
Physical Memory Forensics for Files and Cache

James Butler and Justin Murdock

MANDIANT Corporation

james.butler@mandiant.com

Rochester Institute of Technology

jdm8744@rit.edu

ABSTRACT

Physical memory forensics has gained a lot of traction over the past five or six years. While it

will never eliminate the need for disk forensics, memory analysis has proven its efficacy during

incident response and more traditional forensic investigations. Since attackers typically live in

userland memory, reconstructing the processes in that space is essential to an investigation.

While previous reconstruction techniques in this area have shown promise, they have left room

for improvement. This paper will focus on file reconstruction as a method of reducing unknown

data in memory and accelerating forensic analysis.

KEYWORDS

memory mapped file, process reconstitution, physical memory analysis, file extraction, MemD5,

ImageSectionObject, DataSectionObject, SharedCacheMap

I. Introduction

When performing memory analysis, there are two primary components: a) kernel memory and b)

userland memory. In a Windows environment, kernel memory is comprised primarily of device

drivers, the NT operating system executable, and HAL.DLL. The majority of userland memory

is comprised of individual processes, and the process’ address space primarily consists of files

loaded from disk that contain code or data needed for process execution, typically Portable

Executable files (EXEs) and Dynamic Link Libraries (DLLs). Most of the virtual addresses in

kernel memory are global regardless of the process context, whereas the other virtual address

space is generally specific to each particular process. This has interesting implications when

performing memory acquisition, a topic discussed in later sections. This paper focuses on

userland memory in the context of an individual process’ address space. Normally, attackers

target the victims’ userland memory because it is easier to write code and get code loaded in

userland memory as opposed to kernel memory.

There have been promising advancements in the field of memory forensics in the area of

userland or process reconstitution, but they can be improved upon. Previous tools focused mainly

on stepping through the Virtual Address Descriptors (VADs) or virtual memory regions that

comprised a process’ address space, but ignored other rich sources of information such as those

present for memory mapped files. Since these tools use limited information about the VAD

structure to extract files from memory, the resulting files are not accurate representations of their

complete contents on disk. The operating system’s cache for Input/Output (I/O) has also been

largely ignored. This paper introduces techniques to gather information and extract files from

memory with much higher precision.

II. Current Physical Memory Forensics Techniques

The two most common (and free) memory forensic tools are Volatility [1] and Memoryze [2].

Both of these tools have commands to analyze the contents of a process. Volatility’s commands

include vaddump, dlldump, procmemdump, procexedump, and memdump. Memoryze uses the

ProcessDD command. This section compares and contrasts the commands in both tools to

evaluate the state of process reconstitution.

Most memory analysis tools, Volatility and Memoryze included, use a technique known as VAD

walking to find data loaded into memory. VADs are data structures linked to each process’

EPROCESS block that the memory manager uses to keep track of which virtual addresses have

been reserved for each process [3:448]. These structures are available in memory and can be

used to determine information about every running process. Stepping through these memory

structures is known as VAD walking [4]. ProcessDD in Memoryze and vaddump [1] in Volatility

operate by VAD walking. The four minor differences between these commands are as follows:

1. Memoryze does not acquire the first MB of the process’s virtual address space

(0x00000000-0x000fffff).

2. Vaddump does not name any of the memory regions if it is a named memory region.

3. Memoryze replaces pages not in the process’ address space with NOPs (0x90s) while

Vaddump uses zeroes (0x0).

4. Vaddump does not report regions with a name and size of zero.

Dlldump in Volatility has a subset of the information contained in ProcessDD; however, both

tools use different methods to achieve nearly the same results. Dlldump walks the linked list of

loaded modules (DLLs) in the Process Environment Block (PEB) pointed to by the process’

EPROCESS block, and ProcessDD walks the VAD applying the DLL names if they are present.

The linked list of loaded modules exists in userland memory and could be altered by the attacker

so dlldump gives the user the option of specifying the base physical address of the unlinked

module in order to acquire it. A similar attack could be performed against a process’ VAD table

which would hide the memory region from Memoryze; however, this requires the attacker to be

fairly skilled and executing his/her code in the kernel address space where VADs are stored.

