
Fast and E�cient Algorithms for Video

Compression and Rate Control

Dzung Tien Hoang and Je�rey Scott Vitter

c D. T. Hoang and J. S. Vitter

Draft, June 20, 1998

ii

Vita

Dzung Tien Hoang was born on April 20, 1968 in Nha Trang, Vietnam. He immi-
grated to the United States of America in 1975 with his parents, Dzuyet D. Hoang
and Tien T. Tran, and two sisters. He now has three sisters and one brother. They
have been living in Harvey, Louisiana.

After graduating in 1986 from the Louisiana School for Math, Science and the
Arts, a public residential high school in Natchitoches, Louisiana, he attended Tulane
University in New Orleans with a full-tuition Dean's Honor Scholarship and graduated
in 1990 with Bachelor of Science degrees in Electrical Engineering and Computer
Science, both with Summa Cum Laude honors.

He joined the Department of Computer Science at Brown University in Providence,
Rhode Island, in 1990 under a University Fellowship and later under a National Sci-
ence Foundation Graduate Fellowship. He received a Master of Science in Computer
Science from Brown in 1992 and a Doctor of Philosophy in Computer Science from
Brown in 1997. From 1993 to 1996, he was a visiting scholar and a research assistant
at Duke University in Durham, North Carolina. From 1991 to 1995, he spent sum-
mers working at the Frederick National Cancer Research Facility, the Supercomputing
Research Center, and the IBM T. J. Watson Research Center.

In August 1996, he joined Digital Video Systems, in Santa Clara, California, as
a Senior Software Engineer. He is currently a Senior Software Systems Engineer at
Sony Semiconductor Company of America.

Je�rey Scott Vitter was born on November 13, 1955 in New Orleans, LA.
He received a Bachelor of Science with Highest Honors in Mathematics from the
University of Notre Dame in 1977, and a Doctor of Philosophy in Computer Science
from Stanford University in 1980. He was on the faculty at Brown University from
1980 until 1993. He is currently the Gilbert, Louis, and Edward Lehrman Professor
and Chair of the Department of Computer Science at Duke University, where he
joined the faculty in January 1993. He is also Co-Director and a Founding Member
of the Center for Geometric Computing at Duke.

Prof. Vitter is a Guggenheim Fellow, an ACM Fellow, an IEEE Fellow, an NSF
Presidential Young Investigator, a Fulbright Scholar, and an IBM Faculty Develop-
ment Awardee. He is coauthor of the book Design and Analysis of Coalesced Hashing

and is coholder of patents in the areas of external sorting, prediction, and approxi-

iii

iv

mate data structures. He has written numerous articles and has consulted frequently.
He serves or has served on the editorial boards of Algorithmica, Communications of

the ACM, IEEE Transactions on Computers, Theory of Computing Systems (formerly
Mathematical Systems Theory: An International Journal on Mathematical Computing

Theory), and SIAM Journal on Computing, and has been a frequent editor of special
issues. He serves as Chair of ACM SIGACT and was previously Member-at-Large
from 1987{1991 and Vice Chair from 1991{1997. He was on sabbatical in 1986 at the
Mathematical Sciences Research Institute in Berkeley, and in 1986{1987 at INRIA in
Rocquencourt, France and at Ecole Normale Sup�erieure in Paris. He is currently an
associate member of the Center of Excellence in Space Data and Information Sciences.

His main research interests include the design and mathematical analysis of al-
gorithms and data structures, I/O e�ciency and external memory algorithms, data
compression, parallel computation, incremental and online algorithms, computational
geometry, data mining, machine learning, and order statistics. His work in analysis of
algorithms deals with the precise study of the average-case performance of algorithms
and data structures under various models of input. Areas of application include sort-
ing, information storage and retrieval, geographic information systems and spatial
databases, and random sampling and random variate generation. Prof. Vitter's work
on I/O-e�cient methods for solving problems involving massive data sets has helped
shape the sub�eld of external memory algorithms, in which disk I/O can be a bot-
tleneck. He is investigating complexity measures and tradeo�s involving the number
of parallel disk accesses (I/Os) needed to solve a problem and the amount of time
needed to update a solution when the input is changed dynamically. He is actively in-
volved in developing e�cient techniques for text, image, and video compression, with
applications to GIS, e�cient prediction for data mining, and database and systems
optimization. Other work deals with machine learning, memory-based learning, and
robotics.

Contents

1 Introduction 1

2 Introduction to Video Compression 5

2.1 Digital Video Representation . 5
2.1.1 Color Representation . 6
2.1.2 Digitization . 6

2.1.2a Spatial Sampling . 6
2.1.2b Temporal Sampling 7
2.1.2c Quantization . 7

2.1.3 Standard Video Data Formats 8
2.2 A Case for Video Compression . 10
2.3 Lossy Coding and Rate-Distortion . 11

2.3.1 Classical Rate-Distortion Theory 11
2.3.2 Operational Rate-Distortion 11
2.3.3 Budget-Constrained Bit Allocation 12

2.3.3a Viterbi Algorithm 14
2.3.3b Lagrange Optimization 14

2.4 Spatial Redundancy . 17
2.4.1 Vector Quantization . 18
2.4.2 Block Transform . 18
2.4.3 Discrete Cosine Transform . 18

2.4.3a Forward Transform 19
2.4.3b Inverse Transform 19
2.4.3c Quantization . 19
2.4.3d Zig-Zag Scan . 20

2.5 Temporal Redundancy . 20
2.5.1 Frame Di�erencing . 21
2.5.2 Motion Compensation . 21
2.5.3 Block-Matching . 24

2.6 H.261 Standard . 24
2.6.1 Features . 25
2.6.2 Encoder Block Diagram . 25

v

vi CONTENTS

2.6.3 Heuristics for Coding Control 27
2.6.4 Rate Control . 27

2.7 MPEG Standards . 29
2.7.1 Features . 30
2.7.2 Encoder Block Diagram . 31
2.7.3 Layers . 32
2.7.4 Video Bu�ering Veri�er . 32
2.7.5 Rate Control . 35

3 Motion Estimation for Low Bit-Rate Video Coding 39

3.1 Introduction . 39
3.2 PVRG Implementation of H.261 . 42
3.3 Explicit Minimization Algorithms . 42

3.3.1 Algorithm M1 . 42
3.3.2 Algorithm M2 . 43
3.3.3 Algorithm RD . 43
3.3.4 Experimental Results . 44

3.4 Heuristic Algorithms . 44
3.4.1 Heuristic Cost Function . 45
3.4.2 Experimental Results . 49

3.4.2a Static Cost Function 49
3.4.2b Adaptive Cost Function 49

3.4.3 Further Experiments . 51
3.5 Related Work . 52
3.6 Discussion . 53

4 Bit-Minimization in a Quadtree-Based Video Coder 61

4.1 Quadtree Data Structure . 61
4.1.1 Quadtree Representation of Bi-Level Images 62
4.1.2 Quadtree Representation of Motion Vectors 63

4.2 Hybrid Quadtree/DCT Video Coder 64
4.3 Experimental Results . 66
4.4 Previous Work . 66
4.5 Discussion . 67

5 Lexicographically Optimal Bit Allocation 69

5.1 Perceptual Quantization . 70
5.2 Constant Quality . 71
5.3 Bit-Production Modeling . 71
5.4 Bu�er Constraints . 72

5.4.1 Constant Bit Rate . 73
5.4.2 Variable Bit Rate . 74
5.4.3 Encoder vs. Decoder Bu�er 75

CONTENTS vii

5.5 Bu�er-Constrained Bit Allocation Problem 75
5.6 Lexicographic Optimality . 77
5.7 Related Work . 78
5.8 Discussion . 80

6 Lexicographic Bit Allocation under CBR Constraints 81

6.1 Analysis . 82
6.2 CBR Allocation Algorithm . 88

6.2.1 DP Algorithm . 89
6.2.2 Correctness of DP Algorithm 90
6.2.3 Constant-Q Segments . 90
6.2.4 Verifying a Constant-Q Allocation 90
6.2.5 Time and Space Complexity 91

6.3 Related Work . 91
6.4 Discussion . 92

7 Lexicographic Bit Allocation under VBR Constraints 95

7.1 Analysis . 96
7.2 VBR Allocation Algorithm . 104

7.2.1 VBR Algorithm . 104
7.2.2 Correctness of VBR Algorithm 105
7.2.3 Time and Space Complexity 107

7.3 Discussion . 107

8 A More E�cient Dynamic Programming Algorithm 109

9 Real-Time VBR Rate Control 111

10 Implementation of Lexicographic Bit Allocation 113

10.1 Perceptual Quantization . 113
10.2 Bit-Production Modeling . 113

10.2.1 Hyperbolic Model . 114
10.2.2 Linear-Spline Model . 115

10.3 Picture-Level Rate Control . 117
10.3.1 Closed-Loop Rate Control . 117
10.3.2 Open-Loop Rate Control . 118
10.3.3 Hybrid Rate Control . 119

10.4 Bu�er Guard Zones . 119
10.5 Encoding Simulations . 120

10.5.1 Initial Experiments . 120
10.5.2 Coding a Longer Sequence . 129

10.6 Limiting Lookahead . 134
10.7 Related Work . 134

viii CONTENTS

10.8 Discussion . 135

11 Extensions of the Lexicographic Framework 137

11.1 Applicability to Other Coding Domains 137
11.2 Multiplexing VBR Streams over a CBR Channel 138

11.2.1 Introduction . 138
11.2.2 Multiplexing Model . 139
11.2.3 Lexicographic Criterion . 141
11.2.4 Equivalence to CBR Bit Allocation 142

11.3 Bit Allocation with a Discrete Set of Quantizers 142
11.3.1 Dynamic Programming . 143
11.3.2 Lexicographic Extension . 143

Bibliography 143

A Appendix 153

List of Figures

2.1 Block diagram of a video digitizer. 6
2.2 Scanning techniques for spatial sampling of a video image. 7
2.3 Example of uniform quantization. 8
2.4 Color subsampling formats, as speci�ed in the MPEG-2 standard. . . 9
2.5 Rate-distortion function for a Gaussian source with � = 1. 12
2.6 Sample operational rate-distortion plot. 13
2.7 Comparison of coders in a rate-distortion framework. 13
2.8 Example of a trellis constructed with the Viterbi algorithm. 15
2.9 Graphical interpretation of Lagrange-multiplier method. 17
2.10 Typical quantization matrix applied to 2D-DCT coe�cients. 20
2.11 Zig-zag scan for coding quantized transform coe�cients 20
2.12 Block diagram of a simple frame-di�erencing coder. 21
2.13 Block diagram of a generic motion-compensated video encoder. 22
2.14 Illustration of frames types and dependencies in motion compensation. 23
2.15 Reordering of frames to allow for causal interpolative coding. 23
2.16 Illustration of the block-translation model. 24
2.17 Structure of a macroblock. 25
2.18 Block diagram of a p� 64 source coder. 26
2.19 Heuristic decision diagrams for coding control from Reference Model

8 [5]. 28
2.20 Block diagram of rate control in a typical video coding system. 29
2.21 Feedback function controlling quantization scale based on bu�er fullness. 30
2.22 Block diagram of a typical MPEG encoder. 31
2.23 Block diagram of the MPEG Video Bu�ering Veri�er. 33
2.24 Block diagram of a �xed-delay CBR video transmission system. . . . 33
2.25 Block diagram of a stored-video system using double bu�ering. 34

3.1 Distribution of bits for intraframe coding of the Miss America sequence. 41
3.2 Comparison of explicit-minimization motion estimation algorithms . . 45
3.3 Density plots of DCT coding bits vs. MAD prediction error. 47
3.4 Density plots of MSE reconstruction distortion vs. MAD prediction error. 48
3.5 Results of static heuristic cost function. 54
3.6 Results of adaptive heuristic cost function. 55

ix

x LIST OF FIGURES

3.7 Frame 27 of the Miss America sequence as encoded using the PVRG
and explicit-minimization motion estimation algorithms. 56

3.8 Frame 27 of the Miss America sequence as encoded using the heuristic
motion estimation algorithms. 57

3.9 Estimated motion vectors for frame 27 of the Miss America sequence
for the PVRG, RD, H1-WH, and H2-WH coders. 58

3.10 Performance of motion estimation algorithms on eight test sequences. 59
3.11 Distribution of bits for coding the Miss America sequence with adaptive

heuristics. 60

4.1 A simple quadtree and corresponding image. 62
4.2 Representation of a triangle using a quadtree of depth 5. 63
4.3 Quadtree representation of a motion �eld. 64
4.4 MSE vs. Rate for Trevor . 66

5.1 Sample plot of bu�er fullness for CBR operation. 74
5.2 Sample plot of bu�er fullness for VBR operation. 76

6.1 Sketch for proof of Lemma 6.2. 83
6.2 Illustration of search step in dynamic programming algorithm. 89

10.1 Several instances of a simple \hyperbolic" bit-production model. . . . 115
10.2 Example of a linear-spline interpolation model. 117
10.3 Guard zones to safeguard against underow and overow of VBV bu�er.119
10.4 Evolution of bu�er fullness for CBR coders. 123
10.5 Evolution of bu�er fullness for VBR coders. 124
10.6 Nominal quantization scale for CBR coders. 125
10.7 Nominal quantization scale for VBR coders. 126
10.8 PSNR for CBR coders. 127
10.9 PSNR for VBR coders. 128
10.10Evolution of bu�er fullness for coding IBM Commercial. 131
10.11Nominal quantization scale for coding IBM Commercial. 132
10.12PSNR for coding IBM Commercial. 133

11.1 Example of how three VBR bitstreams can be multiplexed into the
same channel as two CBR bitstreams, for a statistical multiplexing
gain of 1.5. 139

11.2 System for transmitting multiple sequences over a single channel. . . 140
11.3 Block diagram of encoder/multiplexer. 140
11.4 Operation of multiplexer. 140
11.5 Block diagram of demultiplexer/decoder. 141

List of Tables

3.1 Distribution of bits for intraframe coding of the Miss America sequence 40

3.2 Results of static heuristic cost function. 49

3.3 Results of adaptive heuristic cost function. 54

10.1 Parameters for MPEG-2 Simulation Group software encoder used to
encode the SIF-formatted video clips. 121

10.2 Summary of initial coding experiments. 122

10.3 Parameters for MPEG-2 Simulation Group software encoder used to
encode the IBM commercial. 130

10.4 Summary of coding simulations with IBM Commercial. 131

xi

Chapter 1

Introduction

In this book, we investigate the compression of digital data that consist of a sequence
of symbols chosen from a �nite alphabet. In order for data compression to be mean-
ingful, we assume that there is a standard representation for the uncompressed data
that codes each symbol using the same number of bits. For example, digital video
can be represented by a sequence of frames, and each frame is an image composed of
pixels, which are typically represented using a binary code of a �xed length. Com-
pression is achieved when the data can be represented with an average length per
symbol that is less than that of the standard representation.

Not all forms of information are digital in nature. For example, audio, image,
and video exist at some point as waveforms that are continuous both in amplitude
and in time. Information of this kind is referred to as analog signals. In order to be
representable in the digital domain, analog signals must be discretized in both time
and amplitude. This process is referred to as digital sampling. Digitally sampled data
is therefore only an approximation of the original analog signal.

Data compression methods can be classi�ed into two broad categories: lossless

and lossy. As its name suggests, in lossless coding, information is preserved by the
compression and subsequent decompression operations. The types of data that are
typically compressed losslessly include natural language texts, database �les, sen-
sitive medical images, scienti�c data, and binary executables. Of course, lossless
compression techniques can be applied to any type of digital data; however, there
is no guarantee that compression will actually be achieved for all cases. Although
digitally sampled analog data is inherently lossy, no additional loss is incurred when
lossless compression is applied.

On the other hand, lossy coding does not preserve information. In lossy coding,
the amount of compression is typically variable and is dependent on the amount of
loss that can be tolerated. Lossy coding is typically applied to digitally sampled data
or other types of data where some amount of loss can be tolerated. The amount of
loss that can be tolerated is dependent to the type of data being compressed, and
quantifying tolerable loss is an important research area in itself.

1

2 CHAPTER 1. INTRODUCTION

By accepting a modest amount of loss, a much higher level of compression can be
achieved with lossy methods than lossless ones. For example, a digital color image
can typically be compressed losslessly by a factor of roughly two to four. Lossy
techniques can compress the same image by a factor of 20 to 40, with little or no
noticeable distortion. For less critical applications, the amount of compression can
be increased even further by accepting a higher level of distortion.

