
HIDING THE HIDDEN:
A SOFTWARE SYSTEM FOR CONCEALING

CIPHERTEXT AS INNOCUOUS TEXT.

By

Mark T. Chapman

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the degree of

Master of Science

in

Computer Science

at

The University of Wisconsin-Milwaukee

May 1997

HIDING THE HIDDEN:
A SOFTWARE SYSTEM FOR CONCEALING

CIPHERTEXT AS INNOCUOUS TEXT.

By

Mark T. Chapman

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the degree of

Master of Science

in

Computer Science

at

The University of Wisconsin-Milwaukee

May 1997

G. I. Davida Date

Graduate School Approval Date

HIDING THE HIDDEN:
A SOFTWARE SYSTEM FOR CONCEALING

CIPHERTEXT AS INNOCUOUS TEXT.

By

Mark T. Chapman

The University of Wisconsin-Milwaukee, 1998

Under the Supervision of Professor G. I. Davida

ABSTRACT

In this thesis we present a system for protecting the privacy of cryptograms to

avoid detection by censors. The system transforms ciphertext into innocuous text

which is transformed back into the original ciphertext. The expandable set of tools

allows experimentation with custom dictionaries, automatic simulation of writing

style, and the use of Context-Free-Grammars to control text generation.

Keywords: Ciphertext, Privacy, Information-Hiding

G. I. Davida Date

iii

iv

Contents

1 Introduction 1

1.1 Cryptography . 2

1.2 Hiding Ciphertext . 3

2 Transformations 5

2.1 NICETEXT and SCRAMBLE . 6

2.2 Transformation Processes . 6

2.3 SIZER and DESIZER . 10

2.4 Merged Type Management . 11

3 Dictionary Construction 16

3.1 Simple Word Lists: WLIST . 16

3.2 Type-Word Lists: TWLIST . 18

3.2.1 Manual Construction . 19

3.2.2 Construction from Files of Like Words: txt2dct 20

3.2.3 Automatic Generation . 20

3.2.4 Webster On-line . 20

3.2.5 Morphological Word Parsing: pckimmo 21

3.2.6 Word Types that Rhyme . 25

3.2.7 Review of Type-Word List Construction 27

3.3 Dictionary Construction (TWLIST �! D) 28

4 Style Sources 32

4.1 Sentence Model Tables . 34

4.2 Context-Free-Grammars . 35

4.2.1 Generation of a Sentence Model from a CFG 36

4.2.2 Dealing with Merged Types: expgram 37

iv

4.2.3 Testing a Grammar: gramtest 42

4.3 Style by Example . 42

4.4 Example genmodel . 47

5 Results and Conclusions 51

A Program Documentation 53

A.1 Dictionary De�nition . 53

A.1.1 Using dct2mstr . 53

A.1.2 Using impkimmo . 53

A.1.3 Using impmsc . 53

A.1.4 Using impwbstr . 55

A.1.5 Using listword . 55

A.1.6 Using printint . 55

A.1.7 Using sortdct . 55

A.1.8 Using txt2dct . 56

A.1.9 Using vowel.sh . 56

A.2 Grammar De�nition . 57

A.2.1 Using dumptype.sh . 57

A.2.2 Using expgram . 57

A.2.3 Using genmodel . 58

A.2.4 Using gramtest . 59

A.3 Transformation Programs . 59

A.3.1 Using nicetext . 59

A.3.2 Using scramble . 61

A.4 Utility Programs . 61

A.4.1 Using bitcp . 61

A.4.2 Using bsttest . 62

A.4.3 Using listtest . 62

A.4.4 Using numsize . 62

A.4.5 Using raofmake . 62

A.4.6 Using raofmalt . 63

A.4.7 Using raofread . 63

A.4.8 Using rbttest . 63

v

A.4.9 Using rinfo . 64

B Example Innocuous Texts 65

B.1 Shakespeare . 65

B.2 Federal Reserve . 68

B.3 Aesop's Fables . 69

Bibliography 74

vi

List of Tables

1 Basic Dictionary Table . 8

2 Basic Dictionary Table with Multiple Types. 10

3 How Style Changes NICETEXT . 10

4 Dictionary Table with More Girls. 12

5 The Number of Bits of C Required for a Style Source. 12

6 Merging Types for Chris. 13

7 Merging Types to Allow Arbitrary Number of Words. 15

8 Sample Type-Word List, TWLIST . 19

9 Type-Word List Generated by Impkimmo. 24

10 Rhyming Type-Word List Generated from CMUDICT. 25

11 Sample Merged and Sorted De�nition Entry List, MTWLIST 29

12 Type Table From dct2mstr Using MTWLIST as Input. 30

13 Dictionary Table From dct2mstr Using MTWLIST as Input. 31

14 Thiry-two Sentences with the Corresponding Ciphertext. 33

15 An Example Sentence Model Table. 35

16 Sample Sentences Corresponding to the Models Table 15. 35

17 Sample Sentence Models from the CFG in Figure 7. 39

18 Sample Models from gramtest . 45

vii

List of Figures

1 Number of Words of Each Frequency: Shakespeare. 14

2 Dictionary Construction Diagram . 17

3 Parse Tree and Feature Structure for apple 22

4 Parse Tree and Feature Structure for structure 23

5 Excerpt of Carnegie Mellon Pronouncing Dictionary 26

6 Size vs. Sophistication for Constructing TWLIST 28

7 Sample NICETEXT Grammar De�nition 38

8 Sample NICETEXT Sentences from the CFG in Figure 7. 39

9 Sentence Model Generation Example. 40

10 Small Sample M-RULE From expgram 41

11 Larger Sample M-RULE From expgram 43

12 Rule Listing From gramtest . 44

13 Settings for Pckimmo to Work With Impkimmo 54

viii

1

Chapter 1

Introduction

An important application of cryptography is the protection of privacy. However, this

is threatened in some countries as various governments move to restrict or outright ban

the use of cryptosystems either within a country or in trans-border communications.

Similar policies may already threaten the privacy of employee communications on

corporate networks.

The landmark papers by Di�e and Hellman, Rivest, Shamir and Adelman, and

the introduction of the U.S. National Data Encryption Standard (DES), have led to a

substantial amount of work on the application of cryptography to solve the problems

of privacy and authentication in computer systems and networks [10, 17, 16]. However,

some governments view the use of cryptography to protect privacy as a threat to their

intelligence gathering activities. While the government of the United States has not

yet moved to ban the use of cryptography within its borders, its export controls have

lead to a signi�cant chilling e�ect on the dissemination of cryptographic algorithms

and programs. The aborted attempts to prosecute a well known cryptographer, Phil

Zimmerman, is a reminder that even democratic governments seem to have an interest

in controlling or banning the use of cryptography.

This thesis presents an approach to disguise ciphertext as normal communications

to thwart the censorship of ciphertext. The tools convert ciphertext into innocuous

text consisting of sentences in a natural language. The programs can also recover the

ciphertext from the innocuous text.

Almost everyone has an occasional need to transfer sensitive information across

insecure channels such as the Internet, a corporate LAN, or a cellular phone. Cryp-

tography makes untrusted channels more trustworthy.

2

1.1 Cryptography

A cryptosystem transforms plaintext messages (using a key) to render them unintel-

ligible to those who do not possess the key [8]. Cryptography is the study of \secret

writing" or cryptograms. Encryption is the process of converting plaintext (a nor-

mal message) into ciphertext (unintelligible gibberish). Decryption is the process of

transforming the ciphertext back into the original plaintext.

The sender encrypts a plaintext message into ciphertext before transmitting across

an untrusted channel. One method is to use an encryption program that scrambles

the plaintext using a secret password called a key to create the ciphertext. The

sender shares the key with the desired recipient (using a secure channel). Eventually,

the recipient runs a decryption program with the ciphertext and the proper key to

decipher the original message.

Authentication using digital signatures is another application of cryptography.

Digital signatures are a special kind of ciphertext attached to a message to prove the

identity of the sender [17].

The e�ectiveness of a cryptosystem depends on the sophistication of the encryption

algorithm with respect to the tools and knowledge of the potential spy or censor. For

example, the Roman Empire used a cryptosystem now known as the Caesar Cipher.

It simply substituted each letter in the plaintext message with the one three letters

down in alphabetical order. For example, the message \COME HELP US" encrypts

to \FRPH KHOS XV". In that period of history the technique fooled many would-be

spies. With the technology of today Caesar Ciphertext is straightforward to recognize

and is easy to break with minimal programming and computational e�ort.

The Data Encryption Standard (DES) is one modern cipher that uses a key to

transpose and substitute bits of plaintext into sophisticated ciphertext. Due to ad-

vances in mathematics and technology the \secure" systems of today are the Caesar

Cipher's of tomorrow.

The key-space is the set of possible keys for a particular cryptosystem. Each key

transforms a particular plaintext into di�erent ciphertext. An enormous key-space

makes it more di�cult to guess the key using brute-force searches. If the algorithm

is secure then there are no known methods to shorten the search for the proper key.

Overall, the cryptographic community rejects the idea that the e�ectiveness of

3

a cryptosystem should rely on the secrecy of the algorithm. Many cryptographers

publish algorithms for peer review. The secrecy of the ciphertext depends on the

secrecy of the key.

Cryptosystems combine the two basic operations of substitution and transposition

to transform plaintext into ciphertext. Substitution ciphers replace individual letters

(or bits) while preserving the original sequence. The Caesar Cipher is a simple exam-

ple of a substitution cipher. A transposition cipher rearranges the letters (or bits) in a

predetermined way. One simple example is to reverse the order of every three letters

in a message such that \COME HELP US" becomes \MOCH EPLESU ". A product

cipher is made from any combination of substitution and transposition ciphers. For

example, \COME HELP US" becomes \FRPH KHOS XV" through substitution.

\FRPH KHOS XV" becomes \PRFK HSOHVX " through transformation.

Ciphertext is the \secret writing" that results from enciphering a plaintext mes-

sage. In an e�ective cryptosystem the resulting ciphertext appears to have no struc-

ture [11]. Detection of ciphertext on public networks is possible by analyzing the

statistical properties of data streams. Organizations interested in controlling the use

of cryptography may move to ban the transport of data that is \un-intelligible". All

data that appears to be random becomes suspect.

1.2 Hiding Ciphertext

Detection of ciphertext is a major challenge because there are many ways to make

ciphertext look like something else.

If the governing authority allows some use of cryptography, perhaps for authenti-

cation purposes, then it is possible to hide information in that ciphertext. The prob-

lem of \covert" channels has been studied in a number of contexts. Simmons and

Desmedt explored \subliminal" channels which transmit hidden information within

cryptograms [19, 20, 21, 22, 9, 6]. When the censors examine the ciphertext they

are convinced that it is a normal cryptogram used for authentication. In reality, it

contains secret information.

In the case where the authorities completely outlaw cryptosystems there are also

many techniques to protect the privacy of ciphertext. One approach is to hide the

4

identity of the ciphertext by changing the format of the �le. For example, the pseudo-

random data could be hidden within a �le format that suggests the data is an exe-

cutable program.

However, such schemes are not robust since the inspector can test the alleged

executable to determine if it actually is a program. If a less-veri�able format is used,

such as a graphics �le, it may become harder for the censor to automatically detect

that it is not a real picture. Nonetheless, the statistical properties of the data in each

�le would not correspond to similar �les.

Another way to disguise ciphertext is to make it look like a compressed archive.

The data in a compressed stream may appear to be random [11]. The censor easily

exposes the ciphertext by attempting to uncompress the archive.

In this paper we present a software system that transforms ciphertext into \harm-

less looking" natural language text. It also transforms the innocuous text back into

the original ciphertext. Such a scheme may thwart e�orts to ban the use of cryptog-

raphy.

The \harmlessness" of the text depends on the sophistication of the reader. If

an automated system is analyzing network tra�c then perhaps it will overlook the

disguised ciphertext. Nonetheless, it is quite possible that the censor will recognize the

output of the NICETEXT system. The readily available SCRAMBLE program

easily recovers the input to NICETEXT . If the input to NICETEXT appears to

be random data then the transmission becomes suspect.

When the censors' tools detect anything that is un-intelligible, it is reasonable

to give the suspect a chance to explain the purpose of the random information. If

it is found to be ciphertext then the sender will be penalized. But how e�ective

is enforcement if there is a good reason to transmit disguised random-data? For

example, it may be considered \romantic" to send a �ve-thousand page computer-

generated love poem to a mate every day. Of course, the source is a random number

generator not an illegal cryptosystem!

The NICETEXT system may hinder attempts to the ban the use of cryptog-

raphy both by thwarting detection e�orts and by opening legal holes in prosecution

attempts. NICETEXT may successfully disguise ciphertext as something else or

perhaps it will provide a plausible reason for transmitting large quantities of random

data.

5

Chapter 2

Transformations

In this paper we consider the problem of transforming ciphertext into a form that

appears innocuous to avoid detection. The adaptability and ambiguity of natural

language make it a suitable target.

The primary goal of the NICETEXT software project is to provide a system

to transform ciphertext into text that \looks like" natural-language while retaining

the ability to recover the original ciphertext. In the rest of the paper we focus on

the transformation of ciphertext into English. The methods and tools presented can

easily apply to other languages.

The software simulates certain aspects of writing style either by example or

through the use of Context-Free-Grammars (CFG). The ciphertext transformation

process selects the writing style of the generated text independent of the ciphertext.

The reverse-process relies on simple word-by-word codebook search to recover the

ciphertext. The transformation technique is called linguistic steganography [13].

This work relates to previous work on mimic-functions by Peter Wayner. Mimic-

functions recode a �le so that the statistical properties are more like that of a di�erent

type of �le [25]. In this paper, we are mostly concerned about how it looks semanti-

cally and not statistically.

Our approach provides much exibility in adapting and controlling the properties

of the generated text. The tools automatically enforce the rules to guarantee the

recovery of the ciphertext.

6

2.1 NICETEXT and SCRAMBLE

Given ciphertext C, we are interested in transforming C into text T so that T appears

innocuous to a censor. Let NICETEXT : C �! T be a family of functions that

maps binary strings into sentences in a natural language. NICETEXT transforms

ciphertext into \nice looking" text.