Dlldump also parses the Portable Executable (PE) format to determine the size of the DLL,

whereas Memoryze’s ProcessDD utilizes the size contained in the VAD structure, which is page

aligned. Since dlldump utilizes the information in the PE header to determine the size of each

section, it will more accurately represent how the file would appear on disk. ProcessDD

encounters the data as the Windows PE loader placed it in memory. However, both tools return

exactly the same physical contents ignoring the alignment issues.

Comparing the output of procmemdump with ProcessDD yields almost identical binary

applications. Procmemdump includes the “slack space” of the binary according to the command

reference. Since the slack space is included, there are no alignment issues between the outputs of

the two commands. Procexedump is almost identical to procmemdump, but it does not include

the slack space in the PE; therefore, it has the same alignment issues as dlldump when comparing

it to the output of ProcessDD.

Memdump is unique in the fact that there is no corresponding output created by Memoryze. A

comparison of the output of memdump, which dumps all addressable memory in a process’

address space, to the output of ProcessDD or vaddump reveals a large discrepancy in the size of

the acquired data. In an acquisition of CSRSS.EXE from a Windows 7 SP0 32-bit host, the

difference was in the hundreds of MBs. The extra data is a result of the technique memdump

uses to acquire a process’ address space. Memdump brute forces address translation across the

virtual memory range of 0 to 4 GB. As mentioned before, kernel addresses are global for the

most part across all processes. Since kernel memory typically starts at virtual address

0x80000000 on 32-bit systems, memdump acquires all the global kernel memory pages that

translate in the context of the process specified.

All of these techniques can be generalized into one method:

1. Start with a virtual base address and a size.

a. Parsing the PE header of the first page to determine the virtual addresses of the

subsequent pages is a derivation of this technique.

b. Brute force translation across all possible virtual addresses is also a derivation

where the base address is 0 and the size is 4GB.

2. Translate every address to the corresponding physical page.

The following section focuses on the challenges with this method and section IV describes

improvements.

III. Issues with Traditional Approaches

While previous approaches to memory forensics and process reconstitution have made

tremendous advances and given analysts access to data previously unavailable, there is room for

improvement. Translating virtual addresses across a range of memory ignores the structures the

Windows operating system uses to represent files, FileObjects. While FileObjects are not present

for all memory ranges, they do exist for memory mapped files such as DLLs and EXEs. Since

DLLs and EXEs are paramount to most investigations, the traditional approaches are ignoring

portions of the process’ address space. The second issue deals with attribution. If a tool performs

a brute force translation of every address in the range of a process’ memory, it will undoubtedly

attribute certain kernel pages as belonging to the process, when in reality they do not.

a. Missing Data

DLLs and EXEs are called memory mapped files because their data in memory is backed by

their original data on disk. For memory mapped files, code is not paged to the paging file(s).

Memory mapped files are represented by kernel objects, which will be described in the next

section, and are backed by themselves on disk when the contents need to be paged to disk. Since

the code does not change under normal operation, it would be redundant to page out data to the

paging file(s) because it already exists on disk in the original file. Only the private data of a

binary specific to an individual process is paged to the paging file(s)

As part of our investigations, we performed an experiment by acquiring the AcroRd32.exe

(Acrobat Reader) process in the memory image from the Honeynet Project Challenge 3 [5] using

two separate approaches. The traditional approach used Volatility 2.0 and the command dlldump.

The second method acquired the file by using the FileObject technique described in section IV.

Table 1 shows the advantage of applying knowledge of the structures pointed to by the

FileObject instead of translating across the entire virtual address range of the VAD representing

the file.

AcroRd32.exe

PID 1752

File Size in Bytes Bytes Acquired with

Traditional

Approach (Ignoring

FILE_OBJECT)

Bytes Acquired

using

FILE_OBJECT

Ntdll.dll 708,096 295,936 390,656

Wininet.dll 656,384 309,248 411,648

User32.dll 577,024 234,496 409,600

Crypt32.dll 597,504 213,504 367,104

Ace.dll 565,248 394,752 524,288
Table 1: Bytes acquired using different methods

Table 1 demonstrates that using the FileObject resulted in substantially better results in this

sample of DLLs. Since the challenge did not include the underlying file system, pages that could

not be read because they were not in memory were identified by comparing a 512 byte sector of

0x00 bytes in one file corresponding to the same sector of 0x90 bytes in the other acquired file.

