Implementing Cloud Storage
with OpenStack Swift

Design, implement, and successfully manage your own cloud
storage cluster using the popular OpenStack Swift software

Foreword by Sean Roberts,
Board Director at the OpenStack Foundation, Infrastructure Strategy at Yahoo

PACKT &

Implementing Cloud Storage
with OpenStack Swift

Design, implement, and successfully manage your own
cloud storage cluster using the popular OpenStack
Swift software

Amar Kapadia
Sreedhar Varma

Kris Rajana

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Implementing Cloud Storage with OpenStack Swift

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014
Production Reference: 1090514

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-805-8
www . packtpub.com

Cover Image by Seenivasan Kumaravel (kseenivasan@hotmail . com)

Credits

Authors
Amar Kapadia

Sreedhar Varma

Kris Rajana

Reviewers
Juan J. Martinez

Sriram Subramanian

Alex Yang

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Harsha Bharwani

Content Development Editor
Priyanka S

Technical Editor
Faisal Siddiqui

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee
Aditya Nair
Alfida Paiva

Project Coordinator
Puja Shukla

Proofreaders
Maria Gould

Ameesha Green

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

Foreword

I have worked with Amar in the OpenStack San Francisco Bay Area user group and
the Entertainment Technology Council cloud effort over the past year. Amar is part
of the larger Seagate and Evault effort to transform a manufacturer and product
commodity vendor. He has been working with Swift for around 3 years and has
deep understanding of what makes it tick.

The authors, like myself, have been lured into the great experiment that is OpenStack
and it has changed our careers for the better. Seagate, EVault, and Vedams are
working to provide higher-level services like key value store disks and API
implementations that provide novel solutions for software defined infrastructure
problems. The authors have produced an excellent operational guide that will benefit
anyone interested in understanding Swift.

Object storage predates the implementations of Swift and S3. It originated in the
universities and spread to Internet based companies such as Yahoo and Google.
Internet companies require vast amounts of eventually consistent data. As the
business of search changed the way the technology industry thought about services,
more uses for object stores were found. Swift was publicly released about a year
after Rackspace started working on the CloudFiles replacement in August 2009.

The development was born out of a tight group that blended development and
operations expertise. Rackspace needed massively scalable storage that they had
control over the implementation and the code base.

We are very fortunate that at the time Swift was being released to the world as a
new open source project in the summer of 2010, NASA engineers were finishing up
their rewrite of the virtual server software Eucalyptus. Nova, as the NASA project
became known, had an engineering effort that was so similar to Swift, that both
teams were stunned. NASA engineer, Joshua McKenty, noted, "We were using the
same tools. We had made the same language decisions. We got the two development
teams together — none of whom had ever met each other — and we both said:
'Wow, you just wrote the code that we were going to write."
com/2012/04/openstack-histor/.

-http://www.wired.

It was more than just luck that the two teams were developing similar code in

a similar fashion. Similar minds came to similar conclusions. I first met Joshua
McKenty, Jesse Andrews, and Vishvananda Ishaya, in May 2010. We were all at

the MSST storage conference in Incline Village, NV. They were debating over the
few nights available to us of what storage to use for their project. I provided some
backdrop for Yahoo's storage options. Many drinks later and a few days, it seemed
that they were no closer to deciding between the choices available at the time. Just a
month later, Rackspace and NASA were to begin down the road of making history.

Swift is an open source private object store for companies seeking to be part of

the open source software defined infrastructure movement. Storage APIs breed
innovative new ways to develop and operate. Lifting the restrictions of POSIX
interfaces has been cathartic. This remote storage model breaks down, however,
when you factor in latency and the network cost of repatriating your data. As John
Dickenson states, "Storage is key. It always grows. It is incredibly sticky. It is very
hard to move around." - https://www.youtube.com/watch?v=Dd7wmJCDh4w.

Swift fills this gap of local, simple object storage. It is open source, eventually
consistent, supports ACLs, large objects, failure domains, and both Swift and S3
APIs. Using simple, inexpensive servers it drives the cost down below many other
vendor backed solutions. While listing off features and direct benefits is a fun
exercise, the hidden benefits of using Swift are the most important. Once you start
down the path of using Swift and other OpenStack projects, you are on your way to
automating your infrastructure.

To properly operate distributed computing software like Swift; you will need to
embrace automating your infrastructure using DevOps techniques. DevOps simply
means your operations engineers must have development abilities. This is not a new
idea, but making it a requirement for operations is. Additionally, when using open
source software, your engineers must understand and participate in the open source
community that builds and maintains Swift. I have personally built storage systems.
The planning, implementation, and operations are always more complicated than
expected. This is generally due to the fact of integration. Even if Swift is the first
storage solution your company is implementing, you will need to expand, upgrade,
and support many generations of Swift. This one facet of your evolving engineering
team means your most valuable resources are your engineers, not your vendor
relationships. Now even more than in the past, we are moving away from the logic
and intelligence buried in the vendor's hardware.

The accomplishment of unshackling customers from the whims of vendors is
grand, but it requires a renewed understanding of the value of key personnel and
your partnership with the open source community. The CAPEX that would be
plowed into the next generation of vendor X hardware now needs to be redirected
into keeping your engineers close and committed. The commitment to DevOps
engineering means focusing on OPEX to reap the innovation and cost savings from
using open source software. In-house software development practices will need

be adopted and curated. Consistent code releases to follow the pace of the open
source community will work to encourage lasting positive DevOps behaviors.
Your infrastructure workplace will be practicing some form of agile development
methods. Continuous Integration pipelines and Kanban boards will be your weapons
to tame the new business model.

This book gives you a powerful taste of what your DevOps software defined
infrastructure will need to thrive and survive. Swift will be your inexpensive, easily
expanded distributed storage system that is the backbone of your operations.

Sean Roberts

Board Director at the OpenStack Foundation,
Infrastructure Strategy at Yahoo

About the Authors

Amar Kapadia is a storage technologist and blogger based in the San Francisco
Bay Area. He is currently the Senior Director of Strategy for EVault's Long-Term
Storage Service, a subsidiary of Seagate. With over 20 years of experience in storage,
server, and I/O technologies at Emulex, Philips, and HP, Amar's current passion is
cloud and object storage technologies based on OpenStack Swift. He holds a Master's
degree in Electrical Engineering from the University of California, Berkeley.

When not working on OpenStack Swift, Amar can be found working on Open
Compute Platform technologies, MongoDB, PHP, AJAX, or jQuery. Amar's blogs can
be found at buildcloudstorage.com.

I would like to thank my wife for tolerating my late night and
weekend book-writing sessions. I would also like to thank the Long-
Term Storage Service team at EVault who generously helped provide
content and critique on various chapters.

Sreedhar Varma has more than 15 years of experience in the storage industry,
developing storage software and solutions. He has worked on various storage
technologies (such as SCSI, SAS, SATA, and FC), HBA drivers (Adaptec, Emulex,
Qlogic, Promise, and so on), RAID, and storage stacks of various operating systems.
He was involved in building system software for Stratus Fault Tolerant and High
Availability systems. He has good working experience with SAN, NAS, and iSCSI
networks as well as various storage arrays (Dothill, IBM, EMC, Hitachi, and Oracle
Pillar). Sreedhar is currently involved with object storage implementations (Swift,
Ceph) and developing software using corresponding REST APIs.

Sreedhar has a Master's degree in Computer Science from the University of
Massachusetts.

He is presently working for Vedams Software (providing storage engineering
services). In the past, he has worked for Stratus Technologies, Compagq, Digital
Equipment Corp, and IBM.

I would like to thank my wife for her support and encouragement
while I was writing the chapters for this book. I would also like to
acknowledge the assistance of Vedams and EVault OpenStack teams
in building and managing an OpenStack cluster. This enabled us to
verify every aspect coved in this book, including installation, testing,
and tuning with clear instructions on how-to.

Kris Rajana is an entrepreneur, passionate in building globally distributed teams
to develop and maintain innovative products and solutions. His areas of interests
include tape, DAS, NAS, SAN, and fast emerging technologies (Cloud, SDN, SDS,
and Flash Arrays). Kris has over 20 years of experience in managing engineering
teams in areas including space and aviation at BFGoodrich Aerospace and storage
at Snap Appliance (currently Overland Storage) Adaptec, Xyratex, and Sullego.
Currently, as the CEO of Vedams, Kris takes immense pride in his team and its
development that leads to execution excellence. Kris's current passion is application
of Big Data concepts to improve reliability and uptime of systems.

Kris is a student and sevak at San Jose Chinmaya Mission. Kris also serves on the
board of the Pratham Bay Area Chapter. Kris and Vedams sponsor the Pratham
Urban Learning Center in Hyderabad.

Kris earned his doctorate in engineering science from the Pennsylvania State
University and keeps abreast with emerging management methodologies through
his affiliation with Stanford University.

I would like to thank my family for their encouragement. Finally, I
would like to thank the Vedams team and my mentors over
the years.

About the Reviewers

Juan J. Martinez is an experienced software developer with a strong open source
background, and has been involved in OpenStack Object Storage since the Bexar
release. His work, related to Swift, includes the customization and deployment of
Memstore, winner of the UK Cloud Awards 2014 organized by Cloud Pro magazine,
and a number of open source projects to provide access to the storage using common
file transfer protocols (FTP and SFTP). He's currently employed by Memset, a British
cloud provider based in Cranleigh.

Sriram Subramanian is the founder and cloud specialist at Cloud Don LLC,

a cloud consulting firm that offers cloud services. He is an OpenStack enthusiast,
passionate about OpenStack's success. Previously, he was a lead developer at
ComputeNext building a Federated Cloud Marketplace. Here, he gained expertise

in multiple cloud platforms including OpenStack. Prior to ComputeNext, he was
with various companies such as Microsoft, Intel, and Hitachi, working on a wide
spectrum of technologies such as cloud computing, virtualization, compilers, and
low power design. He is passionate about cloud computing, green/clean technology,
and holistic living.

Alex Yang is a software engineer in cloud computing. In his previous company,
Sina App Engine, the biggest PaaS service provider in China, Alex developed the
storage service based on OpenStack Swift. There are 500,000 developers in Sina App
Engine, who use the storage service to host web images or archive logs.

Alex also has experience working on network virtualization, software defined
network, and distributed storage.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface 1
Chapter 1: Cloud Storage: Why Can't | be like Google? 7
Elements of cloud storage 8
Reduced TCO 8
Unlimited scalability 8
Elastic 8
On-demand 8
Universal access 9
Multitenanancy 9
Use cases 9
Application impact 10
Cloud gateways 10
Object storage 10
OpenStack Swift 12
Summary 13
Chapter 2: OpenStack Swift Architecture 15
The logical organization of objects 15
The Swift implementation 16
Key architectural principles 16
Physical data organization 17
Data path software servers 18

A day in the life of a create operation 20

A day in the life of a read operation 21

A day in the life of an update operation 21

A day in the life of a delete operation 21
Postprocessing software components 21
Replication 22
Updaters 22
Auditors 22
Other processes 22

Table of Contents

Inline middleware options 23
Auth 23
Logging 24
Other modules 24

Additional features 25

Large object support 25

Metadata 26

Multirange support 26

CORS 26

Server-side copies 26

Cluster health 26

Summary 26
Chapter 3: Installing OpenStack Swift 27
Hardware planning 27
Server setup and network configuration 28

Preinstallation steps 29

Downloading and installing Swift 30

Setting up storage server nodes 31
Installing services 31
Formatting and mounting hard disks 31
RSYNC and RSYNCD 32

Setting up the proxy server node 33

The ring setup 35
Starting services on all storage nodes 36

Multiregion support 37

The Keystone service 38
Installing MySQL 38
Installing Keystone 39

Summary 44
Chapter 4: Using Swift 45
Installing the clients 45
Creating a token using authentication 46
Displaying metadata information for an account, container, or object 46

Using the Swift Client CLI 47

Using cURL 47

Using the REST API 48

Listing containers 48
Using the Swift Client CLI 48
Using cURL 49

Listing objects in a container 49
Using the Swift Client CLI 49
Using cURL 50

Lii]

Table of Contents

Using the REST API 50
Updating the metadata for a container 51
Using the Swift Client CLI 51
Using the REST API 51
Environment variables 51
Pseudo-hierarchical directories 52
Container ACLs 53
Transferring large objects 55
Amazon S3 API compatibility 56
Accessing Swift using S3 commands 58
Accessing Swift using client libraries 59
Java 59
Python 60
Ruby 60
Summary 60
Chapter 5: Managing Swift 61
Routine management 61
Swift cluster monitoring 62
Swift Recon 63
Swift Informant 64
Swift dispersion tools 64
StatsD 65
Swift metrics 66
Logging using rsyslog 67
Failure management 68
Detecting drive failure 68
Handling drive failure 69
Handling node failure 69
Proxy server failure 70
Zone and region failure 70
Capacity planning 71
Adding new drives 71
Adding new storage and proxy servers 71
Migrations 72
Summary 73
Chapter 6: Choosing the Right Hardware 75
The hardware list 75
The hardware selection criteria 77
Step 1 — choosing the storage server configuration 77
Step 2 — determining the region and zone configuration 78
Step 3 — choosing the account and container server configuration 79

[iii]

Table of Contents

Step 4 — choosing the proxy server configuration 79
Step 5 — choosing the network hardware 80
Step 6 — choosing the ratios of various server types 81
Step 7 — choosing additional networking equipment 82
Step 8 — choosing a cloud gateway 82
Additional selection criteria 83
The vendor selection strategy 84
Branded hardware 84
Commodity hardware 84
Summary 85
Chapter 7: Tuning Your Swift Installation 87
Performance benchmarking 87
Hardware tuning 93
Software tuning 93
The ring considerations 93
Data path software tuning 94
Postprocessing software tuning 95
Additional tuning parameters 95
Summary 96
Chapter 8: Additional Resources 97
Use cases 97
Service providers 98
Web 2.0 98
Enterprises 98
Operating systems used for OpenStack implementations 99
Virtualization used for OpenStack implementations 100
Provisioning and distribution tools 101
Monitoring and graphing tools 102
Additional information 102
Summary 103
Appendix: Advanced Features 105
Commands 105
List 105
Examples 105
Stat 106
Examples 106
Post 107
Examples 107

[iv]

Table of Contents

Upload 108
Examples 108
Download 109
Examples 109
Delete 110
Examples 110

Index 111

[v]

Preface

CIOs around the world are asking their teams to take advantage of cloud
technologies as a way to slash costs and improve usability. OpenStack is a
fast-growing open source cloud software with a number of projects. Swift is one
such project that allows users to build cloud storage. With Swift, not only can users
build storage using inexpensive commodity hardware, but they can also use the
public cloud storage built using the same technology. Starting with the fundamentals
of cloud storage and OpenStack Swift, this book will provide you with the skills to
build and operate your own cloud storage or use a third-party cloud. This book is
an invaluable tool if you want to get a head start in the world of cloud storage using
OpenStack Swift. The readers of this book will be equipped to build an on-premise
private cloud, manage it, and tune it.

What this book covers

Chapter 1, Cloud Storage - Why Can't I be Like Google?, introduces the need for cloud
storage, the underlying technology of object storage, and an extremely popular open
source object storage project called OpenStack Swift.

Chapter 2, OpenStack Swift Architecture, discusses the internals of the Swift
architecture in detail and shows how elegantly Swift converts commodity hardware
into reliable and scalable cloud storage.

Chapter 3, Installing OpenStack Swift, walks you through all the necessary steps
required to perform a multi-node Swift installation and how to set it up along with
the Keystone setup for authentication.

Chapter 4, Using Swift, describes the various ways you can access Swift object storage.
It also provides examples for the various access methods.

Preface

Chapter 5, Managing Swift, provides details on the various options that are available
to monitor and manage a Swift cluster. Some of the topics covered in this chapter
include StatsD metrics, handling drive failures, node failures, and migrations.

Chapter 6, Choosing the Right Hardware, provides you with the information necessary
to make the right decision in selecting the required hardware for your cloud setup.

Chapter 7, Tuning Your Swift Installation, walks you through a performance
benchmarking tool and the basic mechanisms available to tune a Swift cluster.
Users utilizing Swift will need to tune their installation to optimize performance,
durability, and availability, based on their unique workload.

Chapter 8, Additional Resources, explores several use cases of Swift and provides
pointers on operating systems, virtualization, and distribution tools being used
across various Swift installations.

Appendix, Advanced Features, provides details on various commands that can be run
from a Swift CLI session.

What you need for this book

The various software components required to follow the instructions in the chapters
are as follows:

* Ubuntu Operating System 12.04
° http://www.ubuntu.com/download/server

°® http://releases.ubuntu.com/12.04/

* OpenStack Swift Havana release

* python-swiftclient Swift CLI

e cURL

* Swift tools such as Swift-Recon, Swift-Informant, and Swift-Dispersion

e A StatsD server

° https://github.com/etsy/statsd/

[2]

Preface

Who this book is for

This book is targeted at IT and storage administrators who want to enter the
world of cloud storage using OpenStack Swift. It also targets anyone who wishes
to understand how to use OpenStack Swift and developers looking to port their
applications to OpenStack Swift.

This book also provides invaluable information for IT management professionals
trying to understand the differences between traditional and cloud storage.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:

"Typically, a user sends their HTTP GET, PUT, POST, or DELETE request to a set of
nodes, and the request is translated to physical nodes by the object storage software."

A block of code is set as follows:

import org.jclouds.openstack.swift.CommonSwiftAsyncClient;
import org.jclouds.openstack.swift.CommonSwiftClient;

BlobStoreContext context = ContextBuilder.newBuilder (provider)
.endpoint ("http://LTS2Server/")
.credentials (user, password)
.modules (modules)
.buildview (BlobStoreContext.class) ;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

import org.jclouds.openstack.swift.CommonSwiftAsyncClient;
import org.jclouds.openstack.swift.CommonSwiftClient;

BlobStoreContext context = ContextBuilder.newBuilder (provider)
.endpoint ("http://LTS2Server/")
.credentials (user, password)
.modules (modules)
.buildview (BlobStoreContext.class) ;

[31]

Preface

Any command-line input or output is written as follows:

curl -X GET -i https://storage.lts2.evault.com/vl/xyz -H 'X-Auth token:
token'

New terms and important words are shown in bold.

% Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

[4]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Cloud Storage: Why Can't |
be like Google?

If you could build your IT systems and operations from scratch today, would you
recreate what you have? That's the question Geir Ramleth, CIO of construction giant
Bechtel, asked himself in 2005. The answer was obviously not, and Bechtel ended up
using best practices from four Internet forerunners of the time, YouTube, Google,
Amazon.com, and Salesforce.com, to create their next set of datacenters. This is
exactly the same question CIOs around the world are asking themselves, and that's
what cloud storage is about! Through this book, you will learn how to implement

a storage system that uses the best practices of these web giants rather than a
traditional enterprise, thus cutting Total Cost of Ownership (TCO) by more than 10
times. This type of storage is called cloud storage.

The following are some key elements that constitute cloud storage:

¢ Benefits:

[e]

Dramatic reduction in TCO

o

Unlimited scalability

[e]

Elasticity achieved by virtualization

o

On-demand; that is, pay for what you use

Universal access from anywhere

e Limitations:

[e]

Sharing storage with other departments or companies

o

Is not a high-performance option

[e]

Requires a cloud gateway or an application change

Cloud Storage: Why Can’t I be like Google?

Elements of cloud storage

Let us review the benefits and limitations of cloud storage in more detail.

Reduced TCO

Reduced TCO is the crux of cloud storage. Unless this new storage cuts storage
cost by more than 10 times, it is not worth switching from block or file storage and
dealing with something new and different. By total cost of ownership, we mean the
total of capital expenditures (CAPEX) in the form of equipment, and operational
expenditures (OPEX) in the form of IT storage administrators, electricity, power,
cooling, and so on. This TCO reduction must be achieved without sacrificing
durability (keeping data intact) or availability.

Unlimited scalability

Whether the cloud storage offering is public, that is, offered by a service provider or

it is private, that is, offered by central IT, it must have unlimited scalability. As we
will see, cloud storage is built on distributed systems, meaning that it scales very well.
Traditional storage systems typically have an upper limit, so this is a huge benefit.

Elastic

Storage virtualization decouples and abstracts the storage pool from its physical
implementation. This means that you can get an elastic (grow and shrink as
required) and unified storage pool, when in reality the underlying hardware is
neither. IT professionals who have spent endless hours forecasting data growth and
then waiting for their equipment will appreciate the magnitude of this benefit.

On-demand

Consumers do not reserve blocks of electricity and pay for it upfront in countries
such as the United States. Yet we routinely pay for storage upfront whether we use it
or not. Cloud storage uses a pay-as-you-go model, where you only pay for the data
stored and the data accessed. This can result in huge cost savings for the

storage user.

[8]

Chapter 1

Universal access

The existing enterprise storage has limitations in terms of access. Block storage

is very limiting; a server has to be on the same storage-area network, and LUNs
(storage pools) cannot be shared. Network-attached-storage (NAS) must be mounted
to access it. This creates limitations on the number of clients and requires LAN
access. Cloud storage is extremely flexible — there is no limit on the number of users
or from where you access it. This is possible since cloud storage systems usually
use a REST API over HTTP (get, put, post, and delete) instead of traditional SCSI or
CIFS/ NFS protocols.

Multitenanancy

This is both a benefit and a potential limitation. Cloud storage is typically
multitenant. Tenants may be different organizations in a public cloud or different
departments in a private cloud. The benefit is centralized management that
reduces costs. On the other hand, security is not a real concern because of strong
authentication, access controls, and various encryption options; but it is certainly a
perceived issue.

Use cases

Storage systems have struggled to balance reliability, cost, and performance.
Generally, you can get two out of the three mentioned aspects. Cloud storage
optimizes reliability and cost, but not performance. In fact, as we will see later,
reliability in cloud storage is better than traditional RAID when you reach a large
scale. The way RAID works, you are at a very high risk of having a failure during a
RAID rebuild. Cloud storage uses different techniques such as replication or erasure
coding to provide high reliability even when scaled.