To stress the importance of data compression, it should be noted that some appli-
cations would not be realizable without data compression. For example, a two-hour
movie would require about 149 gigabytes to be stored digitally without compression.
The proposed Digital Video Disk (DVD) technology would store the same movie in
compressed form using only 4.7 gigabytes on a single-sided optical disk. The e�cacy
of DVD, therefore, relies on the technology to compress digital video and associated
audio with a compression ratio of about 32:1, while still delivering satisfactory �delity.

A basic idea in data compression is that most information sources of practical
interest are not random, but possess some structure. Recognizing and exploiting this
structure is a major theme in data compression. The amount of compression that
is achievable depends on the amount of redundancy or structure present in the data
that can be recognized and exploited. For example, by noting that certain letters or
words in English texts appear more frequently than others, we can represent them
using fewer bits than the less frequently occurring letters or words. This is exactly
the idea behind Morse Code, which represents letters using a varying number of dots
and dashes. The recognition and exploitation of statistical properties of a data source
are ideas that form the basis for much of lossless data compression.

In lossy coding, there is a direct relationship between the length of an encoding
and the amount of loss, or distortion, that is incurred. Redundancy exists when
an information source exhibits properties that allow it to be coded with fewer bits
with little or no perceived distortion. For example, in coding speech, distortion in
high frequency bands is not as perceptible as that in lower frequency bands. As a
result, the high frequency bands can be coded with less precision using fewer bits.
The nature of redundancy for lossy coding, especially as it relates to video coding, is
explored in Chapter 2.

In data compression, there is a natural tradeo� between the speed of a compressor
and the level of compression that it can achieve. In order to achieve greater com-
pression, we generally require more complex and time-consuming algorithms. In this
manuscript, we examine a range of operational points within the tradeo� possibilities
for the application of video compression.

Motion Estimation at Low Bit Rates

In Chapter 3, we explore the speed-compression tradeo�s possible with a range of
motion estimation techniques operating within a low-bit-rate video coder that adheres
to the H.261 international standard for video coding. At very low rates, hybrid video

3

coders that employ motion compensation in conjunction with transform coding of the
residual typically spends a signi�cant portion of the bandwidth to code the motion
information. We focus on motion estimation with hopes of improving the compression
performance.

Initially, we construct motion estimation algorithms that explicitly minimize bit
rate and a combination of rate and distortion. In coding experiments, these computa-
tionally intensive algorithms produce better compression (with comparable quality)
compared to the standard motion estimation algorithm, which does not require as
much computation. Based on insights gained from the explicit minimization algo-
rithms, we propose a new technique for motion estimation that minimizes a quickly
computed heuristic function of rate and distortion. The new technique gives com-
pression e�ciency comparable to the computationally intensive explicit-minimization
algorithms while running almost as fast as the standard algorithm.

In Chapter 4, the bit-minimization philosophy is further applied to a non-
standard quadtree-based video coder that codes motion information hierarchically us-
ing variable-sized blocks. The motivation is to explore the limits of bit-minimization
when applied to an e�cient scheme for coding motion vectors. By designing the
quadtree encoding so that a subtree is coded independently of other disjoint sub-
trees, we are able to compute motion vectors that globally minimize the total bit
rate using a dynamic programming algorithm. Experimental results con�rm that the
quadtree-based coder gives additional gains over the H.261-based coders.

Optimal Rate Control

In Chapters 5 through 11, we focus our attention on optimal rate control algorithms
for video coders. Existing optimal rate control techniques typically regulate the cod-
ing rate to minimize a sum-distortion measure. While these techniques can leverage
the wealth of tools from least-mean-square optimization theory, they do not guarantee
constant-quality video, an objective often mentioned in the literature. We propose a
framework that casts rate control as a resource allocation problem with continuous
variables, non-linear constraints, and a novel lexicographic optimality criterion that
is motivated for uniform video quality. With this framework, we rede�ne the concept
of coding e�ciency to better reect the constancy in quality that is generally desired
from a video coder.

Rigorous analysis within this framework reveals a set of necessary and su�cient
conditions for optimality for coding at both constant and variable bit rates. With
these conditions, we are able to construct polynomial-time algorithms for optimal rate
control. Experimental implementations of these algorithms con�rm the theoretical
analysis and produce encodings that are more uniform in quality than that achieved
with existing rate control methods. As evidence of the generality and exibility of the
framework, we show how to extend the framework to allocate bits among multiple
variable-bit-rate bitstreams that are to be transmitted over a common constant-bit-

4 CHAPTER 1. INTRODUCTION

rate channel and to encompass the case of discrete variables.

Chapter 2

Introduction to Video Compression

In this chapter, we present an introduction to aspects of video compression that will
be useful for understanding the later chapters. We begin by describing the generation
and representation of digital video. With standard representations de�ned, we then
motivate video compression with several illustrative examples that underscore the
need for lossy compression. To better understand the tradeo�s inherent in lossy
coding systems, an introduction to rate-distortion theory and practice is presented.
Next, we describe existing international standards for video coding and present an
overview of the fundamentals of these standards. This chapter is by no means intended
to be comprehensive; for an in-depth introduction to video coding fundamentals, the
reader is referred to [2, 26, 57, 59].

2.1 Digital Video Representation

Video belongs to a class of information called continuous media. Continuous me-
dia is characterized by the essentially continuous manner in which the information
is presented.1 This is in contrast to discrete media, in which there is no essential
continuous temporal component. Text, images, and graphics are examples of discrete
media, while movies, sound, and computer animation are examples of continuous
media. Even though a slide show is a time-based presentation of images, it is not a
continuous medium since each image is viewed as an individual item instead of a part
of a bigger entity. On the other hand, a video clip, while also consisting of a sequence
of images, is a continuous medium since each image is perceived in the context of
past and future images.

For compression to be meaningful, a standard representation should be de�ned
for the data to be compressed. In this section, we give an overview of some of the
more popular standard representations for digital video that are in use today.

1The information may be discrete in representation, but it should be presented to give an illusion

of continuity.

5

6 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

amplifier
digitized

video
sensor

filter

red/green/blue

temporalraster

scanner sampler
quantizer

Figure 2.1: Block diagram of a video digitizer.

2.1.1 Color Representation

Excluding synthetic (computer-generated) sources, video originates in the physi-
cal world. In a general sense, video can be characterized as a time-varying, two-
dimensional mix of electromagnetic signals. Being too general, this characterization
is not practical for representing visual information relevant to human observers. Al-
though visible light consists of a continuum of wavelengths, it has been known for
several centuries that a small set of primary colors, mixed in the right proportions,
can simulate any perceived color. In painting, for example, one system of primary
colors is cyan, magenta, and yellow; this is a subtractive system since the absence
of all primary colors yields the color white. Red, green, and blue light sources form
another set of primary colors; this is an additive system since the presence of all the
primary colors at their maximum intensities results in the perception of the color
white. This phenomenon of color perception is caused by the way that the human
eye detects and processes light, which makes it possible to represent a visual image
as a set of three intensity signals in two spatial dimensions.

2.1.2 Digitization

In order to be processed by computers, analog video that is captured by a light sen-
sor must �rst be digitized. Digitization of video consists of three steps: 1) spatial
sampling, 2) temporal sampling, and 3) quantization. A block diagram of the digiti-
zation process is depicted in Figure 2.1 for one color component. The steps need not
be performed in the order indicated and some steps can even be combined into one
operation.

2.1.2a Spatial Sampling

Spatial sampling consists of taking measurements of the underlying analog signal at a
�nite set of sampling points in a �nite viewing area (or frame). To simply the process,
the sampling points are restricted to lie on a lattice, usually a rectangular grid, say
of size N �M . The two dimensional set of sampling points are transformed into a
one-dimensional set through a process called raster scanning. The two main ways
to perform raster scanning are shown in Figure 2.2: progressive and interlaced. In
a progressive (or non-interlaced) scan, the sampling points are scanned from left to
right and top to bottom. In an interlaced scan, the points are divided into odd and

2.1. DIGITAL VIDEO REPRESENTATION 7

(a) Progressive Scan (b) Interlaced Scan

Figure 2.2: Scanning techniques for spatial sampling of a video image.

even scan lines. The odd lines are scanned �rst from left to right and top to bottom.
Then the even lines are scanned. The odd (respectively, even) scan lines make up
a �eld. In an interlaced scan, two �elds make up a frame. It is important to note
that the odd and even �elds are sampled and displayed at di�erent time instances.
Therefore the time interval between �elds in an interlaced scan is half of that between
frames. Interlaced scanning is commonly used for television signals and progressive
scanning is typically used for �lm and computer displays.

2.1.2b Temporal Sampling

The human visual system is relatively slow in responding to temporal changes. By
taking at least 16 samples per second at each grid point, an illusion of motion is main-
tained. This observation is the basis for motion picture technology, which typically
performs temporal sampling at a rate of 24 frames/sec. For television, sampling rates
of 25 and 30 frames/sec are commonly used. (With interlaced scanning the number
of �elds per second is twice the number of frames per second.)

2.1.2c Quantization

After spatial and temporal sampling, the video signal consists of a sequence of contin-
uous intensity values. The continuous intensity values are incompatible with digital
processing, and one more step is needed before this information can be processed by
a digital computer. The continuous intensity values are converted to a discrete set of
values in a process called quantization (or discretization.

Quantization can be viewed as a mapping from a continuous domain to a discrete

8 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

-6

-4

-2

0

2

4

6

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Q
ua

nt
iz

ed
 v

al
ue

Continuous value

Figure 2.3: Example of uniform quantization.

range.2 A particular quantization mapping is called a quantizer. An example is shown
in Figure 2.3. In the �gure, there are eleven discrete quantization levels, also called
bins. Each bin has an associated size, which is the extent of the continuous values
that map to that bin. In the example, each bin, except for the bins for �5, 0, and
5, has the same size, which is sometimes referred to as the quantizer step size. This
type of quantizer is called a uniform quantizer.

A binary encoding can be assigned to each of the bins. Typically the initial
quantization of a continuous source is done using a number of quantization levels
that is a power of 2, so that a �xed number of bits can be used to represent the
quantized value.3 This process of representing a continuous value by a �nite number
of levels using a binary code is often referred to as pulse code modulation (PCM).
Thus, after spatial sampling, temporal sampling, and quantization, we have N �M
data points, commonly called pixels or pels, represented using a �xed number of bits.

2.1.3 Standard Video Data Formats

To promote the interchange of digital video data, several formats for representing
video data have been standardized. We now review some of the more popular standard
representations.

The CCIR-601 [4] format for video frames speci�es spatial sampling of 720� 480
and temporal sampling at 30 frames/sec for NTSC (U.S. and Japan) television sys-
tems and 720� 576 at 25 frames/sec for PAL (Europe) television systems. Color is

2This de�nition is intended also to encompass mappings from a discrete domain to a discrete
range.

3Further quantization of digitized data may use a number of quantization levels that is not a
power of 2 and employ variable-length entropy coding.

2.1. DIGITAL VIDEO REPRESENTATION 9

Luminance samples Chrominance samples

(a) 4:2:2 subsampling

Luminance samples Chrominance samples

(b) 4:2:0 subsampling

Figure 2.4: Color subsampling formats, as speci�ed in the MPEG-2 standard.

represented using three components: a luminance (Y) component and two chromi-
nance components (Cb and Cr). The luminance component encodes the brightness
or intensity of each pixel and the chrominance components encode the color values.4

Each component is quantized linearly using eight bits. For NTSC (respectively, PAL),
there are 720� 480 (720� 576) luminance values, one for each pixel, and 360� 480
(360 � 576) values for each chrominance component. The chrominance components
are subsampled horizontally with respect to the luminance component to take advan-
tage of reduced human sensitivity to color. This subsampling process is referred to
as the 4:2:2 format and is depicted in Figure 2.4(a).

The Source Input Format (SIF) speci�es spatial sampling of 360 � 240 (respec-
tively, 360 � 288) and temporal sampling at 30 (25) frames/sec for NTSC (PAL)
television systems. As with CCIR-601, color is represented using three components:
Y, Cb, and Cr. Each component is quantized linearly using eight bits. For NTSC (re-
spectively, PAL), there are 360�240 (360�288) luminance values, one for each pixel,
and 180�120 (180�144) values for each chrominance component. This subsampling
format is referred to as the 4:2:0 format5 and is depicted in Figure 2.4(b).

One drawback with the CCIR-601 and SIF formats is that they specify di�erent

4The Y-Cb-Cr color space is related to the red-green-blue (RGB) color space by a matrix multi-
plication.

5This should not be confused with the older 4:1:1 format in which the chrominance components
are subsampled by a factor of 4 only in the horizontal direction.

10 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

spatial and temporal sampling parameters for NTSC and PAL systems. As its name
suggests, the Common Intermediate Format (CIF) was proposed as a bridge between
NTSC and PAL. As with CCIR-601, color is represented using three components, each
quantized linearly using eight bits. The CIF format uses 4:2:0 color subsampling with
an image size of 352� 288. Temporal sampling is set at 30 frames/sec. For use with
PAL systems, the CIF format requires conversion of the frame rate to 25 frames/sec.
For NTSC systems, a spatial resampling may be necessary.

For videoconferencing and other low-bit-rate, low-resolution applications, a scaled-
down version of CIF called Quarter-CIF (or QCIF) is commonly used. QCIF speci�es
an image with half the resolution of CIF in each spatial dimension: 176 � 144. For
many low-bit-rate applications, the frame rate is reduced from 30 frames/sec to as
low as �ve frames/sec.

2.2 A Case for Video Compression

Now that we have standard representations for digital video, we can estimate the
compression ratio required for typical applications.

For a two-hour movie encoded in NTSC CCIR-601 format, the uncompressed
video representation would require about 149 gigabytes to store:

bytes = (720�480+2�360�480) bytes
frame

�30frames
second

�3600seconds
hour

�2 hours = 1:493�1011 bytes:

In order to store the movie on one single-sided digital video disk (DVD), which has
a capacity of 4.7 gigabytes, we need to compress the video by a factor of about 32:1.
To allow room for audio and other auxiliary data (such as text captioning), an even
higher compression ratio is needed.

As another example, consider low-bit-rate videoconferencing over a 28.8 kbits/sec
modem. Assuming that the uncompressed video is encoded in QCIF format at
10 frames/sec, the uncompressed rate is computed to be:

#
bits

second
= (176 � 144 + 2 � 88 � 144) bytes

frame
� 8 bits
byte

� 10frames
second

= 4:055 � 106 bits

second
:

To transmit video in this format over a 28.8 kbits/sec modem would require a compres-
sion ratio of 141:1. At such a high compression ratio, depending upon the complexity
of the video sequence, the quality of the compressed video may have to be sacri�ced.
Alternatively, the frame rate could be reduced to increase the image quality, at the
expense of increased jerkiness in the motion.

The above examples show why compression is a must for some important digital
video applications. For example, without compression, a single-sided DVD can hold
less than four minutes of CCIR-601 digital video!

2.3. LOSSY CODING AND RATE-DISTORTION 11

2.3 Lossy Coding and Rate-Distortion

The examples in Section 2.2 show that existing video applications require high com-
pression ratios, over an order of magnitude higher than what is typically possible for
the lossless compression methods. These high levels of compression can be realized
only if we accept some loss in �delity between the uncompressed and compressed
representations. There is a natural tradeo� between the size of the compressed rep-
resentation and the �delity of the reproduced images. This tradeo� between rate and
distortion is quanti�ed in rate-distortion theory.

2.3.1 Classical Rate-Distortion Theory

Let D be a measure of distortion according to some �delity criterion and R be the
number of bits in a compressed representation of an information source. In classical
rate-distortion theory, as pioneered by Claude Shannon [78], a rate-distortion func-
tion, R(D), is de�ned to be the theoretical lower bound on the best compression
achievable as a function of the desired distortion D for a given information source, by
any compressor. In general, the �delity criterion can be any valid metric; in practice,
a squared-error distortion is often used; that is, D(x; x̂) = (x� x̂)2.

For a discrete source, R(0) is simply the entropy of the source and corresponds to
lossless coding (D = 0). In cases where the distortion is bounded above by Dmax, then
R(Dmax) = 0. Furthermore, it can be shown that R(D) is a non-increasing convex
function of D (see, e.g., [17]).

