
Forensics II

Usage of RCE?

Managed code and obfuscation

Assembly basics

Executable formats [some repetition]

What is Reverse Code Engineering?
• Some people say "Reverse Engineering is an art"

– It is more an application of standard methods that evolve constantly, actually,
everybody can learn these methods and start to RE executables

• Reverse engineering is like solving a jigsaw puzzle
– In order to see the whole picture you need to find the corner pieces, then the

frame, and then work your way forward from there

• The corner pieces for reversing are strings, constants and function
names
– The function names that people normally start with are the one's imported from

shared libraries (e.g. Dlls)

– Strings contain human readable hints about the functionality

– Specific constants add more clues to solve the puzzle or can sometimes even be
used to identify certain (types of) algorithms

• The major problem is that a lot of experience is needed to identify
strings, constants and to know what the combination of imported
functions may result in

Usage of Reverse Engineering
• Common uses of reverse engineering include

– Recovery of business data from proprietary file formats

– Creation of hardware documentation from binary drivers, often for
producing Linux drivers from Windows or Apple drivers

– Enhancing consumer electronics devices

– Malware analysis and creation, often involving a search for
security holes when systems inter-operate

– Discovery of undocumented APIs that may be useful

– Military or commercial espionage

– Copyright and patent litigation

– Breaking software copy protection (legally and not), often for
games and expensive engineering software

– Academic/Learning purposes and curiosity

– Etc. ...

Patent troll
• Example Rockstar

– Owned by Apple, Microsoft, BlackBerry, Sony and Ericsson

– Bought Nortel patents (former Canadian telecom company) worth
$4,5 billion in 2012

– “Rockstar produces no products
and practices no patents.
Instead, Rockstar employs
a staff of engineers in
Ontario, Canada, who examine
other companies’ successful
products to find anything that
Rockstar might use to demand
and extract licenses to its
patents under threat of litigation.”
- Google 2013-12

RCE of managed code 1
• Managed code

– .NET family of languages, Java etc.

– CLR (Common Language Runtime), JVM (JRE)

– Java bytecode and the Common Intermediate Language CIL
(previously known as MSIL - Microsoft Intermediate Language)
bytecode

• CLI (Common
Language
Infrastructure)

• Obfuscation
– Fight

decompilers
and
disassemblers

RCE of managed code 2
• Managed code is much more simple than native code to RCE,

Why?
• If not obfuscated more or less a source backup can be made!
• Red Gate .NET Reflector pro (trial)

– VS debug and decompile support

– http://www.red-gate.com/products/dotnet-development/reflector/

• Free .NET Reflector v6 and add-ins
– http://27.am/posts/how-to-download-net-reflector-6-for-free

– Many useful add-ins

– https://reflectoraddins.codeplex.com/

– http://www.red-gate.com/products/dotnet-development/reflector/add-ins

 Reflector demo of LookingGlassReflector program
– Export disasseblies to files

RCE of
managed

code 3
Tutorial

- https://www.simple-
talk.com/dotnet/.net-
tools/first-steps-with-.net-
reflector/

Free alternatives to
Reflector (.NET
decompiler)

http://blog.wibeck.org/201
3/02/free-options-for-
reflector-net-decompiler/

Protect managed code 1
Why you need obfuscation?
• Goal of obfuscation – Create confusion
• Benefits of obfuscation

– Post-development recompilation system

– It analyzes applications and makes them smaller, faster, and harder to
reverse-engineer (more secure) - In short, it makes them better!

• Renaming (code renamed to compact names) and overload induction
– Rename as many methods and variables as possible to the same name,

use return type and parameters as a criterion in determining uniqueness

• String Encryption – Makes it very hard to locate strategic logic
• Control Flow Obfuscation – Produces spagetti logic, hard to analyze
• Pruning – Removes unused code
• Assembly Linking – Merge multiple assemblies into one
• Watermarking – Embed a signature

Debugging Obfuscated Code - bug reports, stack traces etc. is a problem
– Using the renaming map file with special tools can decode stack traces