We will further explore the FileObject and the technique used for acquisition in later sections of

this document.

b. Misattributed Data

During an incident response investigation, attribution is important. Although it is interesting

initially to know that the host is compromised, more context is required to properly remediate.

Since this research focuses on processes’ address spaces, knowing which process is

compromised is important.

In the Honeynet Project Challenge 3 solution, Smith, Et al. [6] acquired PID 1752

(AcroRd32.exe) using Volatility’s memdump command. Foremost [7] was run against the output

to carve out PDFs. Foremost looks for a specified beginning and ending delimiter to carve files.

In this example, it created seven PDFs. Five were just over four hundred bytes and determined

uninteresting. The final two files were:

1. 00599696.pdf which was 60,124 bytes in size

2. 00600328.pdf which was 607,083 bytes in size

The authors found the suspicious content in 00600328.pdf, which they attributed to the

AcroRd32.exe process since it is the process they acquired. However, using Volatility’s

memdump command and Foremost in exactly the same series of steps on the same image on PID

1108 (VMwareTray.exe) produced the same two file sizes with exactly the same contents.

Although their conclusions were correct, if they tried to acquire a process other than

AcroRd32.exe, the results would have been incorrect and misleading due to a lack of correct

attribution.

The reason both of these files “exist” in each process is because of the technique used to acquire

the processes. Memdump brute forces the 4 GB virtual address space writing out successfully

translated pages when using the target process’ Directory Table Base (DTB). The contents of

both of these files must have translated in each process’ address space. By placing a print

statement in the Volatility script, it was determined that these files are in the operating system’s

cache at 0xd2dc0000. The operating system uses the cache to keep portions of files and other I/O

in memory to avoid the performance hit of constantly reading from and writing to the disk. Since

the cache’s virtual address range is in kernel memory and global, it translates correctly in both

processes.

Because memdump does not write to disk pages that do not translate, addresses that translated

appear contiguous in the acquisition when there may be a several hundred virtual page gap.

Foremost just looks through the data for beginning and ending delimiters. Using MoonSols

bin2dmp.exe [8] tool, you can transform the memory image from the challenge (Bob.vmem) to

Windbg format. By loading the dump into Windbg and using the search and !filecache

commands, we found that the FILE_OBJECT is at 0x81dfadf0 and present in the cache.

However, !filecache reveals that the file 00600328.pdf is actually called PDF.php. Instead of

being 607,083 bytes in size, it is actually only 19,731 bytes in size. This discrepancy exists

because memdump wrote all the pages of the process that translated as a contiguous file and

ignored the pages that failed to translate and the cache structures. Also, since Foremost looks for

a beginning delimiter and a corresponding ending delimiter, it treats the content in between as

one contiguous file. Windbg’s !filecache command states that only 20K is reserved in the cache

for this file. The next section describes how to utilize the FileObject and cache structures.

IV. Utilizing File Objects

Since DLLs and EXEs are memory mapped files represented in kernel memory by FileObjects,

understanding their structure is very important to memory forensics. The FILE_OBJECT

structure contains several important members. It contains a pointer to the Unicode name of the

file and a pointer to the file’s DeviceObject, which contains the drive name such as

HarddiskVolume1. One of the most important pointers in the FileObject is to a structure called

SECTION_OBJECT_POINTERS, as shown in Figure 1.

Figure 1: FILE_OBJECT structure with relevant pointers

The SECTION_OBJECT_POINTERS structure only contains three pointers as seen in Figure 1.