For some speci�c information sources and distortion measures, closed form ex-
pressions for the rate-distortion function have been determined. As an example, for a
zero-mean Gaussian source with variance �2 and a squared-error distortion measure,

R(D) =

(
1
2
log2

�2

D
; 0 � D � �2;

0; D > �2:

This is plotted for � = 1 in Figure 2.5.

2.3.2 Operational Rate-Distortion

In practice, classical rate-distortion theory is not directly applicable to complex en-
coding and decoding systems since sources are typically not well-characterized and
R(D) is di�cult, if not impossible, to determine. Even though not directly com-
putable, the existence of a hypothetical rate-distortion function for a given type of
information source allows a comparison to be made between competing encoding
systems and algorithms.

A more practical approach is taken in [12, 79]. By measuring actual rates and dis-
tortion achieved by the coder under study, an operational rate-distortion plot similar
to Figure 2.6 can be constructed. It is sometimes useful to show the convex hull of

12 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
(D

)

D

Figure 2.5: Rate-distortion function for a Gaussian source with � = 1.

the data points to �ll in the gap between points. Data points are typically generated
by varying the level of quantization or other coding parameters under study.

By plotting operational rate-distortion curves for various competing coders, a
comparison can be made of their e�ectiveness. A basic idea is that the more e�ec-
tive and capable a coder is, the closer is its operational rate-distortion curve to the
hypothetical rate-distortion function. In Figure 2.7, Coder 1 performs better than
Coder 2 for rates greater than about 600 bits per coding unit , where a coding unit is
a generic term for a block of data. At rates less than 600 bits/unit, Coder 2 performs
better.

The mean square error (MSE) distortion measure is commonly used in the litera-
ture since it is a convenient measure that lends itself to mathematical analysis using
least-mean-square theory. For images and video, however, MSE is not an ideal mea-
sure since it is not a good model of human visual perception. For example, in many
cases, two encodings with the same MSE can have remarkably di�erent perceptual
quality. In keeping with convention, we will assume the use of MSE as the distortion
measure, unless otherwise stated.

2.3.3 Budget-Constrained Bit Allocation

A common problem that serves well to illustrate the operational rate-distortion frame-
work is the budget-constrained bit allocation problem. The problem is stated below.
Without loss of generality, quantization is the coding parameter to be adjusted.

Problem 2.1 Given a set of quantizers fq1; q2; : : : ; qMg, a sequence of blocks hx1; x2; : : : xNi,
and a target bit budget B, determine an assignment of quantizers Q =

2.3. LOSSY CODING AND RATE-DISTORTION 13

0

200

400

600

800

1000

0 2 4 6 8 10

R
at

e
(b

its
/u

ni
t)

Distortion (MSE)

Empirical Data
Convex Hull

Figure 2.6: Sample operational rate-distortion plot. Plotted is rate versus average
distortion.

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10

R
at

e
(b

its
/u

ni
t)

Distortion (MSE)

Hypothetical R(D)
Coder 1
Coder 2

Figure 2.7: Comparison of coders in a rate-distortion framework.

14 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

hQ1; Q2; : : : ; QNi to each block that minimizes a distortion measure D(Q) and

uses R(Q) � B bits.

2.3.3a Viterbi Algorithm

Problem 2.1 can be solved using a dynamic programming algorithm commonly re-
ferred to as the Viterbi algorithm (VA) [22, 83]. Assuming that quantization always
produces an integral number of bits, the Viterbi algorithm works by �rst construct-
ing a trellis of nodes and then �nding a shortest path through the trellis. Each node
represents a state and each edge a transition between states. For the bit allocation
problem, we identify each state with a tuple (b; t; d; p), where t is a time index, b is the
total number of bits used in an allocation for the sequence of blocks hx1; x2; : : : ; xti, d
is the minimum sum distortion for any allocation to those blocks using exactly b bits,
and p is a pointer back to a previous state. There is a single start state labeled
(0; 0; 0; 0).

Starting with the start state, we construct the trellis by adding an edge for each
choice of quantizer and creating a corresponding set of new states. The new states
record the number of bits and minimum distortion for all choices of quantizer for
coding the �rst block. There may be more than one edge entering a new state if
more than one quantizer results in the same number of bits. However, only the
minimum distortion is recorded as d, and p is made to point to a source state that
results in the minimum distortion. In case more than one incoming edge produces
the minimum distortion, the pointer can point to any of the edges with the minimum
distortion. This process is repeated so that new states for time index k + 1 are
constructed by adding edges corresponding to the quantization of block xk+1 to the
states with time index k. In the trellis construction, we prune out those states whose
bit consumption exceeds the bit budget B. After all the states with time index N
have been constructed, we pick a state with time index N that has the minimum
distortion. A bit allocation can then be constructed by following the pointers p back
from the end state to the start state.

A simple example with M = 2 and N = 3 is shown in Figure 2.8 to illustrate the
Viterbi algorithm. In the example, the shaded node marks a state that exceeds the
bit budget B and can be pruned. An optimal path is shown with thick edges. As in
this example, there may be more than one path with the minimum distortion.

2.3.3b Lagrange Optimization

Although the Viterbi algorithm �nds an optimal solution to Problem 2.1, it is com-
putationally expensive. There could potentially be an exponential number of states
generated, on the order of MN .

In [79], Shoham and Gersho give an e�cient bit allocation algorithm based on
the Lagrange-multiplier method [21]. In this method, Problem 2.1, a constrained

2.3. LOSSY CODING AND RATE-DISTORTION 15

Time

B
its

(0,0,0,0)

budget B

Figure 2.8: Example of a trellis constructed with the Viterbi algorithm. The shaded
node marks a state that exceeds the bit budget B and can be pruned. An optimal
path is shown with thick edges. Note that there may be more than one path with the
minimum distortion.

optimization problem, is transformed to the following unconstrained optimization
problem.

Problem 2.2 Given a set of quantizers fq1; q2; : : : ; qMg, a sequence of blocks hx1; x2; : : : xNi,
and a parameter �, determine an assignment of quantizers Q = hQ1; Q2; : : : ; QMi to
each block that minimizes the cost function C�(Q) = D(Q) + �R(Q).

Here, the parameter � is called the Lagrange multiplier. Let Q�(�) denote an
optimal solution given � and R�(�) � R(Q�(�)) denote the resulting total number
of bits allocated. Note that there may be more than one solution with a given �.
It can be shown that a solution to Problem 2.2 is also a solution to Problem 2.1
when R�(�) = B. This is proved in [21], and we reproduce the theorem and proof as
presented in [79].

Theorem 2.1 For any � � 0, a solution Q�(�) to Problem 2.2 is also a solution to

Problem 2.1 with the constraint R(Q) � B, where B = R�(�).

Proof : For the solution Q�, we have

D(Q�) + �R(Q�) � D(Q) + �R(Q)

for all quantizer allocations Q. Equivalently, we have

D(Q�)�D(Q) � �(R(Q)�R(Q�))

16 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

for all quantizer allocations Q. In particular, this result applies for all quantizer
allocations Q belonging to the set

S� = fQ : R(Q) � R(Q�)g :

Since � � 0 and R(Q)�R(Q�) � 0 for Q 2 S�, we have

D(Q�)�D(Q) � 0; for Q 2 S�:

Therefore Q� is a solution to the constrained problem, and the theorem is proved. 2

It should be noted that Theorem 2.1 does not guarantee that, in general, a so-
lution for the constrained Problem 2.1 can be found by solving the unconstrained
Problem 2.2. Theorem 2.1 only applies for cases where there is a value for � such
that the number bits used in a solution (there may be more than one for a given �)
to Problem 2.2 is the same as the bit budget B in Problem 2.1.

The Lagrange multiplier � can be viewed as determining a tradeo� between rate
and distortion. A low value for � favors minimizing distortion over rate, and a high
value favors minimizing rate over distortion. In the limit, when � = 0, we are min-
imizing distortion; as � ! 1, we minimize rate. Lagrange optimization can be
interpreted graphically as shown in Figure 2.9. The minimization of the Lagrange
cost function C� can be viewed as �nding the last point or points intersected in the
rate-distortion plane as a line with slope �� is swept from right to left. In the ex-
ample shown, there are two such points. From this graphical view, we can easily see
that the only points that can be selected with Lagrange optimization are those that
lie on the convex hull of the set of all points.

For a given bit budget B, in order to apply the Lagrange-multiplier method, we
need to know what value of � to use. In practice, an iterative search procedure can
be used to determine the proper value. The search procedure takes advantage of
a useful property of Lagrange optimization: the solution rate R(Q�(�)) is a non-
increasing function of �. With appropriate initial upper and lower bounds for �, a
bisection search can be performed to �nd the proper value for �. Details of the search
procedure can be found in [79].

For an additive distortion measure, the distortion D(Q) can be expressed as

D(Q) =
NX
i=1

Di(Qi);

where Di(Qi) is the distortion for block i when using the quantizer speci�ed by Qi.
If we assume that the coding of each block is independent of the quantization choices
of other blocks, the rate R(Q) can be expressed as

R(Q) =
NX
i=1

Ri(Qi);

2.4. SPATIAL REDUNDANCY 17

0

200

400

600

800

1000

0 2 4 6 8 10

R
at

e
(b

its
/u

ni
t)

Distortion (MSE)

Sweep

Figure 2.9: Graphical interpretation of Lagrange-multiplier method. Lagrange mini-
mization can be viewed as �nding the last point(s) intersected by a right-to-left sweep
of a line with slope ��. In this example, the two data points circled are found in the
minimization.

where Ri(Qi) is the rate for block i when using the quantizer speci�ed by Qi. The
minimization of C� in Problem 2.2 can then be expressed as

min
Q

C�(Q) = min
Q
fR(Q) + �D(Q)g

= min
Q

(
NX
i=1

Ri(Qi) + �
NX
i=1

Di(Qi)

)

=
NX
i=1

�
min
Qi

fRi(Qi) + �Di(Qi)g
�
:

That is to say, the cost function C� can be minimized by minimizingRi(Qi)+�Di(Qi)
separately for each block.

2.4 Spatial Redundancy

Redundancy exists in a video sequence in two forms: spatial and temporal. The
former, also called intraframe redundancy, refers to the redundancy that exists within
a single frame of video, while the latter, also called interframe redundancy, refers to
the redundancy that exists between consecutive frames within a video sequence.

Reducing spatial redundancy has been the focus of many image compression al-
gorithms. Since video is just a sequence of images, image compression techniques
are directly applicable to video frames. Here, we outline some popular image coding
techniques applicable to lossy video coding.

18 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

2.4.1 Vector Quantization

In vector quantization (VQ) [24], an image is segmented into same-sized blocks of pixel
values. The blocks are represented by a �xed number of vectors called codewords. The
codewords are chosen from a �nite set called a codebook. This is analogous to the
quantization described in Section 2.1.2 except that now quantization is performed on
vectors instead of scalar values. The size of the codebook a�ects the rate (number
of bits needed to encode each vector) as well as the distortion; a bigger codebook
increases the rate and decreases the average distortion while a smaller codebook has
the opposite e�ects.

With vector quantization, encoding is more computationally intensive than de-
coding. Encoding requires searching the codebook for a representative codeword for
each input vector, while decoding requires only a table lookup. Usually, the same
codebook is used by the encoder and the decoder. The codebook generation process
is itself computationally demanding. As with lossless dictionary coding, a VQ code-
book can be constructed statically, semi-adaptively, or adaptively. Some applications
of VQ in video compression can be found in [23, 84].

2.4.2 Block Transform

In block-transform coding, an image is divided into blocks, as with vector quantiza-
tion. Each block is mathematically transformed into a di�erent representation, which
is then quantized and coded. The mathematical transform is chosen so as to \pack"
most of the useful information into a small set of coe�cients. The coe�cients are
then selectively quantized so that after quantization most of the \unimportant" coef-
�cients are 0 and can be ignored, while the \important" coe�cients are retained. In
the decoder, a dequantization process is followed by an inverse transformation.

Block-transform coding can be viewed as an instance of vector quantization where
the codebook is determined by the transform and quantization performed. Viewed
in this way, for any source, a vector quantizer can be designed that will be at least
as good (in a rate-distortion sense) as a particular block transform. A motivation
for using block transforms is that for certain block transforms with fast algorithms,
encoding can be done faster than full-blown vector quantization. However, with block
transforms, decoding has approximately the same complexity as encoding, which is
more complex than decoding with vector quantization.

2.4.3 Discrete Cosine Transform

For images, the two-dimensional discrete cosine transform (2D-DCT) is a popular
block transform that forms the basis of the lossy JPEG standard [65] developed by
the Joint Photographic Experts Group. Because of its success within JPEG, the 2D-
DCT has been adopted by many video coding standards as well. We now describe
the mathematical basis of the DCT and show how it is applied to code an image.

2.4. SPATIAL REDUNDANCY 19

2.4.3a Forward Transform

The JPEG standard speci�es a block size of 8� 8 for performing the 2D-DCT. This
block size is small enough for the transform to be quickly computed but big enough
for signi�cant compression. For an 8� 8 block of pixel values f(i; j), the 2D-DCT is
de�ned as

F (u; v) =
1

4
C(u)C(v)

7X
i=0

7X
j=0

f(i; j) cos
�u(2i+ 1)

16
cos

�v(2j + 1)

16
; (2.1)

where F (u; v) are the transform coe�cients and

C(x) =

8><
>:

1p
2

x = 0;

1 otherwise.

2.4.3b Inverse Transform

To be useful for coding, a block transform needs an inverse transform for purposes of
decoding. The two-dimensional inverse discrete cosine transform (2D-IDCT) for an
8� 8 block is de�ned as

f(i; j) =
1

4

7X
u=0

7X
v=0

F (u; v)C(u)C(v) cos
�u(2i+ 1)

16
cos

�v(2j + 1)

16
: (2.2)

2.4.3c Quantization

Since the DCT and IDCT are transform pairs, they do not result in any compression
by themselves. Compression is achieved by subsequent quantization of the transform
coe�cients.

Quantization as applied to transform coe�cients can be viewed as division fol-
lowed by integer truncation. Speci�cally, the transform coe�cients are �rst divided
by a (prespeci�ed) matrix of integers that is weighted by a quantization scale. After
division, the results are truncated to integer values. In the dequantization, the quan-
tized values are multiplied by the quantization matrix and adjusted according to the
quantization scale. Typically 8 to 12 bits of precision are used.

An example of a quantization matrix is shown in Figure 2.10. The coe�cients can
be speci�ed to exploit properties of the human visual system. Since the human eye is
more sensitive to low spatial frequencies and less sensitive to high spatial frequencies,
the transform coe�cients corresponding to high spatial frequencies can be quantized
more coarsely than those for low spatial frequencies. This selective quantization is
shown in Figure 2.10.

20 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

2
66666666666664

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

3
77777777777775

Figure 2.10: Typical quantization matrix applied to 2D-DCT coe�cients.

DC

Frequency
Horizontal

F
re

qu
en

cy
V

er
tic

al

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Figure 2.11: Zig-zag scan for coding quantized transform coe�cients as an one-
dimensional sequence. Run-length encoding of zero values results in e�cient coding.

2.4.3d Zig-Zag Scan

Because of the coarse quantization of coe�cients corresponding to high spatial fre-
quencies, those coe�cients are often quantized to 0. An e�ective way to code the
resulting set of quantized coe�cients is with a combination of a zig-zag scan of the
coe�cients as shown in Figure 2.11 and run-length encoding of consecutive zeros.
Typically, the DC coe�cient, F (0; 0), is coded separately from the other coe�cients
and is not included in the zig-zag scan.

2.5 Temporal Redundancy

Successive frames in a video sequence are typically highly correlated, especially for
scenes where there is little or no motion. The spatial decorrelation techniques de-
scribed in the previous section only operate within a single frame and do not exploit
the redundancy that exists between frames. We now review some basic techniques
for reducing temporal redundancy.

2.5. TEMPORAL REDUNDANCY 21

Frame Buffer

Frame

Encoder

Frame

Decoder

OutputInput

Figure 2.12: Block diagram of a simple frame-di�erencing coder. The frame bu�er
stores the previously decoded frame which is used to compute a di�erence frame.

2.5.1 Frame Di�erencing

A very simple technique for exploiting temporal redundancy in a video sequence is
to code the di�erence between one frame and the next. This technique is called
frame di�erencing and is an extension of the basic di�erential pulse code modulation
(DPCM) coding techniques (see, e.g. [59]). A block diagram of an encoder that uses
frame di�erencing is shown in Figure 2.12.