Obfuscation examples C#

Original Source Code Before Obfuscation
(Snippet from WordCount.cs C# example code)
public int CompareTo(Object o) {
 int n = occurrences – ((WordOccurrence)o).occurrences;
 if (n == 0) {
 n = String.Compare(word, ((WordOccurrence)o).word);
 }
 return(n);
}

Reverse-Engineered Source Code
After Control Flow Obfuscation
public virtual int _a(Object A_0) {
 int local0, local1;
 local0 = this.a – (c) A_0.a;
 if (local0 != 0) goto i0;
 goto i1;
 while (true) {
 return local1;
 i0: local1 = local0;
 }
 i1: local0 = System.String.Compare(this.b, (c) A_0.b);
 goto i0;
}

Renaming and Control Flow Obfuscation

Renaming and Overload Induction

Original Source Code Before Obfuscation
private void CalcPayroll(SpecialList employeeGroup) {
 while (employeeGroup.HasMore()) {
 employee = employeeGroup.GetNext(true);
 employee.UpdateSalary();
 DistributeCheck(employee);
 }
}

Reverse-Engineered Source Code
After Overload Induction Dotfuscation
private void a(a b) {
 while (b.a()) {
 a = b.a(true);
 a.a();
 a(a);
 }
}

Protect managed code 2
• PreEmptive

Dotfuscator
Community
edition bundled
with VS 20*

• String encryption

Good list: http://www.csharp411.com/net-obfuscators/

http://www.csharp411.com/net-obfuscators/

Protect managed code 3

• Confuser - free
• http://confuser.

codeplex.com/

List: http://en.wikipedia.org/wiki/List_of_obfuscators_for_.NET

Java decompilers, debuggers
and obfuscators

• The builtin one
javap -c class-file

• Best java
decompiler is
free! →

• Others

– DJ Java

– Jad

 ProGuard

– Obfuscator
 JDebugTool

JD-GUI
demo if time
permits

http://jd.benow.ca/

http://java-source.net/open-source/obfuscators

IA-32 (x86) assembly
Internal buses and registers

• Address bus
– Select addresses to

read/write to memory

• Data bus
– Move data around the

CPU and to/from memory

• Control bus
– Control external devices

and execute instructions

Floating point registers, ST(0) through ST(7) , 80 bits wide

Debug registers DR0 - DR7

EFLAGS

RCE
S flags

Addressing mode
<mnemonic> <dest>, <src>

• Intel Hex Opcodes (the binary instructions) And Mnemonics
– [server]\tools\IDA Pro\opcodes.hlp

The Netwide Assembler
http://www.nasm.us/

Microsoft Macro Assembler
; ml.exe mbox.asm /link /subsystem:windows

.386

.model flat, stdcall

option casemap:none

include \masm32\include\windows.inc

include \masm32\include\kernel32.inc

includelib \masm32\lib\kernel32.lib

include \masm32\include\user32.inc

includelib \masm32\lib\user32.lib

.data

MsgBoxCaption db "An example of Cancel,
Retry,Continue",0

MsgBoxText db "Hello Message Box!",0

.code

start:

invoke MessageBox, NULL, addr MsgBoxText,

addr MsgBoxCaption,

MB_ICONERROR OR MB_ABORTRETRYIGNORE

.IF eax==IDABORT

; Abort was pressed

.ELSEIF eax==IDRETRY

; Retry was pressed

.ELSEIF eax==IDCANCEL

; Cancel was pressed

.ENDIF

invoke ExitProcess,NULL

end start

; MASM Hello World! Console program

; Visual Studio vcvars32.bat or CMD prompt

; ml.exe cons.asm /link /subsystem:console

.386

.model flat, c

includelib kernel32.lib

.data

szHello db 'Hello, world!',0dh,0ah

HelloLen equ 15

STD_OUT_HANDLE equ -11

.code

GetStdHandle PROTO stdcall :DWORD

WriteConsoleA PROTO stdcall :DWORD,
:DWORD, :DWORD, :DWORD, :DWORD

WriteConsole equ WriteConsoleA

ExitProcess PROTO stdcall :DWORD

start proc c public

local hStdout: DWORD

local dwNumWrit: DWORD

invoke GetStdHandle, STD_OUT_HANDLE

mov [hStdout], eax

lea edx, [dwNumWrit]

invoke WriteConsole, hStdout, offset
szHello, HelloLen, edx, 0

invoke ExitProcess, 0

start endp

end start

ASM commands/operators
• In most cases you will only be dealing with the general purpose

registers, the instruction pointer, the segment registers and the status
register

