic Acquisition Utilities & KNTDD are

available at http://users.erols.com/gmgarner/

• DD for Linux by default included in each distribution (part of 
GNU File Utilities)

– Every action performed on a system, whether 
initiated by a person or by the OS itself, will alter 
the content of memory:
• The tool will cause known data to be written to the source

• The tool can overwrite evidence

– It is highly possible to cheat results collected in 
this way



Linux Physical memory device

• /dev/mem – device in many Unix/Linux 
systems (RAW DATA)

• /proc/kcore – some pseudo-filesystems
provides access to a physical memory 
through /proc

– This format allows us to use the gdb tool 
to analyse memory image, but we can 
simplify tasks by using some tools



Windows Physical memory device

• \\.\PhysicalMemory - device object in Microsoft 
Windows 2000/2003/XP/VISTA (RAW DATA)

• \\.\DebugMemory - device object in Microsoft
Windows 2003/XP/VISTA (RAW DATA)

• Simple software-based acquisition procedure 

� dd.exe if=\\.\PhysicalMemory
of=\\<remote_share>\memorydump.img

• Any Windows-based debugging tool can analyse a 
physical memory „image” after conversion to 
Microsoft crashdump format

– http://computer.forensikblog.de/en/2006/03/dmp_file_struct
ure.html



Problems with Software-based 
method

�An attacker can attack the tool

�Blocking access to pages which are 
mapped with different memory types
http://ntsecurity.nu/onmymind/2006/2006-06-01.html

� Problems with access to a physical memory 
from user level
�Windows 2003 SP1+ & Vista

�Linux
�SYS_RAWIO capability of Capability Bounding Set 

�It is vital to use kernel driver 



Why physical backup is better?

• Limitations of logical backup
– Partial information

• selected data

• only allocated memory

– Rootkit technologies

– Many memory and swap space modification

• Incident Response (First Response) Systems 
– Set of tools

• Forensic Server Project

• Foundstone Remote Forensics System

– Direct calls to Windows API
• FirstResponse - Mandiant

• EnCase Enterprise Edition

– Cheating IR tools (DEMO)
Klip wideo



Preparation

• Useful files (acquired from a file system):

– Kernel image files (ntoskrnl.exe, vmlinux-2.x)

– Drivers/modules/libraries

– Configuration files (i.e. SAM file, boot.ini)

• These files must be trusted

– File Hash Databases can be used to compare hash sums

• Map of Symbols

– System.map file

– Some symbols are exported 

by core operating system files



System identification

• Information about the analysed memory dump
– The size of a page =4096 (0x1000) bytes

– The total size of the physical memory 
• Physical Address Extension (PAE)

• HIGHMEM = 896 MB

– Architecture 32-bit/64-bit/IA-64/SMP

• Memory layout
– Virtual Address Space/Physical Address Space

– User/Kernel land
• Windows kernel offset at 0x80000000

• Linux kernel offset at 0xC0000000

– (Windows) The PFN Database at 0x80C00000

– (Linux) The Mem_Map Database at 0xC1000030

– (Windows) The PTE_BASE at 0xC0000000 (on a non-PAE systems)

– Page directory – each process has only one PD

• Knowledge about internal structures is required



Virtual ->Physical (x86)

(Windows) PTE address = PTE_BASE + (page directory index) * PAGE_SIZE

+ (page table index) * PTE size

(Linux) PA = VA – PAGE_OFFSET



Physical ->Virtual (x86)

• PFN & mem_map databases

• Entries represent each physical page of memory on 
the system (not all pages!)

PFN 000263A3 at address 813D8748

flink 000002D4  blink / share count 00000001  pteaddress E42AF03C

reference count 0001   Cached     color 0

restore pte F8A10476  containing page  02597C  Active      P

Shared



Page Table Entries

• Page Table Entry

• There are PAGE_SHIFT (12) bits in 32-bit value that 
are free for status bits of the page table entry 

• PTE must be checked to identify the stage of a page

• PFN * 0x1000 (Page size) = Physical Address



Correlation with Swap Space

• Linux: A mm_struct contains a pointer to the 
Page Global Directory (the pgd field)

• Windows: A PCB substructure contains a 
pointer to the Directory Table Base 

• Page Table entries contain index numbers to 
swapped-out pages when the last-significant 
bit is cleared
�Linux: (Index number x 0x1000 (swap header)) + 
0x1000 = swapped-out page frame

�Windows: Index number x 0x1000 = swapped-out 
page frame



Methods of analysis

• Strings searching and signatures 
matching
– extracting strings from images (ASCII & 
UNICODE)