If there is little motion between successive frames, frame di�erencing yields a
di�erence image that is mostly uniform and can be coded e�ciently. However, frame
di�erencing fails when there is appreciable motion between frames or when a scene
change occurs.

2.5.2 Motion Compensation

Frame di�erencing can be viewed as a predictive coding technique where the pre-
diction is simply the previous decoded frame. By improving the prediction, we can
potentially obtain better compression. Motion compensation is one such technique
that uses a model of the motion of objects between frames to form a prediction. Using
the model, the encoder performs motion estimation to determine the motion that ex-
ists between a reference frame and the current frame. The reference frame can occur
temporally before the current frame (forward prediction) or after the current frame
(backward prediction). An advanced technique, called bidirectional prediction, uses
two reference frames, one each for forward and backward prediction, and interpolates
the results. This usually gives better prediction and handles the case where an object
is temporarily occluded.

The encoding process is illustrated in Figure 2.13. After motion estimation and
compensation, the motion information and prediction error are transmitted to the
decoder, which reconstructs the predicted frame from the motion information and
the decoded reference frame. Note that the reference frame must have already been
decoded for the decoder to be able to reconstruct the current frame. At some initial

22 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

Motion

Estimation

Frame

Buffer

Frame

Encoder

Frame

Decoder

Input Output

Motion information

Motion Compensation

Figure 2.13: Block diagram of a generic motion-compensated video encoder.

point, a frame must be coded without motion compensation using only spatial coding
techniques. Such a frame is commonly referred to as an intra-coded frame, or I-
frame for short. Because they do not take advantage of interframe redundancy, I-
frames consume more bits than predictive frames of comparable quality. To prevent
degradation in image quality from the accumulation of prediction error and to allow
for easy random access to frames in a video, frames are periodically coded as I-frames.

Frames that are coded using forward prediction are called P-frames, short for
predictive frames. A P-frame uses as a reference a past I-frame or P-frame.

Backward prediction is typically not used exclusively, but as an option for B-
frames, short for bidirectionally predicted frames. A B-frame is coded from a past
reference frame and a future reference frame, as shown in Figure 2.14. At �rst,
this might seem to present a causality problem since there is a dependence upon
a future frame. To avert any such problem, the frames are reordered so that all
reference frames that are required by a B-frame or P-frame come before that frame
in the reordered sequence. An example is shown in Figure 2.15. In practice, this
reordering introduces some encoding and decoding delays and requires two frame
bu�ers to hold the reference frames. For non-real-time applications, such as stored
video, the additional delay is not a serious issue. For real-time applications, such as
videoconferencing, the distance between successive reference frames are kept small to
reduce the delay. B-frames may be omitted altogether to further reduce the delay.

For interframe coding, perceptual weighting as per Figure 2.10 is not usually
applied since the block to be coded is the block of prediction errors, which does
not share the perceptual properties of the original spatial block of pixel values. A
quantization matrix with uniform values is typically used for inter-coded blocks.

In the �nal step, indicated in Figure 2.13, the prediction error that results from
motion compensation is coded with an intraframe coder, for instance, one of the
techniques mentioned in Section 2.4.

2.5. TEMPORAL REDUNDANCY 23

I B PB

Figure 2.14: Illustration of frames types and dependencies in motion compensation.

Frame Type: I B B P B B P B I

Temporal Index: 1 2 3 4 5 6 7 8 9

(a) Original Sequence (Temporal Order)

Frame Type: I P B B P B B I B

Temporal Index: 1 4 2 3 7 5 6 9 8

(b) Reordered Sequence (Encoding Order)

Figure 2.15: Reordering of frames to allow for causal interpolative coding.

24 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

Current FrameReference Frame

Figure 2.16: Illustration of the block-translation model.

2.5.3 Block-Matching

A motion model that is commonly used is the block-translation model developed by
Jain and Jain [39]. In this model, an image is divided into non-overlapping rectangu-
lar blocks. Each block in the predicted image is formed by a translation of a similarly
shaped source region from the reference frame. The source region needs not coincide
with the block boundaries. This model does not consider any rotation or scaling of
the blocks, simpli�ng the motion estimation procedure at the expense of decreased
accuracy. A motion vector may be speci�ed in integer or fractional pixel (pel) incre-
ments. Fractional-pel motion compensation involves interpolation of the pixel values
in the source block. The block-translation model is illustrated in Figure 2.16. For
each block, the encoder transmits a motion vector that speci�es the displacement in
the translation model.

Motion estimation algorithms using the block-translation model are commonly
called block-matching algorithms since the procedure involves matching (regularly-
positioned) blocks in the current frame with (arbitrarily-positioned) blocks in the
reference frame. Because of its simplicity, block-matching is commonly used with
current video coding standards.

2.6 H.261 Standard

In 1990, the International Telegraph and Telephone Consultative Committee
(CCITT)6 approved an international standard for video coding at bit rates of p� 64
kbits/sec, where p is an integer between 1 and 30, inclusive [6, 52]. O�cially known
as CCITT Recommendation H.261, it is informally called the p� 64 standard and is
intended for low-bit-rate applications such as videophone and videoconferencing. We

6The CCITT has since changed its name to the International Telecommunication Union (ITU-T).

2.6. H.261 STANDARD 25

CR CB

Y

Y

Y

Y

8

8 8

8

16

16

Figure 2.17: Structure of a macroblock.

now provide a summary of some key aspects of the standard.

2.6.1 Features

The p � 64 standard uses a combination of block-matching motion compensation
(BMMC) and 2D-DCT coding, as described in Sections 2.4.2 and 2.5.3. Since p �
64 is intended for real-time videoconferencing applications, there is a requirement
for low encoding delay. This precludes the use of bidirectional predictive motion
compensation. Therefore only intraframe coding and forward predictive coding are
used, with a predicted block depending only upon the previous frame. The real-time
requirement also restricts the complexity of higher-level algorithms, such as motion
estimation and rate control.

The Common Intermediate Format (CIF) and Quarter-CIF (QCIF), described in
Section 2.1.3, are speci�ed for video frames. A video frame is divided into Groups
of Blocks (GOB) made up of a number of macroblocks (MB). As depicted in Fig-
ure 2.17, each macroblock is composed of four 8� 8 luminance blocks and two 8� 8
chrominance blocks, one each for the Cb and Cr color components. Integer-pel mo-
tion compensation is performed at the macroblock level; that is, there is one motion
vector per macroblock.

2.6.2 Encoder Block Diagram

A block diagram of a basic p � 64 coder is shown in Figure 2.18. At a high level,
the basic encoding process works as follows: The encoder �rst decides whether to
code a macroblock M using intraframe or interframe coding. For intraframe coding,
the techniques outlined in Section 2.4.3 are used. If interframe coding is selected,
the encoder performs motion estimation to choose a motion vector ~v (how this is
done is left unspeci�ed in the standard). If the previous macroblock is intra-coded, ~v
is transmitted using a static Hu�man code, otherwise the di�erence between ~v and
the motion vector for the previous macroblock is sent using a static Hu�man code.
For each 8 � 8 block B contained in M , a lossy version of the block of prediction
errors obtained by using ~v to predict B is then transmitted. This is done by applying
the 2D-DCT to the block of prediction errors, quantizing and scanning the transform

26 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

CC

T Q

T�1

��
��

PF

��
�� q

q

q

q
a

a
�
��

�
��

-

-

-

- - -

-

-

-

��

-

-

6 -

-

Video In

p

t
qz

q

v

f �

�

�� To Video
Multiplex
Coder

T: Transform
Q: Quantizer
P: Picture Memory with motion-

compensated variable delay
F: Loop Filter

CC: Coding Control

p: Flag for INTRA/INTER
t: Flag for transmitted or not

qz: Quantizer indication
q: Quantizing index for transform

coe�cients
v: Motion vector
f: Switching on/o� of the loop �lter

?

Q�1

?

?

q

6

q

q

q

?

?

Figure 2.18: Block diagram of a typical p� 64 source coder [6].

2.6. H.261 STANDARD 27

coe�cients, and encoding the results using a run-length/Hu�man coder, as prescribed
in Section 2.4.3.

The encoder has the option of changing certain aspects of the above process.
First, the encoder may simply not transmit the current macroblock; the decoder is
then assumed to use the corresponding macroblock in the previous frame in its place.
If motion compensation is used, there is an option to apply a linear �lter to the
previous decoded frame before using it for prediction.

2.6.3 Heuristics for Coding Control

The p � 64 standard does not specify how to make coding decisions. However, to
aid in the evaluation of di�erent coding techniques, the CCITT provides an encoder
simulation model called Reference Model 8 (RM8) [5]. Motion estimation is performed
to minimize the mean absolute di�erence (MAD) of the prediction errors. A fast
three-step search, instead of an exhaustive full-search, is used for motion estimation.
RM8 speci�es several heuristics used to make the coding decisions.

The variance VP of the prediction errors for the luminance blocks inM after motion
compensation using ~v is compared against the variance VY of the original luminance
blocks in M to determine whether to perform intraframe or interframe coding. The
intra/inter decision diagram, as speci�ed in RM8, is plotted in Figure 2.19(a). If
interframe motion compensation mode is selected, the decision of whether to use
motion compensation with a zero motion vector or with the estimated motion vector
is made by comparing the MAD of motion compensation with zero motion against
that with the estimated motion vector. If the zero motion vector is chosen, this
is indicated by a special coding mode and no motion vector is sent. The decision
diagram, as recommended in [5], are shown in Figure 2.19(b). The loop �lter is
enabled if a non-zero motion vector is used. The decision of whether to transmit the
block-transform coe�cients is made individually for each block in a macroblock by
considering the values of the quantized transform coe�cients. If all the coe�cients
are zero for a block, they are not transmitted for that block.

2.6.4 Rate Control

Video coders often have to operate within �xed bandwidth limitations. Since the p�64
standard uses variable-length entropy coding of quantized transform coe�cients and
side information, resulting in a variable bit rate, some form of rate control is required
for operation on bandwidth-limited channels. For example, if the coder's output
exceeds the channel capacity, then frames could be dropped or the quality decreased
in order to meet the bandwidth constraints. On the other hand, if the coder's output
is well below the channel's capacity, the quality and/or frame-rate can be increased
to better utilize the channel.

28 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

0

32

64

96

128

160

0 32 64 96 128 160

V
ar

ia
nc

e
of

 o
ri

gi
na

l b
lo

ck

Variance of motion compensated prediction error

Interframe
motion compensation

Intraframe
motion compensation

y=x

(a) Intraframe/interframe decision

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6

M
A

D
 w

ith
 e

st
im

at
ed

 m
ot

io
n

ve
ct

or

MAD with zero motion vector

Zero displacement
motion compensation

Motion vector
compensation

y=x/1.1

0.5

1.5

2.7

(b) Motion vector decision

Figure 2.19: Heuristic decision diagrams for coding control from Reference Model
8 [5].

2.7. MPEG STANDARDS 29

Quantizer
Coder

Entropy
Buffer

Rate

Controller
Qs Bf

transform

coefficients

encoded

bitstream

Figure 2.20: Block diagram of rate control in a typical video coding system.

A simple technique for rate control that is speci�ed in RM8 uses a bu�ered en-
coding model as shown in Figure 2.20. In this model, the output of the encoder is
connected to a bu�er whose purpose is to even out the uctuations in bit rate. By
monitoring the fullness of the bu�er, the rate controller can adjust the quantization
scale Qs, which a�ects the encoder's bit rate, to prevent the bu�er from underowing
or overowing. In the model, the bu�er is de�ned for the purpose of regulating the
output bit rate and may or may not correspond to an actual encoder bu�er.

RM8 gives some parameters and prescriptions for the rate control process. The
size of the bu�er is speci�ed to be p � 6:4 kbits, which translates to a maximum
bu�ering delay of 100 ms. For purposes of rate control, the �rst frame is coded
using a �xed quantization scale that is computed from the target bit rate. After the
�rst frame is coded, the bu�er is reset to be half full. The quantization scale Qs is
determined from the bu�er fullness Bf using the formula:

Qs = min(b32Bfc + 1; 31);

where Qs has a integral range of [1; 31], and Bf is normalized to have a real-valued
range of [0; 1]. This feedback function is plotted in Figure 2.21. The quantization
scale is adjusted once for each GOB (11 macroblocks in RM8).

2.7 MPEG Standards

In 1988, the International Standards Organization (ISO) formed the Moving Pictures
Expert Group (MPEG), with the formal designation ISO-IEC/JTC1 SC29/WG11, to
develop standards for the digital encoding of moving pictures (video) and associated
audio. In 1991, the MPEG committee completed its �rst international standard,
MPEG-1 [36, 44], formally ISO 11172.

As a generic video coding speci�cation, MPEG-1 supports multiple image for-
mats, including, CIF, SIF, and QCIF. Image sizes up to 4; 095�4; 095 are supported.
However, only progressive scan and 4:2:0 color subsampling are supported. While
MPEG-1 proved successful for the computer entertainment industry, its lack of sup-
port for interlaced scan prevented its use in digital television.

30 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Q
ua

nt
iz

at
io

n
Sc

al
e

Normalized Buffer Fullness

Figure 2.21: Feedback function controlling quantization scale based on bu�er fullness.

In 1990, the MPEG committee started work on MPEG-2 [38], formally ISO 13818.
MPEG-2 is an extension of MPEG-1 that remedies several major shortcomings of
MPEG-1 by adding support for interlaced video, more color subsampling formats,
and other advanced coding features. To leverage existing MPEG-1 titles and to
promote its adoption, MPEG-2 retains backward compatibility with MPEG-1.

As an international standard, MPEG-2 is gaining success. For example, it is being
considered as a component in several proposals for high de�nition television (HDTV);
it is currently used in direct digital satellite broadcast and is part of standards for
digital video broadcast (DVB); and it is speci�ed as the video compression technology
for use with the upcoming digital video disk (DVD).

2.7.1 Features

As with the H.261 standard, the MPEG standards specify a syntax for the coded
bitstream and a mechanism for decoding the bitstream. Not covered by the standard
are details about the encoding process, thus allowing for exibility and innovation in
encoder design and implementation.

Like H.261, the MPEG standards employ a hybrid video coding scheme that
combines BMMC with 2D-DCT coding. Unlike H.261, the MPEG standards allow for
bidirectional prediction in addition to intraframe coding and forward prediction, all of
which are described in Section 2.5. Additionally, the MPEG standards support motion
compensation at half-pel accuracy to allow for better image quality at the expense
of additional computation. By supporting advanced coding techniques, the MPEG
standards allow an encoding system to trade o� between computation and image
quality. This exibility can be a great advantage for non-real-time encoding systems
that can be a�orded time to code a video sequence well, especially for applications
such as movies and commercials, where the quality of the coded video is of utmost

2.7. MPEG STANDARDS 31

DCT

Coding Control

Quantizer

Motion
Estimator

Frame
Buffers

Inverse
Quantizer

IDCT

Compensation
Motion

Predictor

VLC Encoder
and Multiplexer

Embedded

Decoder

0

Inter/Intra

Q

Input

Picture Type

Buffer
Bitstream

Inter/Intra

Motion vectors

Motion vectors

Buffer fullness

Figure 2.22: Block diagram of a typical MPEG encoder.

importance since the video will be played many times. However, by using a subset of
the coding features, the MPEG standards can also be used for real-time applications
such as videoconferencing, news, and other live broadcasts.

2.7.2 Encoder Block Diagram

A basic encoder block diagram is shown in Figure 2.22, with the embedded decoder
highlighted. The structure of the encoder is very similar to that in Figure 2.18.
The main di�erences, as outlined above, are hidden in the Coding Control, Motion
Estimation, and Motion Compensation blocks.

32 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

2.7.3 Layers

In the syntax of the MPEG standards, a video sequence is partitioned into a hierar-
chy of layers. The presence of a layer in the bitstream is indicated by a start code

indicating the layer type followed by a header that speci�es parameters for that layer.
At the top of the hierarchy is the sequence layer. The sequence header speci�es in-
formation for the entire video sequence, such as the frame size, frame rate, bit rate,
and quantization matrix . Below the sequence layer is the group of pictures (GOP)
layer. A GOP is structured as a set of contiguous frames that contains at least one
I-frame. A GOP can start with either a B-frame or an I-frame and end with either
an I-frame or a P-frame. The GOP structure is designed to support random access,
indexing, and editing. An example of a GOP unit can be found in Figure 2.14(a).
If a GOP begins with a frame that does not depend upon a preceding frame, it can
be decoded and displayed independently of the previous GOP and is called a closed

GOP. GOP's that are not closed are referred to as open.