• OFFSET - Returns the offset from the beginning of the data segment
• PTR - Used to override the default size of an operator (casting in C)
• SIZEOF - As in C
• Hex dump - opcodes

– 0x55, 0x8BEC, 0x83C4F8, 0x6AF5, 0x…

• Shellcode to x86 (asm, exe) converter

Hello World (cons.asm) as OllyDbg show it with MASM disasm syntax

.data
myDouble DWORD 1234h
.code
mov ax, myDouble ; error is raised!
; two ways to fix it, how?

http://zeltser.com/r
everse-
malware/convert-
shellcode.html

MASM - Irvine
TITLE Krypteringsprogram by hjo
INCLUDE C:\ASM_IA32\Irvine32.inc
XORVAL = 239 ; cryptkey

.data
plainString BYTE 80 DUP(0),0
cryptString BYTE 80 DUP(0),0
copyString BYTE 80 DUP(0),0
byteCount DWORD ?

.code
main PROC
xor eax,eax ; nollställ eax
mov edx,OFFSET plainString
mov ecx,SIZEOF plainString
;call DumpRegs
call ReadString ; Reads string from stdin
mov byteCount,eax ; spara antal tecken
mov esi,0
lp1:
mov al,plainString[esi] ; char in al
xor al,XORVAL ; kryptera bokstaven
mov cryptString[esi],al ; spara krypterade char
inc esi
dec byteCount
jnz lp1
mov edx,OFFSET cryptString
call WriteString ; echo crypt string
mov byteCount,esi ; get len of crypt string
mov esi,0 ; reset index
lp2:
mov al,cryptString[esi]
xor al,XORVAL ; dekryptera bokstaven
mov copyString[esi],al ; spara dekrypterade char i en kopia
inc esi
dec byteCount
jnz lp2
mov al,0Ah ; skriv nyrad LF
call WriteChar
mov edx,OFFSET copyString
call WriteString ; echo decrypted copy string
exit
main ENDP
END main

Easy PC ASM start!
http://kipirvine.com/asm/

• MASM
– http://en.wikipedia.org/wiki/Microsoft_Macro_Assembler

– http://www.masm32.com/

• Easy Code
– http://www.easycode.cat

• http://en.wikipedia.org/wiki/Comparison_of_assemblers

Function calls and the stack
http://en.wikipedia.org/wiki/X86_calling_conventions#cdecl

• The cdecl calling convention is used by many C systems for the x86
architecture. In cdecl, function parameters are pushed on the stack in a right-
to-left order.

– Function return values are returned in the EAX register (except for floating point
values, which are returned in the first floating point register fp0). Registers EAX,
ECX, and EDX are available for use in the function.

• For instance, the following C code function prototype and function call:

int func(int, int, int);
int a, b, c, x;
…
x = func(a, b, c); // somewhere else in the program

Will produce the following x86 Assembly code
(written in MASM syntax, with destination first):

push c
push b
push a
call func ; We goto the label “func:” assembly sub routine
add esp, 12 ; Stack cleaning
mov x, eax ; EAX will be set in sub

• The calling function “cleans” the stack after the function call returns

http://en.wikipedia.org/wiki/X86_calling_conventions

RCE and calling conventions

• The main differences between the calling conventions
– __cdecl is the default calling convention for C and C++ programs. The

advantage of this calling convention is that it allows functions with a
variable number of arguments to be used.
Example: int printf (const char * format, ...); // the dots ...