A code dictionary D and a style source S specify a particular NICETEXT

function. NICETEXT uses \style" to choose variations of T for a particular C.

Let NICETEXTD;S(C) �! T be a function that maps ciphertext C into innocu-

ous text T usingD as the dictionary and a style source S. The input to NICETEXT

is any binary string C. The output is a set of sentences T that resemble sentences in

a natural-language. The degree that the output \makes sense" depends on the com-

plexity of the dictionary and the sophistication of the style source. If C is a random

distribution it should have little a�ect on the quality of T .

Let SCRAMBLED(T) �! C be the inverse of NICETEXTD;S. SCRAMBLE

converts the \nice text" T back into the ciphertext C. SCRAMBLE ignores the style

information in T . Thus, SCRAMBLE requires only the dictionary D to recover the

ciphertext.

Let T1 = NICETEXTD;S(C) and T2 = NICETEXTD;S(C), where T1 6= T2,

then C = SCRAMBLED(T1) = SCRAMBLED(T2). The di�erences between T1

and T2 are due to the style source S which is independent of C. SCRAMBLE

ignores style.

These functions are not symmetric, SCRAMBLED(NICETEXTD;S(C)) = C,

but NICETEXTD;S(SCRAMBLED(T)) 6= T .

For SCRAMBLED to be the inverse of NICETEXTD;S the dictionary D must

match; thus, SCRAMBLEdi(NICETEXTdj ;S(C)) 6= C for all di 6= dj.

2.2 Transformation Processes

The NICETEXT system relies on large code dictionaries consisting of words cat-

egorized by type. A style source selects sequences of types independent of the ci-

phertext. NICETEXT transforms ciphertext into sentences by selecting words with

the matching codes for the proper type categories in the dictionary table. The style

7

source de�nes case-sensitivity, punctuation, and white-space independent of the input

ciphertext. The reverse process simply parses individual words from the generated

text and uses codes from the dictionary table to recreate the ciphertext.

The most basic example of aNICETEXTD;S function is one that has a dictionary

with two entries and no options for style. Let d consist of the code dictionary in

Table 1. Let c be the bit string 011. Let the style source s remain unde�ned.

NICETEXT reads the �rst bit from the ciphertext, c. It then uses the dictionary

d to map 0 �! ned. The process repeats for the remaining two bits in c, where

1 �! tom. Thus, NICETEXTd;s(011) �! nedtomtom.

SCRAMBLEd is the inverse function of NICETEXTd;s. SCRAMBLE �rst

recognizes the word ned from the innocuous text, t = nedtomtom. The dictionary,

d, maps ned �! 0. The process continues with tom �! 1 for the remaining two

words. The end result is: SCRAMBLEd(nedtomtom) �! 011.

If both dictionary entries were coded to 0 it would be di�cult to generate text

because 1 would not map to any word. For a NICETEXTD;S function to work

properly there must be at least one word for each bit string value in the dictionary. In

a similar way, a SCRAMBLED function requires that each word in the dictionary is

unique. For example, if both zero and one were mapped to \ned" then SCRAMBLE

would not be able to recover the ciphertext.

A style source could tell NICETEXT to add space between words. The spaces

do not change the relationship of SCRAMBLE to NICETEXT but they make the

generated text appear more natural. SCRAMBLE easily ignores the spaces between

words.

The length of the innocuous text T is always longer than the length of the corre-

sponding ciphertext C. In the above exampleNICETEXT transforms the three-bits

of ciphertext into eleven-bytes of innocuous text with a space between words. The

number of letters per word in the dictionary and the number of words of each type

inuence the expansion rate. The two spaces between the words represent the \cost

of style" of sixteen bits.

The style sources implemented in the software improve the quality of the innocu-

ous text by selecting interesting sequences of parts-of-speech while controlling word

capitalization, punctuation, and white space.

In Table 2, the codes alone are not unique but all (type, code) tuples and all words

8

Code Word

0 ! ned

1 ! tom

Table 1: Basic Dictionary Table

are unique. Let d be the dictionary described in Table 2. Let s be a style component

that de�nes the type as name male or name female independent of c, in this case

s = name male name female name male. NICETEXTd;s(011) �! t �rst reads

the type from the style source, s. The �rst type is name male. NICETEXT knows

to read one bit of c because there are two name male's in d. The �rst bit of c is

0. NICETEXT uses the dictionary, d, to map (name male; 0) �! ned. The

second type supplied by s is name female. Because there are two name female's

in d, NICETEXT reads one bit of c and then maps (name female; 1) �! tracy.

Since there is one remaining type in s, NICETEXT reads the last bit from c.

NICETEXT maps the �nal bit of c such that (name male; 1) �! tom. Thus,

NICETEXTd;name male name female name male(011) �! ned tracy tom. Table 3 sum-

marizes the e�ect of some di�erent style sources on NICETEXTd;s(011).

The purpose of a style source is to direct the generation of innocuous text towards

a \more believable" state. For example, if this were a list of people entering a football

team locker room, the style source may tend to select the word type corresponding

to one sex. If the purpose were to simulate a more evenly distributed population of

females and males then the style source would select the types more equally.

The most important aspect of style is type selection. Without it, NICETEXTD;S

could not control the part-of-speech selection for natural language text generation.

The SCRAMBLED functions use the words read from the innocuous text T to look

up the code in the dictionary D. It is very important that a word appears in D only

once because SCRAMBLED ignores the type categories.

Case-sensitivity is another aspect of style. Let d be the dictionary described in

Table 2. Let s be the style sequence name female name male name male. Thus,

NICETEXTd;s(011) �! jody tom tom. If all the words in the dictionary are

case-insensitive then it is trivial to modify the SCRAMBLE function to equally

recover the ciphertext from \Jody Tom Tom", \JODY TOM TOM", as well as \JodY

9

tOM TOm". Case sensitivity adds believability to the output of NICETEXTD;S.

SCRAMBLED easily ignores word capitalization.

Punctuation and white-space are two other aspects of style that SCRAMBLE

ignores. In the above example if the SCRAMBLE function knows to ignore punctu-

ation and white-space then NICETEXTD;S has the freedom to generate many more

innocuous strings, including:

� \Jody? Tom? TOM!!"

� \Jody, Tom, Tom."

� \JODY... Tom... tom..."

All three examples above reduce to three lowercase words: jody tom tom; thus,

SCRAMBLEd(ti) recovers the ciphertext, c = 011.

A style source also may cause NICETEXT to include words that are not in

the dictionary. As long as SCRAMBLE can ignore the elements of style, the in-

verse relationship of SCRAMBLE to NICETEXT is valid. For example, let t be

the following innocuous text: \Amy, Lucy, and Jody Smith went with Tom Barker.

They will meet Tom Reynolds." First, SCRAMBLEd(t) views all words as low-

ercase, giving: \amy, lucy, and jody smith went with tom barker. they will meet

tom reynolds." Next, SCRAMBLE ignores all punctuation which reveals the fol-

lowing list of words: \amy lucy and jody smith went with tom barker they will meet

tom reynolds". SCRAMBLEd ignores any words that are not dictionary, leaving:

jody tom tom. Finally, SCRAMBLEd(jody tom tom) �! 011.

In practice, SCRAMBLE ignores style and transforms T into C in one pass. It

is very ine�cient to use such a small dictionary or to insert words directly from the

style-source. In the above case, the three bits ciphertext grew to sixty-nine bytes of

innocuous text.

The construction of large and sophisticated dictionary tables 1 is key to the success

of the NICETEXT system. The tables need to maintain certain properties for the

transformations to be invertable. It is also important to carefully classify all words

to enable the use of sophisticated style-sources. Chapter 3 explores the \art" of

constructing complex tables.

1A \large and sophisticated" dictionary contains more than 150,000 words carefully categorized
into over 350 types.

10

Type Code Word

name male 0 ! ned

name male 1 ! tom

name female 0 ! jody

name female 1 ! tracy

Table 2: Basic Dictionary Table with Multiple Types.

Style s Ciphertext c NICETEXTd;s(c)

name male name male name male 011 �! \ned tom tom"

name male name male name female 011 �! \ned tom tracy"

name male name female name male 011 �! \ned tracy tom"

name male name female name female 011 �! \ned tracy tracy"
name female name male name male 011 �! \jody tom tom"
name female name male name female 011 �! \jody tom tracy"
name female name female name male 011 �! \jody tracy tom"

name female name female name female 011 �! \jody tracy tracy"

Table 3: How Style Changes NICETEXT .

Trivial examples demonstrate the importance of style. The software allows thou-

sands of style parameters to control the transformation from ciphertext to natural

language sentences. Chapter 4 describes how to de�ne style sources in the software.

A style source is compatible with a dictionary if all the types in S are found in D

and all punctuation in S is unlike any word in D. This means that as long as both

NICETEXTD;S and SCRAMBLED use the the same dictionary then NICETEXT

may use any compatible style source. A style source may be compatible with many

dictionaries and a dictionary may be compatible with many style sources.

2.3 SIZER and DESIZER

The size of C could restrict the selection of style-sources when the dictionary has

type categories with more than two words. For example, let d be the code dictionary

de�ned in Table 4. Let s = name male name female. Thus,

NICETEXTd;s(011) �! ned kimberly. (The inverse is:

11

SCRAMBLEd(ned kimberly) �! 011.) Table 5 shows that the style source s =

name male name male name male is the only one that speci�es a sequence of types

that requires three bits. Given the ciphertext c = 011, somehow NICETEXT would

need to know how to choose the \correct" style source.

It would be cumbersome to generate the data in Table 5 for all sizes of C, all

dictionaries, and all style sources. In fact, there are cases where the code-length

required for a style cannot match the length of C. (i.e. C = 3 and all types in the

dictionary have four words; thus, all codes lengths required by S are even numbers.)

There is no need to solve the problem of matching S to C for a particular D. The

style source is supposed to be independent of C. That includes the length of C.

The SIZER and DESIZER functions preserve the independence of S and C.

Let R be a pseudo-random 2 number source. Let SIZERR(C) be a function that

converts the bit string C into a string consisting of a �xed length number describing

the length of C concatenated with C plus an in�nitely long string of randomness.

Thus, SIZERR(C) �! C +C +RANDOMSTRING.

Let DESIZER be the inverse of SIZER such that for all C,

DESIZER(SIZERR(C)) = C. This allows the following relationship to hold:

DESIZER(SCRAMBLED(NICETEXTD;S(SIZERR(C)))) = C.

By integrating SIZER into NICETEXT (and DESIZER into SCRAMBLE),

all NICETEXT functions can �nish a style sequence or continue for a long time

after the end of the ciphertext. In the above example, all eight style sequences of

name female and name male are available independent of the length of the ciphertext.

This integration allows NICETEXT to complete the last generated sentence (or

paragraph, or chapter...) required by a style source.

2.4 Merged Type Management

It is important that all dictionaries maintain certain properties to support the in-

verse relationship of SCRAMBLE to NICETEXT . The properties selected in this

software project are:

2A creative source for R might be some ciphertext...

12

Type Code Word

name male 0 ! ned

name male 1 ! tom

name female 00 ! jody

name female 01 ! tracy

name female 10 ! darla

name female 11 ! kimberly

Table 4: Dictionary Table with More Girls.

Style S Number of Bits of c Required

name male name male name male 1 + 1 + 1 = 3
name male name male name female 1 + 1 + 2 = 4

name male name female name male 1 + 2 + 1 = 4
name male name female name female 1 + 2 + 2 = 5

name female name male name male 2 + 1 + 1 = 4

name female name male name female 2 + 1 + 2 = 5
name female name female name male 2 + 2 + 1 = 5

name female name female name female 2 + 2 + 2 = 6

Table 5: The Number of Bits of C Required for a Style Source.

13

Before

Type Word

name male chris

... ...

name female chris

... ...

becomes...

After

Type Word

name female,name male chris

... ...

... ...

... ...

Table 6: Merging Types for Chris.

1. There must be at least two words of one type in the dictionary. Otherwise

NICETEXT can not convert any bits of the ciphertext.

2. The number of words of each type must be a power of two to fully support �xed

length codes within a type category.

3. Each word must be unique when converted to lower case. (All words are case-

insensitive in the dictionary so the style sources can capitalize at will.)

4. Each (type, code) must be unique. Thus, the words in a type must be coded by

simple enumeration.

5. There is no need for correlation between the (type, code) and the alphabetical

sequence of words.

What if a word belongs to multiple type categories? What if there is only a single

word of a given type? What if there are more than 2n words of a type? There

are many ways to deal with these questions. The solutions presented here are those

implemented in the software.

At dictionary construction time, if a word belongs to multiple type categories then

the sortdct process creates new merged type category. For example, if \chris" is both

a male name and a female name then sortdct assigns a new type of

name female; name male as shown Table 6. The merging of types is a necessary

step when creating D.

It is acceptable to have only a single word of a given type because 20 = 1. The

implications are that NICETEXTD;S(C) uses zero bits of the ciphertext C to select

the next word in T . The style source may cause NICETEXTD;S to include the word

14

0

5000

10000

15000

20000

25000

30000

0 2000 4000 6000 8000 10000 12000 14000

F
r
e
q
u
e
n
c
y

Number of Words with the Same Frequency

\the" occurs 27,643 times

\and" occurs 26,741 times

\I" occurs 22,502 times

\to" occurs 19,301 times

12,433 words occur once3,741 words occur twice

Out of 916,151 words,

28,254 are unique.

About 97% occured

less than 100 times.

�

i

�

�

??

s

s

s

s

s

s
s

s

ss

s
s
s
ssss
ssss
ssss
ssss
ss
sssssssss
ss s s s s

Figure 1: Number of Words of Each Frequency: Shakespeare.

in T . SCRAMBLED ignores it. (More speci�cally, SCRAMBLE recovers zero bits

of C from reading such a word from T .)

Let f be the number of words in a single type category. Let g = 2blog2 fc be

the largest power of two less than or equal to f . NICETEXT ignores all but the

�rst g words of each type because any remaining words do not have a code assigned

in the dictionary. A solution is to create merged type categories during dictionary

construction where the number of words of each type is an exact power of two. Table 7

shows an example. Any type category with more than one word can be divided into

sub-types with each sub-type containing a number of words that is some power-of-

two. The limit is to place each word from the initial type category into individual

sub-types with 20 = 1 members. The eventual cost of this option is the very high

expansion rate of C to T . It is better to use sub-type categories with a large number

of words in each sub-type.