– identifying memory mapped objects by 
using signatures (e.g. file headers, .text 
sections)

• Interpreting internal kernel structures

• Enumerating & correlating all page 
frames



Strings & signatures searching

• Any tool for searching of ANSI and UNICODE strings 
in binary images

– Example: Strings from Sysinternals or WinHex

• Any tool for searching of fingerprints in binary images

– Example: Foremost

• Identifying process which includes suspicious 
content:

– Finding PFN of Page Table which points to page frame which 
stores the string

– Finding Page Directory which points to PFN of Page Table

• DEMO
Klip wideo



LINUX internal structures



Zones and Memory Map array

• Physical memory is partitioned into 3 
zones:
– ZONE_DMA = 16 MB

– ZONE_NORMAL = 896 MB – 16 MB

– ZONE_HIGHMEM > 896 MB

• The mem_map array at 0xC1000030 
(VA)



Important kernel structures

• task_struct structure 

– mm_struct structure

– vm_area_struct structure

– inode & dentry structures – e.g. info about 
files and MAC times

– address_space structure

• mem_map array

– Page descriptor structure



Relations
between
structures



Windows internal structures



Important kernel structures
• EPROCESS (executive process) block

– KPROCESS (kernel process) block

– ETHREAD (executive thread) block

– ACCESS_TOKEN & SIDs

– PEB (process environment) block

– VAD (virtual address descriptor)

– Handle table

– CreationTime - a count of 100-nanosecond intervals since 
January 1, 1601

– Data Section Control Area
• Page frames

• PFN (Page Frame Number) Database
– PFN entries



Relations between structures



Enumerating processes

• Linux
– init_task_union (process number 0) 

• The address is exported by a kernel image file

• The address is available in the System.map file

• String searches method

– init_task_union struct contains list_head structure

– All processes (task_structs) are linked by a doubly 
linked list

• Windows
– PsInitialSystemProcess (ntoskrnl.exe) = _EPROCESS 
(System)

– _EPROCESS blocks are linked by a doubly linked list



Linux: Dumping memory mapped 
files

• Page Tables to verify the stage of pages

• An address_space struct points to all page descriptors

• Page descriptor
– 0x0 –> list_head struct //doubly linked list

– 0x8 –> mapping //pointer to an address_space

– 0x14 –> count //number of page frames

– 0x34 –> virtual //physical page frame

0x010abfd8: 0xc1074278 0xc29e9528 0xc29e9528 0x00000001

0x010abfe8: 0xc1059c48 0x00000003 0x010400cc 0xc1095e04

0x010abff8: 0xc10473fc 0x03549124 0x00000099 0xc1279fa4

0x010ac008: 0xc3a7a300 0xc3123000 (virtual - 0xc0000000) = PA

address_space
next page descriptor



Linux: Dumping memory mapped 
files

• Signature (strings or hex values) searching

• Reconstructing objects:

– Finding page descriptor which points to page 
frame which stores the signature (mem_map 
array)

– Page descriptor points to all related page 
descriptors (the sequence is critical)

– We have all page frames and size of file (inode
structure)

• DEMO
Klip wideo



Windows: Dumping memory 
mapped files

• Page Tables to check the stage of pages

• Data Section Control Area

• Information from the first page (PE header)
– PEB -> ImageBaseAddress

• Required information:
– the Page Directory of the Process (for dumping process 

image file)

– the Page Directory of the System process (for dumping 
drivers/modules)



Integrity verification

Recovered file

Original file



IAT in .rdata

kd> u 0x77e42cd1

kernel32!GetModuleHandleA:

77e42cd1 837c240400 cmp     dword ptr [esp+0x4],0x0

77e42cd6 7418 jz      kernel32!GetModuleHandleA+0x1f (77e42cf0)

77e42cd8 ff742404 push    dword ptr [esp+0x4]

...

Original file Recovered file



Finding hidden objects

• Methods
– Reading internal kernel structures which are not 
modified by rootkits
• List of threads instead list of processes

• PspCidTable

• Etc...