• Stack cleanup is performed by the caller

– __stdcall is used to call Win32 API functions. It does not allow functions to
have a variable number of arguments

• Stack cleanup is performed by the called function

– __fastcall attempts to put arguments in registers, rather than on the stack,
thus making function calls faster

– Thiscall calling convention is the default calling convention used by C++
member functions that do not use variable arguments

• Stack cleanup is performed by the called function

• ”Calling Conventions Demystified” - stack, functions prolog and epilog
– http://www.codeproject.com/KB/cpp/calling_conventions_demystified.aspx

Executable formats
• Executable file formats

– http://en.wikipedia.org/wiki/Category:Executable_file_formats
– ELF32/64, PE32/64, COFF32/64 (.exe, executable rights)
– Object code (.o)
– Shared libraries (.dll, .so)

• Different versions of the application
– Source code
– Debug binary

• Contains debug info

– Regular binary
• Dynamic linked libraries

– Regular binary
• Static linked libraries

– Stripped binary
• Symbols are removed

Going from source code to a binary executable

http://en.wikipedia.org/wiki/Category:Executable_file_formats

Executable file formats

• Symbols
– Defined symbols, which allow it to be called by other modules
– Undefined symbols, which call other modules where these symbols are

defined

– Local symbols, used internally within the object file to facilitate relocation

• Linker
– Linking of libs and obj files resolving symbols
– Arranging objects in programs address space
– Relocation of code

• What is relocation?
– Combine all the objects sections like .code (.text), .data, .bss, etc. to a

single executable
– Replacing symbolic references or names of libraries with actual usable

(runnable) addresses in memory

PE basic concepts
There are 4 ways to refer to a location in a PE image

• Executable File Offset from beginning of the file/image (on disk)

• Relative Virtual Address (RVA)
– Offset from the base address once the image has been mapped into

memory (RAM), RVA = target address – base address

– Various sections needs to be aligned which creates memory holes in
memory (less present in the file), called code caves

• Section (or view) offset
– This is the offset from the data structure you currently are in

• Virtual address
– This is a full pointer to the address space of the process in memory

– VA = RVA + base address

• For almost all executables the image base address is 0x400000

• For DLLs the base address can vary since it can collide with other
DLLs

Note! Base address == load address and target address == Virtual Address

X86_Win32_Reverse_Engineering_Cheat_Sheet.pdf

Microsoft PE format
Microsoft Portable Executable and Common Object File Format Specification

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

• Portable EXE File Layout
– Not architecture specific

• The PE file header consists of a
– MS DOS stub (IMAGE_DOS_HEADER)
– IMAGE_NT_HEADERS

• The PE signature (DWORD, PE)
• The COFF file header

(IMAGE_FILE_HEADER)
• And a not so optional header

(IMAGE_OPTIONAL_HEADER)

• In both cases (PE and COFF), the file
headers are followed immediately by a
section headers table

– Which point to .text, .data, .rdata etc.

• OpenRCE.org
– PE Format.pdf (very good!)

File offset and RVA 0

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

Microsoft PE/COFF format

• Common Object File Format
– PE structure is derived from COFF

• A COFF object file header consists of a
– PE/COFF file header (IMAGE_FILE_HEADER)
– And the optional header (IMAGE_OPTIONAL_HEADER)

Offset Size Field Description
 0 2 Machine The number that identifies the type of target machine. For

more information, see section 3.3.1, “Machine Types.”
 2 2 NumberOfSections The number of sections. This indicates the size of the section

table, which immediately follows the headers.
 4 4 TimeDateStamp The low 32 bits of the number of seconds since 00:00 January 1,

1970 (a C run-time time_t value), that indicates when the file
was created.

 8 4 PointerToSymbolTable The file offset of the COFF symbol table, or zero if no COFF
symbol table is present. This value should be zero for an image
because COFF debugging information is deprecated.

12 4 NumberOfSymbols The number of entries in the symbol table. This data can be
used to locate the string table, which immediately follows the
symbol table. This value should be zero for an image because
COFF debugging information is deprecated.

16 2 SizeOfOptionalHeader The size of the optional header, which is required for
executable files but not for object files. This value should be
zero for an object file. For a description of the header format,
see section 3.4, “Optional Header (Image Only).”

18 2 Characteristics The flags that indicate the attributes of the file. For specific flag
values, see section 3.3.2, “Characteristics.”