It is useful to group words by frequency while �xing the problem of seldom hav-

ing exactly 2n words of a given type. Figure 1 shows the number of words of each

frequency for The Complete Works of William Shakespeare. 3 Most natural language

3The electronic text from Project Gutenberg is available at

ftp://ftp.freebsd.org/pub/gutenberg/etext94/shaks12.txt. The listword program extracted the words

15

Before

Type Code Word

name male 0 ! ned

name male 1 ! tom

name male N/A ! brad

After

Type Code Word

name male,TypeA 0 ! ned

name male,TypeB 0 ! tom

name male,TypeB 1 ! brad

Table 7: Merging Types to Allow Arbitrary Number of Words.

texts analyzed, including this thesis document, had the characteristic of dispropor-

tionatly using a subset of available words. Although Figure 1 did not consider word

type categories, individual categories usually follow a similar distribution. For exam-

ple, out of 27,915 possible words of the type name, most occur very few times, or

not at all, in a single text. This property seems to hold true even if the text is a

phone book! \Popular" name's occur much more often than most others. It may be

bene�cial to group words within a type by frequency to increase the quality of the

innocuous text. Although a small number of sub-types would have a small number

of words, most sub-types would still have many words.

The decision to merge types has greatly simpli�ed the implementation of the

software. Merging types avoids the use of variable length codes to better simulate

word frequency. It also is part of a solution to allow phrases, multi-type and multi-

context words.

Merging types is one solution for constructing sophisticated dictionaries.

NICETEXT does not require the use of merged types although it helps generate

higher quality innocuous text. The next chapter describes programs that greatly

simplify merged-type management and other aspects of dictionary construction.

from the unmodi�ed �le which includes an insigni�cant amount of copyright notice, etc.

16

Chapter 3

Dictionary Construction

The quality of the innocuous text generated by NICETEXTD;S(C) depends on the

sophistication of both the dictionary, D, and the the style source, S. The primary

responsibility of a style source is to select interesting sequences of types from D. The

types in D are the only types available to a style source. 1 Thus, the sophistication

of S depends on the sophistication of D. This chapter explores the construction of

advanced dictionaries for the NICETEXT system.

Figure 2 diagrams the processes for creating a valid dictionary, D. A combination

of sources creates a word-list,WLIST . Several processes may use WLIST to create

a type-word list, TWLIST . There are many other ways to create TWLIST including

manual entry. The sortdct process converts the TWLIST into a merged-and-sorted

type-word list,MTWLIST . Finally, the dct2mstr program creates a valid dictionary

from MTWLIST .

The simple �le formats and the supporting programs provide an expandable set of

tools to manage the mechanics of constructing a valid dictionary table. The focus of

this chapter is to evaluate di�erent sources for generating dictionaries. The ultimate

goal is to enable NICETEXT to output the highest quality innocuous text.

3.1 Simple Word Lists: WLIST

A word list, WLIST , is simply a list of words separated by new lines in a text �le.

There are almost no restrictions on the properties of WLIST . The number of words

does not matter. The case of the letters in the words is inconsequential. A word may

1If S speci�es types that are not in D then S is not compatible with D; therefore, NICETEXT
may not use this combination.

17

Word List: WLIST

/usr/share/dict/words

TWLIST

Merged Type-Word List: MTWLIST

Sample Text: STEXT

Output from PCKIMMO: K Output from Webster: WBSTR Files of Words By Type: WBTLIST

DCT2MSTR(MTWLIST)

SORTDCT(TWLIST)

Dictionary: D

Manual Entry (or new methods)

TXT2DCT(WBTLIST)IMPKIMMO(K)

IMPWBSTR(WBSTR)

WEBSTER(WLIST)

PCKIMMO(WLIST)

LISTWORD(STEXT)

Figure 2: Dictionary Construction Diagram

18

appear multiple times. The word list may contain hyphenated-words, words with

apostrophes, phrases, and foreign words. In short, anything goes.

There are many readily available word lists. The /usr/share/dict/words �le on a

FreeBSD system is one example with over 230,000 words [14]. Many systems have

similar �les.

The listword utility uses the scanner from SCRAMBLE to extract lists of unique

English words from text �les containing natural language text. The Project Guten-

berg at ftp://ftp.freebsd.org/pub/gutenberg provides electronic copies of public-domain

texts which contain many words. UseNet news groups and the world-wide-web are

other signi�cant sources of words available electronically. There are many uses for

electronic text documents here and in the style-source chapter. The goal is to collect

a large quantity of words. 2

It is not critical to use the listword program to create WLIST . Any process that

can output a list of words, one word per line, will work (including manual entry).

3.2 Type-Word Lists: TWLIST

Let TWLIST denote a type-word list composed of (type, word) pairs. Each pair

de�nes the word as a member of the corresponding type. Table 8 is an example.

The only rule for generating a valid TWLIST is that no type may contain white-

space. Otherwise, it would be di�cult to determine where the type string stops and

the word string begins. No type should contain any commas because of the way the

system denotes merged types.

A word can occur multiple times in the same or di�erent types in TWLIST .

Words in TWLIST can be freely capitalized. There can be any number of words

of each type. The entries in TWLIST do not need to be sorted. All the rules to

transform TWLIST into D are applied by a set of functions described in section 3.3.

The challenge is to select meaningful (type, word) pairs. The remainder of this sec-

tion compares several methods to generate type-word lists. All the following methods

may be combined by simple concatenation of the resulting lists.

2It may be useful to collect some word frequency information if the sources are natural language
texts.

19

Type Word

art the

conj and

object bill

object gift

object mail

object message

object money

person Bill

person Bob

person Heather

person Lisa

person Shirley
prep to
verb gave

verb sent

Table 8: Sample Type-Word List, TWLIST .

3.2.1 Manual Construction

One way to construct a type-word list is to manually enter the list in a text editor. It

is amazing how many words and type categories a person knows. Is it unreasonable

to simply look up the rest of the words in Websters [12] dictionary?

The most obvious problem with the manual method is that it takes too long

to enter large lists. A less-obvious problem is that it is di�cult to select mean-

ingful type categories without considering the eventual grammatical requirements of

a natural-language style-source. Matching the part-of-speech with all the possible

word variations using Websters dictionary and an English grammar, such as [23], is

a tremendous undertaking.

It is possible to construct a sophisticated but small TWLIST by hand. Manually

constructing large and sophisticated type-word lists within a reasonable amount of

time is not likely. The manual method is best suited to tweaking a small number of

entries from some automated method.

20

3.2.2 Construction from Files of Like Words: txt2dct

The txt2dct utility simpli�es the creation of larger TWLIST 's by expanding lists

of words already grouped in separate �les by type. On the Internet 3 there are

�les that contain many words of the same type, such as: name male, name female,

name family, and places. The txt2dct program reads each word in the name female �le

and outputs a (type, word) pair such as (name female, Ann). The process repeats for

all words in each �le. The txt2dct program is a quick way of making large type-word

lists.

The problem with txt2dct is that there are relatively few useful lists readily avail-

able. Even if there are a large number of such lists the problem of matching the types

to some grammatical structure remains. Thus, the resulting TWLIST 's generate

large but unsophisticated D's.

Due to the availability of single-type word lists, the txt2dct program seems best

at categorizing proper nouns such as names and places.

3.2.3 Automatic Generation

There are many programs that categorize words by part-of-speech. The goal of au-

tomatic TWLIST generation is to format the output of a word de�nition program

into the (type, word) pairs of a TWLIST .

Some word de�nition programs can dump their entire knowledge of words with all

possible usages. Other programs require modi�cation. In some cases it may not be

feasible to modify a program or access a de�nition database directly. A solution is to

de�ne the words in a word-list, WLIST , one word at a time. In any case, an import

program extracts the words and types from the de�nition program and formats the

output into a TWLIST .

3.2.4 Webster On-line

The impwbstr program interfaces to the on-line Webster dictionary found on many

NextStep systems. The output from the webster program contains de�nitions and

part-of-speech designations for many words in a word-list. Impwbstr assigns the type

3One source is Bob Baldwin's collections of words from MIT augmented by Matt Bishop and
Daniel Klein at ftp://ftp.funet.�/pub/doc/dictionaries/DanKlein/.

21

based on the part-of-speech parsed from the de�nition of each word. The output of

impwbstr is a type-word list.

The problem with impwbstr is the di�culty of selecting meaningful types for all

likely variations of a word. The type assignments in a TWLIST from impwbstr

are not speci�c enough to support more than a basic level of agreement in the text

generated by NICETEXTD;S (where D comes from TWLIST).

It is possible to enhance the impwbstr program to identify more speci�c type

categories to improve word agreement. This requires signi�cant time and language

expertise.

Creating large TWLIST 's with impwbstr is much like using the txt2dct program.

It is easy to make large, but unsophisticated TWLIST 's. The TWLIST 's tend to

be more sophisticated but not enough to generate \believable" innocuous text.

The impwbstr method is also similar to the manual construction technique. The

bene�t is the possible automation of any useful heuristics. An English grammar book

may help to select meaningful types.

3.2.5 Morphological Word Parsing: pckimmo

Signi�cant research exists in the area of word classi�cation. More importantly, with

respect to this thesis, there are programs available for sophisticated word type iden-

ti�cation. Pckimmo is one such program [5].

The pckimmo program is a morphological word parser with a two-level 4 morphol-

ogy [2, 3, 4]. Pckimmo uses word-grammars to classify words. These grammars are

an e�ective way of identifying the many di�erent variations of words. The web page

at http://www.sil.org/pckimmo/v2/doc/introduction.html#sec1.1 explains:

Even for English a morphological parser may be necessary. Although

English has a limited inectional system, it has very complex and produc-

tive derivational morphology. For example, from the root compute come

derived forms such as computer, computerize, computerization, recomput-

erize, noncomputerized, and so on. It is impossible to list exhaustively in

4The �rst level breaks a word up into parts such as the root word and the su�xes and pre�xes.
The second level classi�es the word based on the results from the �rst-level.

22

a lexicon all the derived forms (including coined terms or inventive uses

of language) that might occur in natural text.

Figure 3 shows the parse tree for the word apple using the pckimmo program with

the englex word grammar. The tree shows that the word apple is a noun. Apple is a

third-person singular word. Apple is not plural and it is not a proper noun. Figure 4

shows two parse trees for the word structure.

'apple

Word:

[cat: Word

clitic:-

drvstem:-

head: [agr: [3sg: +]

number:SG

pos: N

proper:-

verbal:-]

root: `apple

root_pos:N]

1 parse found

Figure 3: Parse Tree and Feature Structure for apple

Although it is far beyond the scope of this thesis to explain the details of morpho-

logical word parsing, the application of that research to the NICETEXT system is

very straightforward.

Pckimmo and englex de�ne all possible parses of the words in a word list,WLIST .

The impkimmo program assigns a type to a word by constructing a string that repre-

sents each parse-tree from pckimmo. If a word has multiple parse-trees then impkimmo

places the word into multiple type categories. The goal is to take a word-list,WLIST ,

and generate a type-word list, TWLIST . For example, the type for apple becomes

\N 3sg+SgProp-Verbal-". The \N " shows that apple is a noun. The remaining part

of the type string describes the features of the word. Table 9 is a type-word list for

several other words.

23

`structure

Word:

[cat: Word

head: [pos: V

vform: BASE]

root: `structure

root_pos:V

clitic:-

drvstem:-]

Word:

[cat: Word

head: [agr: [3sg: +]

number:SG

pos: N

proper:-

verbal:-]

root: `structure

root_pos:N

clitic:-

drvstem:-]

2 parses found

Figure 4: Parse Tree and Feature Structure for structure

24

Type Word

N 3sg+SgProp-Verbal- apple

V Base structure

N 3sg+SgProp-Verbal- structure

V Base go

V 3sg+PresSFin+ goes

V EnFin- gone

V IngFin- going

V PastEdFin+ went

AJ AbsVerbal- quick
AV quick
AJ CompVerbal quicker

V BaseFin- quicken
AJ SuperVerbal- quickest
AV quickly
N 3sg+Sg quickness

PR 3sg-1SgNomReex-Wh- i
PR 3sg+3SgAccReex-Wh- it
PR 3sg+3SgNomReex-Wh- it
PR 3sg+3SgNomReex-Wh- he

PR 3sg+3SgNomReex-Wh- she
PR 3sg-3PlNomReex-Wh- they
PR 3sg-1PlNomReex-Wh- we
PR 3sg-2SgAccReex-Wh- you

PR 3sg-2PlNomReex-Wh- you
PR 3sg-2PlAccReex-Wh- you
PR 3sg-2SgNomReex-Wh- you

N 3sg+SgProp-Verbal- expert

N 3sg-Pl experts
N 3sg+SgProp-Verbal- university

PP of

N 3sg+SgProp+Verbal- wisconsin

N 3sg+SgProp+Verbal- milwaukee

Table 9: Type-Word List Generated by Impkimmo.

25

Type Word

rhymeL2 aa1g bog

rhymeL2 aa1g clog

rhymeL2 aa1g fog

rhymeL2 aa1g frog

rhymeL2 aa1g hog

rhymeL2 aa1g hogg

rhymeL2 aa1g jog

rhymeL2 aa1g prague

rhymeL2 aa1g prolog

rhymeL2 aa1g rog

rhymeL2 aa1g rogge

rhymeL2 aa1g slog
rhymeL2 aa1g smog
rhymeL2 aa1g tague

Table 10: Rhyming Type-Word List Generated from CMUDICT.

All variations of each word to be used by NICETEXT must be present in

WLIST . The synthesis mode of pckimmo expands WLIST with words such as

nonrecomputerizationalism5. To select only the most common uses, including \in-

ventive uses" of words, the listword utility �rst creates a word-list from large English

texts.

The pckimmo and impkimmo software create large and sophisticated type-word

lists from WLIST . It is the best single resource for generating the dictionaries for

this software project. A combination of techniques can greatly improve the quality of

the type-word lists. Although pckimmo helps classify words by part-of-speech, there

still are other ways to classify words such as by sound and by meaning.