This means cloud storage is good for primary storage for applications such as
web servers and application servers, but not for databases or high-performance
computing tier 2/3 storage, for example, backup, archival (photos, documents,
videos, logs, and so on), and creating an additional copy for disaster recovery.

[o]

Cloud Storage: Why Can’t I be like Google?

Application impact

Cloud storage affects applications in two ways, its interface to storage and its
behavior. First, applications need to port to a new and different storage interface.
Second, applications need to handle an eventually consistent storage system. The
second part requires explanation. Cloud storage is built using distributed systems,
and it is based on a theorem called the CAP theorem, which states that out of the
following three points, it is impossible to guarantee more than two:

* Consistency: For cloud storage, this means that a request to any region/node
returns the same data

* Availability: For cloud storage, this signifies that a request is successfully
acknowledged with a response

» Partial tolerance: For cloud storage, this implies that the architecture is able
to withstand failures in connectivity or parts of the system

Most cloud storage systems guarantee availability and partial tolerance at the
expense of consistency, making the system eventually consistent. This means that an
operation such as write or delete may not be reflected to all nodes at the same time.
Traditional applications expect strict consistency and must be modified.

Cloud gateways

If an application has not ported to cloud storage, is that a dead end? Fortunately not;
there is a class of devices called cloud gateways that provide file or block interfaces
to an application (for example, CIFS, NFS, iSCSI, or FTP/ SFTP) and perform
protocol conversion to the cloud. These gateways provide other functionalities such
as caching, WAN optimization, optional compression, encryption, and deduplication
as well. These gateways also eliminate the need for an application to handle the
eventual consistency problem.

Object storage

How do you build a cloud storage system? The most suitable underlying technology
is object storage.

Object storage is different from block or file storage and it allows a user to store data
in the form of objects (essentially files) in a flat namespace using REST HTTP APIs.
Object storage completely virtualizes the physical implementation from the logical
presentation. It is similar to check-in luggage versus carry-on luggage, where once
you put your check-in luggage in the system, you really don't know where it is. You
simply get it back at your destination. With carry-on luggage, you have to know
exactly where you have kept it at all times.

[10]

Chapter 1

Object storage is built using scale-out distributed systems. Each node, most often,
actually runs on a local file system. As we will see, object storage architectures allow
for the use of commodity hardware as opposed to expensive specialized hardware
used by traditional storage systems. You could argue that object storage is a higher-
level storage system than file systems. The two most critical tasks of an object storage
system are:

* Data placement

. Automating management tasks

Typically, a user sends their HTTP GET, PUT, POST, or DELETE request to any one of
a set of nodes, and the request is translated to physical nodes by the object storage
software. The software also takes care of the durability model by either creating
multiple copies of the object, chunking it, creating erasure codes, or a combination.
The durability model is not RAID because RAID simply does not scale beyond
hundreds of terabytes. The second critical task deals with management, such as
periodic health checks, self-healing, and data migration. Management is also made
easy by having a single flat namespace, which means that a storage administrator
can manage the entire cluster as a single entity.

Let's evaluate, through the following table, how object storage meets the mentioned
cloud storage benefits:

Criteria Ability to meet

Low TCO Storage nodes have no special requirements such as high
availability, management, or special hardware such as RAID; this
means commodity hardware can be used to cut capital expenses
(CAPEX).

A single flat namespace with automated management features
allows you to cut operational expenses (OPEX).

A full analysis of how this cuts the TCO by 10 times or more is
outside the scope of this book.

Unlimited scalability A distributed architecture allows capacity and performance
to scale.

Elasticity A fully virtualized approach allows data to grow and shrink
as necessary.

On-demand A fully virtualized approach with centralized management allows
storage to be offered as an on-demand service.

Universal access REST HTTP APIs provide access from wherever the user is, with
no restriction on the number of users.

Multitenancy A combination of multiple accounts, strong authentication, and
access controls ensures multitenancy with adequate security.

[11]

Cloud Storage: Why Can’t I be like Google?

OpenStack Swift

Is there an object storage stack best suited for our purposes? We believe the right
choice is OpenStack Swift. Let us first look at what the OpenStack project is
about, what OpenStack Swift (also referred to as just Swift) is, and then answer the
preceding question about its choice.

OpenStack, a project launched by NASA and RackSpace in 2010, is currently the
fastest growing open source project, and its mission is to produce a cloud computing
platform useful for both public and private implementations. The two core principles
are simplicity and scalability. OpenStack has numerous subprojects in its umbrella,
ranging from computing and storing to networking, among others. The object
storage project is called Swift and is a highly available, distributed, masterless, and
eventually consistent software stack.

Why Swift when there are several vendors selling proprietary object storage
software? The answer is in the first few sentences of this chapter; if you want to

be like the web giants, the only option is open source. Open source cuts the total
cost of ownership dramatically and provides access to a vibrant community that
can provide technical support. Open source projects also provide longevity since
open source has been shown to outlast proprietary projects. Moreover, open source
projects allow users to benefit from the work done by bigger players and creates an
ecosystem of tools and know-how. Finally, open source projects add functionality at
a lot faster rate than proprietary projects. All this makes Swift the right choice.

The Swift project, in particular, came out of RackSpace's Cloud Files platform. The
project was unique because the engineers and dev ops folks worked together to
create it. This resulted in a very powerful storage system that is simple yet easy

to manage. RackSpace "open-sourced" Swift in 2010 and numerous organizations
such as Seagate, EVault, IBM, HP, Internap, Korea Telecom, Intel, SwiftStack,
CloudScaling, Mirantis, and so on have joined the project since then.

In addition to sharing the mentioned generic object storage characteristics,
OpenStack Swift has some unique additional functionality, as follows:

* Open source: With no license fees, as mentioned previously.

* Open standards: Using HTTP REST APIs with SSL for optional encryption.
The combination of open source and open standards eliminates any potential
vendor lock-in.

[12]

Chapter 1

* Account/ container / object structure: OpenStack Swift incorporates rich
naming and organization capacity, unlike a number of object storage systems
that offer a primitive interface where the user gets a key upon submitting
an object. The burden of mapping names to keys and organizing them in a
reasonable manner is left to the user.

* Global cluster capability: This allows replication and distribution of
data around the world. This functionality helps with disaster recovery,
distribution of hot data, and so on.

* Partial object retrieval: For example, if you want just a portion of a movie
object or a TAR file.

* Middleware architecture: Allows you to add functionality. A great example
of this is integrating with an authentication system.

* Large object support: For objects over 5 GB.

* Additional functionality: This includes object versioning, expiring objects,
rate limiting, temporary URL support, CNAME lookup, domain remap, and
static web mode. This list is constantly growing as a consequence of Swift
being an open source project.

Summary

In this chapter, we covered why cloud storage is a new way to build storage systems
that cuts the total cost of ownership significantly. It uses a technology called object
storage. A high-quality open source object storage software stack to consider

is OpenStack Swift. OpenStack Swift uses a dramatically different architecture

than traditional enterprise storage systems by using a distributed architecture on
commodity servers. The next chapter explains this architecture in detail.

[13]

OpenStack Swift Architecture

OpenStack Swift is the magic that converts a set of unconnected commodity servers
into a scalable, durable, easy-to-manage storage system. We will look at Swift's
architecture (Havana release) in detail. First, we will look at the logical organization
of objects and then how Swift completely virtualizes this view and maps it to the
physical hardware.

Note that we will use the terms durable and reliable
/s synonymously.

The logical organization of objects

First, let us look at the logical organization of objects and then how Swift completely
abstracts and maps objects to the physical hardware.

A tenant is assigned an account. A tenant could be any entity —a person, a department,
a company, and so on. The account holds containers. Each container holds objects, as
shown in the following figure. You can think of objects essentially as files.

— T
—

00 .0
o0 O

Objects

Logical organization of objects in Swift

OpenStack Swift Architecture

A tenant can create additional users to access an account. Users can keep adding
containers and objects within a container without having to worry about any
physical hardware boundaries, unlike traditional file or block storage. Containers
within an account obviously have to have a unique name, but two containers in
separate accounts can have the same name. Containers are flat and objects are not
stored hierarchically, unlike files stored in a filesystem where directories can be
nested. However, Swift does provide a mechanism to simulate pseudo-directories
by inserting a / delimiter in the object name.

The Swift implementation

The two key issues Swift has to solve are as follows:

* Where to put and fetch data
* How to keep the data reliable

We will explore the following topics to fully understand these two issues.

Key architectural principles

Some key architectural principles behind Swift are as follows:

* Masterless: A master in a system creates both a failure point and a
performance bottleneck. Masterless removes this and also allows multiple
members of the cluster to respond to API requests.

* Loosely coupled: There is no need for tight communication in the cluster.
This is also essential to prevent performance and failure bottlenecks.

* Load spreading: Unless the load is spread out, performance, capacity,
account, container, and object scalability cannot be achieved.

* Self-healing: The system must automatically adjust for hardware failures. As
per the CAP theorem discussion in Chapter 1, Cloud Storage: Why Can't I be like
Google? partial tolerances must be tolerated.

* Data organization: A number of object storage systems simply return a hash
key for a submitted object and provide a completely flat namespace. The task
of creating accounts, containers, and mapping keys to object names is left to
the user. Swift simplifies life for the user and provides a well-designed data
organization layer.

* Available and eventually consistent: This was discussed in Chapter 1, Cloud
Storage: Why Can't I be like Google?.

[16]

Chapter 2

Physical data organization

Swift completely abstracts logical organization of data from the physical
organization. At a physical level, Swift classifies the physical location into a
hierarchy, as shown in the following figure:

Region

i B
D

Storage
Server

The hierarchy is as follows: Region: At the highest level, Swift stores data in
regions that are geographically separated and thus suffer from a high-latency
link. A user may use only one region, for example, if the cluster utilizes only
one datacenter.

Physical data location hierarchy

Zone: Within regions, there are zones. Zones are a set of storage nodes that
share different availability characteristics. Availability may be defined as
different physical buildings, power sources, or network connections. This
means that a zone could be a single storage server, a rack, or a complete
datacenter depending on your requirements. Zones need to be connected to
each other via low-latency links. Rackspace recommends having at least five
zones per region.

Storage servers: A zone consists of a set of storage servers ranging from just
one to several racks.

Disk (or devices): Disk drives are part of a storage server. These could be
inside the server or connected via a JBOD.

[17]

OpenStack Swift Architecture

Swift will store a number of replicas (default = 3) of an object onto different disks.
Using an as-unique-as-possible algorithm, these replicas are as "far" away as
possible in terms of being in different regions, zones, storage servers, and disks. This
algorithm is responsible for the durability aspect of Swift.

Swift uses a semi-static table to look up where to place objects and their replicas. It is
semi-static because the look-up table called a "ring" in Swift is created by an external
process called the ring builder. The ring can be modified, but not dynamically; and
never by Swift. It is not distributed, so every node that deals with data placement has
a complete copy of the ring. The ring has entries in it called partitions (this term is
not to be confused with the more commonly referred to disk partitions). Essentially,
an object is mapped to a partition, and the partition provides the devices where the
replicas of an object are to be stored. The ring also provides a list of handoff devices
should any of the initial ones fail.

The actual storage of the object is done on a filesystem that resides on the disk, for
example, XFS. Account and container information is kept in SQLite databases. The
account database contains a list of all its containers, and the container database
contains a list of all its objects. These databases are stored in single files, and the files
are replicated just like any other object.

Data path software servers

The data path consists of the following four software servers:

* Proxy server
* Account server
* Container server
* Object server
Unless you need performance, then account, container, and object servers are often

put on one physical server and called a storage server (or node), as shown in the
following figure:

[18]

Chapter 2

’v‘
Storage Storage Storage
Server Server Server

Storage Storage Storage : : :
Server Server Server Storage Storage Storage
X Server Server Server

Storage Storage Storage
Server Server Server

Zone Zone Zone

Zone Zone Zone

Region

Region

Data path software servers (a storage server includes an account, container, and object servers)

A description of each server type is as follows: Proxy server: The proxy
server is responsible for accepting HTTP requests from a user. It will look
up the location of the storage server(s) where the request needs to be routed
by utilizing the ring. The proxy server accounts for failures (by looking up
handoff nodes) and performs read/write affinity (by sending writes or reads
to the same region; Refer to A day in the life of a create operation and A day in
the life of a read operation sections). When objects are streamed to or from an
object server, they are streamed directly through the proxy server as well.
Moreover, proxy servers are also responsible for the read/write quorum and
often host inline middleware (discussed later in this chapter).

Account server: The account server tracks the names of containers in a
particular account. Data is stored in SQLite databases; database files are further
stored on the filesystem. This server also tracks statistics, but does not have any
location information about containers. The location information is determined
by the proxy server based on the ring. Normally, this server is hosted on the
same physical server with container and object servers. However, in large
installations, this may need to be on a separate physical server.

Container server: This server is very similar to the account server, except that
it deals with object names in a particular container.

Object server: Object servers simply store objects. Each disk has a filesystem
on it, and objects are stored in those filesystems.

Let us stitch the physical organization of the data with the various software
components and explore the four basic operations: create, read, update, and delete
(known as CRUD). For simplicity, we are focusing on the object server, but it may be
further extrapolated to both account and container servers too.

[19]

OpenStack Swift Architecture

A day in the life of a create operation

A create request is sent via an HTTP puT API call to a proxy server. It does not
matter which proxy server gets the request since Swift is a distributed system and all
proxy servers are created equal. The proxy server interacts with the ring to get a list
of disks and associated object servers to write data to. As we covered earlier, these
disks will be as unique as possible. If certain disks have failed or are unavailable,

the ring provides handoff devices. Once the majority of disks acknowledge the write
(for example, two out of three disks), the operation is returned as being successful.
Assuming the remaining writes complete successfully, we are fine. If not, the
replication process, shown in the following figure, ensures that the remaining copies
are ultimately created:

HTTP put request (create object)

@ Ring
4

Proxy Server Proxy Server
Proxy Server Write3 (can be delayed if other 2 have /xy
N . completed) ’V A

Writel

Write: T S Storage Storage Storage
TR Server Server Server
Storage Storage Storage : : :
Server Server Server Storage Storage Storage
. . = Server Server Server

*—0

Zone Zone Zone

Region
Storage Storage Storage
Server Server Server Objects asynchronously
moved to other regions;

Zone Zone Zone dedicated replication
network may be used.

Region

A day in the life of a create operation

The create operation operation works slightly differently in a multiregion cluster.
All copies of the object are written to the local region. This is called write affinity.
The object is then asynchronously moved to other region(s). A dedicated replication
network may be used for this operation.

[20]

Chapter 2

A day in the life of a read operation

A read request is sent via an HTTP GET API call to a proxy server. Again, any proxy
server can receive this request. Similar to the create operation, the proxy server
interacts with the ring to get a list of disks and associated object servers. The read
request is issued to object servers in the same region as the proxy server. This is
called read affinity. For a multiregion implementation, eventual consistency presents
a problem since different regions might have different versions of an object. To get
around this issue, a read for an object with the latest timestamp may be requested.
In this case, proxy servers first request the time stamp from all the object servers and
read from the server with the newest copy. Similar to the write case, in the case of a
failure, handoff devices may be requested.

A day in the life of an update operation

An update request is handled in the same manner as a write request. Objects are
stored with their timestamp to make sure that when read, the latest version of the
object is returned. Swift also supports a versioning feature on a per-container basis.
When this is turned on, older versions of the object are also available in a special
container called versions container.

A day in the life of a delete operation

A delete request sent via an HTTP DELETE API call is treated like an update but
instead of a new version, a "tombstone" version with zero bytes is placed. The delete
operation is very difficult in a distributed system since the system will essentially
fight a delete by recreating deleted copies. The Swift solution is indeed very elegant
and eliminates the possibility of deleted objects suddenly showing up again.

Postprocessing software components

There are three key postprocessing software components that run in the background,
as opposed to being part of the data path.

[21]

OpenStack Swift Architecture

Replication

Replication is a very important aspect of Swift. Replication ensures that the system is
consistent, that is, all servers and disks assigned by the ring to hold copies of an object
or database do indeed have the latest version. The process protects against failures,
hardware migration, and ring rebalancing (where the ring is changed and data has

to be moved around). This is done by comparing local data with the remote copy. If
the remote copy needs to be updated, the replication process "pushes" a copy. The
comparison process is pretty efficient and is carried out by simply comparing hash
lists rather than comparing each byte of an object (or account or container database).
Replication uses rsync, a Linux based remote file synchronization utility, to copy data
but there are plans to replace it with a faster mechanism.

Updaters

In certain situations, account or container servers may be busy due to heavy load
or being unavailable. In this case, the update is queued onto the storage server's
local storage. There are two updaters to process these queued items. The object
updater will update objects in the container database while the container updater
will update containers in the account database. This situation could lead to an
interesting eventual consistency behavior where the object is available, but the
container listing does not have it at that time. These windows of inconsistency are
generally very small.

Auditors

Auditors walk through every object, container, and account to check their data
integrity. This is done by computing an MD5 hash and comparing it to the stored
hash. If the item is found corrupted, it is moved to a quarantine directory and in
time, the replication process will create a clean copy. This is how the system is self-
healing. The MD5 hash is also available to the user so they can perform operations
such as comparing the hash of their location object with the one stored on Swift.

Other processes
The other background processes are as follows:
* Account reaper: This process runs in the background and is responsible for
deleting an entire account once it is marked for deletion in the database.

* Object expirer: Swift allows users to set retention policies by providing
"delete-at" or "delete-after" information for objects. This process ensures that
expired objects are deleted.

[22]

Chapter 2

* Drive audit: This is another useful background process that looks out for
bad drives and unmounts them. This can be more efficient than letting the
auditor deal with this failure.

* Container to container synchronization: Finally using the container to
container synchronization process, all contents of a container to be mirrored
to another container. These containers can be in different clusters and the
operation uses a secret sync key. Before multiregion support, this feature was
the only way to get multiple copies of your data in two or more regions, and
thus this feature is less important now than before. However, it is still very
useful for hybrid (private-public combination) or community clouds (multiple
private clouds).

Inline middleware options

In addition to the mentioned core data path components, other items may also

be placed in the data path to extend Swift functionality. This is done by taking
advantage of Swift's architecture, which allows middleware to be inserted. The
following is a non-exhaustive list of various middleware modules. Most of them
apply only to the proxy server, while some modules such as logging and recon do
apply to other servers as well.

Auth

Authentication is one of the most important inline functions. All Swift middleware is
separate and is used to extend Swift; thus auth systems are separate projects and one
of several may be chosen. Keystone auth is the official OpenStack identity service
and may be used in conjunction with Swift, though there is nothing to prevent a user
from creating their own auth system or using others such as Swauth or TempAuth.

Authentication works as follows:
1. A user presents credentials to the auth system. This is done by executing an
HTTP REST API call.
The auth system provides the user with an AUTH token.

The AUTH token is not unique for every request, but expires after a
certain duration.

Every request made to Swift has to be accompanied by the AUTH token.

5. Swift validates the token with the Auth system and caches the result. The
result is flushed upon expiration.

6. The Auth system generally has the concept of administrator accounts and
non-admin accounts. Administrator requests are obviously passed through.

[23]

OpenStack Swift Architecture

7. Non-admin requests are checked against container level Access Control Lists
(ACL). These lists allow the administrator to set read and write ACLs for
each non-admin user.

8. Therefore, for non-admin users, the ACL is checked before the proxy server
proceeds with the request. The following figure illustrates the steps involved
when Swift interacts with the Auth system:

© swift validates the token
with the Auth system; caches
results & time to expire
\S n
o b it cre utr {oke
cce’
ace, Aury toke | Proxy Server |
OMpany, o " has to
eVe’J/ reque, @ Administrator requests
St forwarded; non-admin requests
checked against ACLs in
container server

Swift and its interaction with the Auth system

Logging
Logging is a very important module. This middleware provides logging. A user may
insert their custom log handler as well.

Other modules

A number of other Swift and third-party middleware modules are available; the
following are a few examples:

* Health check: This module provides a simple way to monitor if the proxy
server is alive. Simply access the proxy server with the path / health check
and the server will respond with Ok.

* Domain remap: This middleware allows you to remap the account and
container name from the path into the host domain name. This allows you to
simplify domain names.

* CNAME lookup: Using this software, you can create friendly domain names
that remap directly to your account or container. CNAME lookup and
domain remap may be used in conjunction.

* Rate limiting: Rate limiting is used to limit the rate of requests that result in
database writes to account and container servers.

[24]

Chapter 2

* Container and account quotas: An administrator can set container or account
quotas by using these two middleware modules.

* Bulk delete: This middleware allows bulk operations such as deletion of
multiple objects or containers.

* Bulk archive auto-extraction: For bulk expansion of TAR (TAR, tar.gz,
tar.bz2) files to be performed with a single command, use this software.

* TempURL: The TempURL middleware allows you to create a URL that
provides temporary access to an object. This access is not authenticated but
expires after a certain duration of time. Furthermore, the access is only to a
single object and no other objects can be accessed via the URL.

* Swift origin server: This is a module that allows the use of Swift as an origin
server to a Content Delivery Network (CDN).

* Static web: This software converts Swift into a static web server. You can
also provide CSS stylesheets to get full control over the look and feel of your
pages. Obviously, requests can be from anonymous sources.

* Form post: Using the form post middleware, you get the ability to upload
objects to Swift using standard HTML form posts. The middleware converts
the different POST requests to different PUT requests, and the requests do not
go through authentication to allow collaboration across users and non-users
of the cluster.

* Recon: Recon is software useful for management. It provides monitoring and
returns various metrics about the cluster.

Additional features

Swift has additional features not covered in the previous sections. The following
sections detail some of the additional features.

Large object support

Swift places a limit on the size of a single uploaded object (default is 5 GB), yet
allows for the storage and downloading of virtually unlimited size objects. The
technique used is segmentation. An object is broken up into equal-size segments
(except the last one) and uploaded. These uploads are efficient since no one segment
is unreasonably large and data transfers can be done in parallel. Once uploads are
complete, a manifest file, which shows how the segments form one single large
object, is uploaded. The download is a single operation where Swift concatenates the
various segments to recreate the single large object.