Below the GOP layer is the picture layer. The picture header contains information
about each picture7 coded, such as picture type (I, P, or B) and temporal reference. A
picture is divided into slices, which consists of a segment of consecutive macroblocks.
Dividing a picture into slices limits the e�ects of transmission errors and allows the
decoder to recover from these errors.

A macroblock consists of a number of 8 � 8 blocks of intensity and chrominance
values. The number of blocks in a macroblock depends upon the color subsampling
scheme used (see Figure 2.4). For 4:2:0 subsampling, the structure of a macroblock
is shown in Figure 2.17. For 4:2:2 subsampling, a macroblock contains four Y blocks,
two Cb blocks, and two Cr blocks. MPEG-2 supports an additional color subsampling
mode, 4:4:4, in which the Cb and Cr color components have the same spatial resolu-
tion as the luminance component Y. Thus for 4:4:4 color subsampling, a macroblock
consists of a total of twelve blocks.

As with JPEG and H.261, the 8� 8 block is the basic unit for DCT coding and
quantization.

2.7.4 Video Bu�ering Veri�er

In addition to de�ning a bitstream syntax and decoding process, the MPEG video
standards de�ne an idealized decoder model called the Video Bu�ering Veri�er

(VBV). The purpose of the VBV is to put quanti�able limits on the variability in the
coding rate such that an encoded bitstream can be decoded with reasonable bu�er-
ing requirements. As diagrammed in Figure 2.23, the VBV consists of a decoder
bu�er, a decoder, and a display unit. The decoder bu�er stores the incoming bits for
processing by the decoder. At regular display intervals, the decoder instantaneously

7With progressive scan, a picture in MPEG's terminology is equivalent to what we have been
calling a frame. With interlaced scan, a picture may refer to a single �eld.

2.7. MPEG STANDARDS 33

Decoder

Buffer
Display

bitstream
encoded

channel

rate R

high

bandwidth

connection

Decoder

max

size Bvbv

Figure 2.23: Block diagram of the MPEG Video Bu�ering Veri�er.

Encoder Buffer

fixed-delay
CBR channel

Buffer Decoder

Figure 2.24: Block diagram of a �xed-delay CBR video transmission system.

removes, decodes, and displays the earliest picture in the bu�er. It should be stressed
that the VBV is only a idealized decoder model and not a prescription of how to build
a decoder or how an actual decoder would function. The VBV model, however, is
useful in establishing rate constraints on encoded video such that the encoding would
be decodable with speci�ed bu�ering requirements.

The VBV has three prescribed modes of operation: a constant bit rate (CBR)
mode and two variable bit rate (VBR) modes. MPEG-1 supports only the CBR
mode while MPEG-2 supports all three modes. In CBR mode, bits enter the decoder
bu�er at a constant rate Rmax as speci�ed in the sequence header. Initially, the bu�er
is empty and �lls for a prespeci�ed amount of time before bits for the �rst picture are
removed and decoded. Afterwards, the bu�er continues to �ll at the channel rate Rmax

while the decoder removes bits for coded pictures at regular display intervals. The
CBR mode models operation of a decoder connected to a constant-bit-rate channel
with a �xed channel delay, as shown in Figure 2.24.

The amount of time that the start code for a given picture is to reside in the
VBV bu�er before that picture is decoded is speci�ed in the picture header with a
parameter called vbv delay.8 In CBR mode, vbv delay is related to the VBV bu�er
fullness Bf in the following manner:

vbv delay =
90000 �Bf

Rmax

:

In the �rst VBR mode, the compressed bits for picture n enter the bu�er at a con-
stant rate R(n) that may vary from picture to picture, up to the maximum rate Rmax

speci�ed in the sequence header. The relationship between R(n) and vbv delay is
as follows:

R(n) =
sn

�(n)� �(n + 1) + t(n + 1)� t(n) ;

8The parameter vbv delay is coded as an integer in the range [0; 65534] and is expressed in units
of 1/90000 sec.

34 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

Disk

Buffer 1

Buffer 2

Video
Buffering
Verifier

Figure 2.25: Block diagram of a stored-video system using double bu�ering.

where

R(n) = the rate (in bits/sec) at which bits for picture n enter the VBV bu�er;
sn = the number of bits for picture n;
�(n) = the decoding delay (in seconds) coded in vbv delay for picture n, and
t(n) = the time (in seconds) when the nth picture is removed from the VBV bu�er.

In the second VBR mode, vbv delay is set to 65535 for all pictures. The VBV
bu�er is initially �lled to capacity at the peak rate Rmax before the �rst picture is
removed. Thereafter, in each display interval, bits enter the bu�er at the peak rate
until the bu�er is full, at which point bits stop entering the bu�er until the next
picture has been decoded. When the bu�er is full, bits are not discarded, however.
The channel is assumed to be able to hold the bits until needed by the VBV. For
stored-video applications, this requirement can be met using the double-bu�ering
scheme shown in Figure 2.25, for example. With a maximum disk latency of TL, a
bu�er size of TLRmax is su�cient to guarantee timely delivery of bits to the VBV.

Since the decoder bu�er stops receiving bits when it is full, a potentially variable
number of bits can enter the bu�er in each display period. The second VBR mode
can be thought of as modeling the operation of a decoder connected to a channel or
device (a disk drive for example) that can transfer data at a variable rate up to a
peak rate Rmax.

For proper operation in any mode, the decoder bu�er should not exceed its ca-
pacity BVBV as speci�ed in the sequence header.9 Also, the bu�er should contain at
least the number of bits needed to decode the next picture at the time it is to be
decoded. As will be shown in Chapter 5, these requirements impose constraints on
the number of bits that the encoder can produce for each picture.

A compliant encoder must produce a bitstream that results in proper operation
of the VBV. The VBV is not intended to be a prescription for an actual decoder
implementation. However, a compliant decoder implementation should be able to de-
code successfully (within resource limits) any bitstream that meets the VBV bu�ering
constraints.

9By de�nition, this requirement is always met in second VBR mode.

2.7. MPEG STANDARDS 35

2.7.5 Rate Control

As with H.261, the MPEG standards do not specify how to perform rate control. To
allow for testing and experimentation using a common set of encoder routines, MPEG
created a series of test models. Here, we describe the rate control strategy outlined
in the MPEG-2 Test Model 5 (TM5) [37]. In TM5, rate control is broken down into
three steps:

1. Target bit allocation. In this step, the complexity of the current picture is
estimated based on the encoding of previous pictures to allocate a number of
bits to code the picture.

2. Rate control. A reference quantization scale is determined using a virtual
bu�er in a feedback loop to regulate the coding rate so as to achieve the target
bit allocation.

3. Adaptive quantization. The reference quantization scale is modulated ac-
cording to the spatial activity in each macroblock to determine the actual quan-
tization scale with which to code the macroblock.

Target Bit Allocation. The number of bits to be allocated to a picture depends
upon its type: I, P, or B. For each picture type, there is a complexity model that
attempts to relate the number of bits that would result from coding a picture of a
given type to the quantization scale used. The complexity models are of the form

Si =
Xi

Qi

; Sp =
Xp

Qp

; Sb =
Xb

Qb

;

where S, X, and Q denote number of bits, complexity, and quantization scale, re-
spectively; and the subscript indicate the picture type.

Initially the complexity values are set to:

Xi =
160 � bit rate

115
; Xp =

60 � bit rate
115

; Xb =
42 � bit rate

115
;

where bit rate is measured in bits/sec.
After a picture of a given type is coded, its associated complexity model is updated

based on the average quantization scale used and number of bits produced:

Xi = SiQi; Xp = SpQp; Xb = SbQb:

Bit allocation is performed with the goal that the average bit rate is achieved
at the GOP layer. A corresponding number of bits is assigned to code each GOP.
Bits are allocated to each picture in a GOP based on the complexity models, the
number of bits available to code the remaining pictures in the GOP, and the number
of remaining I, P, and B pictures in the GOP. Let N be the total number of pictures

36 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

in a GOP. Let Ni, Np, and Nb be the number of remaining I, P, and B pictures,
respectively. The bit target for each type of picture is calculated according to

Ti = max

8<
: R

1 + NpXp

KpXi

+ NbXb

KbXi

;
bit rate

8 � picture rate

9=
;

Tp = max

8<
: R

Np +
NbKpXb

KbXp

;
bit rate

8 � picture rate

9=
;

Tb = max

8<
: R

Nb +
NpKbXp

KpXb

;
bit rate

8 � picture rate

9=
;

where Kp and Kb are constants that depend upon the quantization matrices,10 and
R is the number of bits available to code the remaining pictures in the GOP.

After all the pictures in a GOP have been coded, any di�erence between the target
and actual bit allocation is carried over to the next GOP.

Rate Control. Given a target bit allocation for a picture, a virtual encoding bu�er
is used to determine a reference quantization scale similar to the procedure in Sec-
tion 2.6.4 for the p � 64 standard. A separate virtual bu�er is maintained for each
picture type. The reference quantization scale is computed for each macroblock from
the bu�er fullness as:

Qj =
31 � dj
r

;

where Qj is the reference quantization for macroblock j, dj is the bu�er fullness,
and r is a reaction parameter given by

r =
2 � bit rate
picture rate

:

Adaptive Quantization. The rate control step provides a reference quantization
scale to code each macroblock. The reference quantization scale is modulated with
an activity factor that is determined from a measure of the spatial activity of the
macroblock. The rationale is that a macroblock that has little spatial activity, such
as a smooth region, should be quantized �ner than a macroblock with high spatial
activity, such as a textured region, since quantization error is typically more notice-
able in smooth regions than in textured regions. This is an attempt at equalizing
perceptual quality for a given quantization scale.

For macroblock j, an activity factor actj is computed as one plus the minimum of
the variances of the luminance blocks within the macroblock. A normalized activity
factor is then computed based on the average of the activity factor of the last encoded

10For the matrices speci�ed in TM5, Kp = 1:0 and Kb = 1:4.

2.7. MPEG STANDARDS 37

picture:

Nact =
2 � actj + avg act

actj + 2 � avg act
:

For the �rst picture, avg act = 400. The actual quantization scale Qs used to code
the macroblock is computed as:

Qs = min(Qj �Nact; 31):

It should be noted that the TM5 rate control strategy does not take into ac-
count the VBV and therefore does not guarantee VBV compliance. Also, TM5 only
performs rate control for CBR operation and not for VBR.

38 CHAPTER 2. INTRODUCTION TO VIDEO COMPRESSION

Chapter 3

Motion Estimation for Low

Bit-Rate Video Coding

Low Bit-Rate Video Coding

3.1 Introduction

As described in the previous chapter, hybrid video coding that combines block-
matching motion compensation (BMMC) with transform coding of the residual is
a popular scheme for video compression, adopted by international standards such
as H.261 [6, 52] and the MPEG standards [36, 38, 44]. Motion compensation is a
technique that exploits the typically strong correlation between successive frames of
a video sequence by coding motion vectors that tell the decoder where to look on
the previous frame for predictions of the intensity of each pixel in the current frame.
With BMMC, the current frame is divided into blocks (usually 8�8 or 16�16) whose
pixels are assigned the same motion vector ~v. The residual from motion compensa-
tion is then coded with a lossy transform coder, such as the 2D-DCT, followed by a
variable-length entropy coder.

In previous work on BMMC, motion vectors are typically chosen to minimize
prediction error, and much of the emphasis has been on speeding up the motion
search [39, 42, 71, 80]. However, for low bit-rate applications, the coding of motion
vectors takes up a signi�cant portion of the bandwidth, as evidenced with a coding
experiment summarized in Table 3.1 and Figure 3.1. This observation has previously
been made in [45]. In this chapter, we investigate the use of cost measures that take
into account the e�ects of the choice of motion vector on rate and distortion. We
�rst develop and present computationally intensive coders that attempt explicitly to
optimize for rate and distortion. Insights from these implementations lead to faster
coders that minimize an e�ciently computed heuristic function. Experiments show
that using these measures yields substantially better rate-distortion performance than
measures based solely upon prediction error.

39

40CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

Quantizer
Step Size Bits/Frame MV Bits Side Bits DCT Bits
31 1793:92 694:24 1002:86 96:82
30 1803:66 692:26 1004:92 106:48
29 1808:18 694:28 1004:88 109:02
28 1814:78 677:92 1008:04 128:82
27 1822:32 676:98 1009:22 136:12
26 1826:88 668:20 1008:62 150:06
25 1833:42 668:30 1010:08 155:04
24 1867:10 662:98 1015:84 188:28
23 1875:54 664:44 1013:26 197:84
22 1920:16 659:14 1018:24 242:78
21 1924:52 652:84 1019:76 251:92
20 1987:80 654:08 1025:48 308:24
19 1997:84 640:94 1027:58 329:32
18 2062:24 635:34 1033:54 393:36
17 2095:80 626:74 1037:14 431:92
16 2198:60 619:34 1045:66 533:60
15 2243:52 614:54 1050:12 578:86
14 2374:58 591:92 1061:48 721:18
13 2442:98 592:34 1065:44 785:20
12 2666:88 556:58 1083:72 1026:58

Table 3.1: Distribution of bits for intraframe coding of the Miss America sequence at
various bit rates with a standard p � 64 coder. All quantities are averaged over the
entire sequence.

3.1. INTRODUCTION 41

�� ��

��

����

��

��

��

��

��

12 14 16 18 20 22 24 26 28 30 32

500

1000

2000

2500

Quantizer Step Size

A
ve

ra
ge

 B
its

/F
ra

m
e

3000

1500

Side Information

DCT Coefficients

Motion Vector

Figure 3.1: Distribution of bits for intraframe coding of the Miss America sequence
at various bit rates with a standard p� 64 coder.

We implemented and tested our motion estimation algorithms within the H.261
standard, also known informally as the p � 64 standard. The p � 64 standard is
intended for applications like videophone and videoconferencing, where low bit rates
are required, not much motion is present, and frames are to be transmitted essentially
as they are generated. Our experimental results are for benchmark videos typical of
the type for which the p � 64 standard was intended: they consist of a \head-and-
shoulders" view of a single speaker.

In the next section, we briey describe an existing implementation of the p �
64 standard that we use as a basis for comparison. We then show how to modify
the base implementation, but remain within the p � 64 standard, to choose motion
vectors that more directly minimize rate and distortion. Experiments show that
when transmitting two benchmark QCIF video sequences, Miss America and Claire,
at 18 kbits/sec using rate control, choosing motion vectors explicitly to minimize
rate improves average PSNR by 0.87 dB and 0.47 dB respectively. In the p � 64
standard, two binary coding decisions must be made from time to time.1 In the
base implementation, heuristics based upon prediction error are used to make these
decisions. When bit minimization is also applied to make the coding decisions, the
improvement in PSNR becomes a signi�cant 1.93 dB for Miss America and 1.35 dB
for Claire. If instead of minimizing the bit rate, we minimize a combination of rate
and distortion, we observe improvements of 2.09 dB and 1.45 dB respectively.

In Section 3.4 we describe coders that minimize a heuristic function of the pre-
diction error and motion vector code-length. These heuristic coders give compres-
sion performance comparable to the explicit minimization coders while running much

1These are 1) whether to use motion compensation and 2) whether to use the loop �lter with
motion compensation.

42CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

faster. Experimental results are presented in Sections 3.3.4 and 3.4.2.

Preliminary descriptions of this work can be found in [29, 30, 31, 32].

3.2 PVRG Implementation of H.261

As a basis for comparing the di�erent motion estimation schemes proposed in this
chapter, we use the p � 64 coder supplied by the Portable Video Research Group
(PVRG) [34]. The block diagram for a basic p� 64 coder is shown in Figure 2.18.

In the base PVRG implementation, a motion vector ~v is determined for each mac-
roblock M using standard full-search block-matching. Only the luminance blocks are
compared to the determine the best match, with the mean absolute di�erence (MAD)
being used as the measure of prediction error. Decisions on how to code individual
blocks are made according to Reference Model 8 [5], as described in Section 2.6.3.