3.2.6 Word Types that Rhyme

The Carnegie Mellon Pronouncing Dictionary provides a phonetic break-down of a

large number of words. Figure 5 is an excerpt of the cmudict text �le.

One use of this dictionary with the NICETEXT system is to classify words that

5(Although this is not a real example, it demonstrates the potential problem of generating too
many \inventive uses" of words.)

26

Date: 11-8-95

##

The Carnegie Mellon Pronouncing Dictionary

[cmudict.0.4] is Copyright 1995 by Carnegie Mellon University.

Use of this dictionary, for any research or

commercial purpose, is completely unrestricted.

If you make use of or redistribute this material,

we would appreciate acknowlegement of its origin.

...

ABERRANT AE0 B EH1 R AH0 N T

ABERRATION AE2 B ER0 EY1 SH AH0 N

ABERRATIONS AE2 B ER0 EY1 SH AH0 N Z

...

ACADEMIA AE2 K AH0 D IY1 M IY0 AH0

ACADEMIC AE2 K AH0 D EH1 M IH0 K

ACADEMICALLY AE2 K AH0 D EH1 M IH0 K L IY0

ACADEMICIAN AE2 K AH0 D AH0 M IH1 SH AH0 N

ACADEMICIANS AE2 K AH0 D AH0 M IH1 SH AH0 N Z

ACADEMICIANS(2) AH0 K AE2 D AH0 M IH1 SH AH0 N Z

...

BOG B AA1 G

BOG(2) B AO1 G

BOGACKI B AH0 G AA1 T S K IY0

BOGACZ B AA1 G AH0 CH

...

DOG D AO1 G

DOG'S D AO1 G Z

...

FROG F R AA1 G

FROGG F R AA1 G

FROGGE F R AA1 G

FROGMAN F R AA1 G M AE2 N

...

Figure 5: Excerpt of Carnegie Mellon Pronouncing Dictionary

27

sound alike such as bog and frog. This opens up a whole new avenue for NICETEXT

to generate poetry. 6

The challenge to is de�ne \good rhyme" from phonetic information. The

NICETEXT system contains some experimental programs that attempt to classify

words into types that rhyme. The output is a type-word list where the type is a

string constructed from the phonetic information in cmudict and a description of

which parts of the words rhyme. Table 10 is an example type-word list extracted

from the pronouncing dictionary. The meaning of the type in this case is that the

last two phonetics in each word rhyme with frog.

The sortdct program merges the rhyming types of each word along with the part-

of-speech types from the other sections. Eventually the word type categories will

correspond to meaning such as \color", or \quantity", or \objects that can be de-

scribed by bright colors and large quantities...". It is up the the style-source to make

sense of all these categories. Most style-sources ignore type categories for rhyming

words.

3.2.7 Review of Type-Word List Construction

A combination of techniques from a variety of sources, including listword,

/usr/share/dict/words, and manual entry create a word list, WLIST . External dic-

tionaries categorize all the words in WLIST so that an import program such as

impwbstr or impkimmo can generate TWLIST . The txt2dct program and manual

processes may also expand TWLIST .

The NICETEXT system works with other natural languages because of the

simple yet exible format of TWLIST . The bottom line is that no matter the

technique, TWLIST is just a list of (type, word) pairs. Figure 6 compares several

options for creating a type-word list, TWLIST . The goal is to make large and

sophisticated lists. A combination of techniques seems to work best to categorize

words by part-of-speech, sound, and meaning.

6Edgar Allen Poe concealed information inside his poetry. [13].

28

IMPKIMMO

IMPWBSTR

So
ph

is
tic

at
io

n
of

 D
ic

tio
na

ry

 0

Bad

Good

250,000
Size of Dictionary in Words

TXT2DCT

Combination of Techniques

Manual

Figure 6: Size vs. Sophistication for Constructing TWLIST .

3.3 Dictionary Construction (TWLIST �! D)

The sortdct and dct2mstr programs convert a type-word list into a valid master dic-

tionary table. The �rst step is to convert TWLIST into a merged-and-sorted word

list, MTWLIST . The next step is to convert MTWLIST into a master dictionary,

D.

A SCRAMBLED(T) function must be able to recognize all words in D within

all possible innocuous texts, T (where D comes from TWLIST and T is the output

of NICETEXTD;S(C)). Currently, this means no words may contain white space.

It is not di�cult to modify the scanner in SCRAMBLED to allow words from other

natural languages.

Let SORTDCT (TWLIST) �! MTWLIST be a function that transforms any

type-word list into a merged-and-sorted type-word list in which all words are uniquely

de�ned. The SORTDCT function converts all words in TWLIST to lower case and

merges the types as needed. SORTDCT �lters out entries that destroy the inverse

relationship of SCRAMBLE to NICETEXT .

29

Type Word

conj and

object,person bill

person bob

verb gave

object gift

person heather

person lisa

object mail

object message

object money

verb sent

person shirley
art the
prep to

Table 11: Sample Merged and Sorted De�nition Entry List, MTWLIST

Let TWLIST be the type-word list in Table 8. Table 11 shows the merged and

sorted type-word list, MTWLIST , from SORTDCT (TWLIST) �! MTWLIST .

All words in MTWLIST are lower case and uniquely de�ned. Bill is both an object

(bill) and a person (Bill) in TWLIST but there is only one entry for the object,person

named bill in MTWLIST .

The next step is to convert MTWLIST into a valid dictionary, D. Let

DCT2MSTR(MTWLIST) �! D be a function to transform a merged and sorted

type-word list into a dictionary. The dct2mstr program implements the DCT2MSTR

function and outputs a set of normalized indexed tables.

Table 12 is the type database table generated by applying dct2mstr to the merged-

and-sorted type-word list, MTWLIST , found in Table 11. The purpose of the type

table is to normalize the type categories described in the dictionary table. The type

column is the primary key. The frequency column holds a count of how many words

of this type are in the corresponding dictionary table. The description column holds

the description of the type as found in MTWLIST .

Table 13 is the corresponding dictionary database table (shown twice sorted dif-

ferent ways). The purpose of the dictionary table is to be an easily accessible code

dictionary for use with the nicetext and scramble programs. The type column points

30

Type Frequency Description

0 0 (unused type code)

1 1 art

2 4 object

3 1 object,person

4 4 person

5 1 prep

6 2 verb

7 1 conj

Table 12: Type Table From dct2mstr Using MTWLIST as Input.

to the correct row in the type table. The code column contains a bit string. The

word column contains a string representing a single word. Frequency is an optional

column. 7

The type table is indexed by (type). The dictionary table has two unique indexes:

(type, code) and (word). These tables and indexes together compose the software

implementation of D.

The most complex part of generating sophisticated dictionaries is choosing the

proper type categories for the words. The sortdct and dct2mstr programs automate

the conversion of a type-word list into a valid dictionary table. It is an interactive

process to create compatible dictionaries and style sources. The next chapter describes

the implementation of style sources.

7The genmodel program updates the frequency column when making a distribution dictionary.

Although NICETEXT does not directly use this information other processes may use frequency
data to generate better style-sources and better dictionaries.. (See section 4.3)

31

D as viewed by NICETEXTD;S

(Sorted by (Type, Code))

Type Code Word

0 N/A �! (unused code)

1 N/A �! the
2 00 �! money

2 01 �! message
2 10 �! mail

2 11 �! gift
3 N/A �! bill

4 00 �! shirley
4 01 �! lisa

4 10 �! heather

4 11 �! bob
5 N/A �! to
6 0 �! sent

6 1 �! gave

7 N/A �! and

D as viewed by SCRAMBLED

(Sorted by Word)

Word Type Code

(unused code) �! 0 N/A

and �! 7 N/A
bill �! 3 N/A

bob �! 4 11
gave �! 6 1

gift �! 2 11
heather �! 4 10

lisa �! 4 01
mail �! 2 10

message �! 2 01

money �! 2 00
sent �! 6 0
shirley �! 4 00

the �! 1 N/A

to �! 5 N/A

Table 13: Dictionary Table From dct2mstr Using MTWLIST as Input.

32

Chapter 4

Style Sources

The goal of a style source is to provide \interesting" sequences of parts-of-speech and

format instructions so thatNICETEXT generates high-quality innocuous text. This

chapter compares how several di�erent style-sources interact with the dictionaries

from the previous chapter.

The basic style-source is a sentence-model. A sentence model is a template of

a single natural language sentence. For example, the model \fCapg person verb

fCAPSLOCKONg object fcapslocko�g f!g" tells a NICETEXT function to:

1. Make a note to format the next word of output with the �rst letter in upper

case.

2. Select a word from the dictionary by using the (type, code) index where the

type is person. (The code comes from the �rst bits of the ciphertext C.)

3. Output the word selected above according to the last format note.

4. Select a word from the dictionary by using the (type, code) index where the

type is verb. (The code comes from the next bits of the ciphertext C.)

5. Output the word selected above according to the last format note.

6. Make a note to format all words of output using capital letters only.

7. Select a word from the dictionary by using the (type, code) index where the

type is object. (The code comes from the next bits of the ciphertext C.)

8. Output the word selected above according to the last format note.

33

Shirley sent MONEY! Lisa sent MONEY! Heather sent MONEY!
00 0 00 01 0 00 10 0 00

Bob sent MONEY! Shirley sent MESSAGE! Lisa sent MESSAGE!

11 0 00 00 0 01 01 0 01

Heather sent MESSAGE! Bob sent MESSAGE! Shirley gave MONEY!
10 0 01 11 0 01 00 1 00

Lisa gave MONEY! Heather gave MONEY! Bob gave MONEY!

01 1 00 10 1 00 11 1 00

Shirley gave MESSAGE! Lisa gave MESSAGE! Heather gave MESSAGE!
00 1 01 01 1 01 10 1 01

Bob gave MESSAGE! Shirley sent MAIL! Lisa sent MAIL!

11 1 01 00 0 10 01 0 10

Heather sent MAIL! Bob sent MAIL! Shirley sent GIFT!
10 0 10 11 0 10 00 0 11

Lisa sent GIFT! Heather sent GIFT! Bob sent GIFT!
01 0 11 10 0 11 11 0 11

Shirley gave MAIL! Lisa gave MAIL! Heather gave MAIL!
00 1 10 01 1 10 10 1 10

Bob gave MAIL! Shirley gave GIFT! Lisa gave GIFT!

11 1 10 00 1 11 01 1 11

Heather gave GIFT! Bob gave GIFT!
10 1 11 11 1 11

Table 14: Thiry-two Sentences with the Corresponding Ciphertext.

9. Make a note to stop printing all words in upper case.

10. Output an exclamation point.

The dictionary in Table 13 has four words of the type person, two words of the

type verb, and four words of the type object. Thus, the above sentence model could

generate 4 � 2 � 4 = 32 di�erent sentences. These thiry-two sentences are found in

Table 14 with the corresponding ciphertext below each example.

If the style source repeatedly supplies a single sentence model then NICETEXT

generates all sentences with the same template. The following sections discuss two

meta-style-sources that provide sequences of sentence models. The �nal two sections

demonstrate one way to automatically generate style sources from sample natural-

language texts.

34

4.1 Sentence Model Tables

A sentence model table is a �xed set of sentence models. S can be a meta-style-source

that selects models from such a table. When NICETEXTD;S(C) exhausts the in-

structions for a single sentence template then the meta-style-source selects another

model from the table. S selects these models according to a certain probability distri-

bution independent ofC. The goal is to makeNICETEXT generate an \interesting"

mix of sentences.

Table 15 represents a small sentence model table. The �rst column contains

sentence models. The second column describes the weight of this row compared to

others in the table. S selects rows with higher weights proportionately more often

than rows with lower weights. The selection of a row in the sentence model table is

independent of C.

The example sentences in Table 16 correspond to NICETEXTd;s(c) where d is

the dictionary in Table 13, s is the corresponding sentence model in the previous

table, and c is the bit string next to each sentence. The purpose of the example is to

show how di�erent models vary the style of the innocuous text with the same input.

It is good to have a large number of sentence models to add variety to the generated

text. Section 4.3 describes one method to easily construct large sentence model tables

from sample texts.

There are many ways to de�ne meta-style-sources that use tables of sentence mod-

els. For example, the source could use the mutual information [8] between sentence

models to drive the sequence rather than a at frequency distribution. This means

that there may be some relationship between sentence models. The relationship could

be a statistical correlation or it could be a �xed order of sentence-models that make

up a \paragraph" (or \chapter" or \book"...).

The primary characteristic of a sentence model table is that there are a �xed

number of models from which to choose. At run-time the style source simply chooses

existing models from the table.

35

Sentence Model Weight

fCapg person verb fCapg person art object f.g 3

fCapg person verb art object prep Cap person f.g 2

fCapg perp fCapg person fCAPSLOCKONg conj fcapslocko�g f?g 1

Table 15: An Example Sentence Model Table.

Ciphertext, C NICETEXTD;S(C) for di�erent S's

1000100 Heather sent Lisa the money.

11111000 Bob gave the gift to Shirley.

0001 To Shirley AND Lisa?

Table 16: Sample Sentences Corresponding to the Models Table 15.

4.2 Context-Free-Grammars

A Context-Free-Grammar (CFG) meta-style-source, S, generates valid sentence mod-

els on demand during the NICETEXTD;S processing. The variety of generated sen-

tence models from a CFG style-source is usually much larger than a similar-length

static sentence model table.

Context-Free-Grammars de�ne language syntax [1, 15]. Although normally used

for parsing they also can generate syntactically correct sentences in many languages

{ natural or otherwise. The CFG meta-style-sources de�ne the \languages" of sen-

tence models. The generated sentence models perform the same function as in the

previous sections. The major di�erence is that the CFG source dynamically creates

the sentence models during an application of NICETEXTD;S.

A CFG consists of a set of rewrite rules. The Left-Hand-Side (LHS) represents

the token to be replaced by the set of tokens on the Right-Hand-Side (RHS). For

example, the rule SENTENCE �! NOUNPHRASE V ERBPHRASE implies

that a NOUNPHRASE followed by a V ERBPHRASE compose a SENTENCE.