[25]

OpenStack Swift Architecture

Metadata

Swift allows custom metadata to be attached to accounts, containers, or objects that
are set and retrieved in the form of custom headers. The metadata is simply a key
(name) value pair. Metadata may be provided at the time of creating an object (using
pUT) or updated later (using POST). Metadata may be retrieved independently of the
object by using the HEAD method.

Multirange support

The HTTP specification allows for a multirange GET operation, and Swift supports
this by retrieving multiple ranges of an object rather than the entire object.

CORS

CORS is a specification that allows JavaScript running in a browser to make a request
to domains other than where it came from. Swift supports this, and this feature
makes it possible for you to host your web pages with JavaScript on one domain and
request objects from a Swift cluster on another domain. Swift also supports a broader
cross-domain policy file where other client-side technologies such as Flash, Java, and
Silverlight can also interact with Swift that is in a different domain.

Server-side copies

Swift allows you to make a copy of an object using a different container location
and/or object name. The entire copy operation is performed on the server side, thus
offloading the client.

Cluster health

A tool called swift-dispersion-report may be used to measure the overall cluster
health. It does so by ensuring that the various replicas of an object and container are
in their proper places.

Summary

In summary, Swift takes a set of commodity servers and creates a reliable and
scalable storage system that is simple to manage. In this chapter, we reviewed the
Swift architecture and major functionalities. The next chapter shows how you can
install Swift on your own environment using multiple servers.

[26]

Installing OpenStack Swift

The previous chapter should have given you a good understanding of OpenStack
Swift's architecture. Now, let's delve into the installation details of OpenStack Swift.
This chapter is meant for IT administrators who want to install OpenStack Swift.
The version discussed here is the Havana release of OpenStack. Installation of Swift
has several steps and requires careful planning before beginning the process. A
simple installation consists of installing all the Swift components in one node, and
a complex installation consists of installing Swift on several proxy server nodes and
storage server nodes. The number of storage nodes can be in the order of thousands
across multiple zones and regions. Depending on your installation, you need to
decide on the number of proxy server nodes and storage server nodes that you will
configure. This chapter demonstrates a manual installation process; advanced users
may want to use utilities such as Puppet or Chef to simplify the process.

This chapter walks you through an OpenStack Swift cluster installation that contains
one proxy server and five storage servers. As explained in Chapter 2, OpenStack Swift
Architecture, storage servers include account, container, and object servers.

Hardware planning

This section describes the various hardware components involved in the setup

(see Chapter 6, Choosing the Right Hardware, for a complete discussion on this topic).
Since Swift deals with object storage, disks are going to be a big part of hardware
planning. The size and number of disks required should be calculated based on your
requirements. Networking is also an important component where factors such as
public/ private network and a separate network for communication between storage
servers need to be planned. Network throughput of at least 1Gbps is suggested,
while 10 Gbps is recommended.

The servers we set up as proxy and storage servers are dual quad-core servers with
12 GB of RAM.

Installing OpenStack Swift

In our setup, we have a total of 15 x 2 TB disks for Swift storage; this gives us a total
size of 30 TB. However, with in-built replication (with default replica count of 3),
Swift maintains three copies of the same data, and hence, the effective storage capacity
for storing files/objects is 10 TB. This is further reduced due to less than 100 percent
utilization. The following figure depicts the nodes of our Swift cluster configuration:

HTTP RESTful Access

192.168.2.244 (external IP)
172.168.10.51

Storage Network
172.168.10.xx

Proxy
Server

Storage Storage
Server 1 Server 2

Storage Storage Storage
Server 3 Server 4 Server 5

172.16¢8.10.52 172.168.10.53 172.168.10.54 172.168.10.55 172.168.10.56
172.168.9.52 172.168.9.53 172.168.9.54 172.168.9.55 172.168.9.56

Replication Network
172.168.9.xx

OpenStack Swift Object Storage Setup

Server setup and network configuration

All the servers are installed with the Ubuntu operating system (Version 12.04).
You need to configure three networks, which are as follows:

* Public network: The proxy server connects to this network. This network
provides public access to the API endpoints within the proxy server.

* Storage network: This is a private network not accessible to the outside
world. All the storage servers and the proxy server will connect to this
network. Communication between the proxy server and the storage servers,
and communication between the storage servers, takes place within this
network. In our configuration, the IP addresses assigned in this network are
172.168.10.0/172.168.10.99.

[28]

Chapter 3

* Replication network: This also is a private network that is not accessible
to the outside world. It is dedicated to replication traffic, and only storage
servers connect to this network. All replication-related communication
between storage servers takes place within this network. In our
configuration, the IP addresses assigned in this network are 172.168.9.0 /
172.168.9.99.

Preinstallation steps

In order for the various servers to communicate easily, edit the /etc/hosts file,
and add the hostnames of each server in it. This is performed on all the nodes. The
following image shows an example of the contents of the /etc/hosts file of the
proxy server node:

127.0.0.1 localhost

182 .168.2.2494 swift-proxy
172.168.10.51 s-sWwift-proxy
172.168.10.52 swift-storagel
172.168.10.53 swift-storagel
172.168.10.54 swift-storage3
172.168.10.55 swift-storage4d
172.168.10.56 swift-storages

Install the NTP service on the proxy server node and storage server nodes. This helps
all the nodes in synchronizing their services effectively without any clock delays. The
pre-installation steps to be performed are as follows:

1. Configure the proxy server node to be the reference server for the storage
server nodes to set their time from the proxy server node:

apt-get imstall ntp

2. Add the following line to /etc/ntp.conf for NTP configuration in the proxy
server node:

server ntp.ubuntu.com

3. For NTP configuration in storage server nodes, add the following line to /
etc/ntp.conf. Comment out the remaining lines with server addresses such
as 0.ubuntu.pool.ntp.org, 1.ubuntu.pool.ntp.org, 2.ubuntu.pool.
ntp.org, and 3.ubuntu.pool .ntp.org:

server s-swift-proxy

[29]

Installing OpenStack Swift

4. Restart the NTP service on each server with the following command:

|# service ntp restart |

Downloading and installing Swift

The Ubuntu Cloud archive is a special repository that provides users with the
capability to install new releases of OpenStack.

The steps to perform to download and install Swift are as follows:

1. Enable the capability to install new releases of OpenStack and install the
latest version of Swift on each node using the following commands:

apt-get install python-software-properties
add-apt-repository cloud-archive:havana

2. Now, update the OS using the following command:

apt-get update && apt-get distc—-upgrade

3. On all the Swift nodes, we will install the prerequisite software and services
using the following command:

$# apt-get install swift rsync memcached python-netifaces
python-xattr python-memcache

4. Next, we create a Swift folder under /etc and give the user permission to
access this folder by using the following commands:

mkdir -p fetc/swift
$# chown -R swift:swift /fetc/swift

5. Createa /etc/swift/swift.conf file and add a variable called swift
hash_path_suffix in the swift-hash section. We then create a unique hash
string using Python -¢ "from uuid import uuid4; print uuid4 ()"
or openssl rand -hex 10 and assign it to this variable as shown in the
following command:

[swift-hash]
random unigue string that can never change (DO NOT LOSE)
swift _hash path suffix = sL5DQfffedFUHIjjakM

[30]

Chapter 3

6. We then add another variable called swift hash path prefix to the
swift-hash section and assign another hash string created using the method
described in the preceding step to it. These strings will be used in the hashing
process to determine the mappings in the ring. The swift . conf file should
be identical on all the nodes in the cluster.

Setting up storage server nodes

This section explains additional steps to set up the storage server node.

Installing services

On each storage server node, install the swift-account, swift-container, swift-object,
and xfsprogs(XFS Filesystem) packages using the following command:

|# apt—-get install swift-account swift-container swift-object =xfsprogs

Formatting and mounting hard disks

On each storage server node, we need to identify the hard disks that will be used to
store the data. We will then format the hard disks and mount them to a directory,
which Swift will then use to store data. We will not create any RAID levels or any
subpartitions on these hard disks because they are not necessary for Swift. They will
be used as whole disks. The operating system will be installed on separate disks,
which will be RAID-configured.

First, identify the hard disks that are going to be used for storage, and format them.
In our storage server, we have identified sdb, sdc, and sdd, which will be used
for storage.

We will perform the following four operations on sdb. These four steps should be
repeated for sdc and sdd as well:

1. Do the partitioning for sdb and create the filesystem using the
following command.

% fdisk fdev/=db
$# mkfs.xfs Sdev/adbl

[31]

Installing OpenStack Swift

2. Then, let's create a directory in /srv/node that will be used to mount the
filesystem. Give permission to the swift user to be able to access this directory.
These operations can be performed by using the following commands:

mkdir -p /srv/node/=sdbl
chown -R swift:swift /srv/node

3. We set up an entry in fstab for the sdb1 partition in the sdb hard disk, as
follows. This will automatically mount sdb1l to /srv/node/sdbl on every
boot. Add the following command line to /etc/fstab file:

fdev/sdbl /srv/node/sdbl xfs noatime,nodiratime,nobarrier,logbufs=8 0 0

4. Mount sdb1 to /srv/node/sdbl by using the following command:

|# mount Jsrv/node/sdbl

RSYNC and RSYNCD

In order for Swift to perform replication of data, we need to set up rsync and
rsyncd. conf by performing the following steps:

1. Create the rsyncd. conf file in the /etc folder with the following content:

¥ vi fetc/ravnod.conf

uid = swift

gid = swift

log file = /var/log/rsyncd.log
pid file = /wvar/run/rsyncd.pid
address = 172.168.9.52
[2eccount]

max connections = 2

path = /=arv/node/

read only = false

lock file = /war/lock/account.lock
[container]

max connections = 2

path = /=arv/node/

read only = false

lock file = /war/lock/container.lock
[ebject]
max connections = 2

path = /=arv/node/
read only = false
lock file = /wvar/lock/object.lock

[32]

Chapter 3

172.168.9.52 is the IP address that is on the replication network for this
storage server. Use the appropriate replication network IP addresses for the

corresponding storage servers.

2. We then have to edit the /etc/default/rsync file and set RSYNC ENABLE to

true using the following command:

RSYNC ENABLE=true

3. We then have to restart the rsync service by using the following command:

$ service rsync start

4. Next, we create the swift recon cache directory by using the following
command, and then set its permissions:

mkdir -p JSvar/swift/recon

Setting permissions is done using the following command:

% chown -R swift:awift /wvar/swift/recon

Repeat these steps on every storage server.

Setting up the proxy server node

This section explains the steps to set up the proxy server node, which are
as follows:

1. Install the following services only on the proxy server node:

$# apt-get install swift-proxy memcached python-keystoneclient
python-swiftclient python-webob

Openssl has already been installed as part of the operating system
= installation to support HTTPS.

]

[33]

Installing OpenStack Swift

2. We are going to use the OpenStack Keystone service for authentication. So,
we have to create the proxy-server. conf file and add the following
content to it:

vi Jetc/swift/proxy-server.cont

Add the following configuration information to the proxy-server. conf file:

[DEFATLT]

bind port = 8888

user = swift

[pipeline:main]

pipeline = healthcheck cache authtoken keystoneauth proxy-server
[app:proxy-server]

uze = egg:swiftfproxy

allow_account_management = true

account_autocreate = true

[filter:keystoneauth]

use = egg:swift¥keystoneauth

cperator roles = Member, admin, swiftoperator

[filter:authtoken]

paste.filter factory = keystoneclient.middleware.auth token:filter factory
Delaying the auth decision is required to support token-less
usage for anonymous referrers ('.r:®").

delay_auth decision = true

cache directory for signing certificate

signing_dir = /home/swift/keystone-signing

* auth_ * settings refer to the Keystone server

auth_protocol = http

the hostname of the proxy server

auth_host = swift-proxy

auth_port = 35357

the same admin token as provided in keystone.conf

admin_ token = Random Token

$# the =service tenant and swift userid and password created in Heystone
admin_ tenant_name = admin

admin user = admin

admin password = vedadms123

[filter:cache]

uze = egg:swiftimemcache

[filter:catch_errors]

use = egg:swift#catch_errors

3. The proxy-server.conf file should be edited to have the correct auth host,
admin token, admin_tenant name, admin_ user, and admin password
(refer to the following keystone setup section to see how to set up the correct
credentials).

4. Next, we create a keystone-signing directory and give permissions to the
swift user using the following commands:

mkdir -p /home/swift/kevystone-=signing
$# chown -R swift:swift /home/swift/keystone-signing

[34]

Chapter 3

The ring setup

As discussed in Chapter 2, OpenStack Swift Architecture, the ring (also called ring
builder, or simply builder file) contains information to map the user API request
information to the physical location of the account, container, or object. We will have
a builder file for accounts, which will contain mapping information for the account.
Similarly, we will have a builder file for containers and objects.

Builder files are created using the following commands:

cd fetc/swift

swift-ring-builder account.builder create 18 3 1
swift-ring-builder container.builder create 18 3 1
swift-ring-builder object.builder create 18 3 1

S e e

The parameter 18 indicates that there can be 2 to the power of 18 partitions created
to store the data. To determine the number of partitions, estimate the maximum
number of disks, multiply that number by 100, and then round it up to the nearest
power of two. Picking a number smaller than needed is not catastrophic; it will

just result in an unbalanced cluster from a storage capacity point of view. Picking a
number larger than needed will impact performance. The parameter 3 indicates that
three replicas of data will be stored, and the parameter 1 is set in such a way that we
don't move a partition more than once in an hour.

In Swift storage, hard disks can be grouped into zones, and rings can be set up
according to the zones. Each hard disk in a storage server belongs to a particular
zone. This helps Swift replicate the data to different zones in an as-unique-as-
possible manner. If there is a failure in a particular zone, data can be fetched from the
data copies in other zones. In a multiregion setup, if there is a failure in a particular
region, then data can be fetched from other regions.

The following command syntax is used to add storage server hard disk devices to
ring builder files. Please note that the region and zone the hard disk belongs to is
provided as an input parameter. The weight parameter (100) indicates how much
data is going to be placed on this disk compared to other disks.

Run the following commands to add the hard disks allocated for storage to the ring.
In order to add mapping for the sdb1 device, we run the following commands:

$# swift-ring-builder account.builder add rlzl-172.168.10.52:6002%
R172.168.9.52:6005/=sdbl 100

swift-ring-builder container.builder add rlzl-172.168.10.52:60%
01R172.168.9.52:6004/=sdbl 100

$ swift-ring-builder object.builder add rlzl-172.168.10.52:6000R\
172.168.9.52:6003/=sdbl 100

[35]

Installing OpenStack Swift

In the preceding commands, 172.168.10.52 is the IP address of the storage node in
the storage network that contains sdb1, and 172.168.9.52 is the IP address of the
same storage node in the replication network.

We have to run the preceding commands by replacing sdb1 with sdc1 and sdd1 for
this storage network IP address and replication network IP address. We have to run
the same commands to add sdbl1, sdc1, and sdd1 of the remaining storage servers
as well by giving their storage network IP addresses and replication network IP
addresses in the commands.

The final step in completing the ring builder process is creating the ring files that will
be used by the Swift processes. This is done using the rebalance command, as shown:

swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
% swift-ring-builder object.builder rebalance

Upon running the preceding commands, the following files will be created:
account.ring.gz, container.ring.gz, and object.ring.gz. Copy these files into
the etc/swift directory of all the nodes in the cluster.

Also, make sure that /etc/swift has swift user permissions on every node. Set up
user permissions using the following command:

|# chown -R swift:swift Sfetc/swift |

Now we can start the proxy service as follows:

|# service swift-proxy restart |

Starting services on all storage nodes

Now that the storage servers have the ring files (account .ring.gz, container.
ring.gz, and object.ring.gz), we can start the Swift services on the storage
servers using the following commands:

[36]

Chapter 3

service swift-object start

service swift-object-replicator start
service swift-object-updater start
service swift-object-auditor start
service swift-container start

service swift-container-replicator start
gervice swift-container-updater start
service swift-container—-auditor start
service swift-account start

gervice swift-account-replicator start
gervice swift-account-reaper start
service swift-account-auditor start

T T T TR TR

We should also start the rsyslog and memcached services on the storage servers by
using the following commands:

% service rsyslog restartc
% service memcached restart

Multiregion support

In multiregion installation, we place a pool of storage nodes in one region and the
remaining in other regions. We can either have a single endpoint for all the regions
or a separate endpoint for each region. During the ring builder setup, the region

is specified as a parameter. Clients can access any endpoint and do the operations
(create, delete, and so on), and they will be replicated across other regions. The proxy
server configuration files will contain read_affinity and write_affinityina
particular region.

Our test configuration had two proxy servers and five storage nodes. Two regions
were created by creating two endpoints. A list of the endpoints gives the following
output, which has been truncated for better readability:

keystone endpoint-list

oo oo oo m o m o m o m e — e — e — e — i — - — - t--mm - +t--mm - mm - m -
———————————————————————————————————— ++

|id| region | publicurl

| adminurl |

oo oo oo m o m o m o m e — e — e — e — i — - — - t--mm - +t--mm - mm - m -
———————————————————————————————————— ++

| | Swift-Region2 | http://192.168.2.231:8888/v1/AUTH % (tenant

id)s | http://192.168.2.231:8888/v1 |

[37]

Installing OpenStack Swift

| |Openstack-Identity | http://192.168.2.230:5000/v2.0

| http://192.168.2.230:35357/v2.0

| | Swift-Regionl | http://192.168.2.244:8888/v1/AUTH % (tenant
id)s | http://192.168.2.244:8888/vl |

o mm oo mmmmm e ——— - e i tommmm - - - -

Swift-Region2 and Swift-Regionl are the two regions, and Openstack-Identity
is the authentication endpoint.

The Keystone service

We will be using the Keystone service for authentication. The Keystone service
exposes an endpoint that a user will connect to using username and tenant
credentials. After validation by the Keystone identity service, a token that will be
cached and used in further API calls to various other OpenStack API endpoints is
returned to the user. Within Keystone, a user is defined to have account credentials
and is associated with one or more tenants. Also, a user can be given a role such as
admin (metadata information), which entitles this user to more privileges than an
ordinary user.

Let us consider the case where a user is connecting to a Swift endpoint to read an
object. When a user initiates an API call along with a token to the Swift endpoint,
this token is passed by the Swift endpoint back to Keystone for validation. Once
validated by Keystone, it returns a success code back to the Swift endpoint. The Swift
service will then continue processing the API to read the object.

We now show the steps necessary to install and configure the Keystone service in the
following sections.

Installing MySQL

We will use MySQL for the Keystone database. The installation steps are as follows.

1. Install the MySQL database and client software on the proxy server node by
using the following command:

root@swift-proxy:/home/vedams# apt-get install python-mysqldb
mysql-server

2. Edit /etc/mysqgl/my.cnf in the proxy node, assigning the proxy server host
name to Bind-address, as shown in following command:

Bind-address = swift-proxy

[38]

Chapter 3

3. Restart the MySQL service on the proxy node by using the
following command:

root@swift-proxy:/home/vedams# service mysql restart

4. Delete anonymous users by using the mysql_secure_installation
command, as follows:

root@swift-proxy:/home/vedams# mysql secure installation

5. Respond with yes to delete anonymous user prompt.

Installing Keystone

Keystone may be installed on dedicated servers for large installations, but for this
example, install Keystone service on the proxy node. The following steps describe
how to install and setup the Keystone service:

1. [Install the Keystone service using the following command.

¥ apt-get install keystone

2. We have to generate a random token to access the Keystone service, as
shown in the following command:

¥ openssl rand -hex 10

3. We then edit the /etc/keystone/keystone. conf file and perform the
following changes:

o

Replace admin_token with the random token that gets generated, as
shown in the following command line:

|adrr.i:‘1_tr:u]-cen = Random Token |

o

Replace SQLite with a MySQL database connection using the
following command:

connection = mysgl://keystone:vedans123@swift-proxy/keystone |

[39]

Installing OpenStack Swift

4.

Make sure that the SQLite file has been deleted after configuring MySQL;
otherwise, we need to manually delete the file. Run the following command
to list the contents of the /var/lib/keystone directory and delete the
keystone.sglite file if present:

#sudo 1ls -la /var/lib/keystone/

We then create the Keystone database user and grant permissions using the
following commands:

root@swift-proxy: /home/vedams# mysgl -u root -pvedamslz23
Welcome to the MyS5QL monitor. Commands end with ; or \g.
Your My5QL connection id is 38

Server

Copyright (c) 2000, 2013, Cracle and/or its affiliates. Rll rights reserved.
Oracle i= a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective

OWners.