3.3 Explicit Minimization Algorithms

In the PVRG coder, motion estimation is performed to minimize the MAD of the pre-
diction error. A rationale for this is that minimizing the mean square error (MSE) of
the motion-compensated prediction, which is approximated with the MAD, is equiv-
alent to minimizing the variance of the 2D-DCT coe�cients of the prediction error,
which tends to result in more coe�cients being quantized to zero. However, minimiz-
ing the variance of the DCT coe�cients does not necessarily lead to a minimum-length
encoding of the quantized coe�cients, especially since the quantized coe�cients are
then Hu�man and run-length coded. Furthermore, since coding decisions are typi-
cally made independently of motion estimation, the e�ect of motion estimation on
rate is further made indirect.

In this section, we describe two algorithms that perform motion estimation ex-
plicitly to minimize rate and a third algorithm that minimizes a combination of rate
and distortion. We then present results of experiments that compare these algorithms
with the standard motion estimation algorithm used by the PVRG coder.

3.3.1 Algorithm M1

In Algorithm M1, motion estimation is performed explicitly to minimize (locally) the
code-length of each macroblock. The decisions of whether to use motion compensa-
tion and whether to use the loop �lter are made in the same way as in the PVRG
implementation. We invoke the appropriate encoding subroutines for each choice of
motion vector within the search area, picking the motion vector that results in the
minimum code-length for the entire macroblock. The computed code-length includes

3.3. EXPLICIT MINIMIZATION ALGORITHMS 43

the coding of the transform coe�cients for the luminance blocks,2 the motion vec-
tor, and all other side information. When choosing the motion vector to minimize
the coding of the current macroblock, we use the fact that the motion vectors for
previous macroblocks (in scan order) have been determined in order to compute the
code-length. However, since the choice of a motion vector for the current macroblock
a�ects the code-length of future macroblocks, this is a greedy minimization procedure
which may not result in a globally minimal code-length.

3.3.2 Algorithm M2

Algorithm M2 di�ers from Algorithm M1 in that the decisions of whether to use
motion compensation and the loop �lter are also made to minimize rate: all three
combinations of the decisions are tried, and the one resulting in the minimum code-
length is used. Since M2 is able to make decisions on how to code each macroblock,
it is able to take into account the coding of side information in minimizing the rate.
For low bit rates, where the percentage of side information is signi�cant compared to
the coding of motion vectors and transform coe�cients, we would expect M2 to be
e�ective in reducing the code-length of side information.

3.3.3 Algorithm RD

With Algorithms M1 and M2, we minimize rate without regard to distortion and then
choose the quantization step size to achieve the desired distortion level. This is not
always the best policy. There may be cases where the choice of motion vector and
coding decisions that minimize rate results in a relatively high distortion, whereas
another choice would have a slightly higher rate but substantially lower distortion.
In terms of rate-distortion tradeo�, the second choice may be better. Since the
ultimate goal is better rate-distortion performance, we expect further improvements
if we minimize a combination of rate and distortion. M1 and M2 call encoder routines
in the minimization steps. By adding calls to decoder routines, we can compute the
resulting distortion. We incorporate this idea into Algorithm RD.

Algorithm RD minimizes a linear combination of rate and distortion. Let B(~v;~c)
denote the number of bits to code the current macroblock using motion vector ~v and
coding decisions ~c. Similarly, let D(~v;~c) be the resulting mean squared error. RD
minimizes the objective function

CRD(~v;~c) = B(~v;~c) + �D(~v;~c): (3.1)

This objective function is very similar to the Lagrange cost function C� presented

2The transform coding of the chrominance blocks could be included as well. However, we chose
not to do so in order to make a fair comparison to the base PVRG coder. This is also the policy for
the other coders described in this chapter.

44CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

in Section 2.3.3.3 However, there are notable di�erences. In Section 2.3.3, the La-
grange cost C� is used to solve a budget-constrained bit allocation problem. While
we could recast motion estimation as such a problem, where the motion vectors are
the parameters being controlled, there are several disadvantages of taking such an
approach. First, this would require setting a bit budget for coding each frame and
thus involves complex rate-control issues. Secondly, since in p � 64 a motion vec-
tor is coded with reference to a previous motion vector, there is dependence at the
macroblock level, further complicating the problem.

Instead, we view CRD as simply being a weighted sum of distortion and rate.
However, noting the connection between CRD and C�, we can choose a value for �
based upon the operational rate-distortion curve for the input video. A good choice is
to set � to be equal to the negative of the slope of the line tangent to the operational
distortion vs. rate curve at the operating point. This can be determined, for example,
by preprocessing a portion of the input video to estimate the rate-distortion curve.
An on-line iterative search method could also be used [79]. In our experiments, we
code the test sequence several times with di�erent quantizer step sizes to estimate the
rate-distortion function, and �x � based upon the slope of the function at the desired
operating point. Our purpose is to explore the performance improvement o�ered by
such an approach.

3.3.4 Experimental Results

For our experiments, we coded 49 frames of the Miss America sequence and 30
frames of the Claire sequence, both in QCIF format sampled at 10 frames/sec.
These are \head and shoulders" sequences typical of the type found in videophone
and videoconferencing applications. We present results here for coding at 18 kbits/sec
using the rate controller outlined in Reference Model 8. The average PSNR for each
coded frame is plotted for the Miss America and Claire sequences in Figure 3.2. The
average PSNR for inter-coded frames are tabulated in Table 3.2. For each sequence,
all the coders used the same quantization step size for the initial intra-coded frame.

3.4 Heuristic Algorithms

While Algorithms M1, M2, and RD generally exhibit better rate-distortion perfor-
mance than the base PVRG coder, they are computationally expensive. The ad-
ditional computation is in the explicit evaluation of the rate (and distortion in the
case of RD). To reduce the computational complexity, we propose to minimize an

3An obvious di�erence is the placement of the multiplier �. In principle, the placement of � does
not matter since the objective function is being minimized. Multiplying the objective function by 1

�

would convert between the two forms. We choose this particular formulation for CRD because it is
convenient to think of the cost function as being in unit of bits with � being a conversion factor
between distortion and bits.

3.4. HEURISTIC ALGORITHMS 45

33

34

35

36

37

38

39

0 5 10 15 20 25 30 35 40 45 50

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Miss America Sequence at 18 kb/s

PVRG
M1
M2
RD

(a) Miss America

32

33

34

35

36

0 5 10 15 20 25 30

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Claire Sequence at 18 kb/s

PVRG
M1
M2
RD

(b) Claire

Figure 3.2: Comparison of explicit-minimization motion estimation algorithms for
coding the Miss America and Claire sequences at 18 kbits/sec.

e�ciently computed model of rate and distortion. The idea is that the prediction
error (MSE, MAD, or similar measure) can be used to estimate the rate and distor-
tion for transform coding. This estimate is then combined with the motion vector
code-length, which is readily available with a table lookup. We develop such a cost
function below and use it in two heuristic coders H1 and H2 that are analogous to
the explicit minimization coders M1 and M2. Both H1 and H2 choose motion vectors
to minimize the cost function. However, H1 makes coding decisions using the same
decision functions that the PVRG and M1 coders use, while H2 chooses the coding
control that minimizes the coding rate given the estimated motion vectors. Since H2
has to try out three coding control choices, it will be about three times slower than
H1. However, H2 gives us an indication of the performance that is achievable by im-
proving the coding control. Also, H2 is easily parallelized, using duplicated hardware
for example.

3.4.1 Heuristic Cost Function

Let ~E(~v) denote a measure of the prediction error that results from using motion
vector ~v to code the current macroblock. For example, the error measure could be
de�ned as ~E(~v) = hMAD(~v);DC(~v)i, where MAD(~v) is the mean absolute prediction
error and DC(~v) is the average prediction error. Suppose we have a modelH(~E(~v); Q)
that gives us an estimate of the number of bits needed to code the motion compen-
sation residual, where ~E(~v) is de�ned above and Q is the quantization step size. We
could then combine this estimate with B(~v), the number of bits to code the motion
vector ~v. The result is a cost function that we can use for motion estimation:

CH(~v;Q) = H(~E(~v); Q) +B(~v): (3.2)

46CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

As de�ned above, the function H provides an estimate of the number of bits needed
to code the motion compensation residual with quantizer step size Q. As we will
discuss later, it can also be used to estimate a combination of rate and distortion.

The choice of error measure ~E and heuristic function H are parameters to the mo-
tion estimation algorithm. In our investigations, we used MAD as the error measure,
for computational reasons. We also looked into using the MSE, but this did not give
any clear advantages over the MAD. It is also possible to de�ne ~E to be a function of
several variables. However, we report only on the use of MAD for ~E and denote ~E(~v)
by � for convenience, where the dependence upon ~v is implicit. We examined several
choices for H and describe them below.

As mentioned above, we can use H to estimate the number of bits used to
transform-code the prediction error. To get an idea of what function to use, we
gathered experimental data on the relationship between the MAD and DCT coded
bits per macroblock for a range of motion vectors. Fixing the quantization step size Q
at various values, the data was generated by running the RD coder on two frames of
the Miss America sequence and outputting the MAD and DCT coded bits per mac-
roblock for each choice of motion vector. The results are histogrammed and shown
as density plots in Figure 3.3.

These plots suggest the following forms for H:

H(�) = c1� + c2 ; (3.3)

H(�) = c1 log(� + 1) + c2; (3.4)

H(�) = c1 log(� + 1) + c2� + c3: (3.5)

The above forms assume a �xed Q. In general, H also depends upon Q; however,
when using H to estimate the motion for a particular macroblock, Q is held constant
to either a preset value or to a value determined by the rate control mechanism. We
can treat the parameters ci as functions of Q. Since there is a small number (31) of
possible values for Q, we can perform curve �tting for each value of Q and store the
parameters in a lookup table.

We can also model the reconstruction distortion as a function of prediction error.
We use the RD coder to generate experimental data for distortion versus MAD, shown
in Figure 3.4, and �nd a similar relationship as existed for bits versus MAD. Again, we
can use (3.3){(3.5) to model the distortion. As with the RD coder, we can consider
jointly optimizing the heuristic estimates of rate and distortion with the following
cost function:

CH(~v;Q) = B(~v) +HR(�; Q) + �HD(�; Q); (3.6)

where HR is the model for rate and HD is the model for distortion.
If we use one of (3.3){(3.5) for both HR and HD, the combined heuristic function,

H = HR + �HD, would have the same form as HR and HD. Therefore, we can
interpret the heuristic as modeling a combined rate-distortion function. In this case,
we can perform curve �tting once for the combined heuristic function by training

3.4. HEURISTIC ALGORITHMS 47

5 10 15 20 25 30 35

MAD Prediction Error

20

40

60

80

100

120

140

D
C
T

B
i
t
s

DCT Bits vs. MAD for Q=28

5 10 15 20 25 30 35

MAD Prediction Error

20

40

60

80

100

120

D
C
T

B
i
t
s

DCT Bits vs. MAD for Q=31

5 10 15 20 25 30 35

MAD Prediction Error

50

100

150

200

D
C
T

B
i
t
s

DCT Bits vs. MAD for Q=20

5 10 15 20 25 30 35

MAD Prediction Error

25

50

75

100

125

150

D
C
T

B
i
t
s

DCT Bits vs. MAD for Q=24

5 10 15 20 25 30 35

MAD Prediction Error

50

100

150

200

250

300

350
D
C
T

B
i
t
s

DCT Bits vs. MAD for Q=12

5 10 15 20 25 30 35

MAD Prediction Error

50

100

150

200

250

D
C
T

B
i
t
s

DCT Bits vs. MAD for Q=16

Figure 3.3: Density plots of DCT coding bits vs. MAD prediction error for �rst
inter-coded frame of Miss America sequence at various levels of quantization.

48CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

5 10 15 20 25 30 35

MAD Prediction Error

0

50

100

150

200

250

300

M
S
E

D
i
s
t
o
r
t
i
o
n

Distortion vs. MAD for Q=28

5 10 15 20 25 30 35

MAD Prediction Error

0

50

100

150

200

250

300

350

M
S
E

D
i
s
t
o
r
t
i
o
n

Distortion vs. MAD for Q=31

5 10 15 20 25 30 35

MAD Prediction Error

0

25

50

75

100

125

150

175

M
S
E

D
i
s
t
o
r
t
i
o
n

Distortion vs. MAD for Q=20

5 10 15 20 25 30 35

MAD Prediction Error

0

50

100

150

200

M
S
E

D
i
s
t
o
r
t
i
o
n

Distortion vs. MAD for Q=24

5 10 15 20 25 30 35

MAD Prediction Error

0

20

40

60

80

M
S
E

D
i
s
t
o
r
t
i
o
n

Distortion vs. MAD for Q=12

5 10 15 20 25 30 35

MAD Prediction Error

0

20

40

60

80

100

120

M
S
E

D
i
s
t
o
r
t
i
o
n

Distortion vs. MAD for Q=16

Figure 3.4: Density plots of MSE reconstruction distortion vs. MAD prediction error
for �rst inter-coded frame of Miss America sequence at various levels of quantization.

3.4. HEURISTIC ALGORITHMS 49

Sequence PVRG M1 M2 RD H1-A H1-B H1-C H2-A H2-B H2-C

Miss America 34.58 35.44 36.51 36.67 35.60 35.72 35.58 36.63 36.77 36.68

Claire 32.77 33.24 34.12 34.22 33.68 33.50 33.60 34.47 34.36 34.39

Table 3.2: Results of static heuristic cost function. Shown is average PSNR (in
dB) of inter-coded frames for coding test sequences at 18 kbits/sec. H1-A (H2-A),
H1-B (H2-B), and H1-C (H2-C) use the heuristic functions (3.3), (3.4), and (3.5),
respectively.

on the statistic R + �D, where R is the DCT bits for a macroblock and D is the
reconstruction distortion for the macroblock. As with Algorithm RD, the parameter �
can be determined from the operational rate-distortion curve, for example.

3.4.2 Experimental Results

To test the H1 and H2 coders, we used the same test sequences and followed the
procedures outlined in Section 3.3.4. In the next section, we verify these results with
experiments on eight di�erent test sequences.

3.4.2a Static Cost Function

Here, we present results using a static set of coe�cients. To determine the coe�-
cients for the heuristic functions, we performed linear least squares regression, �tting
data generated by the RD coder to the R + �D statistic, as discussed earlier. A
set of regression coe�cients are stored in a lookup table, indexed by the quantizer
step size Q. We tested the di�erent forms for the heuristic function given in (3.3){
(3.5). Comparative plots of the resulting PSNR are shown in Figure 3.5. The average
PSNR for coding at 18 kbits/sec is tabulated in Table 3.2. These results show that
the heuristic coders perform comparably to the explicit minimization coders. In par-
ticular, the heuristic coders seem more robust than M1 and M2, most likely because
the heuristic functions correlate well with both rate and distortion, whereas M1 and
M2 only consider rate.

3.4.2b Adaptive Cost Function

The above results rely on pretraining the model parameters ci for each value of Q for
each video sequence. This is a tedious and time-consuming operation. Instead, we
can use an adaptive on-line technique, such as the Widrow-Ho� learning rule [86, 28],
to train the model parameters. The training examples could be generated each time
we encode a macroblock using motion compensation mode. However, we cannot
possibly hope to train one model for each value of Q simply because there would
not be enough training examples. We need a single model whose parameters are

50CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

independent of Q. The curve �tting results from the pretraining trials show a strong
correlation between the model parameters and Q�1. This agrees well with previous
work on rate-quantization modeling [19]. Therefore we propose the following form for
the cost function:

H(�; Q) = c1
�

Q
+ c2: (3.7)

This can be simpli�ed as

H() = c1 + c2; (3.8)

where � �=Q. Since the simple linear model performed well with static cost
functions, we do not consider more complex models here.

We conducted experiments using the Widrow-Ho� training rule on the Miss Amer-
ica and Claire sequences. As applied to the current context, the Widrow-Ho� rule
is a technique for learning an objective function f(). With H() as an estimate
of f(), the Widrow-Ho� rule gives us a way to adapt the weights c1 and c2 of (3.8)
when given and the value of f(). For the experiments, we chose the objective
function

f() = R() + �D(); (3.9)

where R() is the actual number of bits used to code the DCT coe�cients andD() is
the resulting distortion, both of which can be evaluated by invoking encoder routines.
Given an initial set of weights c1 and c2, a new set of weights c01 and c

0
2 can be computed

as:

c01 = c1 + � � f()�H()

 2 + 1
; (3.10)

c02 = c2 + � � f()�H()

 2 + 1
; (3.11)

where �, the learning rate, is a parameter that determines how quickly the weights
are adapted.