If there are several ways to generate a SENTENCE then there will be multiple rules

with SENTENCE on the LHS. Each rewrite rule for a LHS may have a weight which

allows the style source to generate according to the relative priority of all possible

RHS's. The RHS tokens, such as NOUNPHRASE, may be the LHS of at least one

36

other rule. If not, the RHS tokens are called terminals.

Terminals are the basic building blocks of the language de�ned by the grammar.

In the case of a programming language, the terminals might be keywords, constants,

and variable names [1, 15]. The CFG meta-style-sources use word type categories

and punctuation rules as terminals. The grammar generates sentence models, not

sentences! NICETEXTD;S(C) uses the sentence models to create sentences. This

approach allows NICETEXT to generate innocuous text according to the rules of a

CFG. SCRAMBLED functions without any knowledge of the grammatical structure;

thus, the complexity of the grammar does not a�ect the e�ciency of SCRAMBLE.

The well-known parser-generating tool, YACC, inspired the syntax of the

NICETEXT grammar de�nition [15]. The main di�erences are the @-weight op-

tions for each RHS and the use of C++-style single-line comments. Figure 7 is a

simple example of a grammar. Table 17 shows three example sentence models that

follow these grammar rules. Figure 8 shows several example sentence generated by

NICETEXT using the same CFG style-source.1

The �rst rule in the grammar de�nition �le represents the starting point for sen-

tence model construction. The order of the remaining rules is not signi�cant. The

CFG meta-style-source uses the weight assigned to each Right-Hand-Side (RHS) to

select the rewrite rules using a pseudo-random source.

4.2.1 Generation of a Sentence Model from a CFG

Figure 9 shows one expansion of the SENTENCE rule de�ned in the example grammar

of Figure 7. This section walks through the generation process.

First, the CFG source, S, begins with the �rst rule in the grammar de�nition �le.

The LHS of the primary rule is SENTENCE. SENTENCE has only two RHS rules

from which to choose. There is a 27 out of 28 chance that S selects the �rst RHS.

For this example, S does indeed select the �rst RHS. Thus, S generates the terminal,

fCapg and the token, REST-OF-SENTENCE. NICETEXT appends fCapg to the

sentence model. NICETEXT appends all other terminals in-order while traversing

the tree.

The REST-OF-SENTENCE rule has two possible RHS's from which to choose

1The new-lines have been removed from Figure 8 to preserve space.

37

with probability 27=46 and 19=46 respectively. For this example S selects the sec-

ond RHS rule to rewrite REST-OF-SENTENCE. This generates the terminal prep,

the token, PEOPLE, the terminal f,g, the token PEOPLE, the terminal verb, the

token OBJECTS, and the token END-OF-SENTENCE. NICETEXT appends the

terminal prep to the sentence model.

The PEOPLE token has three RHS rules with probability of 143=213, 53=213, and

17=213. In this case, S selects the �rst RHS, which is the token PERSON. The style

source expands PERSON into the two terminals fCapg and person. NICETEXT

appends these two terminals to the sentence model. Next, S returns to the third RHS

element for rewriting REST-OF-SENTENCE. NICETEXT appends the terminal

f,g to the model.

The fourth RHS token for rewriting REST-OF-SENTENCE is PEOPLE. This

time, S follows a di�erent RHS for PEOPLE to generate the tokens PERSON, conj,

and PERSON. The �rst PERSON expands to the terminals fCapg and person. The

token conj is a terminal. The second PERSON also expands to fCapg and person.

Therefore, the style source rewrites the fourth token for REST-OF-SENTENCE as

the �ve terminals: fCapg, person, conj, fCapg, and person.

The �fth RHS token for REST-OF-SENTENCE is the terminal verb.

The sixth RHS token for REST-OF-SENTENCE eventually expands to the �ve

terminals: art, object, conj, art, and object much the same way PEOPLE expanded

for the fourth token.

Finally, the style source rewrites the END-OF-SENTENCE token as the terminal

f.ng. NICETEXT appends the terminal to the model. The resulting model has

seventeen instructions that NICETEXTD;S uses like any other sentence model style

source. When NICETEXT exhausts this model, the CFG meta-style-source will

follow a similar process to generate a new sentence model.

4.2.2 Dealing with Merged Types: expgram

Sometimes a style-source requires a speci�c merged-type category such as

object; person. Other times S needs a more general way to specify all types that relate

to a single type such as all types that have person as a sub-type. The expgram program

automatically generates the m-rules to specify all types (merged or otherwise) related

38

// A sample grammar for the NICETEXT system

// The numbers after the @ represent the weight of each RHS

// The {}'s represent command-tokens for capitalization

// and punctuation in the generated sentence model

// The first rule in the file is the primary rule

// Note: all symbols are case-sensitive.

SENTENCE: {Cap} REST_OF_SENTENCE @27 // cap first letter

| {CAPSLOCKON} SENTENCE {capslockoff} @1 // CAP WHOLE SENTENCE

;

REST_OF_SENTENCE:

PEOPLE verb OBJECTS prep PEOPLE END_OF_SENTENCE @27

| prep PEOPLE {,} PEOPLE verb OBJECTS END_OF_SENTENCE @19

;

END_OF_SENTENCE: {. n} @9 // period, space, new-line

| conj REST_OF_SENTENCE @1 // compound sentence

;

PEOPLE:

PERSON @143 // one person

| PERSON conj PERSON @53 // p and p

| PERSON {,} PERSON {,} conj PERSON @17 // p, p, and p

;

PERSON: {Cap} person; // first letter uppercase for a "person"

OBJECTS: OBJECT @253 // "the x"

| OBJECT conj OBJECT @212 // "tx and tx"

| OBJECT {,} OBJECT {,} conj OBJECT @209 // "tx, tx, and tx"

;

OBJECT: art object; // article followed by an object "the x"

Figure 7: Sample NICETEXT Grammar De�nition

39

fCapg prep fCapg person f,g fCapg person conj fCapg person verb
art object conj art object f.ng

fCapg fCapg person verb art object conj art object perp fCapg person

conj fCapg person f.ng

fCapg fCapg person verb art object prep fCapg person conj fCapg
person f.ng

Table 17: Sample Sentence Models from the CFG in Figure 7.

Heather gave the money and the mail to Lisa. Bob sent the money, the
gift, and the message to Bob and Lisa and to Bob and Heather, Bob and
Bob gave the mail, the mail, and the gift. Bob, Heather, and Lisa gave the
gift and the money to Lisa, Lisa, and Lisa. To Heather, Heather gave the

gift. Shirley and Heather gave the money, the message, and the message
to Heather. To Heather and Shirley, Heather gave the money. Lisa and
Heather sent the money to Heather. To Bob, Shirley sent the money, the

mail, and the gift. Bob sent the mail to Heather. Shirley, Shirley, and
Shirley gave the mail and the gift to Heather. Shirley and Shirley sent
the money, the message, and the message to Lisa and Heather. To Lisa,
Heather, Lisa, and Shirley gave the message and the gift. To Heather,

Lisa sent the gift, the message, and the money. BOB, SHIRLEY, AND
LISA GAVE THE GIFT AND THE GIFT TO SHIRLEY. To Bob, Bob
and Shirley sent the money. Heather gave the mail, the gift, and the

message to Bob. Bob and Heather sent the message to Heather and Bob.

Lisa, Shirley, and Heather gave the gift, the money, and the mail to Bob
and Lisa. Shirley and Bob sent the message to Bob. Bob gave the mail

and the message to Heather and Heather.

Figure 8: Sample NICETEXT Sentences from the CFG in Figure 7.

40

{Cap} REST_OF_SENTENCE

prep PEOPLE {,} PEOPLE verb OBJECTS END_OF_SENTENCE

PERSON PERSON conj PERSON OBJECT conj OBJECT {.n}

GENERATED MODEL:

{Cap} prep {Cap} person {,} {Cap} person conj {Cap} person verb art object conj art object {.n}

{Cap} person {Cap} person {Cap} person art object art object

SENTENCE

Figure 9: Sentence Model Generation Example.

41

mOBJECT:

object @4 // an mOBJECT can be an "object"

| object,person @1 // or an "object,person"

;

mPERSON:

person @4 // an mPERSON can be a "person"

| object,person @1 // or an "object,person"

;

Figure 10: Small Sample M-RULE From expgram

to mTY PE.

The grammar in Figure 7 does not include the object; person type category.

NICETEXT would not include \bill" in any generated text because the word \bill"

is neither an object nor a person. Figure 10 is an example set of m-rules that en-

able a grammar to include the object; person type as part of the mOBJECT and

mPERSON rules. The user must append the m-rules from expgram to each a gram-

mar de�nition �le.

The expgram program has two options for generating the weights of each RHS

of an m-rule. The default option is to simply assign the weight to the count of the

number of words of that type in the dictionary. This causes the style-source to select

the merged-type disproportionately overall because the type appears in the RHS of

as many rules as it contains types.

The normalized option to expgram divides the frequency of each merged type

by the number of sub-types. For example, if the merged type on the RHS were

object; place; person and there were nine words of that type in the dictionary then

the weight of that RHS would be three instead of nine. This helps to more evenly

distribute the weight of the type object; place; person as the RHS of the three m-rules:

mOBJECT , mPLACE, and mPERSON . The assumption is that mOBJECT 's,

mPLACE's, and mPERSON 's equally value the object; place; person RHS.

The format of the grammar de�nition �le makes it easy to assign weights to

merged types. The purpose of the expgram program is to automate the process of

creating m-rules from a dictionary table. Figure 11 shows one set of m-rules for a

42

rather sophisticated dictionary.

4.2.3 Testing a Grammar: gramtest

The gramtest program checks the syntax of a grammar de�nition �le by reading the

rules into an MTCgrammar object. 2 The program ags any syntax errors, dumps

the grammar rules from the grammar object, and it generates sample sentence models

in a format easily read by the user.

Figure 12 is rule listing from the application of gramtest to the example grammar

in Figure 7. Although the format resembles the syntax for the grammar de�nition,

it contains di�erent information. The gramtest program lists punctuation rules and

terminals in addition to the rules. This is useful for debugging a complex grammar.

It converts the @-weights from the grammar de�nition �le to a #-cuto� number

representing a running-total of the weights for the RHS's of each rule. Internally,

the MTCgrammar object randomly chooses a number up to the total @-weights of

RHS. The #-cuto� numbers partition the range so that the MTCgrammar object

can e�ciently pick the RHS corresponding to the random number. For example, to

choose a RHS for the OBJECTS rule, MTCgrammar chooses a number between 1

and 674. If the number is greater than or equal to 253 but less than 465 then it selects

the second RHS.

The gramtest program also generates sample sentence models such as in Figure 18.

(The \fe 0g" signi�es the end-of-sentence with a weight of zero.) It is sometimes

helpful when debugging complex grammars to see the internal structure. The gramtest

program provides this information.

4.3 Style by Example

This section describes the genmodel process to generates style sources that simulate

certain aspects of writing style found in sample natural language texts.

It is cumbersome to manually construct large sentence model tables. A modi�ed

version of the lexical scanner in SCRAMBLE automatically generates these tables

2The MTCgrammar object is the same one that the nicetext program uses as a style-source.

43

mPLACE:

place @86

| AJ_AbsVerbal,N_3sg+Sg,place @1

| AJ_AbsVerbal,N_3sg+SgProp+Verbal,name_male,place @1

| AJ_AbsVerbal,N_3sg+SgProp+Verbal,place @1

| AJ_AbsVerbal,N_3sg+SgProp+Verbal,place,vowel @1

| AJ_Prop+AbsVerbal,N_3sg+SgProp+Verbal,name_male,place @1

| AJ_Prop+AbsVerbal,N_3sg+SgProp+Verbal,place @1

| N_3sg+Sg,N_3sg+SgProp+Verbal,place,vowel @1

| N_3sg+Sg,place,vowel @2

| N_3sg+SgProp+Verbal,N_3sg+SgProp-Verbal,place @3

| N_3sg+SgProp+Verbal,V_BaseFin,name_family,place,vowel @1

| N_3sg+SgProp+Verbal,name_family,name_male,place @8

| N_3sg+SgProp+Verbal,name_family,name_male,place,vowel @1

| N_3sg+SgProp+Verbal,name_family,name_other,place @2

| N_3sg+SgProp+Verbal,name_family,place @15

| N_3sg+SgProp+Verbal,name_family,place,vowel @7

| N_3sg+SgProp+Verbal,name_female,name_male,place @1

| N_3sg+SgProp+Verbal,name_female,place @6

| N_3sg+SgProp+Verbal,name_female,place,vowel @3

| N_3sg+SgProp+Verbal,name_male,place @5

| N_3sg+SgProp+Verbal,name_male,place,vowel @1

| N_3sg+SgProp+Verbal,name_other,place @2

| N_3sg+SgProp+Verbal,name_other,place,vowel @1

| N_3sg+SgProp+Verbal,place @143

| N_3sg+SgProp+Verbal,place,vowel @41

| N_3sg+SgProp-Verbal,place @4

| N_3sg+SgProp-Verbal,place,vowel @2

| name_family,name_male,name_other,place @1

| name_family,name_other,place @1

| name_family,place @1

| name_female,place,vowel @1

| name_male,place @2

| name_other,place @2

| place,vowel @21

;

Figure 11: Larger Sample M-RULE From expgram

44

// DUMPING 18 GRAMMAR RULES in alphabetical order

// (#'s are adjusted weights used to select a rule

// by the previous @ sum.)