The first is called the DataSectionObject. The next is called the SharedCacheMap, and the final

pointer is called the ImageSectionObject. DataSectionObjects and ImageSectionObjects are

related and are actually pointers to CONTROL_AREAs. ImageSectionObjects represent binaries

also called images. DataSectionObjects can point to structures used to maintain data files such as

those used by Microsoft Word. The SharedCacheMap is a pointer to the

SHARED_CACHE_MAP structure, which is used by the operating system to maintain the

cache. The following sections will investigate each of these structures.

a. Image Section Objects

The ImageSectionObject is a pointer to a CONTROL_AREA structure and used to represent

memory mapped binaries. As shown in Figure 2, the ControlArea contains a pointer to a

SEGMENT structure. The Segment contains a pointer back to the ControlArea. This relationship

can be used as a validation method when parsing memory. The Segment also contains the size of

the Segment (SizeOfSegment) and the total number of Prototype Page Table Entries (PTEs). The

total number of PTEs (TotalNumberOfPtes) can be multiplied by 0x1000 and compared to the

Segment size for an additional sanity check. When parsing ControlAreas, the SUBSECTION

structures are very important. The easiest way to find the first Subsection related to the

FileObject is to add the size of the CONTROL_AREA structure to its address in memory. This

varies between different versions of the operating system. Work has been done to automate the

detection of the operating system’s version and apply the appropriate offsets, which could lead to

more portable code [9]. Our research has shown that the first Subsection is immediately

following the ControlArea pointed to by the ImageSectionObject, and each Subsection contains a

pointer to the next Subsection. Figure 2 illustrates the relationship between these objects

according to the Windbg command !ca.

 Figure 2: The path from a CONTROL_AREA to physical memory.

The Subsection contains a pointer back to the ControlArea, which also can be used for

validation, but the most interesting pointer is the one to the array of Prototype PTEs (MMPTE

Array). The Prototype PTE contains the physical address of the page in memory. If instead of a

physical address, the Prototype PTE has a pointer back to the Subsection that page is paged out

to the original file on disk.

The NumberOfFullSectors and PtesInSubsection in the Subsection are vital when iterating

through the array of Prototype PTEs. Every Prototype PTE represents a 4096 byte page;

however, each full sector represents a 512 byte sector. This requires certain considerations. Since

every Prototype PTE represents 4096 bytes, there can be up to 8 sectors in each Prototype PTE.

Getting the alignment correct is crucial in order to match what is in memory with what is on

disk. By walking through the Prototype PTEs and incrementing a variable for each sector parsed,

it is easy to access the correct sector in the file on the disk if the Prototype PTE is actually a

pointer back to the Subsection.

b. Data Section Objects

DataSectionObjects are similar to ImageSectionObjects. They both point to ControlAreas. Some

of the Segment’s values will not be initialized correctly, but the algorithm used in section IV.a

will work. However, in our research the NumberOfFullSectors and the number of

PtesInSubsection were always the same. Therefore, iterating through the Prototype PTE array by

the number of PTEs in the Subsection is sufficient.

c. Shared Cache Map

The SharedCacheMap points to the SHARED_CACHE_MAP structure, represented by Figure 3.

It contains the file size (FileSize) and the length of valid data in the cache (ValidDataLength). If

the ValidDataLength is ever greater than the FileSize, the SHARED_CACHE_MAP is invalid.

This structure also contains an element called InitialVacbs, which is actually an array of four

pointers to VACBs (Virtual Address Control Blocks). Each VACB represents 256 KB of cache.

If the file size is less than or equal to 1 MB, then the FileObject can be represented by four

VACBs called the InitialVacbs. Files larger than 1 MB must use the Vacbs pointer. The Vacbs

points to an array of VACB structures. If the file size is 32 MB or less, it can be represented by a

single array; otherwise, a VACB Array can point to arrays of VACB Arrays. Previous work by

Hejazi Et al. [10] uses information from the SharedCacheMap, and our technique extends their

work by taking into account the multiple layers found in files larger than 32 MB. The depth of

this tree can be calculated as

where n is the file size [3:672]. The result must be rounded up to the next whole number. The

individual VACB structures are rather simple. They have a pointer to a 256 KB block of the

cache and pointer back to the SHARED_CACHE_MAP structure. The other elements are not

relevant to this discussion.

Figure 3: File cache structures in memory.