With the static cost function, we trained and evaluated the heuristic function
based on the combined prediction error for the four luminance blocks that make up
a macroblock. In order to gather more training examples for the adaptive heuristics,
we evaluate and update the heuristic function once for each luminance block. This
strategy increased the PSNR slightly at the expense of some extra computation.

In the experiments, the learning rate � was determined in a trial-and-error phase
and �xed for both sequences. The parameter � was also determined by trial-and-error
and held constant for both test sequences. Comparative plots of the resulting PSNR
are shown in Figures 3.6. The average PSNR for coding at 18 kbits/sec is tabulated in
Table 3.3. These results show that the adaptive heuristic coders perform comparably
to and sometimes better than the static heuristic coders and the explicit minimization
coders. Furthermore, the adaptive heuristic coders perform well on both sequences
with the same initial parameter values.

3.4. HEURISTIC ALGORITHMS 51

As a comparison of visual quality, Frame 27 of the Miss America sequence is
decoded and shown in Figure 3.7 for the PVRG and explicit-minimization coders
and in Figure 3.8 for the heuristic coders. The motion vector �eld for the PVRG,
RD, adaptive H1, and adaptive H2 coders are shown in Figure 3.9. Frame 27 was
chosen because it is in a di�cult scene with much head motion, resulting in more
noticeable coding artifacts. The RD and adaptive heuristic coders give smoother
motion �elds than the reference PVRG coder, especially for the background region.
Note also that for the former coders, no motion is indicated for the relatively uniform
background except following macroblocks with detected foreground motion on the
same row. Intuitively, this results in an economical encoding of the motion vectors,
which are di�erentially encoded. Since the background is relatively uniform, coding
motion in this area results in relatively small motion compensation residual.

3.4.3 Further Experiments

Here, we present results of further experiments to con�rm the e�cacy of the various
motion estimation algorithms operating within the p� 64 standard. We applied the
various algorithms to code eight test video sequences4 without rate control, sweeping
the quantization scale from 12 to 31 to determine the operational rate-distortion plots
shown in Figure 3.10. Each test sequence consists of 50 frames in QCIF format coded
at 10 frames/sec.

The results show that the adaptive heuristic algorithms perform consistently well
compared to the base PVRG and explicit-minimization implementations, though the
level of improvement varies among sequences. The anomalies observed in coding the
Grandma sequence at low rates with the PVRG and adaptive H1 coders, as evidenced
by the steep slope and unevenness in the RD curve, seem to indicate a breakdown
of the RM8 coding control heuristics, which were not optimized for operation at
very low rates. This conclusion is supported by the lack of such anomalies when
bit-minimization is used to perform coding control, as with the M2, H2, and RD
coders.

The distributions of bits for coding the Miss America sequence with the H1 and
H2 coders are plotted in Figure 3.11. Compared to Figure 3.1, these plots show that
the H1 and H2 coders both reduce the percentage of bits used for coding motion
vectors, while increasing the percentage of bits used to code the DCT coe�cients.
Furthermore, with the H2 coder, which applies bit-minimization to coding control,
the number of bits used for coding side information is also reduced.

4The Miss America sequence in this test suite was obtained from a di�erent source than the Miss
America sequence used in the earlier experiments and has di�erent rate-distortion characteristics.

52CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

3.5 Related Work

In related work, Chung, Kossentini and Smith [15] consider rate-distortion optimiza-
tions for motion estimation in a hybrid video coder based upon subband coding and
block-matching motion compensation. The input frames are �rst decomposed into
subbands, which are divided into uniform rectangular blocks. For each block, a La-
grangian cost function is used to select between intraframe and interframe modes and
to select between a small number of candidate motion vectors, which are coded with
a lossy two-dimensional vector quantizer.

Independent of our work, rate-distortion optimization for motion estimation has
been reported in [9]. The authors consider operational rate-distortion optimization in
a dependent-coding environment where motion vectors are coded using DPCM tech-
niques. The authors formulate motion estimation as a budget-constrained bit alloc-
ation problem where the distortion to be minimized is the displaced frame di�erence
(DFD), or prediction error, and propose to solve the problem using the Lagrange-
multiplier approach. After �rst constructing a motion-vector dependency graph, the
Viterbi dynamic programming algorithm is used to �nd a path that minimizes an
additive Lagrangian cost function. Noting the computational complexity of this ap-
proach, the authors propose a reduced-complexity algorithm that considers only a
small fraction of the possible states for each motion-compensated block. Even so,
this reduced-complexity algorithm has a considerable processing and memory over-
head associated with the dynamic programming algorithm, which is performed on
top of traditional block matching. In comparison, our adaptive heuristic cost func-
tion requires minimal overhead over block matching.

In another independent work [77], the authors also apply operational rate-
distortion optimization to motion estimation in a dependent-coding environment.
Similar to [9], they cast motion estimation as a budget-constrained bit allocation
problem and solve it using a combination of Lagrange minimization and dynamic
programming. The authors also consider joint optimization of motion estimation and
quantization using the same framework. Notably, they also provide a solution to both
problems that minimizes the maximum (minimax) distortion.

In [87], rate-distortion optimization is applied to the selection of coding control
for low-bit-rate video coding under the H.263 standard, a newer standard than the
H.261 standard that we consider here. A greedy optimization strategy is adopted to
avoid the exponential complexity that a global optimization would entail. Limited
dependencies between the coding control of neighboring blocks is considered and
the coding control is computed using the Viterbi dynamic programming algorithm
to minimize a Lagrangian cost function. Even with simplifying assumptions, the
rate-distortion optimization is computationally complex and may not be suitable for
real-time implementation, as the authors readily admit.

Ribas-Corbera and Neuho� [75] describe a procedure for minimizing rate in a
lossless motion-compensated video coder. They explore the allocation of bits between

3.6. DISCUSSION 53

the coding of motion vectors and the coding of prediction error. They assume that
the prediction error has a discrete Laplacian distribution and derive an expression for
the total rate as a function of the number of bits allocated to code the motion vectors.
It is not clear whether this work can be extended to lossy coding since distortion is
not taken into account in the formulation.

A linear relationship between MAD and both rate and distortion has been inde-
pendently observed in [57]. The authors mention the possibility of performing motion
vector search to minimize the bit rate, but conclude that just minimizing MAD would
have a similar e�ect.

3.6 Discussion

In this chapter, we have demonstrated that, at low bit rates, choosing motion vectors
to minimize an e�ciently computed heuristic cost function gives substantially better
rate-distortion performance than the conventional approach of minimizing prediction
error. Furthermore, by adapting the heuristic function to the input sequence, we are
able to achieve coding performance comparable to more computationally expensive
coders that explicitly minimize rate or a combination of rate and distortion.

In the experiments, full-search block-matching was employed by all the coders.
Our fast heuristic coders are also compatible with 2D logarithmic and many other
reduced-search motion estimation techniques. Since the heuristic cost function factors
in the motion vector code-length, the cost function has a strong monotonic component
and is well-suited for the reduced-search techniques that assume monotonicity in the
cost function.

We have considered only the simple case of using a �xed parameter � to tradeo�
rate and distortion. An on-line adaptation of � to track variations in the input
sequence is certainly possible and would result in more robust coders. On the other
hand, we observed that the behavior of these algorithms is quite robust with respect
to moderate variations in �, and that, for example, the best setting of � for one test
sequence worked well when used for the other. Thus, it seems that �xing � is safe in
practice. Still, since � inuences rate to some extent, it can be used in conjunction
with the quantization step size in performing rate control. Automatic control of �
based upon bu�er feedback as described in [11] is a possibility.

Although the methods presented here have been implemented within the H.261
standard, it should be generally applicable to any video coder that employs motion
compensation in a low bit rate setting. In particular, the H.263 standard is similar
enough to H.261 that it seems clear that these methods will work well with H.263.
As a case in point, in the next chapter we show how the bit-minimization framework
can be applied in a non-standard coder that chooses motion vectors to optimize a
hierarchical encoding of the motion information within a block-matching framework
with variable block sizes.

54CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

34

35

36

37

0 5 10 15 20 25 30 35 40 45 50

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Miss America Sequence at 18 kb/s

PVRG
M1

H1-A
H1-B
H1-C

(a) Miss America

32

33

34

35

0 5 10 15 20 25 30

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Claire Sequence at 18 kb/s

PVRG
M1

H1-A
H1-B
H1-C

(b) Claire

34

35

36

37

38

0 5 10 15 20 25 30 35 40 45 50

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Miss America Sequence at 18 kb/s

PVRG
M2
RD

H2-A
H2-B
H2-C

(c) Miss America

32

33

34

35

36

0 5 10 15 20 25 30

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Claire Sequence at 18 kb/s

PVRG
M2
RD

H2-A
H2-B
H2-C

(d) Claire

Figure 3.5: Results of static heuristic cost function for coding Miss America and
Claire sequences at 18 kbits/sec with rate control. In (a) and (b), we compare the
H1 coder with the PVRG and M1 coders. In (c) and (d), we compare the H2 coder
with PVRG, M2 and RD coders. H1-A (H2-A), H1-B (H2-B), and H1-C (H2-C) use
the heuristic functions (3.3), (3.4), and (3.5), respectively.

Video PVRG M1 M2 RD H1-A H1-WH H2-A H2-WH

Miss America 34.58 35.44 36.51 36.67 35.60 35.83 36.63 36.84

Claire 32.77 33.24 34.12 34.22 33.68 33.58 34.47 34.51

Table 3.3: Results of adaptive heuristic cost function. Shown is average PSNR (in dB)
of inter-coded frames for coding test sequences at 18 kbits/sec. H1-A and H2-A use
the heuristic function (3) with static parameters. H1-WH and H2-WH use adaptive
parameters.

3.6. DISCUSSION 55

34

35

36

37

38

0 5 10 15 20 25 30 35 40 45 50

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Miss America Sequence at 18 kb/s

PVRG
M1

H1-A
H1-WH

(a) Miss America

32

33

34

35

0 5 10 15 20 25 30

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Claire Sequence at 18 kb/s

PVRG
M1

H1-A
H1-WH

(b) Claire

34

35

36

37

38

39

0 5 10 15 20 25 30 35 40 45 50

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Miss America Sequence at 18 kb/s

PVRG
M2
RD

H2-A
H2-WH

(c) Miss America

32

33

34

35

36

0 5 10 15 20 25 30

P
S

N
R

 (
dB

)

Frame

PSNR for Coding Claire Sequence at 18 kb/s

PVRG
M2
RD

H2-A
H2-WH

(d) Claire

Figure 3.6: Results of adaptive heuristic cost function for coding Miss America and
Claire sequences at 18 kbits/sec with rate control. In (a) and (b), we compare the
adaptive H1 coder with the static H1, PVRG and M1 coders. In (c) and (d), we
compare the adaptive H2 coder with the static H2, PVRG, M2 and RD coders. H1-A
and H2-A use the heuristic function (3).

56CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

(a) PVRG (b) RD

(c) M1 (d) M2

Figure 3.7: Frame 27 of the Miss America sequence as encoded using the PVRG and
explicit-minimization motion estimation algorithms. Only the luminance component
is shown.

3.6. DISCUSSION 57

(a) H1-A (b) H2-A

(c) H1-WH (d) H2-WH

Figure 3.8: Frame 27 of the Miss America sequence as encoded using the heuristic
motion estimation algorithms. Only the luminance component is shown.

58CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

(a) PVRG (b) RD

(c) H1-WH (d) H2-WH

Figure 3.9: Estimated motion vectors for frame 27 of the Miss America sequence for
the PVRG, RD, H1-WH, and H2-WH coders. Only the magnitude of the motion
vectors are shown.

3.6. DISCUSSION 59

30

40

50

60

70

80

90

100

110

120

130

140

1000 2000 3000 4000 5000 6000

M
S

E

Average Bits/Frame

PVRG
M1

Adaptive H1
M2

Adaptive H2
RD

(a) Carphone

10

20

30

40

50

60

70

80

1000 1500 2000 2500 3000

M
S

E

Average Bits/Frame

PVRG
M1

Adaptive H1
M2

Adaptive H2
RD

(b) Claire

40

60

80

100

120

140

160

180

1000 2000 3000 4000 5000 6000 7000 8000 9000

M
S

E

Average Bits/Frame

PVRG
M1

Adaptive H1
M2

Adaptive H2
RD

(c) Foreman

30

40

50

60

70

80

90

100

800 1200 1600 2000 2400 2800

M
S

E

Average Bits/Frame

PVRG
M1

Adaptive H1
M2

Adaptive H2
RD

(d) Grandma

10

15

20

25

30

35

40

45

800 1200 1600 2000 2400 2800

M
S

E

Average Bits/Frame

PVRG
M1

Adaptive H1
M2

Adaptive H2
RD

(e) Miss America

30

40

50

60

70

80

90

100

110

120

1000 2000 3000 4000

M
S

E

Average Bits/Frame

PVRG
M1

Adaptive H1
M2

Adaptive H2
RD

(f) Mother and Daughter

20

30

40

50

60

70

80

90

1000 2000 3000 4000

M
S

E

Average Bits/Frame

PVRG
M1

Adaptive H1
M2

Adaptive H2
RD

(g) Suzie

30

40

50

60

70

80

90

100

110

120

130

2000 3000 4000 5000 6000

M
S

E

Average Bits/Frame

PVRG
M1

Adaptive H1
M2

Adaptive H2
RD

(h) Trevor

Figure 3.10: Performance of motion estimation algorithms on eight test sequences.

60CHAPTER 3. MOTION ESTIMATION FOR LOWBIT-RATE VIDEO CODING

�� ��

��

����

��

��

��

��

��

12 14 16 18 20 22 24 26 28 30 32

500

1000

2000

2500

Quantizer Step Size

A
ve

ra
ge

 B
its

/F
ra

m
e

3000

1500

Side Information

DCT Coefficients

Motion Vector

(a) H1 Coder

�� ��

��

����

��

��

��

��

��

12 14 16 18 20 22 24 26 28 30 32

500

1000

2000

2500

Quantizer Step Size

A
ve

ra
ge

 B
its

/F
ra

m
e

3000

1500

Side Information

DCT Coefficients

Motion Vector

(b) H2 Coder

Figure 3.11: Distribution of bits for coding the Miss America sequence with adaptive
heuristics.

Chapter 4

Bit-Minimization in a

Quadtree-Based Video Coder

Quadtree-Based Video Coder

Like the underlying image data that they are computed from, motion vector �elds
often exhibit signi�cant spatial correlation. Approaches such as the p� 64 standard
exploit this observation by coding the di�erences between successive motion vectors
in a one-dimensional scan order. Potentially better results can be achieved by di-
rectly exploiting the two-dimensional correlation of motion vectors. A quadtree data
structure can be used for this purpose by representing the motion �eld hierarchi-
cally in two dimensions [70, 3, 7, 20]. The quadtree approach works by identifying
variable-sized regions of uniform motion and providing an e�cient encoding of the
motion �eld. For video sequences where there are large regions of uniform motion,
a quadtree decomposition reduces the number of bits required to encode the motion
�eld by coding only a few motion vectors. When the motion �eld is smoothly varying,
the hierarchical structure of the quadtree allows the correlated motion vectors to be
e�ciently coded.

In this chapter, we consider the instantiation of the bit-minimization principle in
a video coder that uses a quadtree to code motion vectors, thereby departing from
the p� 64 standard. The contents of this chapter were originally presented in [29].

4.1 Quadtree Data Structure

Often used as a representation for bi-level images, the quadtree can also be used to
code motion vectors. We �rst describe the quadtree in the context of bi-level image
representation and later show how to use it to code a motion �eld.

61

62CHAPTER 4. BIT-MINIMIZATION IN A QUADTREE-BASED VIDEOCODER

0 1 2

30 31 32 33

(a) Quadtree

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

0

2

30 31

32

1

33

(b) Image

Figure 4.1: A simple quadtree and corresponding image.

4.1.1 Quadtree Representation of Bi-Level Images

The root node of a quadtree represents the entire image. For the trivial case where
an image contains all white or all black pixels, its quadtree representation is the root
node colored either white or black, respectively. Otherwise the image is divided into
four quadrants, each a child of the root node. If a quadrant is totally white or totally
black, it is represented as a leaf node appropriately colored; otherwise it is represented
in the quadtree by an internal node and is further divided into subquadrants. The
division proceeds recursively up to a maximum depth or until all subdivisions contain
uniform pixels. A simple quadtree and its corresponding image is shown in Figure 4.1.