Type 'help:;' or '\h' for help. Type '\c' to clear the current input statement.

mysgl> CREATE DATABASE keystone;
Query OK, 1 row affected (0.00 sec)

mysgl> GRANT ALL PRIVILEGES ON keystone.* TQO 'keystone'@'localhost' IDENTIFIED BY 'vedamsl23';
Query OK, 0 rows affected (0.00 sec)

mysgl> GRANT ALL PRIVILEGES ON keystone.®* TO 'keystone'@'3' IDENTIFIED BY 'vedams123';
Query CK, 0 rows affected (0.00 sec)

mysgl> quit
Bye
root@swift-proxy: /home/vedams# I

wversion: 5.5.34-0ubuntul.12.04.1 (Ubuntu)

6. Next, we check the Keystone database synchronization and restart the

Keystone service by using the following commands:

keystone-manage db sync
service keystone restart

7. Export the following environment variables:

export 05 _SERVICE TOEEN=Random Token
export 05 SERVICE ENDPCOINT=http://swift-proxy:35357/v2.0

We then set up a tenant, user, and role to authenticate the input credentials
against. Once authenticated, access to Swift services and endpoints

is permitted. We then create a tenant for an administrator user, an
administrator user called admin, and a role for administrative tasks. We
then add an admin role to the admin user. This is shown in the following
command lines:

[40]

Chapter 3

4 keystone tenant-create ——name=admin —-description="Admin Tenant”
keystone user-create —-name=admin --pass=vedams123 —-email=testlgmail.com
keystone role-create —-name=admin
keystone user-role-add —--user=admin —-tenant=admin --role=admin
The following screenshot shows the output of executing the
preceding commands:
root@swift-proxy:/home/vedams¥ keystone tenant-create --name—admin --description="Admin Tenant"
| Property | Value]
| description | Admin Tenant]
] enabled | True |
| id | £570de35b6dc4a4d31a24516d049173a |
| name | admin |

root@swift-proxy:/home/vedams¥ keystone user-create --name=admin --pass=vedamsl23 --email=test@gmail.com

| Property | Value I
email	testfgmail. com
enabled	True
id	77461f6a3763462b990cdaceecl34ate
name	admin]

root@swift-proxy:/home/vedams$ keystone role-create —-—name=admin

Property	Value
id	814ffecflbbc4221a9%ab%8618d159ded
name	admin

root@swift-proxy:/home/vedams¥ keystone user-role-add --user=admin --tenant=admin --role=admin
root@awift-proxy:/home/vedams¥

We then create another user called swift-user and add it to the tenant
called swift-tenant. The user is given member access role. The following
screenshot shows the creation process:

root@awift-proxy:/home/vedams# keystone tenant-create ——name=swift-tenant --description="Swift Tenant"
Property	Value
description	Swift Tenant
enabled	True
id	bdle87fE876e541la4acc42803430alblb
name	swift-tenant

root@awifc-proxy:/home/vedams$ keystone user-create —-name=swift-user --pass=vedamsl123 --email=swiftuser@gmail.com

Property Value

email	swiftuser@omail.com
enabled	True
I	
I	

id 0b81ddf04865444bbbdd4be417a392fc
name swift-user
root@swift-proxy:/home/vedams# keystone user-role-add --user=swift-user --tenant=swift-tenant --role= member

root@swift-proxy:/home/vedams#

[41]

Installing OpenStack Swift

9. The Keystone service keeps track of the various OpenStack services that we
have installed and also keeps track of where they are in the network. In order
to keep track of the services, IDs are created for the services using keystone
service-create command as shown in the following commands:

% kevystone service-create —-name=kevystone —-type=identity \
——description="Keystone Identity Service”

keystone service-create —-name=swift --tyvpe=object-store %
—-—description="swift Service”

The following screenshot shows the output of executing the preceding
service-create commands:

root@ewift-proxy:/home/vedams$ keystone service-create --name=keystone --type=identity --description="Keystone Identity Servi
cem

1 Property | Value

| description | Keystone Identity Service

| id | 29c2d44442464375bb50e236fcc584be |

| name] keystone]

| Type | identity |

root@swift-proxy:/home/vedams# keystone service-create --name=swift --tyvpe=object-store —-description="3wift Object storage s
ervice"”

] Property | Value |

| description | Swift Object storage service]

| id | a0ab378728b148£d9c8a0534d1d6a227 |

| name] swift]

] Type | object-3tore |

root@swift-proxy:/home/vedamst [J

10. We then need to specify the Keystone service endpoints and Swift service
endpoints to Keystone using the endpoint-create command. In the
following commands, swift-proxy is the hostname of the proxy server:

kevstone endpoint-create —-—service-id KEYSTONE_SERVICE_ID
——region RegionOne —-publicurl ‘http://swift-proxy:5000/w2.07
——adminurl ‘http://swift-proxv:35357/v2.0" --internalurl
‘http://swift- proxy:5000/w2.0"

kevstone endpoint-create —-—service-id SWIFT_SERVICE_ID
-—-region regionCne

~-publicurl ‘http://swift-proxy:8888/v1/AUTH % (tenant id)s'
——adminurl ‘http://swift-proxy:8888/vl"
-—-internalurl ‘http://swift-proxy:8888/v1/AUTH_% (tenant_id)s’

The following screenshot shows the output of executing the preceding
endpoint-create commands:

[42]

Chapter 3

root@swift-proxy:/home/vedams# keystone endpoint-create —-service-id a9c2d44442464975bb50e286fce584b4 —-region regionfne —-pu
blicurl 'hctp://swift-proxy:5000/v2.0' --adminurl 'hctp://swift-proxy:35357/v2.0' --internalurl 'http://swift-proxy:5000/v2.0
1 Property | Value]

| adminurl | http://swift-proxy:35357/v2.0 |

| id | cdade3fgl4ac48clbla365839685c1sE

| internalurl | http://swift-proxy:5000/v2.0 |

| publicurl | http://swift-proxy:5000/v2.0 |

1 region | regionGne

| 1]

service_id

29c2d44442464975bb50e236fcc584b4

root@swift-proxy: /home/vedams# keystone endpoint-create —-service-id 202b378728bl48£fd9c920534d1d6a227 --region regionlne —-pu

blicurl 'http://swift-proxy:8888/v1/AUTH_% (tenant_id)s' --adminurl 'http://swift-proxy:8888/vl' --internalurl 'http://swift-p
roxy:8888/v1/AUTH_% (tenant_id)s'
] Property | Value]
adminurl http://swift-proxy:888s/vl b
id 479d9efffcd3452a8d80a4c00c35dcD4

internalurl

publicurl htep://swift-proxy:8888/v1/AUTH % (tenant id)s
region regionOne
service_id a0ab378728b148£d9c8a0534d1d6az27

http://swift-proxy:8888/v1/AUTH % (tenant_id)s

root@swift-proxy:/home/vedams# ||

11.

12.

We will now unset the environment variables that we exported earlier, since
we don't need them again. We will be calling the REST APIs, and providing
the username and password to them along with the endpoint. Unset the
environment variables as shown in the following commands:

unset 05 SERVICE TOKEN
unset 05 SERVICE ENDFOINT

We will now request an authentication token using the admin user and
password. This verifies that the Keystone service is configured and running
correctly on the configured endpoint.

We also verify that authentication is working correctly by requesting the
token on a particular tenant as shown in the following command:

keystone --os-username=admin --os-password=ADMIN PASS \
—-os-tenant-name=admin --os-auth-url=http://swift-proxy:35357/v2.0 token-get

13.

Finally, test the Keystone service by running the following commands below
to list out the users, tenants, roles, and endpoints (the previously generated
random token is named Random Token):

$# keystone —--os—-token=Random Token -—--os-endpoint=http://swift-proxy:35357/v2.0 \
user-list

% keystone --os-token=Random Token --os-endpoint=http://swift-proxy:35357/v2.0 "\
tenant-list

% kevstone --os-token=Random Token --os-endpoint=http://swift-proxy:35357/v2.0 %\
role-list

keystone --os-token=Random Token --os-endpoint=http://swift-proxy:35357/v2.0 "\
endpoint-list

[43]

Installing OpenStack Swift

Summary

In this chapter, you learned how to install and set up the OpenStack Swift service

to provide object storage, and install and set up the Keystone service to provide
authentication for users to access Swift object store. The next chapter provides details
on various tools, commands, and APIs that are available to access and use the Swift
Object Store.

[44]

Using Swift

This chapter explains the various mechanisms that are available to access Swift. Using
these mechanisms, we will be able to authenticate accounts, list containers, create
containers, create objects, delete objects, and so on. Tools and libraries such as Swift
Client CLI, cURL client, HTTP REST API, JAVA libraries, Ruby OpenStack libraries,
and Python libraries use Swift APIs internally to provide access to the Swift cluster. In
particular, we will be using the Swift Client CLI, cURL, and HTTP REST API to access
Swift and perform various operations on containers and objects. Also, we will be using
EVault's Long-Term Storage (LTS2) cloud storage to demonstrate the use of Swift.

Installing the clients

This section talks about installing cURL and Swift's client CLI command line tools.
In this section we describe how to install these tools on a Ubuntu 12.04 Linux
operating system. Please refer to the other Linux distribution command sets for
installing the clients in those operating systems. Windows and Mac version of these
tools are also available. The following commands are used to install the cURL and
the Swift Client CLI:

* cURL: This is a command-line tool that can be used to transfer data using
various protocols. The following command is used to install cURL:

apt-get install curl

* Swift Client CLI: This is a tool to access and perform operations on a Swift
cluster. This tool is installed using the following command:

apt-get install python-swiftclient
e REST API Client: To access Swift services via the REST API, we can

use third-party tools such as Fiddler web debugger that supports
REST's architecture.

Using Swift

Creating a token using authentication

The first step in order to access containers or objects is to authenticate the user by
sending a request to the authentication service and get a valid token that can then

be used in subsequent commands to perform various operations. We are using
Keystone authentication in our configuration and the examples shown in this
chapter. There is another method of authentication called Swauth that can be used. It
works in a slightly different way, but we don't deal with the details of Swauth here.
The following command is used to get the valid keystone authentication token:

curl -X POST -i https://auth.lts2.evault.com/v2.0/Tokens -H 'Content-
type: application/json' -d '{"auth":{"passwordCredentials":{"username":"u
ser", "password":"password"}, "tenantName": "tenantl"}}'

In the preceding command, https://auth.1lts2.evault.com/v2.0 is EVault's
authentication endpoint. Along with this the username, password, and the tenant
name are also provided.

The token that is generated is shown as follows (it has been truncated for
better readability):

token = MIIGIWYJKoZIhvcNAQcCoIIGFDCCBhACAQExXCTAHBgUrDgMCGjCCBHkGCSQGSI
b3DQEHAaCCBGoEggRme..yJhY2N1c3MiOiB7InRva2VuljogeyJpc3N1ZWREYXQiOiAiMjAx
My 0xMSO0yN1QwNjoxODo0Mi4zNTAONTciLCU+KNYN20G7KJO05bXbbpSAWw+5VE18z16Jg
AKKWENTrl1lKBvsFzO-peLBwcKZXTpfJkJIJxgK7Vpzc-NIygSwPWjODs--0WTes+CyoRD

This token is then used as a parameter in the commands accessing Swift, for
example, in the following command:

curl -X HEAD -i https://storage.lts2.evault.com/vl/26cef4782cca4e5aabbb9
497b8cleelb

-H 'X-Auth-Token: token' -H 'Content-type: application/json’

More details on the commands are provided in the upcoming sections.

Displaying metadata information for an
account, container, or object

This section describes how we can obtain information about the account, container,
or object.

[46]

Chapter 4

Using the Swift Client CLI

The Swift Client CLI stat command is used to get information about the account,
container, or object. The name of the container should be provided after the stat
command to get container information. The name of the container and object should
be provided after the stat command to get object information.

Execute the following request to display the account status:

swift --os-auth-token=token --os-storage-url= https://storage.lts2.
evault.com/vl/26cef4782cca4e5aabbb9497b8cleelb stat

In the preceding commands, token is the generated token as described in the
previous section and 26cef4782ccade5aabbb9497b8cleelb is the account name.

The response shows the information about the account, which is as follows:

Account: 26cef4782cca4e5aabbb9497b8cleelb
Containers: 2

Objects: 6

Bytes: 17

Accept-Ranges: bytes

Server: nginx/1.4.1

Using cURL

The following command shows how to obtain the same account information using
cURL. It shows that the account contains two containers and six objects.

Execute the following request:

curl -X HEAD -i https://storage.lts2.evault.com/vl/26cef4782cca4e5aabb
b9497b8cleelb

-H 'X-Auth-Token: token' -H 'Content-type: application/json’'
The response to the preceding command is as follows:

HTTP/1.1 204 No Content

Server: nginx/1.4.1

Date: Wed, 04 Dec 2013 06:53:13 GMT
Content-Type: text/html; charset=UTF-8
Content-Length: 0

[47]

Using Swift

X-Account-Bytes-Used: 3439364822
X-Account-Container-Count: 2

X-Account-Object-Count: 6

Using the REST API

Fiddler web debugger, which supports REST, was used to send the request and
receive the HTTP response. Execute the following request:

Method : HEAD

URL : https://storage.lts2.evault.com/v1/26cef4782cca4e5aabbb9497b8cle
elb Header : X-Auth-Token: token
Data : No data

The response is as follows:HTTP/1.1 204 No Content
Server: nginx/1.4.1

Date: Wed, 04 Dec 2013 06:47:17 GMT

Content-Type: text/html; charset=UTF-8
Content-Length: 0

X-Account-Bytes-Used: 3439364822
X-Account-Container-Count: 2

X-Account-Object-Count: 6

As you can see, this is a different mechanism of issuing the command, but is very
similar to accessing the Swift cluster using cURL.

Listing containers

This section describes how to obtain information about the containers present in
an account.

Using the Swift Client CLI

Execute the following request:

swift --os-auth-token=token --os-storage-url= https://storage.lts2.
evault.com/vl/26cef4782cca4e5aabbb9497b8cleelb list

The response to the preceding request is as follows:
cities

countries

[48]

Chapter 4

Using cURL

The following command shows how to obtain the same containers information using
cURL. It shows that the account comprises of two containers and six objects.

Execute the following request:

curl -X GET -i https://storage.lts2.evault.com/vl/26cef4782cca4e5aabbb949
7b8cleelb -H 'X-Auth token: token'

The response to the request is as follows:

HTTP/1.1 200 OK
X-Account-Container-Count: 2

X-Account-Object-Count: 6
cities
countries

Here we see that the output has header and body, whereas in the previous example,
we only had header and no body in the output.

Listing objects in a container

This section describes how to list the objects that are present in a container.

Using the Swift Client CLI

The following command shows how to list objects using the Swift Client CLI (in this
example we are listing out the objects in the cities container):

Execute the following request:

swift --os-auth-token=token --os-storage-url= https://storage.lts2.
evault.com/vl1l/26cef4782cca4e5aabbb9497b8cleelb list cities

The response to the request is as follows:

London. txt
Mumbai. txt

NewYork. txt

[49]

Using Swift

Using cURL

The following command shows how to list objects using cURL. In this example, we
list the objects in the cities container.

Execute the following request:

curl -X GET -i https://storage.lts2.evault.com/vl/26cef4782cca4e5aabbb949
7b8cleelb/cities

-H 'X-Auth-Token: token '
The response of the request is as follows:

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 34

X-Container-Object-Count: 3

London. txt
Mumbai. txt
NewYork. txt

Using the REST API

In this example, we list the objects in the countries container.

Execute the following request:

Method : GET

URL : URL : https://storage.lts2.evault.com/v1/26cef4782cca4e5aabbb
9497b8cleelb/countries

Header : X-Auth-Token: token

Data : No content

The response to the request is as follows:

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 38

X-Container-Object-Count: 3

France. txt
India.txt

UnitedStates. txt

[50]

Chapter 4

Updating the metadata for a container

This section describes how to add or update metadata for a container.

Using the Swift Client CLI

In this example, we are adding metadata for countries that we have visited.

Execute the following request:

swift --os-auth-token=token --os-storage-url= https://storage.lts2.
evault.com/vl/26cef4782cca4e5aabbb9497b8cleelb post countries

-H "X-Container-Meta-Countries: visited"

Using the REST API

Here we are adding metadata using the REST API.

Execute the following request:

Method : POST

URL : https://storage.lts2.evault.com/v1/26cef4782cca4e5aabbb9497b8cle
elb/countries
Header : X-Auth-Token: token

X-Container-Meta-Countries: visited

Data : No content

Environment variables

The following environment variables can be used to simplify the CLI commands:

* 0s USERNAME: This contains the username to access the account

* 0s_prassWORD: This contains the password associated with the username
* 0S TENANT NAME: This contains the name of the tenant

* 0S_AUTH URL: This contains the authentication URL

Once these environment variables are exported, we no longer have to pass these
values as input parameters when running the Swift CLI tools.

[51]

Using Swift

Pseudo-hierarchical directories

OpenStack Swift object storage can simulate a hierarchical directory structure in
containers by including a / (forward slash character) in the object's name.

Let's upload a file (AMERICA/USA/Newyork. txt) into the Continent container using
the following command:

swift upload Continent AMERICA/USA/Newyork.txt

Let's list the continent container that has a few pseudo-hierarchical folders by using
the following commands:

swift list Continent
AMERICA/USA/Newyork. txt
ASIA/ASIA.txt
ASIA/China/China.txt
ASIA/INDIA/India.txt
Australia/Australia.txt

continent. txt

We can use / as the delimiter parameter to limit the displayed results. We can also
use the prefix parameter along with the delimiter parameter to view the objects in
the pseudo directory along with pseudo directories within that. The following are a
couple of examples showing the use of these parameters:

swift list Continent --delimiter /
AMERICA/
ASIA/

Australia/

continent. txt

swift list Continent --delimiter / --prefix ASIA/
ASIA/ASIA.txt

ASIA/China/

ASIA/INDIA/

swift list Continent --delimiter / --prefix ASIA/INDIA/
ASIA/INDIA/India.txt

[52]

Chapter 4

Container ACLs

As we saw in the previous sections, in order to access containers and objects, a valid
auth token has to be sent in the X-Auth-Token header with each request. Otherwise,
an authorization failure code will be returned. In certain cases, access needs to

be provided to other clients and applications for certain containers and objects.
Access can be provided by setting a metadata element for the container called
X-Container-Read. The following example sets this Access Control Lists (ACL) to
the cities container:

First, let us list the container status that shows the lack of ACL. Run the following
command with admin privileges (the admin user will have the permissions to run
this command):

swift stat cities

The values for Read ACL and Write ACL in the following response indicates the lack
of ACL:

Account: 26cef4782cca4e5aabbb9497b8cleelb
Container: cities

Objects: 3

Read ACL:

Write ACL:

Sync To:

When the tenant1:userl user, who does not have access to this container, tries to
access this container, a forbidden error message is returned.

Execute the following request:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U tenantl:userl -K tl
list cities

A forbidden error message is returned as the response. This error is as follows:

Container GET failed: 403 Forbidden

Access was denied to this resource

In the preceding example, the username is provided using the -U option and the key
to access the account is provided using the -k option.

Now, let's set the X-Container-Read metadata element and enable READ access for
tenant1:userl. This operation can only be done by the admin user by using the
following command:

swift post -r tenantl:userl cities

[53]

Using Swift

To check the ACL permissions, we execute the following command:

swift stat cities

The response to the preceding command is as follows:

Account: 26cef4782cca4e5aabbb9497b8cleelb
Container: cities

Objects: 3

Read ACL: tenantl:userl

Write ACL:

Sync To:

Now, when the tenant1:userl user tries to access this container, access is granted
and the command is successfully executed.

Execute the following request:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U tenantl:userl -K tl
list cities

The response to the request is as follows:

London. txt
Mumbai. txt
NewYork. txt

Since the x-Container-Write ACL is not set for the tenant1 :user1 user for the
cities container, this user cannot write to the cities container. In order to allow
write access, let's set the X-container-write ACL as follows:

swift post -w tenantl:userl cities

To check the ACL permissions, we execute the following command:
swift stat cities

The response to the preceding command is as follows:

Account: 26cef4782cca4e5aabbb9497b8cleelb
Container: cities

Objects: 3

Read ACL: tenantl:userl

Write ACL: tenantl:userl

Sync To:

Now the tenant1:userl user will be able to write objects into the cities container.

[54]

Chapter 4

If we want to give access to a large number of users, ACLs such as .r:*,
.rlistings can be used. The .r:* prefix allows any user to retrieve objects from the
container and .rlistings turns on listing for the container.

Transferring large objects

As discussed in Chapter 2, OpenStack Swift Architecture, Swift limits a single object
upload to 5 GB. Larger objects can be split into 5 GB or smaller segments by
specifying the segment-size option in the swift CLI tool command-line argument
and uploaded to a special container (created within the container where the object is
being uploaded to).

Once the upload has been completed, a manifest object has to be created that
contains information about the segments. The manifest file is of zero size with
headers such as X-Object-Manifest identifying the special container in which
the segments are stored and the name with which all the segments will start.

For example, if we have to upload France. txt, which is of size 8 GB, to the
countries container, then the France. txt object has to be split into two chunks
(5 GB and 3 GB). The chunk object's name will start with France.txt (France.
txt/../00000000 and France.txt/../00000001).

A special container called countries_segments will be created and the chunks will
be uploaded to this container. A manifest object called France. txt will be created
in the countries container. The manifest file will have zero size and will contain

the following header. (It is not mandatory to have the segments placed in a special
container and they can as well exist in the same container):

X-Object-Manifest: countries segments/France.txt

When a download request is made for the large-sized object, Swift will automatically
concatenate all the segments and download the entire large-sized object.

The Swift Client CLI has the -s flag, to specify the segment size, which can be used
to split a large object into segments and upload. The following command is used to
upload a file with a segment size of 5368709120 bytes:

Make the following request:
swift upload countries -S 5368709120 France.txt

The response to the preceding commands is as follows:

France.txt segment 0
France.txt segment 1
France.txt segment 2

France. txt

[55]

Using Swift

The following command can be used to list out the containers present:

Swift list

The response to the preceding command is as follows:

Countries
Countries segments

cities
The following command lists the objects in the countries_segments container:

Swift list countries segments

The response to the preceding command is as follows:

France.txt/1385989364.105938/5368709120/00000000
France.txt/1385989364.105938/5368709120/00000001

Amazon S3 APl compatibility

Users familiar with the Amazon S3 API and accessing S3 buckets and objects can
access Swift using S3 compatible APIs with the help of Swift3 middleware.

Here, we will show the steps required for one method that uses S3 APIs to access
Swift's object store. These steps explain how to install the necessary tools and
packages, create credentials, and update the configuration files.