PE/COFF
IMAGE_FILE_HEADER

Microsoft PE/COFF format
• Optional header

(IMAGE_OPTIONAL_HEADER)
– Magic - 32/64 bit application
– Address Of Entry Point (+ image base)
– Base of Code and Data
– Image Base
– Subsystem, Dll Characteristics
– Etc...

• IMAGE_DATA_DIRECTORY
– Size and RVA to

• [0] Export table

• [1] Import Descriptor Table

• [12] Import Address Table
• Etc. 16 entries in total (10h)

• An In-Depth Look into the Win32 Portable Executable File Format
– http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

Import tables (IDT, IAT) 1

As the comments indicate, there
are in fact two import tables for
each DLL

Where the non-zero (union),
OriginalFirstThunk refers to the
"Unbound" Import Table

FirstThunk, on the other hand,
refers to the ”bound” Import
Address Table (IAT)

• Index 1 in IMAGE_DATA_DIRECTORY, the
IMAGE_DIRECTORY_ENTRY_IMPORT have a RVA to where the
IMAGE_IMPORT_DESCRIPTOR array begins (Import Directory Table)

• The array contains all DLLs (Name) the PE file is linked against
• The last import descriptor have all fields zeroed - marks array end
• OriginalFirstThunk is a RVA as is Name (of DLL) and FirstThunk

Import tables (IDT, IAT) 2

An imported function can be listed (imported)
by name (MSB=0), or it can be listed
(imported) by an ordinal number (MSB=1)
which represents its position in the DLL's
export table

If imported by ordinal the remaining 31 bits
corresponds to the ordinal number

If imported by name the remaining bits are a
RVA to IMAGE_IMPORT_BY_NAME

• The IMAGE_THUNK_DATA data structure describes both of these
import tables - note that its type is a union
– Usually the two tables: Import Name Table (OriginalFirstThunk) and

Import Address Table (FirstThunk) looks exactly the same at rest (on
disk)

• IAT is rewritten when loaded into memory and points to the actual
addresses of imported functions

• The "Unbound" OriginalFirstThunk Import Name Table remains
unchanged

Import Roadmap
• IMAGE_IMPORT_BY_NAME

– The Hint can help the OS PE loader to look up the functions faster

– The Name is terminated by at least one zero (needs proper alignment)

IMAGE_THUNK_DATA

.dll file name .dll function name

• or Import Directory Table

Shortcut

So what's a thunk?
First a word on thunks, and why we have an IAT to begin with. Because each process is contained

in its own little virtual address space, and because the OS is responsible for loading a DLL into
that space, a program cannot know what base virtual address a DLL is going to be loaded at
when the program is compiled.

Furthermore, the may be loaded at a different address every time the program is run (relocated
DLL). To fix this problem, the program doesn't call DLL functions directly. Instead, it calls the
address pointed to by a known address. In assembly, ways of doing this is: (se below)

where 00408004 is a local address in the module. Ultimately address 00408004 will contain the
address of the entry point for the function which we are trying to call. This mechanism is called
a thunk. We put all of these "proxy" addresses together into a thunk table when we compile the
program so that our code never makes a direct call to an extramodular address.

We provide the operating system with a list of all the functions we want to import, and where in the
table we need their addresses to be written so that our code will wind up calling the right
location at runtime. The IAT is the thunk table which the PE loader builds for us.

Definition: http://thunk.org/

00408000: 12 5A 36 77 ←Entry point of external function #1
00408004: 37 92 15 77 ←Entry point of external function #2
...
00401236: CALL DWORD PTR DS:[00408004] ; call IAT direct
0040123C: CALL 004015BA ; second method via thunk table
...
004015B4: JMP DWORD PTR DS:[00408000] ; jump thunk table
004015BA: JMP DWORD PTR DS:[00408004] ; DataSegment direct@address ...
...