V. Applications

FileObjects and their associated structures are pertinent for full process reconstitution. In order to

reach the rich data available in memory mapped files, data files, and files in cache finding all the

FileObjects associated with the process is imperative. When acquiring or analyzing a process’

address space, FileObjects are found in two separate places: a) the process’ handle table and b)

the VAD tree. Previous work has focused mainly on the VAD tree; however, some important

data to an investigation is found in the handle table. This section describes the usefulness of both.

a. Windows Registry Files

In the Windows operating system, the System process contains handles to the Registry hives.

Large portions of the hives are present in the cache. By parsing the handle table and acquiring

the System process, it is possible to use tools such as RegRipper [11] to analyze the Registry

hives. The approach used by Dolan-Gavitt [12] is to scan memory for evidence of a Registry

hive. This has the advantage that it finds the volatile hives that are not present on disk. These are

known as the HARDWARE and the REGISTRY hives. The advantage of using the handle table

is that the entire memory space does not need to be scanned and non-legitimate hives are never

found. Both techniques effectively are parsing the cache when analyzing the contents of the

Registry.

b. PDFs and Other Files

Some files such as PDFs are also contained in the cache or portions of them may be. The cache is

a less reliable source as opposed to DataSectionObjects and ImageSectionObjects because the

operating system manages what pages are present in the cache and which ones are not. More

research is needed in this area to determine what other useful files may exist in cache.

Tangentially, our research has observed GIFs from a Web browsing session in the cache.

Microsoft Word files are not contained in the cache [13], but can be acquired using the

DataSectionObject.

c. Hashes

Although hashes fail when the adversary is constantly evolving, there is a long history of its use

in computer security. In memory analysis, hashing can be useful even if the attacker is changing

rapidly because known hashes can be eliminated from the address space and used as a filter.

However, the problem has always been that the entire file could not be analyzed so the hash lists

built up historically were useless. Other research has used fuzzy hashing or subsets of the file to

hash against [14], [15], but again the historical data is too limited to make a comparison optimal.

On the other hand, by parsing the ImageSectionObject of a FileObject, it is possible to calculate

the same hash from memory as the one on disk. We have implemented this approach to produce

the MemD5 since it is identical to the MD5 on disk. This requires a live analysis of memory

because of the necessity to read paged out sectors of the file from disk. If the hash from memory

matches a known good hash, the memory region can be ignored, therefore, greatly reducing the

search space.

d. Byte Signatures

Classification tools such as VxClass, formerly from Zynamics, and other automated malware

analysis tools have the ability to generate a series of bytes present in a cluster of related malware

samples. Although these byte signatures could be labeled as traditional anti-virus signatures, they

have been specifically engineered to be based on code sections that are common across all the

related samples. Therefore, the byte signatures have better longevity. Although using byte

signatures against an attacker that does not reuse any code will not be successful, it has proven

effective in our research against several related families of malware in our collection.

Operational use of byte signatures must leverage the ImageSectionObject of the FileObject for

binaries in memory as illustrated by Table 1. If the analysis is run on a live system, the ability to

recover the entire file is possible as mentioned in section V.c; hence, all the content can be

searched and false negatives will not be reported.

VI. Further Work

Although our research has made progress and its implementation in Memoryze 2.0 looks

promising, there is still more work to be done. While we were evaluating the implementation,

several issues were identified.

a. Caching Across Different Platforms

On Windows 7 and Windows 2008, the caching behavior appeared differently during our

research, but the issues were outside the scope of this paper. From our limited observations, the

Registry hives did not appear to be cached. In fact, Windbg reported that there were no active

system cache mappings for our virtual instance of Windows 7 32-bit and 64-bit, but we could

find evidence of the Registry in physical memory.

b. Address Space Layout Randomization

Platforms with address space layout randomization (ASLR) enabled will influence the hash

calculation and the byte signature matching to a lesser extent because the Windows loader

modified the binary in memory so that it no longer matches its contents on disk. These changes

are a result of rebasing and should be reversible by comparing the load address of the binary in

memory with the preferred load address on disk and utilizing the relocation section to reverse the

steps the Windows loader took.

c. The Security Directory

In the PE format, the Security Directory of a binary contains the digital certificate information

for the file. Although this data is not necessary after the file is loaded, many versions of the

Windows loader create artifacts in the SEGMENT and SUBSECTION structures to represent

this area of the file, but our research has shown that this is not the case on Windows 7. Because

of its similarity to Windows 7, Windows 2008 is likely to exhibit the same behavior. Going

forward, we will have to detect whether or not a Security Directory exists in the PE header in

memory. If one exists, it will have to be parsed from disk and fed into the MemD5 hashing

function.