The following steps are performed on the proxy-server node that is running the
Ubuntu 12.04 Linux distribution:

1. First, the user requires EC2 credentials (access key and secret key). The
keystone user-list and keystone tenant-list commands can be used
to obtain the user ID and tenant ID of the user. The following command can
be used to create these keys (these need to be run from the proxy server):
keystone ec2-credentials-create --user-

id 916673a90b8749el8f0ee3ec5bfl7ab9 --tenant-id
6530edfe037242d1ac8bb07b7£d476046

The response is as follows:

- T~ +
| Property | Value |
- T~ +
| access | 1178d235dbd84d48b417170ec9%9aed72c |
| secret | c4eala8fbf7d4a469£f6d0£fb5cdb47d5b |

[56]

Chapter 4

| tenant id | 6530edfe037242d1ac8bb07b7£d76046 |
| user id | 916673a90b8749el8f0ee3ec5b£fl7ab9 |

Install the Swift3 package by running the following commands (these
commands require Git to be installed on your system):

sudo git clone https://github.com/fujita/swift3.git
cd swift3
sudo python setup.py install

Install the 1ibdigest-hmac-perl package by running the following
command (this package is used for integrity checking between two entities
that share a secret key):

apt-get install libdigest-hmac-perl

Edit the proxy-server. conf file and make the following changes if you
want to use the keystone authentication:

o

Change the pipeline line in the proxy-server. conf file to:
[pipeline:main]

pipeline = catch errors cache swift3 s3token authtoken
keystone proxy-server

° Add a Swift3 WSGI filter to the proxy-server. conf file using the
following command:

[filter:swift3]

use = egg:swift3#swift3

Add the s3token filter as in the following commands:

[filter:s3token]

paste.filter factory = keystone.middleware.s3 token:filter_
factory

auth port 35357
auth host = 127.0.0.1
auth protocol = http

Restart the proxy service using the following command:

Service swift-proxy restart

The following steps should be performed on the client that will access
Swift Object Store:

° Since we will use s3curl to execute the S3 commands, download s3 -
curl.zip from the following link:

http://s3.amazonaws.com/doc/s3-example-code/s3-curl.zip

[57]

Using Swift

[e]

Install the wget utility prior to running the following command:

wget http://s3.amazonaws.com/doc/s3-example-code/s3-curl.zip

Unzip s3-curl.zip and provide executable access to the
s3curl.pl file.

Create a . s3curl file and change the ID and key of personal account
with the EC2 credentials (access and secret keys) that were given to
the user. We are using vi editor to create the file as shown in

the following:

#vi ~/.s3curl
%awsSecretAccessKeys = (
personal account
personal => {
id => '1178d235dbd84d48b417170ec9aed72c"',
key => 'c4eal0a8fbf7d4a469£f6d0£fb5cdb47d5b"',
.
corporate account
work => {
id => '1ATXQ3HHAS59CYF1CVS02',
key => 'WQY4SrSS95pJUT95V6zWea0lgBKBCL6PI0cdxeHS8',
.
)i

Accessing Swift using S3 commands

In this section, we will give examples of S3 commands to perform various operations.

¢ List buckets: This command lists all the buckets for this user. Buckets in S3
are similar to containers in Swift.

./s3curl.pl --id=personal -- https://auth.lts2.evault.com -v

The response is as follows:

<?xml version="1.0" encoding="UTF-8"?><ListAllMyBucketsResult
xmlns="http://doc.s3.amazonaws.com/2006-03-01"><Buckets>

<Bucket><Name>cities</Name><CreationDate>2009-02-

03T16:45:09.000Z</CreationDate></Bucket>

<Bucket><Name>countries</Name><CreationDate>2009-02-

03T16:45:09.000Z</CreationDate></Bucket>

</Buckets></ListAllMyBucketsResult>

[58]

Chapter 4

* List objects in a bucket: This command lists all the objects present in the
specified bucket. Let us list all the objects in the cities bucket by using the
following command:

./s3curl.pl --id=personal -- https://auth.lts2.evault.com/cities

-V

* Create a Bucket: The following command creates a bucket called
continents

./s3curl.pl --id=personal --createBucket -- -v https://auth.
lts2.evault.com/continents

* Delete a Bucket: The following command deletes a bucket called continents:

./s3curl.pl --id=personal --delete -- -v https://auth.lts2.
evault.com/continents

Accessing Swift using client libraries

There are several libraries available in Java, Python, Ruby, PHP, and other
programming languages to access the Swift cluster. Applications can be simplified
using these libraries. Let us explore a few libraries.

Java

The Apache jclouds library (http://jclouds.apache.org/documentation/
quickstart/rackspace/), particularly the org. jclouds.openstack.swift.
CommonSwiftClient API can be used to write applications in Java to connect to Swift
and perform various operations on accounts, containers, and objects.

A sample code is shown as follows:

import
import
import
import

import

org.
org.
org.
org.
org.

jclouds.
.blobstore
.blobstore
.openstack.

jclouds
jclouds
jclouds
jclouds

ContextBuilder;

.openstack.

.BlobStore;
.BlobStoreContext;

swift.CommonSwiftAsyncClient;
swift.CommonSwiftClient;

BlobStoreContext context = ContextBuilder.newBuilder (provider)
.endpoint ("http://auth.lts2.evault.com/")
.credentials (user, password)

storage

.modules (modules)

.buildvView (BlobStoreContext.class) ;

context.getBlobStore () ;

[59]

Using Swift

swift = context.unwrap() ;
containers = swift.getApi () .listContainers() ;
objects = swift.getApi().listObjects (myContainer) ;

Python

The python-swiftclient library provides Python language bindings for OpenStack
Swift. After authentication, the following sample code shows how to list containers:

#!/usr/bin/env python

http connection = http connection (url)
cont = get container(url, token, container, marker, limit, prefix,
delimiter, end marker, path, http conn)

More information about the library is provided at https://github.com/
openstack/python-swiftclient/.

Ruby

The ruby-openstack library (https://github.com/ruby-openstack/ruby-
openstack) provides ruby bindings for the OpenStack cloud. The following sample
code shows how to list containers and objects:

Lts2 = OpenStack::Connection.create (:username => USER, :api key =>
API_KEY, :authtenant => TENANT, :auth url => API URL, :service_ type =>
"object-store")

Lts2.containers

=>["cities" , "countries"]

Cont = Lts2.container ("cities")

Cont .objects

=>[" London.txt"," Mumbai.txt"," NewYork.txt"]

Summary

In this chapter, you learned how to use various Swift clients to interact with

Swift clusters and get information on accounts, containers, and objects. You were
introduced to ACLs, large object transfers, and also to various Swift client libraries
that can be used to write applications in your desired language such as Java, Ruby,
and Python.

The next chapter talks about managing Swift and things to consider while replacing
or expanding disks, nodes, and zones. It also provides information on various tools
that can be used to gather information on the object storage behavior.

[60]

Managing Swift

After a Swift cluster has been installed and deployed, it needs to be managed to
serve customer expectations and service level agreements. Since there are several
components in a Swift cluster, it is a little different, and hence more difficult to
manage compared to traditional storage. There are several tools and mechanisms an
administrator can use to effectively manage a Swift cluster. This chapter deals with
these aspects in more detail.

Routine management

The Swift cluster consists of several proxy server nodes and storage server nodes.
These nodes run many processes and services to keep the cluster up and running,
and provide overall availability. Any kind of general server management tools/
applications such as Nagios, which is described later in the chapter, can be run to
track the state of the general services, CPU utilization, memory utilization, disk
subsystem performance, and so on. Looking at the system logs is a great way to
detect impending failures. Along with this, there are some tools to monitor the Swift
services in particular. Some of them are Swift Recon, Swift StatsD, Swift Dispersion,
and Swift Informant.

Managing Swift

Nagios is a monitoring framework that comprises several plugins that can be used
to monitor network services (such as HTTP and SSH), processor load, performance,
and CPU and disk utilization. It also provides remote monitoring capabilities by
running scripts remotely connected to the monitored system using SSH or SSL.
Users can write their own plugins depending on their requirements to extend these
monitoring capabilities. These plugins can be written in several languages such as
Perl, Ruby, C++, and Python. Nagios also provides a notification mechanism where
an administrator can be alerted when problems occur on the system. The following
figure shows how to integrate a monitoring solution based on Nagios:

User Interface

Browser SMS/Pager Graph

\

Nagios Plugins

Nagios Core

OpenStack Swift Cluster

\ /

More information on Nagios can be found at www.nagios.org. Next, let us look into
the details of Swift monitoring tools.

Swift cluster monitoring

In this section, we describe various tools that are available to monitor the Swift
clusters. We also show snapshots from the Vedams Swift monitoring application that
integrates data from various Swift monitoring tools.

[62]

Chapter 5

Swift Recon

Swift Recon is a middleware software that is configured on the object server node
and sits in the data path. A local cache directory, which is used to store logs, needs
to be specified during setup. It comes with the swift-recon command-line tool which
can be used to access and display the various metrics that are being tracked. You can
use swift-recon -h to get help with using the swift-recon tool.

Some of the general server metrics that are tracked are as follows:

* Load averages

e The /proc/meminfo data
* Mounted filesystems

* Unmounted drives

* Socket statistics
Along with these, some of the following Swift stats are also tracked:

* MDb5checksums of account, container, and object ring
* Replication information
* Number of quarantined accounts, containers, and objects

The following screenshot shows Swift Recon data within the Vedams Swift
monitoring application:

SWIFT DRIVE AUDIT DATA LOAD AVERAGES DISK USAGE NOW

——
[2014-03-05 16:24:09] Checking load avesages [2014-03-05 16:24:09] Checking disk usage now
SWIFT RECON DATA [5e_toad_avg] low: O, high: D, avg: 0.2, tetal: 0, Falled: 0.0%, Distribution Graph:
no_result: 0, reparted: 1 0% 2
[15m_load_awg] low: 0, high: 0, awg: 0.2, totak 0, Fafled: 0.0%, Disk whage: space used: BB157440 of 42026604283

Disk wsage: space free: 42858446848 of 42026604288

- - mo_result: 0, reparted: 1
SWIFT DISPERSION REPORT. Disk wsage: lowest: 0.16%, highest: 0.16%, avg: 0.15877T6686697%

[1m_toad_avg] low: 0, high: O, awg: 0.1, total: 0, Failed: 0.0%,
Ro_result: O, reparted: 1

[2014-03-05 16:24:59] Checking on replication [2014-03-05 16:24:09] Checking ring mdSsums
111 hosts matched, O arror[s] while checking hosts,

1

SWIFT INFORMANT METRICS

1

SWIFT STATSD METRICS

|

[replication_time] low: 0, high: 0, avg: 0.0, tetak: 0, Faied: 0.0%,
mo_resui: 0, reparted: 1

Oadest completion was 2014-03-05 10:54:35 (24 saconds ago)
by 192.168.2.245:6000.

Mozt recent completion was 2014-03-05 10:54:35 (24 seconds ago)
by 192.168.2.245:6000.

[63]

Managing Swift

Swift Informant

Swift Informant is also a middleware software that gives insight to client requests to
the proxy server. This software sits in the proxy server's data path and provides the
following metrics to the StatsD server:

* Status code for requests to account, container, or object

* Duration of the request and time until start_response metric was seen

* Bytes transferred in the request

Swift Informant can be downloaded from https://github.com/pandemicsyn/
swift-informant.

The following screenshot displays the Swift Informant data within the Vedams Swift
monitoring application:

I —
SWIFT RECON DATA HEAD.204 1 59
GET.200 1 12
I —
SWIFT DISPERSION REPORT
D ———
HEAD. 204 1 59
GET.200 1 10
PUT.201 1 16
SWIFT INFORMANT METRICS POST 204 i 4
1
1

DELETE.204 17

PUT.404

SWIFT STATSD METRICS

1

HEAD. 200 1 75
GET.200 1 9%
PUT.201 1 &7
DELETE.204 1 0

Swift dispersion tools

This postprocessing tool is used to determine the overall health of a Swift cluster.
The swift-dispersion-populate tool is used to distribute objects and containers
throughout the Swift cluster in such a way that the objects and containers fall in
distinct partitions. Next, the swift-dispersion-report tool is run to determine

the health of these objects and containers. In the case of objects, Swift makes three
replicas for redundancy. If the replicas of an object are all good, then the health of the
object is said to be good; the swift-dispersion-report tool helps figure out this
health of all objects and containers within the cluster.

[64]

Chapter 5

The following screenshot displays the Swift Dispersion data within the Vedams Swift
monitoring application:

SWIFT DRIVE AUDIT DATA SWIFT-DISPERSION-POPULATE SWIFT-DISPERSION-REPORT

—_—_—
Created 2621 containers lor dispersion reporting, Bm, O retries Queried 2622 containers for dlspersion reporting, Im, 3 retries
100.00% of comtainer coplas found {7566 of TE66)
SWIFT RECON DATA Created 2621 objects for dispersion reporting, 4m, O refries Sample represents 1.00% of the container partition space
—

GQuerled 2621 objects for dispersion reporting, 10s, 0 retries
There were 1642 partitions missing @ copy.

= There were 979 partitions missing 1 copy.
SWIET DISPERSICN REPORT £7.55% of object copies found (6384 of 72863)

Sample represents 1.00% of the object partition space

ERADA Repoet:

SWIFT INFORMANT METRICS Querying containers: 61 of 2622, 5m left, O retries
ERAOR: 172,166.10.51:6001/3db 1: Container server 172.168,10.51:6001

I —y HEAD u'/sdb1/200971/AUTH_BSe2cbd 105"
status 500z 172.165.10.51:6001 500 Internal Error: device sgbi

SWIFT STATSD METRICS Querying containers: 133 of 2622, 4m left, 1 retries

ERROR: 172.168.10.61:6001/sdb1: Contaimer serves 172.168.10.61:6001

——e

HEAD u'jsdb1/82051/AUTH_65e2cb87e80d4920906cd45adede 3645 /dispersion_1158"
statws 500: 172.168.10.61:6001 500 Internal Erroe: device séb1

Querying contalners; 779 of 2622, Zm left, 2 retries

ERROR: 172.168.10.61:6001/sdc1: Container server 172.168.10.61:6001

HEAD u'/sdc1/105879/AUTH_B5e2cbE P _1815"
status 500: 172.168.10.61:6001 500 Internal Error: device sdcl

StatsD

Swift services have been instrumented to send statistics (counters and logs) directly
to a StatsD server that is configured.

A simple StatsD daemon to receive the metrics can be found at https://github.
com/etsy/statsd/.

The StatsD metrics are provided in real time and can help identify problems as they
occur. Configuration files containing the following parameters should be set in the
Swift configuration files to enable StatsD logging;:

* log_statsd host

* log statsd port

* log _statsd default sample rate

* log statsd sample rate factor

* Jlog statsd metric prefix
The statsd_sample rate_factor parameter can be adjusted to set the logging
frequency. The log_statsd_metric_prefix parameter is configured on a node to

prepend this prefix to every metric sent to the StatsD server from this node. If the
log_statsd_host entry is not set, then this functionality will be disabled.

[65]

Managing Swift

The StatsD logs can be sent to a backend Graphite server to display the metrics
as graphs. The following screenshot of the Vedams Swift monitoring application
represents the StatsD logs as graphs:

SWIFT DRIVE AUDIT DATA

1

SWIFT RECON DATA

1

SWIFT DISPERSION REFORT

1

SWIFT INFORMANT METRICS

J

SWIFT STATSD METRICS

PROXY SERVER METRICS

CONTAINER METRICS

OBIECT METRICS

Swift metrics

The Swift source code has metrics logging (counters, timings, and so on) built into
it. Some of the metrics sent to the StatsD server from various Swift services are listed
in the table. They have been classified based on the Create, Read, Update, Delete
(CRUD) operations:

Create/PUT

Read/GET

Update/POST

Delete

account-server.

PUT.errors.
timing

account-server.

PUT. timing

container-
server.PUT.
errors.timing
container-
server.PUT.
timing

account-server.

GET.errors.
timing

account-server.

GET.timing

container-
server.GET.
errors.timing
container-
server.GET.
timing

account-server.

POST.errors.
timing

account-server.

POST.timing

container-
server.POST.
errors.timing
container-
server.POST.
timing

account-server.
DELETE.errors.
timing
account-server.
DELETE. timing
container-
server .DELETE.
errors.timing
container-
server .DELETE.
timing

[66]

Chapter 5

Create/PUT Read/GET Update/POST Delete

object-server. object-server. object-server. object-server.

async_pendings GET.errors. POST.errors. async_pendings
timing timing

object-server. object-server. object-server. object-server.

PUT.errors.

GET.timing

POST.timing

DELETE.errors.

timing timing

object-server.
PUT.timeouts

proxy-
server.<type>.
client timeouts

proxy-
server.<type>.
<verb>.<status>.
timing

proxy-
server.<type>.
<verbs>.<status>.
xfer

object-server.
DELETE. timing

object-server.
PUT.timing

proxy-
server.<type>.
<verb>.<status>.
timing

proxy-
server.<type>.
<verb>.<statuss>.
xfer

proxy-
server.<type>.
<verb>.<status>.
timing

proxy-
server.<type>.
<verb>.<status>.
xfer

object-server.
PUT.<devices.

timing

proxy-
server.<types>.
client_timeouts
proxy-
server.<types>.
client
disconnects
proxy-
server.<types>.
<verbs>.<status>.
timing

proxy-
server.<types>.
<verbs>.
<statuss>.xfer

Logging using rsyslog

It is very useful to get logs from various Swift services and that can be achieved by
configuring proxy-server.conf and rsyslog. In order to receive logs from the
proxy server, we modify the /etc/swift/proxy-server.conf configuration file by
adding the following lines:

log name = name
log facility = LOG_LOCALXx
log level = LEVEL

[67]

Managing Swift

Let's describe the preceding entries: name can be any name that you would like to see
in the logs. The letter x in LOG_LOCALx can be any number between zero and seven.
The LEVEL parameter can be either emergency, alert, critical, error, warning,
notification, informational, Or debug.

Next, we modify /etc/rsyslog.conf to add the following line of code in the
GLOBAL_ DIRECTIVES section:

$PrivDropToGroup adm

Also, we create a config file /etc/rsyslog.d/swift.conf and add the following
line of code to it:

local2.* /var/log/swift/proxy.log

The preceding line tells syslog that any log written to the LoG_LocaLz2 facility should
go to the /var/log/swift/proxy.log file. We then give permissions for access to
the /var/log/swift folder, and restart the proxy service and syslog service.

Failure management

In this section, we deal with detecting failures and actions to rectify failures.

There can be drive, server, zone, or even region failures. As described in Chapter 2,
OpenStack Swift Architecture, Swift is designed for availability and tolerance to partial
failure (where entire parts of the cluster can fail) during the CAP theorem discussion.

Detecting drive failure

Kernel logs are a good place to look for drive failures. The disk subsystem will log
warnings or errors that can help an administrator determine whether drives are
going bad or have already failed. We can also set up a script on storage nodes to
capture drive failure information using the drive audit process described in Chapter
2, OpenStack Swift Architecture, executing the following steps:

1. On each storage node, create a script swift-drive-audit in the /etc/swift
folder with the following contents:

[drive-audit]

log facility = LOG_LOCALO

log level = DEBUG

device dir = /srv/node

minutes = 60

error limit = 2

log file pattern = /var/log/kern*

regex pattern X = berrorb.*b(sdla-z]{1,2}d?)b and b(sdla-z]{1,2}
d?)b.*berrorb

[68]

Chapter 5

2. Add the following line of code to /etc/rsyslog.d/swift.conf:

localo.* /var/log/swift/drive-audit

3. We then restart the rsyslog service using the following command:

Service rsyslog restart

4. We then restart the Swift services using the following command:

swift-init rest restart

5. The drive failure information will now be stored in the /var/log/swift/
drive-audit log file.

Handling drive failure

When a drive failure occurs, we can either replace the drive quickly at a later time
or not replace it at all. If we do not plan to replace the drive immediately, then it is
better to unmount the drive and remove it from the ring. If we decide to replace the
drive, then we take out the failed drive and replace it with a good drive, format it,
and mount it. We will let the replication algorithm take care of filling this drive with
data to maintain consistent replicas and data integrity.

Handling node failure

When a storage server in a Swift cluster is experiencing problems, we have to
determine whether the problem can be fixed in a short interval, such as a couple of
hours, or if it will take an extended period of time. If the downtime interval is small,
we can let Swift services work around the failure while we debug and fix the issue
with the node. Since Swift maintains multiple replicas of data (the default is three),
there won't be a problem of data availability, but the timings for data access might
increase. As soon as the problem is found and fixed and the node is brought back up,
Swift replication services will take care of figuring out the missing information and
will update the nodes and get them in sync.

If the node repair time is extended, then it is better to remove the node and all
associated devices from the ring. Once the node is brought back online, the devices
can be formatted, remounted, and added back to the ring.

The two following commands are useful to remove devices and nodes from the ring:

* Toremove a device from the ring, use:

swift-ring-builder <builder-file> remove <ip addresss/<device name>

For example, swift-ring-builder account.builder remove
172.168.10.52/sdbl.

[69]

Managing Swift

* Toremove a server from the ring, use:

swift-ring-builder <builder-file> remove <ip address>

For example, swift-ring-builder account.builder remove
172.168.10.52.

Proxy server failure

If there is only one proxy server in the cluster and it goes down, then there is a
chance that no objects can be accessed (upload or download) by the client, so this
needs immediate attention. This is why it is always a good idea to have a redundant
proxy server to increase data availability in the Swift cluster. After identifying and
fixing the failure in the proxy server, the Swift services are restarted and object store
access is restored.

Zone and region failure

When a complete zone fails, it is still possible that the Swift services are not
interrupted because of the High Availability configuration that contains multiple
storage nodes and multiple zones. The storage servers and drives belonging to

the failed node have to be brought back into service if the failure can be debugged
quickly. Otherwise, the storage servers and drives that belong to the zone have to
be removed from the ring, and the ring needs to be rebalanced. Once the zone is
brought back into service, the drives and storage servers can be added back into the
ring and the ring can be rebalanced. In general, a zone failure should be dealt with
as a critical issue. In some cases, the top-of-the-rack storage or network switch can
have failures, thus disconnecting storage arrays and servers from the Swift cluster,
leading to zone failures. In these cases, the switch failures have to be diagnosed and
rectified quickly.

In a multiregion setup, if there is a region failure, then all requests can be routed

to the surviving regions. The servers and drives that belong to the region need

to be brought back into service quickly to balance the load that is currently being
handled by the surviving regions. In other words, this failure should be dealt as a
blocker issue. There can be latencies observed in uploads and downloads due to
the requests being routed to different regions. Region failures can also occur due to
failures occurring in core routers or firewalls. These failures should also be quickly
diagnosed and rectified to bring the region back into service.

[70]

Chapter 5

Capacity planning

As more clients start accessing the Swift cluster, it will increase demand for
additional storage. With Swift, this is easy to accomplish; you can simply add more
storage nodes and associated proxy servers. This section deals with the planning and
adding of new storage drives as well as storage servers.