IAT: Function address
0x77159237

Memory Layout for Windows XP

Exerpt from
”Windows Memory

Layout, User-Kernel
Address Spaces.pdf”

OpenRCE.org

Export Roadmap
Index 0 in IMAGE_DATA_DIRECTORY, the

IMAGE_DIRECTORY_ENTRY_EXPORT have a RVA to where the
IMAGE_EXPORT_DIRECTORY array begins

Microsoft PE/COFF format

• Section
header

Offset Size Field Description
 0 8 Name An 8-byte, null-padded UTF-8 encoded string. If the string is exactly

8 characters long, there is no terminating null. For longer names, this field
contains a slash (/) that is followed by an ASCII representation of a decimal
number that is an offset into the string table. Executable images do not use
a string table and do not support section names longer than 8 characters.
Long names in object files are truncated if they are emitted to an
executable file.

 8 4 VirtualSize The total size of the section when loaded into memory. If this value is
greater than SizeOfRawData, the section is zero-padded. This field is valid
only for executable images and should be set to zero for object files.

12 4 VirtualAddress For executable images, the address of the first byte of the section relative
to the image base when the section is loaded into memory. For object files,
this field is the address of the first byte before relocation is applied; for
simplicity, compilers should set this to zero. Otherwise, it is an arbitrary
value that is subtracted from offsets during relocation.

16 4 SizeOfRawData The size of the section (for object files) or the size of the initialized data on
disk (for image files). For executable images, this must be a multiple of
FileAlignment from the optional header. If this is less than VirtualSize, the
remainder of the section is zero-filled. Because the SizeOfRawData field is
rounded but the VirtualSize field is not, it is possible for SizeOfRawData to
be greater than VirtualSize as well. When a section contains only
uninitialized data, this field should be zero.

20 4 PointerToRawData The file pointer to the first page of the section within the COFF file. For
executable images, this must be a multiple of FileAlignment from the
optional header. For object files, the value should be aligned on a 4 byte ‑
boundary for best performance. When a section contains only uninitialized
data, this field should be zero.

24 4 PointerToRelocations The file pointer to the beginning of relocation entries for the section. This
is set to zero for executable images or if there are no relocations.

28 4 PointerToLinenumbers The file pointer to the beginning of line-number entries for the section.
This is set to zero if there are no COFF line numbers. This value should be
zero for an image because COFF debugging information is deprecated.

32 2 NumberOfRelocations The number of relocation entries for the section. This is set to zero for
executable images.

34 2 NumberOfLinenumbers The number of line-number entries for the section. This value should be
zero for an image because COFF debugging information is deprecated.

36 4 Characteristics The flags that describe the characteristics of the section. For more
information, see section 4.1, “Section Flags.”

• N sections headers point out
where code, data, resources etc.
are stored
• Characteristics – sections flags
RWX etc.
• Name can be set by programmer
• RVA = Relative Virtual Address
• Virtual (or target) Address
= RVA + Load (or Base) address

PEview - cons.exe

pFile = offset to data/value in file

offset to .text/.code in memory

(target address) 0x401000 - (load address) 0x400000 = (RVA) 0x1000

Offset type

offset to .text/.code in file

PEview - cons.exe

IAT is equal to Import Name Table on disk

PEview - cons.exe

PE/COFF tools...
• Dependency Walker
• PEiD
• PE.explorer
• PETools
• ProcDump32
• LordPE
• PEdump
• PEview
• Periscope
• FileAlyzer
• 7zip can dump PE/COFF

sections to files (.data, .text etc.)

• Perl (ch6 WFA)
– Pedmp.pl
– Fvi.pl (resources)

Address of entry point (EP)
should be located in .text or .code

CFF Explorer
A freeware suite of tools. The PE editor has full support for PE32/64. Special fields
description and modification (.NET supported), utilities, rebuilder, hex editor, import
adder, signature scanner, signature manager, extension support, scripting,
disassembler, dependency walker etc. The suite is available for x86, x64 and Itanium.

http://www.ntcore.com/exsuite.php

Packer

Packer

Executable (PE/COFF) obfuscation
• Binders

– Bind two applications into one, mainly used for trojans

• Packers or compressors
– Compress the binarys sections to make it smaller and harder to

detect and analyse

– Works much like a virus appending an application and when
unpacked in memory the entry point is reset to original

– ASPack, UPX, FSG, Armadillo, Morphine, MEW ... etc.