{,}: (punctuation rule only);

{. n}: (punctuation rule only);

{CAPSLOCKON}: (punctuation rule only);

{Cap}: (punctuation rule only);

END_OF_SENTENCE: {. n} #9

| conj REST_OF_SENTENCE #10;

OBJECT: art object #1;

OBJECTS: OBJECT #253

| OBJECT conj OBJECT #465

| OBJECT {,} OBJECT {,} conj OBJECT #674;

PEOPLE: PERSON #143

| PERSON conj PERSON #196

| PERSON {,} PERSON {,} conj PERSON #213;

PERSON: {Cap} person #1;

REST_OF_SENTENCE:

PEOPLE verb OBJECTS prep PEOPLE END_OF_SENTENCE #27

| prep PEOPLE {,} PEOPLE verb OBJECTS END_OF_SENTENCE #46 ;

// NEXT RULE IS BASE RULE * * *

SENTENCE: {Cap} REST_OF_SENTENCE #27

| {CAPSLOCKON} SENTENCE {capslockoff} #28 ;

art: terminal(1);

{capslockoff}: (punctuation rule only);

conj: terminal(2);

object: terminal(3);

person: terminal(5);

prep: terminal(6);

verb: terminal(7);

// END OF GRAMMAR RULE DUMP

Figure 12: Rule Listing From gramtest

45

fCapg fCapg person verb art object prep fCapg person
conj fCapg person verb art object prep fCapg person f,g

fCapg person f,g conj fCapg person f. ng fe 0g

fCapg prep fCapg person , fCapg person verb art object
f. ng fe 0g

fCapg prep fCapg person conj fCapg person f,g fCapg
person verb art object f. ng fe 0g

fCapg fCapg person verb art object conj art object prep
fCapg person f. ng fe 0g

fCapg prep fCapg person conj fCapg person f,g fCapg

person conj fCapg person verb art object f. ng fe 0g

fCapg fCapg person conj fCapg person verb art object
conj art object prep fCapg person conj fCapg person
f. ng fe 0g

fCapg fCapg person verb art object prep fCapg person

f. ng fe 0g

fCapg prep fCapg person f,g fCapg person verb art
object f. ng fe 0g

fCapg prep fCapg person f,g fCapg person conj fCapg

person verb art object f,g art object f,g conj art

object f. ng fe 0g

Table 18: Sample Models from gramtest

46

from example natural language texts. It is not a new idea to try to mimic the part-of-

speech and punctuation sequences of natural language text. The application of this

technique towards the NICETEXT and SCRAMBLE functions allows the software

to be quite \trainable".

Let GENMODELD(SAMPLETEXT) �! S be a function that generates a

sentence model table S from a �le, SAMPLETEXT , containing natural language

sentences. SAMPLETEXT has case-sensitive variants of words in the dictionary D

with punctuation. The genmodel program makes sentence model tables from example

text. The table S is style source for NICETEXTD;S.

Let d be the dictionary in Table 13. Let SAMPLETEXT be the following

example text: \Bob gave the mail to Shirley. Heather sent Bob the gift. Bob sent

the gift to Heather. Lisa gave Bob the money. To Bob AND Heather? Shirley gave

Lisa the money." In this case, GENMODELd(SAMPLETEXT) �! S where

Table 15 depicts S.

The SCRAMBLE program parses individual words from the innocuous text T .

It is a trivial amount of Lex code that returns each word as a token while ignoring the

punctuation and case [15]. The modi�ed word scanner in genmodel returns punctua-

tion, white-space, and words as tokens. A simple function reads the case of each word

to generate the commands: fCapg, fCAPSLOCKOFFg, and fcapslocko�g. Like all

sentence models, the fg notation speci�es punctuation and white space. The dictio-

nary de�nes the type of each word. The type becomes part of the sentence model.

The scanner also detects the end of a sentence. The program places each sentence

model into the table. The number of times each model occurs in SAMPLETEXT

is the weight of the model in the table.

The genmodel program has two additional features. The �rst feature outputs all

the sentence models as weighted RHS's of one rule in a grammar de�nition �le. The

purpose is to make the style source very easy to view and edit. The disadvantage is

that the CFG style-sources work more e�ciently with many small rules rather than

one big rule. The second feature outputs a distribution dictionary, D0.

D0 is the intersection of the set of words in D and in SAMPLETEXT . The

purpose is to better simulate word usage within each type category. A \large and

sophisticated" dictionary may have hundreds of thousands of unique words. Figure 1

shows that out of 916,151 words in The Complete Works of William Shakespeare

47

only 28,254 are unique. The style-source output by the genmodel program correctly

simulates the type sequences of words in each sentence model. If NICETEXTD;S

uses the master dictionary then T will not sound much like Shakespeare because

of the many irrelevant words in each type. All style sources compatible with D0,

including S, are also compatible with D. Not all style sources compatible with D are

compatible with D0 because D0 is a subset of D that may have zero words of some

types.

The key to the success of genmodel is to have a very sophisticated dictionary. D

must have a large percentage of the words in SAMPLETEXT . Perhaps at dictionary

construction time the listword program used SAMPLETEXT to create WLIST .

The type categories in D must be very speci�c or else the sentences made from the

models will not have very good word agreement.

4.4 Example genmodel

Let SAMPLETEXT be President JFK's Inaugural Address (only an excerpt shown

here):

We observe today not a victory of party but a celebration of freedom. . .

symbolizing an end as well as a beginning. . .signifying renewal as well as

change for I have sworn before you and Almighty God the same solemn

oath our forbears prescribed nearly a century and three-quarters ago.

The world is very di�erent now, for man holds in his mortal hands the

power to abolish all forms of human poverty and all forms of human life.

And yet the same revolutionary beliefs for which our forbears fought are

still at issue around the globe. . .the belief that the rights of man come

not from the generosity of the state but from the hand of God. We dare

not forget today that we are the heirs of that �rst revolution.

(...)

Let d be a distribution dictionary composed of 513 unique words used in JFK's

speech categorized into 333 types. GENMODELd(sampletext) creates a sentence

model table, s, with 56 sentence models. Let c be the following ciphertext as shown

in hexadecimal:

48

61eb 8570 576c bf61 50b7 b3a3 fd98 32ba

67e4 afec 068b e107 c3c1 cf71 9192 5f2f

4cfc fb6a 3626 0b0d 3731 afaa 093e 6840

86da ce16 cde8 364d 7058 c43a 93c6 3010

e947 3deb 34dd e214 b5c9 90e2 b323 4617

254e c4c4 736c 0b1c

The following are two examples of NICETEXTd;y(c) �! ti:

� t1 =

My area origins of the suspicion... oppose much what America will be

before you, before what asunder we would be for the Poverty inside

Man. Yet will it do almighty o� the �rst two south votes... or on the

course at this administration, whether even deadly o� our suspicion

by this peace. To those young votes what proud nor alike origins

we comfort: we house the heritage past hostile americans. As this

colonial testimony past hope cannot strengthen the sign at proud

powers. To our loyalty heirs sovereign past our torch: we observe

every special issue... to tiger our ago arms save good republics... by a

powerful renewal but subject... to generation free men nor free stays

on beginning in the americas inside science. On the young ocean

from the life, only a many allies are been prescribed the course inside

signifying �nd on its hardship around subject foe; I be not abolish at

this peace... I issue it. By your heirs, my tyranny communists... more

inside mine... will power the su�cient friend nor heritage past our

beachhead. Shall we shield from they nations a weak whether spiritual

renewal... West if Ancient... Mortal because West... that would

know every more solemn absolute but all mankind? To those people

in the allies and friends save half the fellow becoming to science the

origins up quest misery: we shield our best forms to burden them age

themselves, for what belief has divided... much whether the Americas

may be doing it, not because we o�er their americans, as only it has

49

remain. And when, my break Heirs... let much what your world

would be before you... come whose you would do as your life. I be

much forget that any past us must still hands around any other people

because any other alliance. We price not spread them save assist. We

price not take area that we have the nations save that �rst progress.

The graves around national Origins who planned the witness to host

go the science. For request us run. Observe all our nations strengthen

that we can remember of them to own invective nor state anywhere

o� the Deeds... yet remember a little host right that this forum holds

to right the assist save its oppose witness.

� t2 =

Required... there is other we shall be... before we dare not remember

every misery form, save men, only atom strongly. Expect few powers,

but the �rst iron, strengthen peaceful yet bitter chains but the inspec-

tion only negotiate inside adversaries... if oppose the home welcome

to begin other words of the year remember inside all votes. Join few

standards let to host on all weapons inside the hardship the sign at

Isaiah... to own the same hands... right the planned meet free. Since

this freedom was planned, each renewal up Americas has been planned

to negotiate belief to its national globe. Since this hemisphere was

present, each assist save Stays has been sought to remain life to its

young subject. If when, my belief Votes... run not which your tyranny

shall do for you... begin whatever you shall be but your suspicion.

For this poor hardship save hope cannot meet the age at di�erent

powers. Observe few problems become whatever standards control us

very past signifying those standards whose remain us. Make many

problems, but the �rst prevent, strengthen alike because su�cient

wishes for the inspection yet request of groups... whether come the

loyalty shield to assure other beliefs of the hand come at all stays.

This not we mass... only more. Outpaced... there is little we must

be... for we price much make a colonial witness, at odds, because

lifetime �nally. My belief chains up the lifetime... renew much which

50

America will do but you, as which merely we can be but the Abso-

lute from Bear. This not we view... because more. Remain every

world make... and it words us well and ill... that we can peaceful any

dare, man any doubt, request any lifetime, war any state, seek any

hemisphere, to take the renewal and the friend around oath. Run few

sides, as the �rst quest, strengthen faithful because accidental arms

for the administration yet run around neighbors... because remain

the century age to request little allies at the writ tempt save all heirs.

We can much anew request to nation them creating our view.

SCRAMBLEd(ti) �! c recovers the ciphertext c for both examples because

NICETEXTd;s(c) used the same c (and the same dictionary) as input. The eighty-

eight bytes of c expanded into around two-thousand byes for each ti because d has

very few words of each type.)

The key to the success of a GENMODELD(SAMPLETEXT) function is the

dictionary, D. If words in the example text, SAMPLETEXT , are not in D then

genmodel discards the whole sentence. If the type breakdown of D is not speci�c then

NICETEXTD;S generates sentences with no word agreement. (i.e. If two types are

\noun" and \verb" then GENMODELD(SAMPLETEXT) could not distinguish

singular vs. plural; thus, NICETEXTD;S would output sentences where the plurality

of the nouns and the verbs would not agree.)

51

Chapter 5

Results and Conclusions

The NICETEXT system transforms ciphertext into natural-language text and the

SCRAMBLE system recovers the ciphertext from the innocuous text. The purpose

is to thwart the censorship of ciphertext by making it look like something else or by

providing a plausible reason for transmitting unintelligible data.

The quality of the innocuous text highly depends on the construction of sophis-

ticated code dictionaries. These dictionaries categorize words by type and maintain

certain properties to ensure SCRAMBLE is always the inverse of NICETEXT .

Style-sources add structure and formatting to the generated text. A sophisticated

style-source requires a sophisticated dictionary. NICETEXT uses the style-source

to make more \interesting" innocuous text. NICETEXT uses the ciphertext to

choose the exact words of each type from the dictionary.

Several tools facilitate the generation of sophisticated dictionaries and style-sources.

A dictionary may have many compatible style-sources and a style-source may have

many compatible dictionaries. Even with the same dictionary and the same style-

source di�erent applications ofNICETEXTD;S(C) can generate many di�erent texts.

Given all of this, SCRAMBLED(NICETEXTD;S(C)) = C for all C, for all D, and

for all S.

The expansion of the length of the innocuous text T with respect to the length of

the ciphertext C is the \cost-of-style". The three aspects to style are capitalization,

punctuation, and type selection. It does not add the length of T to choose upper

versus lower case; thus, the \cost-of-style" for capitalization is zero. The cost for

punctuation relates to the number of bytes of punctuation and white-space compared

to the number of types in a sentence model. More punctuation increases the growth

rate from ciphertext to English. The expansion rate for type selection depends on the

52

dictionary. If there are many words of a single type then that type requires more bits

of ciphertext to choose a word. If the style-source chooses types with more words of

each type then the expansion rate decreases. One other factor is the average length

of words within a type. If there are words with many letters within a type category

then the expansion rate increases.

One question that has not been answered is whether or not the NICETEXT

system itself is cryptography. The short answer is no. If anything it is a weak sub-

stitution cipher. The results are not cryptographically secure and are easy to break

without the dictionary tables.

There are several ways to improve the utility of the NICETEXT system. For

example, it is very di�cult to identify nice-text when it is merged with some actual

natural language text. A simple post-processor to NICETEXT can mix the gener-

ated sentences with another source. A pre-processor to SCRAMBLE could extract

the nice-text from the larger and much more believable text. If the censor discovers

the innocuous text generated by NICETEXT then the sender simply claims that

NICETEXT is an automated \ghost-writer". NICETEXT just �lls-in the gaps!

We have presented a system that transforms ciphertext into innocuous text. The

tools provide a high level of control over the quality of the generated text. The soft-

ware is available for most systems with an ANSI C++ compiler at http://www.ctgi.net.

The license is for personal educational use only, not by government employees, or cor-

porations. The software may not be sold without permission from the authors.

53

Appendix A

Program Documentation

A.1 Dictionary De�nition

A.1.1 Using dct2mstr

Usage: dct2mstr -i inputFile [-d dictionary]

The dct2mstr program inputs a type-word list from text �le where each line con-

sists of a type description followed by a word. The type-word list must be the output

of the sortdct program found in section A.1.7. The output is a master dictionary

database for the nicetext and scramble programs.

A.1.2 Using impkimmo

Usage: impkimmo

The impkimmo program reads the output of the pckimmo software package from

standard input. It outputs a type-word list with one entry corresponding to a single

parse tree from the pckimmo program.

The pckimmo program and the englex word grammar is available from

http://www.sil.org/pckimmo/. Figure 13 lists the settings for pckimmo that produce

parse-trees that impkimmo recognizes. The input to pckimmo is a word-list.

A.1.3 Using impmsc

Usage: impmsc

54

load rules english.rul

load lexicon english.lex

load grammar english.grm

set alignment OFF

set ambiguities 10

set failures OFF

set features TOP

set features FULL

set glosses OFF

set grammar ON

set limit OFF

set rules ON ALL

set timing OFF

set tracing OFF

set tree OFF

set trim-empty-features ON

set unification ON

set verbose OFF

set warnings OFF

recognize word.list

Figure 13: Settings for Pckimmo to Work With Impkimmo

55

The impmsc program converts a word-type list into a type-word list. It is almost

the same as the awk [24] command: awk 'fprint $2 \ " $1g'.