Adding new drives

Though adding new drives is a straightforward process, it requires careful planning
since this involves rebalancing of the ring. Once we decide to add new drives, we
will add these drives to a particular storage server in a zone by formatting and
mounting these drives. Next, we will run the swift-ring-builder add commands to
add the drives to the ring. Finally, we will run the swift-ring-builder rebalance
command to rebalance the ring. The generated . gz ring files need to be distributed
to all the storage server nodes. The commands to perform these operations were
explained in Chapter 3, Installing OpenStack Swift, in the Formatting and mounting hard
disks and Ring setup sections.

Often, we end up replacing old drives with bigger and better drives. In this scenario,
rather than executing an abrupt move, it is better to slowly start migrating data off
the old drive to other drives by reducing the weight of the drive in the ring and
repeating this step a few times. Once data has been moved off this drive, it can

be safely removed. After removing the old drive, simply insert the new drive and
follow the previously mentioned steps to add this drive to the ring.

Adding new storage and proxy servers

Adding new storage and proxy servers is also a straightforward process, where new
servers need to be provisioned according to the instructions provided in Chapter 3,
Installing OpenStack Swift. Storage servers need to be placed in the right zones, and
drives that belong to these servers need to be added to the ring. After rebalancing
and distributing the . gz ring files to the rest of the storage servers, the new storage
servers are now part of the cluster. Similarly, after setting up a new proxy server, the
configuration files and load balancing settings need to be updated. This proxy server
is now part of the cluster and can start accepting requests from users.

[71]

Managing Swift

Migrations

This section deals with hardware and software migrations. The migrations can be to
either existing servers or to new servers within a zone or region. As new hardware
and software (operating system, packages, or Swift software) becomes available,

the existing servers and software need to be migrated to take advantage of faster
processor speeds and latest software updates. It is a good idea to upgrade one server
at a time and one zone at a time since Swift services can deal with an entire zone
being migrated.

The following steps are required to upgrade a storage server node:

1. Execute the following command to stop all the Swift operations running in
the background:

swift-init rest stop

2. Gracefully shutdown all the Swift services by using the following
command line:

swift-init {account|container|object} shutdown

3. Upgrade the necessary operating system and system software packages,
and install/upgrade the Swift package required. In general, Swift is on a six-
month update cycle.

Next, create or perform the required changes to the Swift configuration files.

5. After rebooting the server, restart all the required services by executing the
following commands:
swift-init {account|container|object} start

swift-init rest start

If there are changes with respect to the drives on the storage server, we have to make
sure we update and rebalance the ring.

Once we have completed migration to the new server, we check the log files for
proper operation of the server. If the server is operating without any issues, we then
proceed to upgrade the next storage server.

Next, we discuss how to upgrade proxy servers. We can make use of the load
balancer to isolate the proxy server that we plan to upgrade so that client requests
are not sent to this proxy server.

[72]

Chapter 5

We perform the following steps to upgrade the proxy server:

1. Gracefully shut down the proxy services by using the following
command line:

swift-init proxy shutdown

2. Upgrade the necessary operating system, system software packages, and
install/upgrade the Swift package required.

3. Next, create or perform the required changes to the Swift proxy
configuration files.

4. After rebooting the server, restart all the required services by using the
following command:

swift-init proxy start

We then have to make sure that we add the upgraded proxy server back into the
load balancer pool so that it can start receiving client requests.

After the upgrade, we have to make sure that the proxy server is operating correctly
by monitoring the log files.

Summary

In this chapter, you learned how to manage a Swift cluster, the various tools
available to monitor and manage the Swift cluster, and the various metrics to
determine the health of the cluster. You also learned what actions need to be taken
if a component fails in the cluster and how a cluster can be extended by adding new
disks and nodes.

[73]

Choosing the Right Hardware

Users who utilize OpenStack Swift as a private cloud will be faced with the task of
hardware selection. This chapter walks you through all the hardware you need to
select, the criteria to be used, and finally a vendor-selection strategy. If you are using
a public cloud, the only hardware you can select is the cloud gateway so you can

skip this chapter.

The hardware list

The list of minimal hardware required to implement Swift is as follows:

Item Description
Storage These are physical servers that run the object server software and
servers generally also run the account and container server software. Storage

Proxy server(s)

Network
switch(es)

servers require disks to store objects.
These are physical servers that run the proxy server software. At least
one is required.

Chapter 3, Installing OpenStack Swift, describes the various networks
required. At a minimum, one switch is required.

The following is a list of optional hardware that may need to be purchased:

Item Description

Account For large installations where container listings and updates are

servers overwhelming the storage servers, separate account servers may be
needed.

Container For large installations where object listings and updates are

servers overwhelming the storage servers, separate container servers may be

needed.

Choosing the Right Hardware

Item

Description

Auth servers For large installations where user authentication is overwhelming the

proxy servers, separate auth servers may be needed.

JBODs For installations where disk density is important, a storage server may

be connected to a JBOD (just a bunch of disks) using a SAS connection
to increase the disk density.

Load balancer This is useful to provide a single IP address for the entire cluster (there

/SSL are software mechanisms to accomplish this as well, but these are not
acceleration covered in this book).
The SSL functionality in the load balancer offloads software SSL in the
proxy server.
Firewall For public, community, and some private networks, firewall and
and security security appliances such as intrusion detection/prevention may be
appliances required depending on your company's security policies.

On-premise To adapt applications that have not ported to the REST HTTP APIs
cloud gateway yet, you will need a protocol translation device that converts a familiar

file and blocks protocols to REST APIs. This device is called a cloud
gateway and is the only piece of hardware that you may need even with
a public cloud.

To complicate things even further, each server has the following numerous design
elements to configure:

CPU performance: The CPU performance is specified in terms of the number
of processors and number of cores/processors. This has the most direct
impact on the server's performance.

Memory: The next important consideration is the amount of DRAM memory,
which is specified in GB.

Flash memory: Flash memory is another critical performance consideration
and is typically in the TB range.

Disk/JBOD: For storage servers, you need to specify the number of disks and
types of disks (interface, speed, rating, and so on). These disks could be in the
server, connected via a JBOD, or a combination.

Network I/O: A server needs network I/O connectivity via a LAN-on-
motherboard (LOM) or an add-on network interface card (NIC). This is
typically 1 Gbps or 10 Gbps in terms of speed.

Hardware management: Servers vary widely in hardware management
features, starting with rudimentary monitoring only through the
operating system, OS independent IPMI, to sophisticated remote KVM
and remote storage.

[76]

Chapter 6

The hardware selection criteria

Clearly, the universe of hardware to choose from and the elements within each server
are mind boggling. Furthermore, the ratio of proxy to account to container to storage
servers is yet another complication. Before we go through the systematic selection
criteria, you need to determine the following characteristics about your environment:

* Point of optimization for your environment: You will need to decide
whether you care more about performance or cost.

* Scale: Scale also has a huge impact on hardware selection. For simplicity,
let's say small is in the hundreds of TB range, medium is in the PB range, and
large is in the tens of PB range and beyond. You will need to determine what
range you are in.

The process for choosing hardware is as follows.

Step 1 — choosing the storage server
configuration

For small and medium installations, the storage server can include the object,
account and container server software. For large installations, we would recommend
a separate account and/or container servers. For performance-optimized clusters,
the aggregate disk performance must match the total performance of other server
components (CPU, memory, flash, and I/O). For cost-optimized clusters, the disk
performance can exceed the performance of other components (in other words,
saving money to throttle performance). In fact, consider attaching JBODs to really get
great disk density.

A higher disk density also results in slight reliability degradation since a node failure
takes longer to self-heal, and two additional failures (if you have three copies) have

a slightly higher probability of occurring during this longer duration. Of course, the
probability of two failures occurring in one self-heal window is very low in both
cases. The following figure denotes a storage server with disks (of course, an optional
JBOD may also be connected to it):

sRiing:

[77]

Choosing the Right Hardware

The OpenStack configuration guide (http://docs.openstack.org/havana/
install-guide/install/apt/content/object-storage-system-requirements.
html) recommends the following server specifications:

* Processor: Dual quad-core.
* Memory: 8 to 12 GB.

* Network I/O: 1 x 1 Gbps NIC. Cost permitting, our recommendation would
be to go beyond the official recommendation and use 10 Gbps.

RAID should not be turned on due to performance degradation (there is an
exception: if you want to ensure consistency even with a full power loss, you may
need to consider RAID).

Finally, a key consideration is the type of disk: enterprise or desktop. Within
enterprise disks, there are 15K, 10K, or 7.2K rotations per minute (RPM) drives and
a variety of capacity configurations. For small and medium installations, you might
want to consider enterprise drives as they are more reliable than desktop drives.
Most small and medium installations are typically not set up to deal with the higher
failure rate of desktop drives. The performance and capacity that you choose for an
enterprise drive obviously depends on your specific requirements.

For large installations that are also very cost-sensitive, you may want to consider
desktop drives. The density of desktop drives (up to 6 TB at the time of writing) also
contributes favorably to large installations. In addition to the reliability, desktop
drives are not specified to be able to run 24 x 7. This means that your IT staff has to
be sophisticated enough to deal with a large number of failures and/or spin down
drives to conform to the specification.

Step 2 — determining the region and zone
configuration

Next, we need to decide on regions and zones. The number of regions stems from the
desire to protect data from a disaster or to be closer to the sources that consume data.
Once you have decided on the number of regions, pick the number of zones for each
region. You need to have at least as many zones as replicas. We would recommend
no less than three zones and Rackspace recommends five (http://docs.openstack.
org/havana/install-guide/install/apt/content/example-object-storage-
installation-architecture.html). Small clusters may be fine with four. Please
refer to Chapter 2, OpenStack Swift Architecture, for a refresher on the definition of
regions and zones.

[78]

Chapter 6

Step 3 — choosing the account and container
server configuration

As previously mentioned, unless you are installing a large configuration, you

don't need to worry about a separate account and container servers. For a separate
account and/or container servers, you need to ensure that the SQLite performance
is adequate to meet your database listing and update needs by selecting the right
amount of memory and flash. The OpenStack configuration guide recommends the
following specifications (you may be able to reduce the requirements based on your
cluster's size and performance requirements):

sRiing:

An optional account and a container server

* Processor: Dual quad-core.
* Memory: 8 to 12 GB.

* Network I/O: 1 x 1 Gbps NIC. Cost permitting, our recommendation would
be to go beyond the official recommendation and use 10 Gbps.

* Flash: Not specified. This depends on user's performance requirements.

Step 4 — choosing the proxy server
configuration

In general, the proxy server needs to keep up with the number of API requests. As
discussed in Chapter 2, OpenStack Swift Architecture, additional middleware modules
may also be running on the proxy server. Therefore, the proxy server needs a
performance level that can keep up with this workload. Using a few powerful proxy
servers as opposed to a large number of "wimpy" servers was proven to be more
cost-effective by Zmanda (http://www.zmanda.com/blogs/?p=774). The OpenStack
configuration guide seems to concur, and recommends the following specifications:

sRiing:

A proxy server

[79]

Choosing the Right Hardware

Processor: Dual quad-core.

Network I/O: A 1 x 1Gb/s NIC. Our recommendation would be to have

at least two NICs, one for internal storage cluster connectivity and one for
client (API) facing traffic. Cost permitting, our recommendation would be to
go beyond the official recommendation and use 10 Gbps at least for internal
storage cluster connectivity. Also see the related SSL discussion in the Step 7
- choosing additional networking equipment section that affects network I/O.

If your proxy server is running a lot of middleware modules, consider moving some
of them to dedicated servers. The most common middleware to be separated is the
auth software.

Step 5 — choosing the network hardware

There are three networks mentioned earlier —client (API) facing, internal storage
cluster, and replication. See Chapter 3, Installing OpenStack Swift for an architecture
view of the three networks. This might be a combination of 1 Gbps, 10 Gbps, or
hybrid 1/10 Gbps ethernet switches. The following are some performance-related
sizing techniques:

Client facing network: The throughput requirement of the overall cluster
dictates the network I/O for this network. For example, if your cluster has
10 proxy servers and is sized to satisfy 10,000 I/ O requests per second of
1 MB size each, then clearly, each proxy server needs 10 Gbps network
I/O capability.

Internal storage cluster: The network requirements depend on the overall
cluster throughput and size of the cluster. The size of the cluster matters
since it will generate a large amount of postprocessing software component
traffic (see Chapter 2, OpenStack Swift Architecture). As mentioned, cost
permitting, we recommend the use of a 10 Gbps network.

Replication network: This depends on the overall write throughput and the
size of the cluster. For example, if you expect 1,000 write requests per second
of 1 KB each, a 10 Mbps network might just work.

[80]

Chapter 6

An additional consideration is the durability model. Since network switches take
down entire zones or regions, unless you can service the failed switches rapidly, you
might want to consider dual-redundant configurations. The following figure denotes
a network switch:

LI AT
[) o o i ﬂ

A network switch

o

Step 6 — choosing the ratios of various
server types

After selecting the individual server configurations, the ratios of different server
types have to be chosen. Since most configurations will have only two types, that is,
proxy and storage, we will only discuss the ratios of these two. According to work
done by Zmanda, the proxy server should neither be underutilized nor overutilized.
If the throughput of one storage server is 1 Gbps and that of the proxy server is 10
Gbps for example, then the ratio is 10 (this simple calculation applies to large objects
dominated by throughput. For smaller objects, the calculation needs to focus on the
number of requests).

Instead of buying hardware piecemeal, this ratio exercise allows a user to define

a "unit" of purchase. The unit may be a full rack of hardware, multiple racks, or a
few rack units. A unit of hardware is orthogonal to Swift zones, and typically you
would want each unit to add capacity to every zone in a symmetric fashion. Each
unit can have a set of proxy servers, storage servers, network switches, and so on
defined in detail. Scaling the Swift cluster as data grows becomes a lot simpler using
this technique of purchase. As mentioned earlier, you need to start with at least two
proxies to provide for adequate durability.

For example, assume you want to grow your cluster in roughly 1 PB raw storage
increments, with dense configurations. You might consider a unit of hardware with
one proxy server, 2 x 10 Gbps switches, one management switch, and five storage
servers with 60 drives of 4 TB each (that is, 240 TB x 5 = 1.2 PB). Given the previous
comment regarding the need for at least two proxy servers, the initial installation
would have to be 2.4 PB. With triple replication, the 1.2 PB raw storage translates
to 400 TB usable storage. This example is not perfect because it may not fit cleanly
within the rack boundaries, but it is meant to illustrate the point.

[81]

Choosing the Right Hardware

Step 7 — choosing additional networking
equipment

The final step is to choose the load balancer, SSL acceleration hardware, and

security appliances. A load balancer is required if there is more than one proxy

node. Furthermore, you need to ensure that the load balancer is not a performance
bottleneck. SSL hardware acceleration is required if most of the traffic is over secure
HTTP (HTTPS) and the software SSL operation is overwhelming the proxy servers.
Finally, security appliances such as IPS and IDS are required if the cloud is on the
public Internet. Similar to the load balancer, these additional pieces of hardware
must have enough performance to keep up with the aggregate proxy server's
performance. The following figure denotes additional networking equipment needed
for your Swift cluster:

OooD .
| EEEE]

Additional networking equipment

Step 8 — choosing a cloud gateway

This piece of equipment is the odd man out. It is not required to build an OpenStack
Swift cluster. Instead, it is needed on premise (in case of a public cloud) or near the
application (in case of a private cloud) if your application has not yet been ported to
REST HTTP APIs. In this situation, the application is expecting a traditional block
or file storage, which is the interface exposed by these cloud gateways. The gateway
performs protocol translation and interfaces with the cloud on the other side. In
addition to protocol translation, cloud gateways often add numerous other features
such as WAN optimization, compression, deduplication, and encryption.

While most of this section has dealt with performance, there are other considerations
as well, and these are covered in the next section.

[82]

Chapter 6

Additional selection criteria

In addition to the previous criteria, the following items also need to be considered
before finalizing hardware selection:

Durability: Durability is a measure of reliability and is defined as 100
percent minus the probability of losing a 1 KB object in one year. Therefore,
99.999999999 percent durability (simply stated as 11 x 9 in this case) would
imply that every year, you statistically lose one object if you have 100 billion
1 KB objects, or given 10,000 objects, expect a loss of a one object every
10,000,000 years. Calculating the durability of a Swift cluster is outside the
scope of this book, but the selected hardware needs to meet your durability
requirements. For users that require a high level of durability, low density
enterprise-class disk drives, servers with dual fans and power supplies, and
S0 on, are some considerations.

Availability: Availability is defined as the percentage of time that requests
are successfully processed by the cluster. Availability mostly impacts
frontend network architecture in terms of having a single network (that is,
a single point of failure) versus dual-redundant networks. As mentioned
earlier, networks in a given zone can be single points of failure as long as
your IT staff have the ability to troubleshoot them quickly.

Serviceability: The serviceability of various pieces of hardware depends
heavily on your strategy. If you choose fail-in-place (typically for large
installations), serviceability is not a big concern. If you choose a repair/
servicing strategy (typically for small and medium installations),
serviceability is a concern. Each device should lend itself to repair or
servicing. A smaller scale installation may also force the choice of more
expensive hardware in items of dual-redundant fans, power-supplies, and so
on. The reason is that if there is a failure, there simply will not be too many
back-off devices available for the Swift ring to choose from.

Manageability: As previously discussed, servers come in all different types
of flavors when it comes to hardware management and associated software.
You should choose servers with management features that match your
overall IT strategy.

[83]

Choosing the Right Hardware

The vendor selection strategy

If you really want to be like a web giant, you should buy hardware from ODMs and
other commodity hardware manufacturers (either directly or through a systems
integrator). However, in reality, the decision is not that simple. The questions you
need to ask yourself are as follows:

Question Yes for all No for
questions even one
question

Can you specify the configuration of each server taking
into account performance, durability, availability,
serviceability, and manageability (versus needing vendor
sales engineers to help)?

Can you self-support (that is, if you get a 2 a.m. call, are You are You Sh?‘ﬂd

you prepared to root-cause what happened versus calling ready for stick with

the vendor)? commodity branded
hardware! hardware.

Are you prepared to accept less sophisticated warranty,
lead-times, end-of-life policies, and other terms?

Can you live with minimal vendor-provided hardware
management capabilities and software?

Branded hardware

If you choose branded hardware, the process is fairly simple and involves issuing
RFQs to your favorite server manufacturers such as HP, Dell, IBM, and FTS or to
networking manufacturers such as Cisco, Juniper, and Arista, and choosing the one
you like.

Commodity hardware

If you go down this route, there are numerous manufacturers to consider —
Taiwanese ODMs and other storage hardware specialists such as Xyratex and
Sanmina. Perhaps, the most interesting option to look at is an open source hardware
movement called the Open Compute Platform (OCP).

According to their website, http://www.opencompute.org, OCP's mission is to
design and enable the delivery of the most efficient server, storage, and datacenter
hardware designs for scalable computing. All of OCP's work is in the open source. A
number of manufacturers sell OCP-compliant hardware, and this compliance makes
it somewhat simpler for users to choose consistent hardware across manufacturers.

[84]

Chapter 6

The OCP Intel Motherboard Hardware v2.0, for example, supports two CPUs, four
channels of DDR3 memory per CPU, a mini-SAS port for potential JBOD expansion,
1 Gbps network I/O, and a number of hardware-management features. It can also
accept a PCle mezzanine NIC card for a 10 Gbps network 1/O. This server would be
suitable for both the proxy and storage server (with different items populated).

The OCP OpenVault JBOD, as another example, is a 2U chassis that can hold up to 30
drives. This would make it a suitable companion for dense storage servers.

Summary

In this chapter, we have looked at the complex process of selecting hardware for an
OpenStack Swift installation and the various trade-offs that can be made. In the next
chapter, we will look at how to benchmark and tune our Swift cluster.

[85]

Tuning Your Swift Installation

OpenStack Swift's tremendous flexibility comes at a cost—it has a very large number
of tuning options. Therefore, users utilizing Swift as a private cloud will need to
tune their installation to optimize performance, durability, and availability for their
unique workload. This chapter walks you through a performance benchmarking tool
and the basics mechanisms available to tune your Swift cluster.

Performance benchmarking

There are several tools that can be used to benchmark the performance of your Swift
cluster against a specific workload. COSBench, ssbench, and swift-bench are the
most popular tools available. While swift-bench (https://pypi.python.org/pypi/
swift-bench/1.0) used to be a part of the Swift project, and is therefore a common
default benchmarking tool, this chapter discusses COSBench, given its completeness
and the availability of graphical user interfaces with this tool.

COSBench is an open source distributed performance benchmarking tool for object
storage systems. It is developed and maintained by Intel. COSBench supports a
variety of object storage systems, including OpenStack Swift.

Tuning Your Swift Installation

The physical configuration of COSBench is shown in the following diagram:

——— || Web console
_
. COSBench
E e EI controller

/ \\
([MR - [-[I:f

COSBench driver COSBench driver

Storage Storage Storage
server server server Swift cluster to
: : : be benchmarked

Storage Storage Storage
server server server

Zone Zone Zone

The key components of COSBench are:

* Driver (also referred to as COSBench driver or load generator):

o

Responsible for workload generation, issuing operations to target
cloud object storage, and collecting performance statistics

In our test environment, the drivers were accessed via
http://10.27.128.14: 18088/driver/index.html and
http://10.27.128.15:18088/driver/index.html

[88]

Chapter 7

* Controller (also referred to as COSBench controller):

o

Responsible for coordinating drivers to collectively execute a
workload, collecting and aggregating runtime status or benchmark
results from driver instances, and accepting workload submissions

In our environment, the controller was accessed via
http://10.27.128.14:19088/controller/index.html

A critical item to keep in mind as we start with COSBench is to ensure that the driver
and controller machines do not inadvertently become performance bottlenecks.
These nodes need to have adequate resources.

Next, the benchmark parameters are tied closely to your use case, and they need to
be set accordingly. Chapter 8, Additional Resources, explores use cases in more detail,
but a couple of benchmark-related examples are as follows:

* Audio file sharing and collaboration: This is a warm data use case, where
you may want to set the ratio of read requests to write requests as relatively
high, for example, 80 percent. The access rate for containers and objects may
be relatively small (in tens of requests per second) with rather large objects
(say a size of hundreds of MB or larger per object).