– Scan for section names
indicating a packer

– Special tools is neded
to unpack the binary, then
dump and rebuild it
Image dump != MS .dmp file

 http://www.woodmann.com/crackz/Packers.htm

Redirect

http://www.woodmann.com/crackz/Packers.htm

Executable (PE/COFF) obfuscation

• Cryptors
– As packers but with encrypted sections usually with anti-

disassembly and anti-debugging techniques, also

– Rebuilding the import address tables at runtime

• Example: tElock
• Crackers Kit v2.0/3.2

– Large packages with
tools as:

– Packers

– Unpackers

– Rebuilding

– Analysis

– Patchers

– Google for it ...

ELF (Executable and Linking Format)
• ELF header
Tells us basic info and where everything is located in the file

Can be read directly from the first e_ehsize (default: 52) bytes of the file

Fields of interest: e_entry, e_phoff, e_shoff, and the sizes given. e_entry specifies the
location of _start, e_phoff shows us where the array of program headers lies in relation
to the start of the executable, and e_shoff shows us the same for the section headers

/* ELF File Header */
typedef struct
{
 unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
 Elf32_Half e_type; /* Object file type */
 Elf32_Half e_machine; /* Architecture */
 Elf32_Word e_version; /* Object file version */
 Elf32_Addr e_entry; /* Entry point virtual address */
 Elf32_Off e_phoff; /* Program header table file offset */
 Elf32_Off e_shoff; /* Section header table file offset */
 Elf32_Word e_flags; /* Processor-specific flags */
 Elf32_Half e_ehsize; /* ELF header size in bytes */
 Elf32_Half e_phentsize; /* Program header table entry size */
 Elf32_Half e_phnum; /* Program header table entry count */
 Elf32_Half e_shentsize; /* Section header table entry size */
 Elf32_Half e_shnum; /* Section header table entry count */
 Elf32_Half e_shstrndx; /* Section header string table index */
} Elf32_Ehdr;

http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

• ELF Program segment headers
– Describe the segments of the program used at run-time

– In a typical ELF executable usually end-to-end, forming an array of structs

– The interesting fields in this structure are p_offset, p_filesz, and p_memsz

• ELF Section headers
– Describe various named sections of the binary as a file

– Each section has an entry in the section headers array

• HT Editor (http://hte.sourceforge.net/)
– Examine and modify everything in an ELF file (PE files also), disassemble etc.

/* Program segment header */
typedef struct
{
 Elf32_Word p_type; /* Segment type */
 Elf32_Off p_offset; /* Segment file offset */
 Elf32_Addr p_vaddr; /* Segment virtual address */
 Elf32_Addr p_paddr; /* Segment physical address */
 Elf32_Word p_filesz; /* Segment size in file */
 Elf32_Word p_memsz; /* Segment size in memory */
 Elf32_Word p_flags; /* Segment flags */
 Elf32_Word p_align; /* Segment alignment */
} Elf32_Phdr;

/* Section header */
typedef struct
{
 Elf32_Word sh_name; /* Section name (string tbl index) */
 Elf32_Word sh_type; /* Section type */
 Elf32_Word sh_flags; /* Section flags */
 Elf32_Addr sh_addr; /* Section virtual addr at execution */
 Elf32_Off sh_offset; /* Section file offset */
 Elf32_Word sh_size; /* Section size in bytes */
 Elf32_Word sh_link; /* Link to another section */
 Elf32_Word sh_info; /* Additional section information */
 Elf32_Word sh_addralign; /* Section alignment */
 Elf32_Word sh_entsize; /* Entry size if section holds table */
} Elf32_Shdr;

ELF (Executable and Linking Format)

ELF Object File Format

Some of the sections (from elf.pdf)
.bss This section holds uninitialized data that contribute to the program's
memory image. By definition, the system initializes the data
with zeros when the program begins to run.

.comment This section holds version control information.

.data and .data1 These sections hold initialized data that
contribute to the program's memory image.

.debug This section holds information for symbolic debugging.
The contents are unspecified. All section names with the prefix
.debug are reserved for future use.

.dynamic This section holds dynamic linking information

.hash This section holds a symbol hash table.