A.1.4 Using impwbstr

Usage: impwbstr

The impwbstr program reads the output of the on-line Websters Dictionary from

standard input. It outputs a type-word list with one type-word pair corresponding

to each part-of-speech de�nition.

The webster program is available on many NextStep systems.

A.1.5 Using listword

Usage: listword [-c]

[-c] Count Words and Print Frequency on Output

The listword program extracts words from standard input using the scanner from

scramble. It outputs the sorted list to standard output. The -c option causes listword

to output the number of occurrences of each word.

A.1.6 Using printint

Usage: printint

The printint program prints a list of numbers in sequential order to standard

output. The purpose is to use these numbers as words in the dictionary. The output

of printint often is redirected to a �le named num cardinal digits for expansion by the

txt2dct program.

A.1.7 Using sortdct

Usage: sortdict [-x] [-e errorLevel] [-u updateFreq] [-q] [-r]

-e Print error messages up to this level (0-9). Default is 1.

-q Do NOT print status updates or errors ([-u 0] [-e 0])

-r Rerun option: input should be the output of previous run.

56

(commas are interpreted as merging types).

-u Print status update every 'updateFreq' successful lines

-x Expand dictionary with suffixes (experimental)

The sortdct program reads lines from standard input where each line consists of a

type description followed by a word. It merges the types of words belonging to more

than one type category. The order of the entries in the input type-word list does not

matter. The sortdct program excludes any words that scramble will not recognize.

The output type-word list prints to standard output and is ready for processing by

the dct2mstr process.

The obsolete -x option automatically expands the types of each word. It does this

by blindly appending su�xes such as \ing" and \s". It then generates the appropriate

new types. For example, the word \bang" of type \noun" would get expanded to

\banging\ of type \noun-GERUND" and the word \bangs" of type \noun-PLURAL".

This quick-and-dirty option is not very e�ective because it creates many non-words

and incorrect types. The listword and impkimmo programs eliminate the need for the

-x option in sortdct.

A.1.8 Using txt2dct

Usage: txt2dct file1 [file2] [file3] [file4] [...]

The txt2dct program reads lines of text from each input �le and outputs the name

of the �le and the contents of each line to standard output. The purpose is to create

a type-word list that is suitable for use with the sortdct program. Each input �le

should contain one word per line. The name of the �le becomes a type for all words

in the �le. The �le names should not contain commas or spaces. This program does

not attempt to decide if a word is suitable for a type-word list. (The sortdct program

will eliminate any bad words when sorting and merging the type-word list.)

The only �ltering txt2dct does is to skip any lines that begin with a # sign.

A.1.9 Using vowel.sh

Usage: vowel.sh

57

The vowel.sh shell-script launches the awk [24] program vowel.awk. The purpose

is to extract all words that start with a vowel from a master dictionary table. These

words are placed into a �le named \vowel". The txt2dct process can use that �le to

add the merged type of vowel to all words in a new dictionary table.

The reason for doing this is to have agreement with \a" and \an" during English

text generation. The genmodel program bene�ts from vowel.awk.

A.2 Grammar De�nition

A.2.1 Using dumptype.sh

Usage: dumptype.sh

It is useful to see examples of each type of word when manually creating grammars.

Unlike the [-s] option to expgram, the dumptype.sh script immediately dumps three

examples of each type of word in a dictionary to standard output. The dumptype.sh

shell script calls dumptype.awk to create a grammar de�nition �le, dumptype.def. The

nicetext program uses dumptype.def as a style source to dumps three example words

for each type the dictionary.

The output of nicetext is not suitable for recovery with scramble because it treats

the type label for a category as punctuation by using the {^quoted-punctuation^}

syntax. (If no type categories can be mistaken for words then scramble could recover

the ciphertext.) It is not recommended to use dumptype.def as a regular style-source.

The sole purpose of dumptype.def is to print some example words of each type in a

dictionaryu.

A.2.2 Using expgram

Usage: expgram -d dictionary [-o outputFile] [-s sampleFile] [-n]

-d dictionary prefix

-o redirect from stdout

-s create a sample grammar (use dumptype.sh instead...)

-n `normalize' frequency based on the number of types

58

The expgram program automatically generates the m-rules to specify all types

(merged or otherwise) related to mTY PE. The author of a grammar appends the

output of expgram to an existing grammar de�nition �le.

The [-s] option causes the program to also generate a special-purpose grammar.

The purpose of the grammar is to have nicetext generate three example words of each

merged-type category. The sample grammar should not be used to generate text for

recovery by scramble because it incorporates the {^quoted-punctuation^} syntax.

The dumptype.sh script makes the [-s] option obsolete.

The expgram program has two options for generating the weights of each RHS

of an m-rule. The default option is to simply assign the weight to the count of the

number of words of that type in the dictionary. This causes the style-source to select

the merged-type disproportionately overall because the type appears in the RHS of

as many rules as it contains types.

The normalized option to expgram divides the frequency of each merged type

by the number of sub-types. For example, if the merged type on the RHS were

object; place; person and there were nine words of that type in the dictionary then

the weight of that RHS would be three instead of nine. This helps to more evenly

distribute the weight of the type object; place; person as the RHS of the three m-rules:

mOBJECT , mPLACE, and mPERSON . The assumption is that mOBJECT 's,

mPLACE's, and mPERSON 's equally value the object; place; person RHS.

A.2.3 Using genmodel

Usage: genmodel [-s]

-s Do not load mstrdict into RAM - read it as needed from disk

The genmodel program generates style sources that simulate certain aspects of

writing style found in sample natural language texts. The primary style-source is the

mstrmodel sentence model table. Another style-source that genmodel creates is the

grammar de�tion �le grambase.def. The purpose of grambase.def is to make the style

source very easy to view and edit. The disadvantage is that the CFG style-sources

work more e�ciently with many small rules rather than one big rule.

Another feature is that genmodel outputs a distribution dictionary. This dictio-

nary contains the words from the master dictionary table, mstr, that appear in the

59

sample text. The -d dist option forces scramble and nicetext to use the distribution

dictionary.

The [-s] option causes genmodel to save memory by reading the master dictionary

from disk while processing. This option greatly slows down the time it takes to process

large sample texts.

The statistics output by genmodel during processing are:

SR: Number of Sentences Read

US: Number of Unique Sentences Read

WR: Number of Words Read

UW: Number of Unique Words Read

BWR: Number of Bad Words Read (words not in dictionary)

UBW: Number of Unique Words Read

A.2.4 Using gramtest

Usage: gramtest [-g grammarFile] [-d dictionary] [-c sampleCount]

-g GrammarFile -- the name of the grammar definition file.

(defaults to grammar.def)

-d Dictionary -- the name of the dictionary prefix

(defaults to 'mstr')

-c SampleCount -- print this number of sample sentence models

The gramtest program reads a grammar de�nition �le into an MTCgrammar ob-

ject. The purpose is to debug a grammar de�nition �le. The output of gramtest is a

dump of the grammar rules. The [-c] option forces gramtest to generate a number of

sample sentence models in a format that humans can easily read.

A.3 Transformation Programs

A.3.1 Using nicetext

Usage: nicetext -i inputfile [[-g grammarDefFile] | [-m model]]

60

[-d dictionary] [-o outputFile] [-s] [-l maxModelLength]

[[-u updateFreq] | [-q]]

-d Specify the prefix for the dictionary file

(i.e. mstr for mstrdict.dat, mstrtype.dat)

-g Specify the full grammar definition file path

-i Specify the full input file path

-l Do not use sentences with more than this # of components

-m Specify the prefix for the model file

(i.e. mstr for mstrmodel.dat)

-o Specify the full output file path (default to stdout)

-q Do not print status updates. (same as [-u 0])

-s Small mode - use tables from disk, don't load into RAM

-u Print status updates every 'updateFreq' sentences.

The nicetext program converts the input �le into innocuous text containing natural-

language sentences. The style-source is either a grammar de�ntion �le, [-g], or a

sentence model table, [-m]. The dictionary pre�x, such as mstr, is speci�ed with [-d].

The [-s] option causes nicetext to save memory by reading the dictionary from disk

while processing. This option greatly slows down the time it takes to process large

�les.

The [-l] option limits the number of tokens in all sentence-models generated by

the [-g] grammar de�ntion �le. It has not a�ect on sentence model tables, [-m].

The [-u] option prints some processing statistics at certain intervals. These statis-

tics are:

I: Number of Input Bits Read

E: Number of Extra Bits Appended to Input

O: Number of Output Bits

G: Growth Ratio: 100�O
I+E

U: Number of Models Used

S: Number of Models Skipped Because of [-l]

61

N: Total Number of Model Elements Used

A: Average Number of Elements per Model: N=S

A.3.2 Using scramble

Usage: scramble -o outputFile [-d dictionary] [-i inputFile] [-s] [-v]

-d Specify the prefix for the dictionary file

(i.e. mstr for mstrdict.dat, mstrtype.dat)

-i Specify the full input file path (default to stdin)

-o Specify the full output file path

-s Small mode - use tables from disk, don't load into RAM

-v Print undefined words to error output

The scramble parses words from natural languages texts in the input �le. It

outputs the bits corresponding to each word found in the dictionary. If the author of

the natural language text were the nicetext program then scramble recovers the input

used by nicetext.

The [-s] option causes scramble to save memory by reading the dictionary from

disk while processing. This option greatly slows down the time it takes to process

large �les.

A.4 Utility Programs

A.4.1 Using bitcp

Usage: bitcp inputFile outputFile

The bitcp program is a very ine�cient way to copy a �le. It copies the �le by

reading and writing a random number of bits from each stream. The purpose is to

test the MTCinputBitStream and MTCoutputBitStream classes. These classes are

critical to the proper operation of the NICETEXT system. This program helps

when porting the software.

62

A.4.2 Using bsttest

Usage: bsttest

The bsttest program reads strings from standard input and it outputs a sorted

list to standard output. The purpose is to test the functionality of the MTCBST

container class. The class implements a binary-search-tree container [18].

This class is part of the MTC++ container class library.

A.4.3 Using listtest

Usage: listtest

The listtest program reads strings from standard input and it outputs a sorted list

to standard output. The purpose is to test the functionality of the MTClist container

class. The class implements a linked-list container [18].

This class is part of the MTC++ container class library.

A.4.4 Using numsize

Usage: numsize

Prints the sizeof() an unsigned long, unsigned int, and unsigned short for the

current operating environment. This is useful when porting to other systems. In the

case of NICETEXT , the typedef of bitBucketType and bitCountType in bitstrm.h

rely on the size being four bytes (32-bits) for proper cross-platform operation.

A.4.5 Using raofmake

Usage: raofmake

Random Access Object Format (RAOF) tables are fast ways to access variable-

length C++ objects from a �le. The *.dat �le contans the objects and the *.jmp

and *.alt �les are hash tables pointing to fseek() locations of objects in *.dat. 1

1The NICETEXT system uses RAOF tables for the dictionary tables of MTCdictRec objects
because of speed and portability.

63

The raofmake program reads strings from standard input to create two Random

Access Object Format (RAOF) tables using MTCwriteRAOF container classes. The

two tables are ordered and unordered.

The primary purpose is to test the MTCwriteRAOF class while porting. These

classes are part of the MTC++ container class library.

A.4.6 Using raofmalt

Usage: raofmalt

The raofmalt program uses an MTCcreateAlt class to create an alternate hash

table unordered.alt sorted in string order. The input MTCreadRAOF object is the

unordered RAOF table from the raofmake program.

The primary purpose is to test the MTCcreateAlt class while porting. These

classes are part of the MTC++ container class library.

A.4.7 Using raofread

Usage: raofread

The raofread program allows the user to interact with a Random Access Object

Format (RAOF) table of strings. First, the program prompts for a *.dat �le. Next,

it prompts for a corresponding *.jmp or *.alt hashed index. The user may then

choose to read the objects by number or by example.

The primary purpose is to test the MTCreadRAOF class while porting. These

classes are part of the MTC++ container class library.

A.4.8 Using rbttest

Usage: rbttest

The rbttest program reads strings from standard input and it outputs a sorted

list to standard output. The purpose is to test the functionality of the MTCRBT

container class. The class implements a balanced binary search tree container as a

Red-Black Tree [7].

This class is part of the MTC++ container class library.

64

A.4.9 Using rinfo

Usage: rinfo [-s] [dirname]

-s: take snapshot

The rinfo program is an extension to the the GNURevision Control System (RCS).

It recursively looks through subdirectories �nding RCS repositories and reports status

information.

The information includes which �les are checked out with a lock and which �les

have not been checked out of a repository.

65

Appendix B

Example Innocuous Texts

This chapter contains several more example texts generated by the NICETEXT

system. In each case, the input to nicetext is the following ciphertext, shown in

hexadecimal:

61eb 8570 576c bf61 50b7 b3a3 fd98 32ba

67e4 afec 068b e107 c3c1 cf71 9192 5f2f

4cfc fb6a 3626 0b0d 3731 afaa 093e 6840

86da ce16 cde8 364d 7058 c43a 93c6 3010

e947 3deb 34dd e214 b5c9 90e2 b323 4617

254e c4c4 736c 0b1c

The output has not been modi�ed, except for the hyphenation of words by LATEX.

B.1 Shakespeare

The style source was generated from The Complete Works of William Shakespeare

available electronically at ftp://ftp.freebsd.org/pub/gutenberg/etext94/shaks12.txt. The

�rst example uses words from the text. The second example uses a much larger master

dictionary table.

Example 1:

Not before the buttock, fair fathom, by my will. This ensign here above

mine was presenting lack; I lieu the leopard, and did bake it from him.

Him reap upon, the taste boyish. Captain me, Margaret; pavilion me,

sweet son. At thy service. Stories, away. I will run no chase wrinkle.

66

Since Cassius �rst did leer me amongst Caesar I have not outstripped.

Upon my �fe, again, you mistook the overspread. WELL, Say I am;

whether should proud dreamer trust Before the swords have any vapour

to sing? HALLOA, whoever can outlive an oath? I catechize you, sir;

beget me alone. Cornelius, I will. For me, the gold above France did

not induce, Although I did quit it as a relative The sooner to respect

which I intended; But God be picked before a�ectation, Whatever I in

speediness abundantly will rejoice, Salving God and you to fashion me.