VII. Conclusion

In this paper we have introduced new techniques to accurately reconstruct files and processes

from memory. Building on previous work, we have shown the importance of the

SECTION_OBJECT_POINTERS structure in FileObjects. Specifically, when extracting a

process from memory, the ImageSectionObject acts as an invaluable resource of information

about the location of the process contents in memory. DataSectionObjects show promise because

they can be used to extract data files such as Microsoft Word documents from memory. Also, we

implemented several improvements over previous attempts to acquire the cache that make the

result attributable and more accurate.

Previous tools that have been used to extract files from memory have overlooked these details in

their implementation. The techniques we have introduced can give analysts further insight into

the state of a system from the contents of memory and greatly reduce the search space using

hashing principles.

VIII. References

[1] Volatility. Volatile Systems <http://code.google.com/p/volatility/>.

[2] Memoryze (Memory Analyzer).

 <http://www.mandiant.com/products/free_software/memoryze/>.

[3] Mark E. Russinovich, and David A. Solomon. Windows Internals. 4th ed. Redmond:

 Microsoft, 2005. Print.

[4] Brendan Dolan-Gavitt. "The VAD Tree: A Process-eye View of Physical Memory."

 Digital Investigation 4 (2007): 62-64. Print.

[5] The Honeynet Project. "Challenge 3 of the Forensic Challenge 2010 - Banking Troubles

 The Honeynet Project." Challenge 3 of the Forensic Challenge 2010 - Banking

 Troubles. The Honeynet Project. Web.

 <http://www.honeynet.org/challenges/2010_3_banking_troubles>.

[6] Josh Smith, Matt Cote, Angelo Dell'Aera, and Nicolas Collery. "Forensic Challenge 3:

 Banking Troubles Solution." Honeynet. Honeynet, 12 May 2010. Web.

 <http://www.honeynet.org/files/Forensic_Challenge_3_-_Banking_Troubles_Solution.pdf>.

[7] Jesse Kornblum, and Kris Kendall. "Foremost." Foremost. Air Force OSI, 1 Mar. 2010.

 Web. <http://foremost.sourceforge.net/>.

[8] Moonsols. "Moonsols Bin2dmp.exe." MoonSols Products. Moonsols.

 http://www.moonsols.com/products/>.

[9] James Okolica, and Gilbert L. Peterson. "Windows Operating Systems Agnostic

 Memory Analysis." Digital Investigation (2010): S48-56. Print.

[10] Seyed M. Hejazi, Mourad Debbabi, and Chamseddine Talhi. "Automated Windows

 Memory File Extraction for Cyber Forensics Investigation." Journal of Digital

 Forensic Practice (2008): 117-31. Print.

[11] Harlan Carvey. "Regripper." RegRipper. Web.

 <http://regripper.wordpress.com/regripper/>.

[12] Brendan Dolan-Gavitt. "Forensic Analysis of the Windows Registry in Memory."

 Digital Investigation (2008): 26-32. Print.

[13] "Finding File Contents in Memory." The NT Insider 11.1 (2004). Print.

[14] Jesse Kornblum. "Identifying Almost Identical Files Using Context Triggered Piecewise

 Hashing." Digital Investigation 3 (2006): 91-97. Print.

[15] R. B. Van Baar, W. Alink, and A. R. Van Ballegooij. "Forensic Memory Analysis: Files

 Mapped in Memory." Digital Investigation (2008): S52-57. Print.

IX. Acknowledgements

Special thanks to Peter Silberman and Jen Andre for their participation in supporting this

research.