* Document archiving: This is a somewhat cold data use case, where you may
want to set a relatively low read request to write request ratio, for example, 5
percent. The access rate for containers and objects may be high (in hundreds of
requests per second) with medium size objects (say a size of 5 MB per object).

Keep these use cases in mind as we proceed.

In our test setup, COSBench was installed on a Ubuntu 12.04 operating system. The
system also had JRE, unzip, and cURL installed prior to installing COSBench Version
0.3.3.0 (https://github.com/intel-cloud/cosbench/releases/tag/0.3.3.0).
The installation is very simple as you will see in the following easy steps:

unzip 0.3.3.0.zip
ln -s 0.3.3.0/ cos

cd cos

chmod +x *.sh

[89]

Tuning Your Swift Installation

More details on the installation and validation that the software has been installed
correctly can be obtained from the COSBench user guide located at https://
github.com/intel-cloud/cosbench. With the installation of COSBench, the user
has access to a number of scripts. Some of these scripts are as follows:

* start-all.sh/ stop-all.sh: Used to start/stop both controller and driver
on the current node

* start-controller.sh / stop-controller.sh: Used to start/stop only
controller on the current node

* start-driver.sh/ stop-driver.sh: Used to start/stop only driver on the
current node

* cosbench-start.sh / cosbench-stop.sh: These are internal scripts called
by the preceding scripts

* cli.sh: Used to manipulate workload through command lines

The controller can be configured using the conf/controller.conf file, and the
driver can be configured using the conf/driver.conf file.

The drivers can be started on all the driver nodes using the start-driver.sh
script, while the controller can be started on the controller node using the start-
controller. sh script.

Next, we need to create workloads. A workload can be considered as one complete
benchmark test. A workload consists of workstages. Each workstage consists of
work items. Finally, work items consist of operations. A workload can have more
than one workstage that is executed sequentially. A workstage can have more than
one work item that are executed in parallel.

There is one normal type (main) and four special types (init, prepare, cleanup, and
dispose) of work. Type main is where we will spend the rest of this discussion; the
key parameters for this phase are as follows:

* workers is used to specify the number of workers used to conduct work in
parallel, and thus control the load generated

* runtime (plus rampup and rampdown), totalOps, and totalBytes are used
to control other parameters of the load generated, including how to start and
end the work

The main phase has the operations of read, write, and delete. You will typically
want to specify the number of containers and objects to be written, and the object
sizes. Numbers and sizes are specified as expressions, and a variety of options, such
as constant, uniform, and sequential, are available.

[90]

Chapter 7

The workload is specified as an XML file. We will now create a workload that is
fashioned after the document archiving use case discussed earlier. It uses a workload
ratio of 95 percent writes and 5 percent reads. The drivers will spawn 128 workers
for the duration of one hour; the object size is static at 5 MB and 100 objects will be
created. The workload is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<workload name="LTS2-UAT-V1-128W-5MB-Baseline" description="LTS2 UAT
workload configuration"s

<auth type="swauth" config=" ;password=xxxx;url= >username=8016-
2588 :evault-user@evault.com https://auth.lts2.evault.com/v1.0"/

<storage type="swift" config=""/>
<workflow>
<workstage name="init" closuredelay="0">
<work name="init" type="init" workers="16" interval="20"
division="container" runtime="0" rampup="0" rampdown="0"
totalOps="1" totalBytes="0" config="containers=r(1,32)">
<operation type="init" ratio="100" division="container"
config="objects=r(0,0) ;sizes=c(0)B;containers=r(1,32)"
id="none"/>
</work>
</workstage>
<workstage name="prepare" closuredelay="0">

<work name="prepare" type="prepare" workers="16"
interval="20"
division="object" runtime="0" rampup="0" rampdown="0"
totalOps="1" totalBytes="0"
config="containers=r(1,32) ;objects=r(1,50) ;
sizes=u(5,5)MB">
<operation type="prepare" ratio="100" division="object"
config="createContainer=false;containers=r(1,32);
objects=r(1,50) ;sizes=u(5,5)MB" id="none"/>
</work>
</workstage>
<workstage name="normal" closuredelay="0">

<work name="normal" type="normal" workers="128"
interval="20"

division="none" runtime="300" rampup="100" rampdown="0"
totalOps="0" totalBytes="0">
<operation type="read" ratio="5" division="none"
config="containers=u(l,32) ;objects=u(1,50);" id="none"/>
<operation type="write" ratio="95" division="none"
config="containers=u(l,32) ;objects=u(51,100) ;
sizes=u(5,5)MB"
id="none"/>

[91]

Tuning Your Swift Installation

</work>
</workstage>
<workstage name="cleanup" closuredelay="0">
<work name="cleanup" type="cleanup" workers="1l6"
interval="20"
division="object" runtime="0" rampup="0" rampdown="0"
totalOps="1" totalBytes="0"
config="containers=r(1,32) ;objects=r(1,100);">

< operation type="cleanup" ratio="100" division="object"
config="deleteContainer=false;containers=r(1,32);
objects=r(1,100) ;" id="none"/>
</work>
</workstage>

<workstage name="dispose" closuredelay="0">

<work name="dispose" type="dispose" workers="16"
interval="20"

division="container" runtime="0" rampup="0" rampdown="0"

totalOps="1" totalBytes="0" config="containers=r(1,32);">
<operation type="dispose" ratio="100"
division="container"
config="objects=r(0,0) ;sizes=c(0)B;containers=r(1,32) ;"

id="none"/>
</work>
</workstage>
</workflows>
</workload>

The result of workload is a series of reported metrics: throughput as measured by
operations/second, response time measured by average duration between operation
start to end, bandwidth as measured by MBps, success ratio (percentage successful),
and other metrics. A sample unrelated report is shown in the following screenshot:

Final Result

General Report

Op-Type Op-Count Byte-Count Avg-ResTime Throughput Bandwidth Succ-Ratio
init-write 0 ops 0B NfA 0 opfs 0 B/S NSA
prepare-write 1.6 kops 102.4 MB 142.26 ms 7.02 op/s 449.5 KB/S 100%
read 4.21 kops 269,31 MB 20.84 ms 14.03 op/s 898,03 KB/S 100%
write 16.84 kops 1.08 GB 137.17 ms 56.16 op/s 3,59 MB/S 100%
cleanup-delete 3.2 kops 0B 85.5 ms 11.17 op/s 0 B/S 100%
dispose-delete 0 ops [1:} N/A 0 opfs 0 B/S N/A

show peformance details

If the Swift cluster under test stands up to your workload, you are done. You may
want to perform some basic tuning, but this is optional. However, if the Swift cluster
is unable to cope with your workload, you need to perform tuning.

[92]

Chapter 7

The first step is to identify bottlenecks. See Chapter 5, Managing Swift, for tools to

find performance bottlenecks. Nagios or swift-recon may be particularly well suited
for this. Of course, simple tools such as top may be used as well. Once you isolate
the bottleneck to particular server(s) and the underlying components such as CPU
performance, memory, I/O, disk bandwidth, and response times, we can move to the
next step, which is tuning.

Hardware tuning

Chapter 6, Choosing the Right Hardware, discusses the hardware considerations in great
detail. It is sufficient to say that choosing the right hardware can have a huge impact
on your performance, durability, availability, and cost.

Software tuning

In Chapter 2, OpenStack Swift Architecture, we talked about Swift using two types of
software modules — data path (referred to as WSGI servers in Swift documentation)
and postprocessing (referred to as background daemons). In addition, there is the
ring. All three merit different considerations in terms of software tuning. Also, we
will briefly look at some additional tuning considerations.

The ring considerations

The number of partitions in a ring affects performance and needs to be chosen
carefully because this cannot be changed easily. Swift documentation recommends
a minimum of 100 partitions per drive to ensure even distribution across servers.
Taking the maximum anticipated number of drives multiplied by 100 and then
rounded up to the nearest power of two provides the minimum number of total
partitions. Using a number higher than is needed will mean extremely uniform
distribution, but at the cost of performance, since more partitions put a higher
burden on replicators and other postprocessing jobs. Therefore, users should not
overestimate the ultimate size of the cluster.

For example, let us assume that we expect our cluster to have a maximum of 1,000
nodes each with 60 disks. That gives us 60 x 1,000 x 100 = 6,000,000 partitions.
Rounded up to the nearest power of two, we get 223 = 8,388,608. The value that will
be used to create the ring will therefore be 23. We did not discuss the disk size in this
computation, but a cluster with smaller/faster disks (for example, a 2 TB SAS drive)
will perform better than clusters with larger/slower disks (for example, a 6 TB SATA
drive) with the same number of partitions.

[93]

Tuning Your Swift Installation

Data path software tuning

The key data path software modules are proxy, account, container, and object
servers. There are literally dozens of tuning parameters, but the four most important
ones in terms of performance impact are as follows:

Parameter

Proxy server

Storage server

workers (auto by

default)

max_clients (1024

by default)

object_ chunk size

(64 KB by default)

threads_per disk
(0 by default)

Each worker can handle a max_clients number of
simultaneous requests. Ideally, having more workers means
more requests can be handled without being blocked. However,
there is an upper limit dictated by the CPU. Start by setting
workers as 2 multiplied by the number of cores. If the storage
server includes account, container, and object servers, you may
have to do some experimentation.

Since we want the most
effective use of network
capacity, we want a large
number of simultaneous
requests. You probably won't
need to change the default
setting.

Given that this data is flowing
over an internal Swift network,
a larger setting may be more
efficient. RedHat found 2 MB
to be more efficient than the
default size when using a 10
Gbps network.

N/A

In data published by RedHat,
filesystem calls were found to
block an entire worker. This
means that having a very large
setting for max_clientsis
not useful. Experiment with
this parameter, and don't be
afraid to reduce this number
all the way down to match
threads_ per disk or even
1.

N/A

This parameter defines the size
of the per-disk thread pool.

A default value of 0 means

a per-disk thread pool will
not be used. In general, Swift
documentation recommends
keeping this small to prevent
large queue depths that result
in high read latencies. Try
starting with four threads per
disk.

[94]

Chapter 7

Postprocessing software tuning

The impact of tuning postprocessing software is very different from data path
software. The focus is not so much on servicing API requests, but rather on
reliability, performance, and consistency. Increasing the rate of operations for
replicators and auditors makes the system more durable, since this reduces the
time required to find and fix faults, at the expense of increased server load. Also,
increasing the auditor rate reduces consistency windows by putting a higher server
load. The following are the parameters to consider:

* concurrency: Swift documentation (http://docs.openstack.org/
developer/swift/deployment guide.html) recommends setting the
concurrency of most postprocessing jobs at 1, except for replicators where
they recommend 2. If you need a higher level of durability, consider
increasing this number. Durability, again, is measured by 1-P (object loss in a
year), where the object size is typically 1 KB.

* interval: Unless you want to reduce the load on servers, increase reliability,
or reduce consistency windows, you probably want to stick with the
default value.

Additional tuning parameters

A number of additional tuning parameters are available to the user. The important
ones are listed as follows:

* memcached: A number of Swift services rely on memcached to cache lookups
since Swift does not cache any object data. While memcached can be run
on any server, it should be turned on for all proxy servers. If memcached is
turned on, please ensure adequate RAM and CPU resources are available.

* System time: Given that Swift is a distributed system, the timestamp of an
object is used for a number of reasons. Therefore, it is important to ensure
that time is consistent between servers. Services such as NTP may be used for
this purpose.

* Filesystem: Swift is filesystem agnostic; however, XFS is the one tested by
the Swift community. It is important to keep a high inode size, for example,
1024 to ensure that default and some additional metadata can be stored
efficiently. Other parameters should be set as described in Chapter 3, Installing
OpenStack Swift.

[95]

Tuning Your Swift Installation

* Operating system: General operating system tuning is outside the scope of
this book. However, Swift documentation suggests disabling TIME_WAIT and
syn cookies and doubling the amount of allowed conntrack in sysctl.
conf. Since the OS is usually installed on a disk that is not part of storage
drives, you may want to consider a small SSD to get fast boot times.

* Network stack: Network stack tuning is also outside the scope of this book.
However, there may be some additional obvious tuning, for example,
enabling jumbo frames for the internal storage cluster network. Jumbo
frames may also be enabled on the client facing or replication network if this
traffic is over the LAN (in the case of private clouds).

* Logging: Unless custom log handlers are used, Swift logs directly to syslog.
Swift generates a large amount of log data, and therefore, managing logs
correctly is extremely important. Setting logs appropriately can impact
both performance and your ability to diagnose problems. You may want to
consider high performance variants such as rsyslog (http://www.rsyslog.
com/) or syslog-ng (http://www.balabit.com/network-security/syslog-
ng/opensource-logging-system).

Summary

In this chapter, we reviewed how to benchmark a Swift cluster and tune it for a
specific use case for private cloud users. The next and final chapter covers use cases
appropriate for OpenStack Swift and additional resources.

[96]

Additional Resources

Having acquired the knowhow on building, managing, and tuning OpenStack

clusters by reading the preceding chapters, you are now ready to join the global elite

group of OpenStack Swift experts and take your career to the next step. Let's now
explore a few use cases of OpenStack Swift and get pointers to useful resources.

Use cases

Use cases for OpenStack Swift may be put into three broad categories, namely,
service providers (public cloud storage), Web 2.0 (private cloud storage for

enterprises, wherein features and functionality are delivered via a web interface),
and enterprises (private/public cloud storage).

p
¢ Public Cloud
Storage

e |aaS offering

Service

Providers

e Private Cloud
Storage

e Storage to run
their site

r ~

e Private Cloud
Storage

e Long-term
storage in a public
cloud

3 Use-Cases for OpenStack Swift

Additional Resources

Service providers

Amazon's S3 broke ground as the pioneer in cloud storage. A large number of
service providers have entered or are looking to enter this new product category, and
OpenStack Swift offers them a viable option that will meet their customers' service
level agreement (SLA) needs. OpenStack Swift is a mature production-ready open
source technology available for creating public cloud storage. It is cost effective,
extensible, and meets availability and performance metrics for such a service.

Service providers can target small- to large-sized businesses since a public cloud

can prove economical and hassle-free for them. They can also target consumers who
want to archive their data or save it in a public space for collaboration needs. Service
providers can tap into the benefits of cloud storage ranging from elimination of
capital expenditures for users to elimination of hardware and software management
and elimination of capacity planning. Service providers creating public cloud storage
may want to focus on particular applications, for example, backup, medical record
keeping, expense reports, or verticals (such as county/city governments, libraries,
hospitals, or specific geographies).

Web 2.0

Web 2.0 sites such as Twitter, Pinterest, Tumblr, and Wikipedia used a public cloud
for computing and storage in their early stages. However, as they grew, they hit a
point where it was more economical and secure to have their own private cloud.
Some of them also required an infrastructure that ensured better performance and
gave them more control over what a public cloud could offer. At that point, moving
to a private cloud using OpenStack Swift with S3 APIs provided a smooth transition.

Enterprises

Enterprises are generally heavily invested in their existing storage infrastructure that
has especially been built to adhere to strict standards of reliability, availability, and
serviceability, while providing fast access times. All their software is geared to SAN-
or NAS-based architecture and the new RESTful storage APIs are alien to them. So,
on the face of it, an enterprise may not see much value in moving to a private cloud.
On the contrary, enterprises may derive tremendous value out of both public and
private cloud storage. With the latest Big Data trend of saving everything, enterprises'
need for cheap data storage is growing exponentially. A public cloud tuned for long-
term storage may save cost, provide convenient access, and protect data better than
anything the enterprise is using currently. In a similar vein, a compelling argument for
moving to a private cloud is the fact that its architecture is very compatible with Big
Data applications, including the use of MapReduce algorithms.

[98]

Chapter 8

In the use cases pointed to in the following tables, we will see examples of companies
that store data such as medical images, bioinformatics data, banking records,

oil and gas data, logs, and internal corporate videos. Finally, an enterprise may
consider both a private and a public cloud to store the primary copy on premise and
secondary copy in different locations. The additional copy in the public cloud serves
as a backup, and it will be available for recovery as needed.

Transitioning to the cloud, as discussed in Chapter 1, Cloud Storage: Why Can't I be like
Google?, it is not as formidable as it may seem at first. Several applications support
Swift or S3 APIs natively, easing the transition to OpenStack Swift. Cloud gateways
are another popular mechanism to ease this transition. Finally, an enterprise may
consider developing new applications in Python, PHP, and Ruby-on-Rails-based
paradigms that can directly interface to a private or public cloud.

Operating systems used for OpenStack
implementations

OpenStack supports a variety of operating systems and we have compiled a table
listing the operating systems used in some of the OpenStack implementations. The
following table provides information on organizations using these operating systems
in their implementations:

Operating Implementation Link

system / organization

Ubuntu NeCTAR, https://www.openstack.org/user-stories/
MercadolLibre, nectar/
hﬁeLChmcoda https://www.openstack.org/user-stories/
Liveperson mercadolibre/

https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/session-
videos/presentation/openstack-deployment-
with-chef-workshop

https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/session-
videos/presentation/is-open-source-good-
enough-a-deep-study-of-swift-and-ceph-
performance
https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/session-
videos/presentation/liveperson-openstack-
case-study-from-0-to-100-in-1-year

[99]

Additional Resources

Operating Implementation Link

system / organization

Redhat CERN https://www.openstack.org/user-stories/
cern/

CentOS Workday https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/session-
videos/presentation/workday-on-openstack

HP Cloud HP https://www.openstack.org/summit/

(05) openstack-summit-hong-kong-2013/session-
videos/presentation/is-open-source-good-
enough-a-deep-study-of-swift-and-ceph-
performance

Debian eNovance http://www.openstack.org/user-stories/
enovance/

Virtualization used for OpenStack
implementations

OpenStack services can be installed on virtual machines created using ESX, KVM,
Hyper-V, and so on. The following table lists the virtualization technology used in a
few implementations:

Virtualization Implementation Link
/ organization

KVM eNovance, https://www.openstack.org/summit/
Workday, CERN openstack-summit-hong-kong-2013/
session-videos/presentation/ceph-the-
de-facto-storage-backend-for-openstack

https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/workday-
on-openstack

https://www.openstack.org/user-
stories/cern/

VMWare VMWare https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/hands-on-
with-openstack-vsphere

[100]

Chapter 8

Provisioning and distribution tools

The most common provisioning and deployment tools used to deploy OpenStack are
Puppet, Chef, and Juju. The following table lists the tools and some of the OpenStack

installations that they are used in:

Provisioning/ Implementation
Deployment /Organization

Link

Puppet CERN, NeCTAR,
Kickstart,
Cisco Webex,
Liveperson

Chef Workday,
Opscode,
MercadoLibre

Juju VMWare

Compass Huawei

https://www.openstack.org/user-stories/
cern/

https://www.openstack.org/user-stories/
nectar/

https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/session-
videos/presentation/kickstack-rapid-
openstack-deployment -with-puppet

https://www.openstack.org/user-stories/
cisco-webex/

http://www.openstack.org/user-stories/
liveperson/

https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/session-
videos/presentation/workday-on-openstack

https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/openstack-
deployment-with-chef-workshop

https://www.openstack.org/user-stories/
mercadolibre/

https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/vmware-and-
openstack-bridging-the-divide-using-
ubuntu-and-juju

https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/session-
videos/presentation/compass-yet-another-
openstack-deployment-system

[101]

Additional Resources

Monitoring and graphing tools

The following table lists tools that can be used, in addition to OpenStack Swift, to
enable monitoring (some of them are mentioned in prior chapters too):

Monitoring Download tool Organization
tool implementations
Groundwork http://sourceforge.net/ NeCTAR: http://www.
projects/gwmos/ openstack.org/user-
stories/nectar/
Ganglia: http://sourceforge.net/apps/ CERN: https://
Graphing trac/ganglia/wiki/ganglia_ www . youtube . com/
tool quick start watch?v=jRkTVh27XBQ
Graphite https://github.com/etsy/ Rackspace: https://www.
statsd/blob/master/docs/ openstack.org/summit/
graphite.md openstack-summit-hong-
kong-2013/session-
videos/presentation/
an-intimate-look-at-
running-openstack-
swift-at-scale
Zabbix http://www.patlathem.com/
zabbix-beginners-guide-
installing-and-configuring-
the-monitoring-server/
NagiOS http://www.nagios.org/download Redhat, Mirantis, Dell
crowbar

Additional information

The following links provide additional information on OpenStack Swift:

* http://swift.openstack.org

® https://github.com/openstack/swift

[102]

Chapter 8

The following blogs provide more up-to-date information on the topics discussed
in this chapter; they also provide more updated user stories, OpenStack
implementations by customers, deployment tools, monitoring and graphing tools,
and more information related to OpenStack implementations:

® http://www.buildcloudstorage.com/2014/03/swift-book.html

* http://www.vedams.com/blog/cloud/
Additional support, including mailing lists, is available at the following links,
and users have the ability to review previously answered questions or post new
questions to the community via launchpad:

®* http://www.openstack.org/community/

® http://www.openstack.org/blog/

® https://swiftstack.com/blog/

® https://launchpad.net/swift

* https://www.mail-archive.com/openstack@lists.openstack.org/

Summary

As we can see from our discussion in this chapter, OpenStack Swift is relevant to
every user segment, from the individual consumer to the large service provider.
Service providers offer value added public clouds, Web2.0s build private clouds to
house all their user data, and enterprises use public clouds and create private secure
clouds to archive their data and run analytics.

At this point, we hope you have a good idea of what cloud storage is and how
OpenStack can be used to create cloud storage. We hope you are confident in terms
of how to install, manage, and use OpenStack Swift, including some finer points such
as hardware selection and performance tuning. It is now time to get involved with
the OpenStack Swift community as a user, contributor, or evangelist.

[103]

Advanced Features

This appendix provides details on the set of commands that can be run from a Swift
CLI session. These commands can be used to perform CRUD operations.

Commands

The commands that can be run from the Swift CLI are 1ist, stat, post, upload,
download, and delete. Each command has detailed help, which can be displayed by
running the swift command -h command, for example, swift list -h.