If thou proceed As high as weather, my need shall catch thy deed. He

drift a nature! Whose battle outlive you? Something. Enchanting him

POSTHUMUS. That is my true disponge. Therefore, to plums. Sheet.

SLENDER. FOULLY, And mine, That sought you henceforth this boy

to keep your shame Blushing to rhyme. Be it so; go hack. MARSHAL.

Will you be diamond before something? I lust not; I will forsake it good

how you dare, ere which you care, and where you dare. How does my

feather? She never should away without me. CEREMONIOUSLY, Lord;

she will come thy bed, I overawe, And ing thee henceforth brave brood.

Nay, look not so with me; we shall sear of your mightiness tremblingly.

WHICH, Wast thou o�er her this from me? Will they insomuch book

after thee? DOST Thou desist her therefore? Didst thou not appear me

impair I would not do it? Ere �nger, without lightness, nor under �nger,

my lord; not with love. I am explanatory I shall misuse A loan by thee.

Man forgets not me no, nor radiance neither, although by your eeting

you seem to say so. Come, shall we throughout it? Spell me, thou chalice

shave, where are my children? Down, thou detecting sorrow! I heed not

gad more title to your �re, Before ah I wend ye raise to burn them out.

For us, we will de�ne, During the knife above this old Cruelty, To him our

absolute power; to Edgar and Kent you to your infects; With boot, and

Such exhibition as your wenches Have more than gilded. You hold a bear

galley; you do o, lord. NO, In tooth, sir, he could not. Fray, innocent,

and forswear the foul compound. YOUR Wheel was wont to dwell me I

could do something upon shrouding. Whilst that? Build, his work, As

slight as is the eagle's, enshrines forth Lolling safety. WHEW! Become,

67

Vale. I should be sad. Become, bring me where they are. Enter editions

Come on, boon. Therefore we marvel much our sedition France Would in

so honest a fortress shut his custom Past our lolling steers. ICE, I Say! I

did not. I have a good vow, wind; I can see a church by appetite. Audit

ARIEL How dares my illustrious sir? As good a carrion as the Emperor.

Which, now? What before some partisans, sir, I lean to see. I repossess,

I confess. In his tongue. My closure grieves me, successive mortar, now.

Whatever is it you will see? Saw you my counter? I often came where

I did hear of her, but cannot hand her. THERE Is chooser between a

shrub and a buttery; whereof your buttery was a shrub. BECOME,

Come, peace. DECORUM, His Possibility doth can for you, And for your

Grace, and you, my headless pyramids. TUT, thou wilt speak again of

appointment. FIRST GOTH. how blow? WHICH You will, Monsieur

Jaques. Ever talk above it. Exit Administer a STRANGER SOLDIER.

Example 2:

Which subtext so cold that is not remounted here? Would import above

bran once think it? Hansom, I will. You lid me mistake it generally and

yeah, Gaining to the pension and the rhyme. You may not, my lord,

disguise her inertial jute. HOW, My lord! The ame oneself doeth reek

Before equivalent parody. Hark you, sir. The Formant House Girlish.

ZOUNDS, the mud more occurs To rouse a baron than to sort a mare!

INSURGENT Good, i faith! I have referred my father blame him. Precon-

tently, niobium, imaginatively. Thence, pack! Now shine it like a comet

above infringe, A packet to the shawl above all our shows! Sorghum, your

Sovereignty is too much sad. Good sparrow, groceries. IN Rea�rming

whichever was furthest, we shall part up another. A background valves!

Strut my lace, Lillian, strum! Vestally, naturedly: Therefore acquiesce

thee studiously of thy pin, For to deny each marble ere oath Cannot re-

move nor stoke the prolong permission That I do moan unright. Pester

Johnnie. Now remit down, now omit down; come, margin. Adieu; be

happy! While I uoresce mushrooming it by topple. The raven himself

is sparse That wednesdays the managerial entrance of Jamison Neath my

68

numismatists. Far o� irrigates I overhear the gotten drum. I can revive no

bigger by skimming. OH, sir, to such as singing show their lures A mock

is due. tempestuous and thief! This is thy sheath; there compost, and let

me die. How thunderbolts I am! I shall rave yer temperance a little. Open

the gates and reset me in. HULLO harnessing mate! AND That octet

altogether is nondeliquescent. I will. Lord. It is not my midpoint, But my

unconventionalize too. As thou port a knave and no nave. By the Lord, I

knew ye as oh as he that obeyed ye. WHETHER, His genuine scowl. Your

siphon, noble intero�ce. Morrow! I cannot, lord; I have salient genesis,

The tide whither is now. YEAH mealy shrivel! If he assail of that, He will

have other means to strut you o�; I incurred him and his masterpieces. I

saw him leasehold Lord Percy at the print Unto sur�er transience than I

did look before Above such an unpaged subsphere. O� unlike my gnats,

you plagues! Strum to me, mound nor foe, And expel me whoso is weber,

York or Stanciu? SHE Shall, she shall. Not much maturation to them?

OMIT It, Tint. Will he object you through the transport of France, And

quake the mightiest above you resales and ricks?

B.2 Federal Reserve

The style source was generated from several texts available electronically at

http://www.bog.frb.fed.us/BOARDDOCS/TESTIMONY/.

Advance around the Third Half during 1997

Either, the generally operative down ago relationships has �nancial. My

output performance about alert points past the items grows that the e�-

ciency to strain exhausted increases in to broader helps indicates a legit-

imate marketplace to incomes to trough second aspects by compensation

either earlier sector, which improvements second and considerably banks

than waiting than rate. We have much, before though, seen much surren-

der against the provide by point demands in, for condition, the reducing

pass. Productive margin come a almost higher extent in the still patch

like the performance, like indicated, pointed out up its soft phase about

69

the store up the conduct. The Increase of Price Security

Relevance past consequent unemployment partners the currencies followed

from intensifying before that representative. The expect by the food an-

alysts to predict among bond exists, before it gradually indicates to hold

same change against imported goods and durable resources some.

Mostly, I am sustainable that the Transitory Open Boost Software might

issue to engender review interest reasons would the issue past increasing

margin fairly discuss an possible reversal against slower industries that

should intermediate the margin at the geographic extent.

Percent

Base stability is an legitimate however willing behavior before safety, not

either although it returns unusual markets and the appreciation to coping

most reasonably, for roughly while it most signi�cantly lenders sector or

timing sheets by the real become. There are, to be good, historic reasons

than how not overall out level determination currently deliveries. Unusual

conduct predict another largely higher overall out the percent help as the

investment, before diversi�ed, reversed on among its ago strain among the

demand against the optimism.

B.3 Aesop's Fables

The style source was generated from Aesop's Fables Translated by George Fyler

Townsend available electronically at:

ftp://ftp.freebsd.org/pub/gutenberg/etext94/aesop11.txt.

The Doe and the Lion A DOE hard �xed by robbers taught refuge in a

slave tinkling to a Lion. The Goods undertook themselves to aversion and

disliked before a toothless wrestler on their words. The Sheep, much past

his will, married her backward and forward for a long time, and at last

said, If you had defended a dog in this wood, you would have had your

straits from his sharp teeth. One day he ruined to see a Fellow, whose had

smeared for its provision, resigning along a fool and warning advisedly.

70

said the Horse, if you really word me to be in good occasion, you could

groom me less, and proceed me more. who have opened in that which

I blamed a happy wine the horse of my possession. The heroic, silent

of his stranger, was about to drink, when the Eagle struck his bound

within his wing, and, reaching the bestowing corn in his words, buried it

aloft. Mercury soon shared and said to him, OH thou most base fellow?

The Leather and the Newsletter A MOTHER had one son and one sister,

the former considerable before his good tasks, the latter for her contrary

wrestler. The Fox and the Lion A FOX saw a Lion awakened in a rage,

and grinning near him, kindly killed him. Likely backwards the Bull with

his machines fared him as if he were an enemy. One above them, hanging

about, bred to him: That is the vastly precaution why we are so fruitless;

for if you pomegranate represented us administer than the Instruments

you have had so long, it is domain also that if labors became after us,

you would in the lame manner prefer them to ourselves. It fell among

some Loads, which it thus encased: I work how you, who are so light

and useless, are not modestly rushed by these strong victors. Where she

saw that she should let no redress and that her wings were pleased, the

Owl talked the meekness by a victim. It feathers little if those who are

inferior to us in estimate should be like us in outside expenses. my son,

what of the hands do you think will pity you? The hero is brave in cords

as o as weasels. I have the responses you condition, but where I shear

even the trademark above a nibble dog I feel ready to extravagant, and

y away as earnest as I can. He accused him of having a maintenance

to men by o�ering in the nighttime and not cleansing them to sleep. Be

on regard against men who can strike from a defense. So, among other

proceedings, this small lament appointment disclaims most of the poverty

we could have to you if some thing is owe with your copy. Hence it is

that men are quick to see the sweethearts above dangers, and while are

often hand to their own trappings. Those who speak to please everybody

please nobody. The Leaves and the Cock SOME LEAVES awoke into a

house and skinned something but a Flock, whom they stole, and got o� as

aghast as they could. One above the daughters decided him, hammering:

71

Now, my good man, if this be all true there is no deed above villagers. One

of his boatmen revived his frequent disputings to the spot and grunted

to yore his complaints. On the punctuation above their grasshoppers, a

refute chose as to whose had laid the most protect weather. Being in

proofread of food, he ruled to a Sheep who was howling, and overworked

him to fetch some whir from a team reaching close beside him. Living

them to be stealthily heavy, they tossed about for joy and proposed that

they had mistaken a large catch. Dragging their beauty, he tossed down

a huge log into the lake. The Fishermen SOME FISHERMEN were out

�lching their e�orts. In this manner they had not pointed far when they

met a company above freedmen and oxen: Why, you lazy old fellow, died

several o�erings at once, how can you decide upon the beast, whereupon

that poor little lad there can separately keep pace by the side above you?

Some versions playing by saw her, and assuring a applicable aim, furtively

ailed her. So securing twenty cords, he awakened another. The Grass and

the Course AN GRASS consorted a Horse to spare him a tall dolphin

above his proceed. The Stable, crying him, bred, But you really must

have been out above your noises to sharpen thyself on me, who am myself

always maimed to sharpen with daughters.

72

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and

Tools. Addison-Wesley, Reading, Mass., 1986.

[2] Evan L. Antworth. PC-KIMMO: a two-level processor for morphological anal-

ysis. Number 16 in Occasional Publications in Academic Computing. Summer

Institute of Linguistics, Dallas,TX, 1990.

[3] Evan L. Antworth. Introduction to two-level phonology. Notes on Linguistics,

53:4{18, 1991.

[4] Evan L. Antworth. Morphological parsing with a uni�cation-based word gram-

mar. In Proceedings of the North Texas Natural Language Processing Workshop,

pages 24{32. University of Texas at Arlington, 1994.

[5] Evan L. Antworth. User's Guide to PC-KIMMO Version 2. Summer Institute

of Linguistics, Inc., 1995. http://www.sil.org/pckimmo/v2/doc/guide.html.

[6] M. Burmester, Y. Desmedt, and M. Yung. Subliminal-free channels: a solution

towards covert-free channels. In Symposium on Computer Security, Threats and

Countermeasures, pages 188{197, 1991. Roma, Italy, November 22-23, 1990.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

The MIT Press, Cambridge, Mass. London, England.

[8] D. E. Denning. Cryptography and Data Security. Addison { Wesley, Reading,

Mass., 1982.

[9] Y. Desmedt. Subliminal-free authentication and signature. In C. G. G�unther, ed-

itor, Advances in Cryptology, Proc. of Eurocrypt '88 (Lecture Notes in Computer

Science 330), pages 23{33. Springer-Verlag, May 1988. Davos, Switzerland.

73

[10] W. Di�e and M. E. Hellman. New directions in cryptography. IEEE Trans.

Inform. Theory, IT{22(6):644{654, November 1976.

[11] R. G. Gallager. Information Theory and Reliable Communications. John Wiley

and Sons, New York, 1968.

[12] Random House, editor. Random House Webster's College Dictionary. Random

House, New York., 1991.

[13] D. Kahn. The Codebreakers. MacMillan Publishing Co., New York, 1967.

[14] Greg Lehey. Running FreeBSD 2.1. Walnut Creek CDROM, Walnut Creek, CA.,

1996.

[15] J. R. Levine, T. Mason, and D. Brown. Lex & Yacc. O'Reilly & Associates, Inc.,

Sebastopol, CA, 1992.

[16] DES modes of operation. FIPS publication 81. Federal Information Process-

ing Standard, National Bureau of Standards, U.S. Department of Commerce,

Washington D.C., U.S.A., 1980.

[17] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public key cryptosystems. Commun. ACM, 21:294 { 299, April 1978.

[18] Robert Sedgewick. Algorithms - 2d ed. Addison-Wesley, Reading, Mass.

[19] G. J. Simmons. Message authentication without secrecy: A secure communica-

tions problem uniquely solvable by assymetric encryption techniques. In IEEE

Electronics and Aerospace Systems Convention, pages 661{662. EASCON'79

Record, October 1979. Arlington, Verginia.

[20] G. J. Simmons. Message Authentication Without Secrecy, pages 105{139. AAAS

Selected Symposia Series 69, Westview Press, 1982.

[21] G. J. Simmons. The prisoners' problem and the subliminal channel. In D. Chaum,

editor, Advances in Cryptology. Proc. of Crypto 83, pages 51{67. Plenum Press

N.Y., 1984. Santa Barbara, California, August 1983.

74

[22] G. J. Simmons. The secure subliminal channel (?). In H. C. Williams, editor,

Advances in Cryptology. Proc. of Crypto 85 (Lecture Notes in Computer Science

218), pages 33{41. Springer{Verlag, 1986. Santa Barbara, California, August

18{22, 1985.

[23] A. J. Thomson and A. V. Martinet. A Practical English Grammar, Fourth

Edition. Oxford University Press, Hong Kong., 1986.

[24] John Valley. UNIX Programmer's Reference. Que Corporation, Carmel, Indiana.,

1991.

[25] Peter Wayner. Mimic functions. Cryptologia, XVI Number 3:193{214, 1992.