– Grepping Objects
• Objects like Driver, Device or Process have static 
signatures

– Data inside object

– Data outside object

– Correlating data from page frames
• Elegant method of detecting hidden data



Windows: Finding hidden objects 
(_EPROCESS blocks)

• Enumerating PFN database

• Verifying following fields:
– Forward link – linked page frames (Forward link also points to the 

address of EPROCESS block)

– PTE address – virtual address of the PTE that points to this page

– Containing page – points to PFN which points to this PFN

• DEMO

PFN 00025687 at address 813C4CA8

flink       8823A020  blink / share count 00000097  pteaddress C0300C00

reference count 0001   Cached     color 0

restore pte 00000080  containing page        025687  Active     M

Modified

Klip wideo



Linux: Finding hidden objects 
(mm_struct structure)

• Each User Mode process has only one memory 
descriptor

• Next, we enumerate all page descriptors and select 
only page frames with memory mapped executable 
files (the VM_EXECUTABLE flag)

• Relations:

– The mapping filed of a page descriptor points to the 
address_space struct

– The i_mmap field of an address_space structure points to a 
vm_area_struct

– The vm_mm field of a vm_area_struct points to memory 
descriptor



Windows: Finding hidden objects 
(_MODULE_ENTRY)

• Scanning physical memory in order to find memory signatures 

– Identification of module header (MZ header)

– Identification of module structures

• Inside object – Driver Object 

GREPEXEC

http://www.uninformed.org/?v=4&a=2

• Outside object

typedef struct _MODULE_ENTRY { 

LIST_ENTRY module_list_entry; 

DWORD unknown1[4]; 

DWORD base; 

DWORD driver_start; 

DWORD unknown2; 

UNICODE_STRING driver_Path; 

UNICODE_STRING driver_Name;  

} 



Detecting modifications of memory

• Offline detection of memory 
modifications
– System call hooking

• Function pointers in tables (SSDT, IAT, SCT, 
etc)

– Detours
• Jump instructions

• Cross-view verification 
– .text sections of core kernel components
– values stored in internal kernel tables (e.g. SCT)



SSDT

• Verification of core functions by 
comparing first few bytes

– Self-modifying kernel code
• Ntoskrnl.exe & Hall.dll

• Finding an address of 
KiServiceTable

– Memory image file: _KTHREAD (TCB)

• *ServiceTable = 80567940

– Symbols exported by the ntoskrnl.exe 
(debug section): 

• NtAllocateUuids (0x0010176C)

• NtAllocateVirtualMemory (0x00090D9D)

SSDT in the ntoskrnl.exe



Linux: removing data

• The content of page frames is not removed

• Fields of page descriptors are not cleared completely

– a mapping field points to an address_space struct

– a list_head field contains pointers to related page descriptors

• Finding „terminated” files

– Enumerating all page frames - 0x01000030 (PA)

– A page descriptor points to an address_space

– Information from an address_space struct

• an i_mmap field is cleared

• all linked page frames (clean, dirty and locked pages)

• a host field points to an inode structure which, in turn, points 
to a dirent structure



Windows: removing data

• The content of page frames is not removed

• All fields in PFN, PDEs & PTEs are cleared 
completely

• Information from related kernel structures are 
also cleared

• We can recover particular page frames but it 
is impossible to correlate them without 
context



Available tools

• Debugging tools (kcore & crashdump) 

• Analysis of Windows memory images

– KNTTools by George M. Garner Jr. 

• KNTDD & KNTLIST

–WMFT - Windows Memory Forensics 
Toolkit at http://forensic.seccure.net

• Analysis of Linux memory images

– IDETECT at http://forensic.seccure.net



KNTTOOLS

• KNTDD
• MS Windows 2000SP4/XP+/2003+/Vista

• Conversion to MS crash dump format

• KNTLIST
– Information about system configuration

• System Service & Shadow Service Tables

• IDT & GDT Tables

• Drivers & Devices Objects

• Enumerates network information such as interface list, arp list, address 
object, NIDS blocks and TCB table

– Information about processes
• Threads, Access Tokens

• Virtual Address Space, Working Set

• Handle table, Executive Objects, Section Object

• Memory Subsections & Control Area

– References are examined to find hidden data



WMFT

• Support for Windows XP & 2003

• Functionality
– Enumerating processes, modules, libraries (doubly linked 

list)

– Finding hidden data – processes and modules (grepping
objects & correlating pages)

– Verifying integrity of functions

– Dumping process image file and modules

– Detailed info about processes
• Access Token, Handle Table, Control Area & Subsections, etc

– Enumerating & finding PFNs

• To do:
– The disassembly functionality

– Support for Vista



Conclusion

• Memory analysis as an integral part of 
Forensic Analysis

• Evidence found in physical memory can be 
used to reconstruct crimes:
– Temporal (when)

– Relational (who, what, where)

– Functional (how)

• Sometimes evidence can be resident only in 
physical memory

• Must be used to defeat anti-forensic 
techniques



Q & A



Thank you.

Mariusz.Burdach@seccure.net

http://forensic.seccure.net