.line This section holds line number information for symbolic
debugging, which describes the correspondence between the
source program and the machine code. The contents are unspecified.

.rodata These sections hold read-only data that typically contribute to a .rodata1 non-writable segment in the
process image.

.shstrtab This section holds section names.

.strtab This section holds strings, most commonly the strings that represent the names associated with
symbol table entries.

.symtab This section holds a symbol table, as "Symbol Table'‘

.text This section holds the "text,'' or executable instructions, of a program.

Sweetscape 010 editor - ELF template

References if not given in presentation
• Import Mechanisms and Intermodular Calls

– http://www.woodmann.com/yates/documents/30.html

• Understanding the Import Address Table
– http://sandsprite.com/CodeStuff/Understanding_imports.html

• Introduction to Reverse Engineering Software
– http://www.acm.uiuc.edu/sigmil/RevEng/

• X86/Win32 Reverse Engineering Cheat-Sheet
– http://www.rnicrosoft.net/

• x86 processor information
– http://www.sandpile.org/

• Moving to Windows Vista x64 - x64 ASM, PE64, etc.
– http://www.codeproject.com/KB/vista/vista_x64.aspx

End!
and

Backups

Application/File analysis

Programs in memory I
• When processes are loaded into memory by the OS loader, they are

basically broken into many small sections. There are six main sections
that we are concerned with:

• .text or .code Section
The .text section basically corresponds to the .text portion of the binary executable file. It

contains the machine instructions to get the task done. This section is marked as read-
only and will cause a segmentation fault if written to. The size is fixed at runtime when the
process is first loaded.

• .data Section
The .data section is used to store global initialized variables such as:
int a = 0;
The size of this section is fixed at runtime.
• .bss Section
The below stack section (.bss) is used to store global non-initialized variables such as:
int a;
The size of this section is fixed at runtime.

Programs in memory II
• Heap Section
The heap section is used to store dynamically allocated variables and grows from the

lower-addressed memory to the higher-addressed memory. The allocation of memory
is controlled through the malloc() and free() functions. Example:

int i = malloc(sizeof (int)); //dynamically allocates an integer

• Stack Section
The stack section is used to keep track of function calls (recursively) and grows from the

higher-addressed memory to the lower addressed memory on most systems. As we
will see, the fact that the stack grows in this manner allows the subject of buffer
overflows to exist. Local variables exist in the stack section.

• Environment/Arguments Section
The environment/arguments section is used to store a copy of system-level variables that

may be required by the process during runtime. For example, among other things, the
path, shell name, and hostname are made available to the running process.
This section is writable, allowing its use in format string and buffer overflow exploits.
Additionally, the command-line arguments are stored in this area.

Memory management 1

Memory management 2

Translating a virtual address to a physical storage address

Link Libraries and OS relocation 1
• A dynamic link library (or shared library) takes the idea of an ordinary library

(also called a statically linked library) one step further

• A dynamic/shared link library is a lot like a program, but instead of being run
by the user to do one thing it has a lot of functions "exported" so that other
programs can call them

– This list, called the export table, gives the address inside the DLL file of each of
the functions which the DLL allows other programs to access

– The calling executable have a list of imports or imported functions from every DLL
file it uses

• When Windows loads your program it creates a whole new "address space"
for the program

• When your program contains the instruction "read memory from address
0x40A0F0 (or something like that) the computer hardware actually looks up
in a table to figure out where in physical memory that location is

– The address 0x40A0F0 in another program would mean a completely different
part of the physical memory of the computer

Link Libraries and OS relocation 2
• Programs, when they are loaded, are "mapped" into address space.

This process basically copies the code and static data of your
program from the executable file into a certain part of address space,
for example, a block of space starting at address 0x400000

– The same thing happens when you load a DLL

• A DLL, or a program for that matter, tells the operating system what
address it would prefer to be mapped into

– Although the same address means different things to different programs,
within a single program an address can only be used once

• If two DLLs wants to be mapped to the same address the OS first
check if the DLL is relocateable

• If so it performs the necessary relocations

• The relocateable DLL contains information so that the OS can
change/adjust all those internal function addresses in the DLL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