List
The 1ist command is used to list the containers for the account or the objects for a
container. This subsection describes the usage of the 1ist command.

swift list <container> -A Auth URL -U User -K Key --os-username=<auth-
user-name> --os-password=<auth-password> --os-tenant-id=<auth-tenant-
id> --os-tenant-name=<auth-tenant-name> --os-auth-url=<auth-url> --os-
auth-token=<auth-token> --os-storage-url=<storage-url> --os-region-
name=<region-name> --os-service-type=<service-type> --os-endpoint-
type=<endpoint-type> --prefix=PREFIX

Examples

You can list the containers with size information, using the following commands:
swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
list --1h

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
list -long

Advanced Features

You can list the containers with size information and a prefix of con1 by using the
following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
list --1h --prefix conl

You can list the containers with size information and a prefix of con1 in the region
regionOne by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
list --1h --prefix conl --os-region-name=regionOne

Stat

The stat command is used to display information for an account, container, or
object. This section describes the usage of the stat command.

swift stat <container> <object> -A Auth URL -U User -K Key --os-
username=<auth-user-name> --os-password=<auth-password> --os-tenant-
id=<auth-tenant-id> --os-tenant-name=<auth-tenant-name> --os-auth-
url=<auth-url> --os-auth-token=<auth-token> --os-storage-url=<storage-
url> --os-region-name=<region-name> --os-service-type=<service-type>
--os-endpoint-type=<endpoint-type>

Examples

Display the metadata of the account by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin: userl -K tl
stat

Display the metadata of the container2 container by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
stat container2

Display the metadata of the key . txt object in the container3 container by using the
following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
stat container3 key.txt

Display the metadata of the account in the regionone region in long format with
totals by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
stat --1lh --os-region-name=regionOne

[106]

Appendix.

Post

The post command is used to update metadata information for the account,
container, or object. This section describes the usage of the post command.

swift post <container> <object> --read-acl <acl> --write-acl <acl>
--meta <name:value> --header <header> -A Auth URL -U User -K Key --os-
username=<auth-user-name> --os-password=<auth-password> --os-tenant-
id=<auth-tenant-id> --os-tenant-name=<auth-tenant-name> --os-auth-
url=<auth-url> --os-auth-token=<auth-token> --os-storage-url=<storage-
url> --os-region-name=<region-name> --os-service-type=<service-type>
--os-endpoint-type=<endpoint-type>

Examples

Update the read-acl metadata for the containeri1 container by using the
following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
post containerl --read-acl=accountl

Add metadata Size:Large and Color:Blue to the container2 container by using
the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
post container2 -m Size:Large -m Color:Blue

Update the content-type header metadata as text/plain for the container3
container by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
post container3 -H "content-type:text/plain"

Update the read-acl metadata for the container4 container by accessing through
the regionoOne region:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
post container4 --read-acl=accountl --os-region-name=regionOne

[107]

Advanced Features

Upload

The upload command is used to upload specified files and directories to the given
container. This section describes the usage of the upload command.

swift upload <container> <file or directory> --changed --segment-

size <size> --segment-container <container> --leave-segments --header
<header> -A Auth URL -U User -K Key --os-username=<auth-user-name> --os-
password=<auth-password> --os-tenant-id=<auth-tenant-id> --os-tenant-
name=<auth-tenant-name> --os-auth-url=<auth-url> --os-auth-token=<auth-
token> --os-storage-url=<storage-url> --os-region-name=<region-name>
--os-service-type=<service-type> --os-endpoint-type=<endpoint-type>

Examples

Upload the key . txt object to the container1 container by using the
following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
upload containerl key.txt

Upload multiple objects (key1l.txt, key2.txt, and key3.txt) to the container1
container by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
upload containerl keyl.txt key2.txt key3.txt

Upload the key . txt object to the container2 container using a segment size
(segment -size) of 100 bytes. Swift has an object size limit of 5 GB by default. Larger
files can be uploaded by using the segment -size option. The object will be stored
as multiple segments in the Swift object store. In this example, each segment created
will be of 100 bytes, and there will be several such segments uploaded, based on
size of the object. The -changed option is used to upload the file only if this file has
changed from when it was last uploaded, as in the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
upload container2 key.txt --changed --segment-size=100

Upload the key . txt object to the container3 container using a segment size
(segment-size) of 100 bytes. Also, we explicitly specify the seg_container3
segment folder to where the segments will be uploaded.

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
upload container3 key.txt --segment-size=100 --segment-container=seg
container3

[108]

Appendix.

Upload the key . txt object to the container4 container using a segment size
(segment-size) of 100 bytes. The use-slo option is specified to create a static
large object instead of the default dynamic large object, as shown in the
following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K
tl upload container4 key.txt --segment-size=100 --use-slo --os-region-
name=regionOne

Download

The download command is used to download objects from containers. This section
describes the usage of the download command.

swift download <container> <object> --all --prefix <prefix> --output
<out file> -A Auth URL -U User -K Key --os-username=<auth-user-

name> --os-password=<auth-password> --os-tenant-id=<auth-tenant-id>
--os-tenant-name=<auth-tenant-name> --os-auth-url=<auth-url> --os-
auth-token=<auth-token> --os-storage-url=<storage-url> --os-region-
name=<region-name> --os-service-type=<service-type> --os-endpoint-
type=<endpoint-type>

Examples

Download all objects from all the containers by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
download --all

Download all objects with the key prefix from the container1 container by using
the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
download containerl --prefix key

Download the key . txt object from the containeril container by using the
following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
download containerl key.txt

Download all objects from all the containers utilizing two threads for object
download by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
download --all --object-threads 2 --os-region-name=regionOne

[109]

Advanced Features

Delete

The delete command is used to delete a container or delete objects within a
container. This section describes the usage of the delete command.

swift delete <container> <object> --all -leave segments -A Auth URL
-U User -K Key --os-username=<auth-user-name> --os-password=<auth-
password> --os-tenant-id=<auth-tenant-id> --os-tenant-name=<auth-tenant-
name> --os-auth-url=<auth-url> --os-auth-token=<auth-token> --os-
storage-url=<storage-url> --os-region-name=<region-name> --os-service-
type=<service-type> --os-endpoint-type=<endpoint-type>

Examples

Delete the key . txt object from the containerl container by using the
following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
delete containerl key.txt

Delete all objects from the container2 container, and leave the segments as is, by
using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
delete container2 --leave-segments

Delete all the objects and all the containers by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
delete --all

Delete all the objects and all the containers utilizing two threads for deleting objects
by using the following command:

swift -V 2.0 -A https://auth.lts2.evault.com/v2.0 -U admin:userl -K tl
delete --all --object-threads=2 --os-region-name=regionOne

[110]

A

Access Control Lists (ACL) 24
account reaper 22
account server 19
account server configuration
selecting 79
additional networking equipment
selecting 82
additional tuning parameters
filesystem 95
logging 96
memcached 95
network stack 96
operating system 96
system time 95
Amazon S3 API
using 56, 57
Amazon S3 API commands
create bucket 59
delete bucket 59
list buckets 58
list objects 59
used, for accessing OpenStack Swift 58
Apache jclouds
URL 59
application impact, cloud storage
cloud gateways 10
architectural principles, OpenStack Swift
available and consistent 16
data organization 16
load spreading 16
loosely coupled 16
masterless 16
self-healing 16

Index

Drive audit 23
auditors 22
authentication (auth)
about 23
used, for creating token 46
availability 83

B

background daemons 93
branded hardware

selecting 84
buckets 58
builder file. See ring
bulk archive auto-extraction 25
bulk delete 25

C

capacity, OpenStack Swift cluster
new drives, adding 71
new storage, adding 71
planning 71
proxy servers, adding 71
capital expenditures (CAPEX) 8
CAP theorem
about 10
Availability 10
Consistency 10
Partial tolerance 10
client facing network 80
cloud gateway
selecting 10, 82
cloud storage
about 7
benefits 7

limitations 7 COSBench Version 0.3.3.0

cloud storage, benefits URL, for installing 89
elasticity 8 create operation 20
multitenanancy 9 CRUD operations 66
on-demand 8 cURL
reduced TCO 8 about 45
universal access 9 used, for displaying metadata 47
unlimited scalability 8 used, for listing containers 49

cloud storage, limitation used, for listing objects 50
application impact 10
multitenanancy 9 D
use cases 9

CNAME lookup 24 data path proxy server

commands tuning parameters 94
about 105 data path software
delete command 110 tuning 94

download command 109 data path software servers
list command 105 account server 18,19

post command 107 container server 18,19
stat command 106 create operation 20
upload command 108 delete operation 21

commodity hardware object server 18,19
selecting 84 proxy server 18, 19

configuration, COSBench 87 read operatior} 21

container ACL 54 update operation 21

container and account quotas 25 data path storage server

containers tuning parameters 94
listing, cURL used 49 delete command
listing, Swift Client CLI used 48 about 110

examples 110
delete operation 21
domain remap middleware 24
download command

container server 19
container server configuration
selecting 79
container to container synchronization 23

Content Delivery Network (CDN) 25 about 109
CORS 26 examples 109
COSBench drive failure
about 87-92 detecting 68, 69
configuration 88 handling 69
installation 89 durability 83
COSBench, components
controller 89 E
driver 88

enterprises 97-99
environment variables
using 51

COSBench controller 89

COSBench driver 88

COSBench user guide
URL 90

[112]

F proxy server configuration, selecting 79
region configuration, determining 78

failure management server ratios, selecting 81
about 68 serviceability 83
drive failure, detecting 68 storage server configuration,
drive failure, handling 69 selecting 77,78
node failure, handling 69 zone configuration, determining 78
region failure 70 hardware tuning 93
zone failure 70 health check module 24
features, OpenStack Swift
cluster health 26 |
CORS 26
large object support 25 implementation, OpenStack Swift
metadata 26 about 16
multirange support 26 architectural principles 16
server-side copies 26 data path software servers 18, 19
form post middleware 25 inline middleware options 23
physical data organization 17, 18
G postprocessing software components 21
inline middleware modules
graphing tools. See monitoring tools bulk archive auto-extraction 25
bulk delete 25
H CNAME lookup 24
container and account quotas 25
hard disks, storage server node domain remap 24
formatting 31, 32 form post 25
mounting 31, 32 health check 24
hardware rate limiting 24
network switch 75 Recon 25
optional hardware, using 75 static web server 25
proxy server 75 Swift origin server 25
storage servers 75 TempURL 25
used, for implementing OpenStack inline middleware options
Swift 75, 76 auth 23
hardwa.re components, OpenStack Swift logging 24
planning 27, 28 other modules 24, 25
hardware selection criteria installation, COSBench 89
account server configuration, selecting 79 installation, Keystone 39-43
additional networking equipment, installation, MySQL 38, 39
. sel.e.cting 82 installation, OpenStack Swift 27, 30
availability 83 internal storage cluster 80

cloud gateway, selecting 82

container server configuration, selecting 79 J

durability 83

manageability 83 jclouds library

network hardware, selecting 80, 81 used, for accessing OpenStack Swift 59

[113]

K internal storage cluster 80
replication network 80

Keystone selecting 80, 81

installing 39-43 network interface card (NIC) 76
Keystone auth 23 network replication
Keystone service configuring 29

Keystone, installing 39-43 new drives

MySQL, installing 38, 39 adding 71

using 38 new storage

adding 71

L node failure

handling 69

LAN-on-motherboard (LOM) 76 proxy server failure 70

large objects

transferring 55 (o)
list command
about 105 object expirer 22
examples 105, 106 objects
logging listing, cURL used 50
about 24 listing, REST API used 50
rsyslog, used 67 logical organization 15, 16
logical organization, objects 15,16 object server 19
object storage
M about 10,11
automating management tasks 11
manageability 83 benefits 11
metadata data placement 11
displaying, cURL used 47 OCP Intel Motherboard Hardware v2.0 85
displaying, REST API used 48 OCP OpenVault JBOD 85
displaying, Swift Client CLI used 47 Open Compute Platform (OCP)
updating, REST APl used 51 about 84
updating, Swift Client CLI used 51 URL 84
migrations 72 OpenStack configuration guide
monitoring tools URL 78
using 102 OpenStack Swift
MySQL about 12,13

installing 38, 39
N

accessing, Amazon S3 API commands
used 58

accessing, jclouds library used 59

accessing, python-swiftclient library

Nagios
about 62 us ed 60 .
URL 62 accessing, ruby-openstack library used 60
network additional features 25
. N deploying, provisioning/ distribution tools
public network, configuring 28 used 101

storage network, configuring 28
network hardware
client facing network 80

downloading 30
functionality 12

[114]

hardware planning 27, 28

implementation 16

implementing, hardware used 75, 76

implementing, operating systems used 99

implementing, virtualization used 100

installing 27, 30

preinstallation steps 29

URL, for additional information 102, 103

use cases 97
OpenStack Swift cluster

capacity, planning 71

failure management 68

monitoring, StatsD used 65, 66

monitoring, Swift Dispersion used 64, 65

monitoring, Swift Informant used 64

monitoring, Swift metrics used 66

monitoring, Swift Recon used 63
OpenStack Swift installation

Keystone service 38

multiregion support 37, 38

network, configuring 28

proxy server node, setting up 33, 34

ring file, setup 35, 36

servers, setting up 28

storage server node, setting up 31
operating systems

used, for implementing OpenStack Swift 99
operational expenditures (OPEX) 8
operations 90
optional hardware

account servers 75

auth servers 76

container servers 75

firewall 76

JBOD 76

load balancer 76

on-premise cloud gateway 76

security appliances 76

SSL acceleration 76

P

partitions 18

performance benchmarking
with COSBench 87-92
with ssbench 87
with swift-bench 87

physical data organization 17,18
physical data organization hierarchy
disk 17
storage server 17
zone 17
post command
about 107
examples 107
postprocessing software
tuning 95
postprocessing software components
auditors 22
other processes 22
replication 22
updaters 22
provisioning/distribution tools
used, for deploying OpenStack Swift 101
proxy server
about 19
adding 71
upgrading 73
proxy server configuration
selecting 79
proxy server failure 70
proxy server node
setting up 33, 34
pseudo-directories 16
pseudo-hierarchical directories 52
public network
configuring 28
python-swiftclient
URL 60
python-swiftclient library
used, for accessing OpenStack Swift 60

R

rate limiting 24
read operation 21
Recon 25
region configuration
determining 78
region failure 70
replicas 18
replication 22
replication network
about 80

[115]

configuring 29
REST API
about 45
used, for displaying metadata 48
used, for listing objects 50
used, for updating metadata 51
ring
considerations, for software tuning 93
services, starting 36
setup 35, 36
ring builder 18
rotations per minute (RPM) 78
routine management
about 61, 62
OpenStack Swift cluster, monitoring 62
RSYNC 32,33
RSYNCD 32, 33
rsyslog
URL 96
used, for logging 67
ruby-openstack
URL 60
ruby-openstack library
used, for accessing OpenStack Swift 60

S

server ratios
selecting 81
servers
CPU Performance, configuring 76
disk/JBOD, configuring 76
Flash memory, configuring 76
hardware management 76
memory, configuring 76
Network I/O, configuring 76
serviceability 83
service level agreement (SLA) 98
service providers 97, 98
services, ring
starting 37
services, storage server node
installing 31
software tuning
about 93
data path 94
data path software 94
postprocessing software 95

ring considerations 93
ssbench 87
stat command
about 47, 106
examples 106
static web server 25
StatsD
URL 65
used, for monitoring OpenStack Swift
cluster 65, 66
storage network
configuring 28
storage server 18
storage server configuration
selecting 77,78
storage server node
hard disks, formatting 31, 32
hard disks, mounting 31, 32
RSYNC 32,33
RSYNCD 32,33
services, installing 31
setting up 31
Swauth 23, 46
swift-bench
about 87
URL 87
Swift Client CLI
about 45
used, for displaying metadata 47
used, for listing containers 48
used, for updating metadata 51
Swift Dispersion
used, for monitoring OpenStack Swift
cluster 64, 65
Swift Informant
URL, for downloading 64
used, for monitoring OpenStack Swift
cluster 64
Swift metrics
used, for monitoring OpenStack Swift
cluster 66
Swift origin server 25
Swift Recon
used, for monitoring OpenStack Swift
cluster 63
syslog-ng
URL 96

[116]

T

TCO 7
TempAuth 23
TempURL 25
tenant 15
token
creating, authentication used 46
Total Cost of Ownership. See TCO

U

update operation 21
updaters 22
upload command
about 108
examples 108
use cases, OpenStack Swift
enterprises 97-99
service providers 97, 98
Web 2.0 97, 98
users 16

Vv

vendor selection strategy
about 84
branded hardware, selecting 84

commodity hardware, selecting 84, 85

virtualization

used, for implementing OpenStack Swift

100

w

Web 2.0 97,98
workloads 90
workstages 90
write affinity 20
WSGI servers 93

Y4

Zmanda
URL 79
zone configuration
determining 78
zone failure 70

[117]

open source

community experience distilled

PUBLISHING

Thank you for buying
Implementing Cloud Storage with OpenStack Swift

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

OpenStack Cloud
Computing Cookbook

Second Edition

OpenStack Cloud Computing
Cookbook

Second Edition
ISBN: 978-1-78216-758-7 Paperback: 396 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, Horizon,
Neutron, and Cinder

1. Updated for OpenStack Grizzly.

2. Learn how to install, configure, and manage
all of the OpenStack core projects including
new topics such as block storage and software
defined networking.

Python 3

Object Oriented Programming

Python 3
Object Oriented Programming
ISBN: 978-1-84951-126-1 Paperback: 404 pages

Harness the power of Python 3 objects

1. Learn how to do Object Oriented Programming
in Python using this step-by-step tutorial.

2. Design public interfaces using abstraction,
encapsulation, and information hiding.

3. Turn your designs into working software by
studying the Python syntax.

4. Raise, handle, define, and manipulate
exceptions using special error objects.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

RESTful PHP

Web Services

RESTful PHP

Web Services
ISBN: 978-1-84719-552-4 Paperback: 220 pages

Learn the basic architectural concepts and steps
through examples of consuming and creating
RESTful web services in PHP

1. Get familiar with REST principles.

2. Learn how to design and implement PHP web
services with REST.

3. Real-world examples, with services and client
PHP code snippets.

4. Introduces tools and frameworks that can
be used when developing RESTful PHP
applications.

Apache CloudStack
Cloud Computing

Apache CloudStack Cloud
Computing
ISBN: 978-1-78216-010-6 Paperback: 294 pages

Leverage the power of CloudStack and learn to
extend the CloudStack environment

1. Install, deploy, and manage a cloud service
using CloudStack.

2. Step-by-step instructions on setting up and
running the leading open source cloud
platform, CloudStack.

3. Set up an IaaS cloud environment using
CloudStack.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Cloud Storage: Why Can't I be like Google?
	Elements of cloud storage
	Reduced TCO
	Unlimited scalability
	Elastic
	On-demand
	Universal access
	Multitenanancy
	Use cases
	Application impact
	Cloud gateways

	Object storage
	OpenStack Swift
	Summary

	Chapter 2: OpenStack Swift Architecture
	Logical organization of objects
	Swift implementation
	Key architectural principles
	Physical data organization
	Data path software servers
	A day in the life of a create operation
	A day in the life of of a read operation
	A day in the life of an update operation
	A day in the life of a delete operation

	Post-processing software components
	Replication
	Updaters
	Auditors
	Other processes

	Inline middleware options
	Auth
	Logging
	Other modules

	Additional features
	Large object support
	Metadata
	Multirange support
	CORS
	Server-side copies
	Cluster health

	Summary

	Chapter 3: Installing OpenStack Swift
	Hardware planning
	Server setup and network configuration
	Preinstallation steps
	Downloading and installing Swift
	Setting up storage server nodes
	Installing services
	Formatting and mounting hard disks
	RSYNC and RSYNCD

	Setting up the proxy server node
	The ring setup
	Starting services on all storage nodes

	Multi-region support
	The Keystone service
	Installing MySQL
	Installing Keystone

	Summary

	Chapter 4: Using Swift
	Installing the clients
	Creating a token by using authentication
	Displaying metadata information for an account, container, or object
	Using the Swift client CLI
	Using cURL
	Using the REST API

	List containers
	Using Swift client CLI
	Using cURL

	Listing objects in a container
	Using Swift client CLI
	Using cURL
	Using REST API

	Updating metadata for a container
	Using Swift Client CLI
	Using REST API

	Environment variables
	Pseudo-hierarchical directories
	Container ACLs
	Transferring large objects
	Amazon S3 API compatibility
	Accessing Swift using S3 commands

	Accessing Swift using client libraries
	Java
	Python
	Ruby

	Summary

	Chapter 5: Managing Swift
	Routine management
	Swift cluster monitoring
	Swift Recon
	Swift Informant
	Swift dispersion tools
	StatsD
	Swift metrics

	Logging using rsyslog
	Failure management
	Detecting drive failures
	Handling drive failure
	Handling node failure
	Proxy server failure

	Zone and region failure

	Capacity planning
	Adding new drives
	Adding new storage and proxy servers

	Migrations
	Summary

	Chapter 6: Choosing the Right Hardware
	The hardware list
	The hardware selection criteria
	Step 1 – choosing the storage server configuration
	Step 2 – determining the region and zone configuration
	Step 3 – choosing the account and container server configuration
	Step 4 – choosing the proxy server configuration
	Step 5 – choosing network hardware
	Step 6 – choosing the ratios of various
server types
	Step 7 – choosing additional networking equipment
	Step 8 – choosing a cloud gateway

	Additional selection criteria
	The vendor selection strategy
	Branded hardware
	Commodity hardware

	Summary

	Chapter 7: Tuning Your Swift Installation
	Performance benchmarking
	Hardware tuning
	Software tuning
	The ring considerations
	Data path software tuning
	Post-processing software tuning

	Additional tuning parameters
	Summary

	Chapter 8: Additional Resources
	Use cases
	Service providers
	Web 2.0
	Enterprises

	Operating systems used for OpenStack implementations
	Virtualization used for OpenStack implementations
	Provisioning and distribution tools
	Monitoring and graphing tools
	Additional information
	Summary

	Appendix: Advanced Features
	Commands
	List
	Examples

	Stat
	Examples

	Post
	Examples

	Upload
	Examples

	Download
	Examples

	Delete
	Examples

	Index