In Figure 4.2, a decomposition of a triangle is shown using a quadtree of depth
5. The image is divided into the regions shown in Figure 4.2(a). Since the depth of
the quadtree is �nite, the triangle can only be approximated with limited precision.
Adopting a policy that each of the smallest subdivision is colored with the predomi-
nant color of the underlying image, we can represent the triangle using the quadtree
structure shown in Figure 4.2(b). Note that some of the regions identi�ed in (a) have
been merged in (b) since they are assigned the same color and have a common parent.

The structure of a quadtree can be represented linearly by traversing the tree.
Labeling an internal node as I, a black leaf as B, and a white leaf as W, we can
represent the tree in Figure 4.1 with the string IWBWIWBWB. This corresponds to a
preorder traversal of the quadtree.

The quadtree can be extended to code greyscale and color images by storing at
each leaf a greyscale or color value, chosen to minimize some measure of distortion.

4.1. QUADTREE DATA STRUCTURE 63

����
�
�
�

�
�
�

�
�
�

�
�
�

(a) Segmentation (b) Representation

Figure 4.2: Representation of a triangle using a quadtree of depth 5.

4.1.2 Quadtree Representation of Motion Vectors

The quadtree data structure can also be used to represent a motion �eld, as shown
in Figure 4.3. Instead of storing a color value at each leaf, we store a motion vector
that represents the motion of the region represented by the leaf. When combined
with a block-transform coder for the residual, such as the 2D-DCT, we can also use
the quadtree segmentation to determine the size of the block transform; the result is
a hybrid motion-compensated video coder with variable-sized blocks.

The linear representation of a quadtree mentioned above can be used here to en-
code the motion �eld if there is a �nite number of possible motion vectors. However,
assuming that the motion �eld is smoothly varying, we can improve the coding ef-
�ciency by coding di�erences in neighboring motion vectors. We can do this in a
two-dimensional manner by exploiting the segmentation that the quadtree already
provides. With each internal node, we associate a motion vector representative of
the node's descendents. The representative motion vector may be an average or a
median or may be chosen by some other means. In each node, instead of storing the
representative motion vector directly, we store its di�erence with that of the node's
parent. Since the root node does not have a parent, its representative motion vector is
stored as is. The value of each node's representative motion vector can be determined
by summing the stored values encountered along the path from the root to that node.
For a smoothly varying motion �eld, the di�erence values would tend to be small and
can be coded e�ciently with a statistical coder, for example.

64CHAPTER 4. BIT-MINIMIZATION IN A QUADTREE-BASED VIDEOCODER

(a) Motion Field (b) Quadtree Representation

Figure 4.3: Quadtree representation of a motion �eld.

4.2 Hybrid Quadtree/DCT Video Coder

In [7], Chan, Yu, and Constantinides describe several coding schemes using quadtrees
in which the split/merge operations used to construct the tree are controlled by
prediction error criteria. We propose to use a quadtree to encode motion vectors for
a block-matching motion-compensated video coder in which the tree is constructed
using the bit-minimization principle. The basic coder design is similar to the p� 64
coder shown in Figure 2.18. The di�erence is that now motion vectors are coded
with a quadtree whose leaves represent regions of uniform motion. Conceptually, one
might associate a motion vector with each node of the quadtree, which, for internal
nodes, is re�ned further down the tree. Using this viewpoint, for each node other
than the root, the di�erence between the node's and its parent's motion vectors is
transmitted. Thus, one can construct the motion vector for each leaf by adding the
root's motion vector to the sum of the di�erences encountered along the path from
the root to the given leaf.

We propose to combine the quadtree encoding of motion vectors with the basic
motion-compensated video coder speci�ed in the p� 64 standard. Conceptually, the
main di�erence between this coder and the p � 64 coder is in the encoding of the
motion vectors. Each leaf in the quadtree encodes a motion vector for a number of
8� 8 blocks. Therefore, the quadtree decomposition ends at the 8� 8 level.

Given a motion �eld and its quadtree decomposition, we code the structure of the
tree using an adaptive arithmetic code to indicate whether a node is a leaf or not (a
di�erent adaptive coder is used for each level). The motion vector di�erences at each

4.2. HYBRID QUADTREE/DCT VIDEO CODER 65

node are coded using another adaptive arithmetic code (again, using a di�erent coder
for each level). For each leaf node, the 8� 8 transform coded blocks subsumed by the
node are transmitted in scan order. The decision of how to code the block (choosing
from among alternatives similar to those in the p� 64 standard) is also transmitted
using an adaptive arithmetic coder. If the quantized transform coe�cients are trans-
mitted, this is done using the run-length/Hu�man coding method from the p � 64
standard. The counts for the adaptive arithmetic coder are updated once after each
frame is coded.

To perform motion estimation, we adopt the bit-minimization strategy elaborated
in Chapter 3. The quadtree coding structure described in Section 4.1.2 has several
nice properties that make a dynamic programming solution possible for �nding an
optimal set of motion vectors that minimizes the sum of the code-lengths needed
to encode the motion vectors and the transform-coded prediction error. Since the
arithmetic code used for the motion vector di�erences at each node doesn't change
during the coding of a particular frame, the optimal number of bits to code the motion
vector di�erences for any subtree is independent of the coding of any other disjoint
subtree. Similarly, the transform coding of the prediction errors is independent for
disjoint subtrees.

We now describe a dynamic programming algorithm for choosing an optimal
quadtree. For each node in the tree, we store a table indexed by the (absolute)
motion vector of the node's parent. For each possible motion vector ~v of the parent,
this table gives the minimum code-length to code the subtree rooted at the current
node given that the parent's motion vector is ~v. Also stored with each table entry
is a motion vector giving the minimum code-length. Construction of the tables is
performed in a bottom-up fashion, starting at the 8� 8 block level. For a node p,
the table is constructed by �nding, for each choice of motion vector ~v0 for the parent
node, a motion vector for p that results in the minimum code-length for the subtree
rooted at p. If p is at the 8� 8 block level, this is done by computing the transform
code-length of the prediction error for each motion vector in the search range S and
noting the minimum code-length and the corresponding motion vector. Otherwise we
consider for each motion vector ~v in S the code-length needed to transform-code the
prediction errors if the quadtree is pruned at p. (This quantity can be computed in
a preprocessing step.) We also consider the code-length if the quadtree is not pruned
at p. This code-length is computed by indexing the tables of children of p with ~v
and summing. The minimum of these two quantities is added to the number of bits
to code ~v0 � ~v. The result is the minimum code-length required to code the subtree
rooted at p given motion ~v0 at p's parent node.

Once the minimum code-length is computed for the root of the quadtree, the
motion vectors for each node in the tree are determined by going back down the tree,
using the tables constructed on the way up. The optimal motion vector for the root
node is made known to its children. Each child uses this to index its table to �nd its
optimal motion vector. Pruning of the tree is also performed as a result.

66CHAPTER 4. BIT-MINIMIZATION IN A QUADTREE-BASED VIDEOCODER

0

20

40

60

80

100

120

140

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
S

E

Rate (bits per pixel per frame)

PVRG
M1
M2
QT

Figure 4.4: MSE vs. Rate for Trevor

The dynamic programming algorithm requires O(N jSj2) time, where N is the
number of 8� 8 blocks in the frame and S is the search region for block-matching.
The space requirement is O(N jSj).

4.3 Experimental Results

The quadtree coder is implemented using routines from the PVRG coder for motion
compensation, transform coding, quantization, and run-length/Hu�man coding of the
quantized transform coe�cients. The quadtree structure and motion vector informa-
tion are not actually coded; however, adaptive probability models are maintained and
used to compute the number of bits that an ideal arithmetic coder would produce.
Our objective is to explore the limits in performance improvement by aggressively
optimizing the coding of motion vectors.

We performed coding simulations using 50 frames of the grayscale 256� 256
\Trevor" sequence. The p � 64 coders were modi�ed to accept input at 256� 256
resolution. An operational rate-distortion plot for the quadtree and p � 64 coders
is given in Figure 4.4. The quadtree coder gives better rate-distortion performance
for rates under about 0.25 bits/pixel. Furthermore, the range of achievable rates is
extended to well below the 0.05 bits/pixel achievable with M2, albeit with higher
distortion.

4.4 Previous Work

Puri and Hang [70] considered an algorithm for motion-compensated video coding
which, when an 8� 8 block B is not coded well (that is, when coding it requires a lot
of bits), chooses a separate motion vector for each ofB's four 4� 4 subblocks. Bierling

4.5. DISCUSSION 67

[3] described a hierarchical algorithm for choosing motion vectors in which initially
motion vectors are chosen for large blocks (64� 64) by minimizing the prediction
error.1 Then for each large block B, motion vectors are chosen for subblocks of B
again by minimizing prediction error, except looking only at motion vectors close to
the motion vector chosen for B. This process results in a smoother motion �eld,
and experiments suggest that it is closer to the \true" motion than is a motion �eld
obtained by separately minimizing error on the small blocks. While Bierling did not
discuss how to code motion vectors obtained through by his method, Chan, Yu, and
Constantinides [7] described a method where motion vectors are again chosen in a
top-down fashion, starting with large blocks and re�ning with smaller blocks. When
the average squared prediction error for a given block B is above a given threshold,
the algorithm re�nes the motion vector chosen for B by looking at subblocks of B.
Similarly, if the use of separate motion vectors for the subblocks of B does not reduce
the error signi�cantly, the subblocks of B are \merged" with B. After this process is
completed, the tree obtained by making a given block the parent of its subblocks is
transmitted, together with motion vectors for each of the leaves. Methods for taking
a tree structure like the above (except expanded completely) and then \smoothing"
the motion vectors by making children tend to be like their parents and vice-versa,
were discussed by Dufaux and Kunt [20]. Zhang, Cavenor, and Arnold [88] considered
various ways of using quadtrees to code the prediction error.

4.5 Discussion

In this chapter, we have presented a non-standard hybrid block-matching DCT video
coder that further optimizes the coding of motion vectors by representing the motion
�eld using a quadtree decomposition. Although motivated for e�cient coding of
motion vectors, the quadtree decomposition can be viewed as performing motion
compensation using variable-sized blocks.

Preliminary experimental results suggest that a quadtree-based technique may be
suitable for video coding at rates below that achievable by the p� 64 standard.

While only the bit-minimization strategy has been examined for the quadtree-
based coder, the heuristic cost function of Chapter 3 can certainly be used to speed
up the operation of the coder.

1In fact, a heuristic search [39, 42] was used to only approximately minimize the error.

68CHAPTER 4. BIT-MINIMIZATION IN A QUADTREE-BASED VIDEOCODER

Chapter 5

Lexicographically Optimal Bit

Allocation

In any lossy coding system, there is an inherent trade-o� between the rate of the coded
data and the distortion of the reconstructed signal. Often the transmission (storage)
medium is bandwidth (capacity) limited. The purpose of rate control is to allocate
bits to coding units and to regulate the coding rate to meet the bit-rate constraints
imposed by the transmission or storage medium while maintaining an acceptable level
of distortion. We consider rate control in the context of the MPEG-1 and MPEG-2
standards.

In addition to specifying a syntax for the encoded bitstream and a mechanism
for decoding it, the MPEG standards de�ne a hypothetical decoder called the Video
Bu�ering Veri�er (VBV), which places quanti�able limits on the variability in coding
rate. The VBV is diagrammed in Figure 2.23 and described in Section 2.7.

As outlined in Section 2.7.5, the overall rate control process can be broken down
into three steps:

1. a high level bit allocation to coding units (video pictures),

2. a low level control of the quantization scale within a coding unit to achieve the
bit allocation,

3. adjustment to the quantization scale to equalize perceptual quality.

In this chapter, we develop a framework for bit allocation under VBV constraints,
with an additional constraint on the total number of bits coded. This framework
consists of three components: 1) a bit-production model, 2) a novel lexicographic
optimality criterion, and 3) a set of bu�er constraints for constant and variable bit
rate operation. Initially, we formalize bit allocation as a resource allocation problem
with continuous variables and non-linear constraints, to which we apply a global
lexicographic optimality criterion.

69

70 CHAPTER 5. LEXICOGRAPHICALLY OPTIMAL BIT ALLOCATION

The global nature of the optimization necessitates the use of o�-line techniques
wherein the complexities of all the coded pictures, as speci�ed with bit-production
models, are known prior to computing a global bit allocation. One way to view this
is as a serial computation with unlimited lookahead, wherein the inputs are the bit-
production models for each picture. In practice, this would entail making multiple
passes over the video sequence in order to construct the models, compute an optimal
allocation, and compress the sequence using the computed allocation. In Chapter 10,
we explore some techniques for reducing the computation by limiting the amount of
lookahead used.

In the next two chapters, we use our new framework to analyze bit allocation
under constant bit rate and variable bit rate operation. The analyses yield necessary
and su�cient conditions for optimality that lead to e�cient bit allocation algorithms.
In Chapter 10, we describe an implementation of these algorithms within a software
MPEG-2 encoder and present simulation results.

5.1 Perceptual Quantization

As shown in Figure 2.20, the output bit rate of a video coder can be regulated by ad-
justing the quantization scale Qs. Increasing Qs reduces the output bit rate but also
decreases the visual quality of the compressed pictures. Similarly, decreasing Qs in-
creases the output bit rate and increases the picture quality. Therefore by varying Qs,
we can trace out a rate vs. distortion curve, such as that shown in Figure 2.5.

Although Qs can be used to control rate and distortion, coding with a constant
value of Qs generally does not result in either constant bit rate or constant perceived
quality. Both of these factors depend upon the scene content as well. Studies into
human visual perception suggest that perceptual distortion is correlated to certain
spatial (and temporal) properties of an image (video sequence) [61, 1]. These stud-
ies lead to various techniques, called perceptual quantization or adaptive perceptual

quantization, that take into account properties of the Human Visual System (HVS)
in determining the quantization scale [82, 69, 40, 14, 47, 85, 16].

Based upon this body of work, we propose a separation of the quantization scaleQs

into a nominal quantization Q and a perceptual quantization function P (I; Q) such
that Qs = P (I; Q), where I denotes the block being quantized. The function P is
chosen so that if the same nominal quantization Q were used to code two blocks
then the blocks would have the same perceptual distortion. In this way, the nominal
quantization parameter Q would correspond directly to the perceived distortion and
can serve as the object for optimization. We favor a multiplicative model where
P (I; Q) = �IQ.

1 Where quantization noise is less noticeable, such as in highly-
textured regions, we can use a larger value for �I than regions where quantization

1The MPEG-2 Test Model 5 [37] also uses a multiplicative formulation while an additive formu-
lation is proposed in [66].

5.2. CONSTANT QUALITY 71

noise is more noticeable, such as in relatively uniform areas. In this regards, �I can
be viewed as a perceptual weighting factor. Our bit rate allocation, however, works
with any perceptual quantization function.

The problem of determining P (I; Q) has been studied elsewhere [82, 13] and is not
considered in this manuscript. Here, we address the assignment ofQ to each picture to
give constant or near-constant quality among pictures while satisfying rate constraints
imposed by the channel and decoder. We propose to compute Q at the picture
level; that is, we compute one Q for each picture to be coded. Besides decreasing
the computation over computing di�erent Q for each block, this method results in
constant perceptual quality within each picture given that perceptual quantization
is employed at the block level. The framework can certainly be generalized to other
coding units, and in principle can be applied to code other types of data, such as
images and speech.

5.2 Constant Quality

Previous approaches in optimal rate control generally seeks to minimize a distortion
measure, typically mean-squared error (MSE), averaged over coding blocks [63, 73].
While this approach leverages the wealth of tools from optimization theory and op-
erations research, it does not guarantee the constancy of quality that is generally
desired from a video coding system. For example, a video sequence with a constant
or near-constant level of distortion is more desirable than one with lower average dis-
tortion but higher variability, because human viewers tend to �nd frequent changes
in quality more noticeable and annoying. A long video sequence typically contains
segments that, even if encoded at a fairly low bit rate, will not contain any disturbing
quantization artifacts, so that improving the quality of pictures in those segments is
far less important than improving the quality of pictures in segments that are more
di�cult to encode.

To address these issues, we propose a lexicographic optimality criterion that better
expresses the desired constancy of quality. The idea is to minimize the maximum
(perceptual) distortion of a block (or picture) and then minimize the second highest
block distortion, and so on. The intuition is that doing so would equalize distortion
by limiting peaks in distortion to their minimum. As we will show later, if a constant
quality allocation is feasible, then it must necessarily be lexicographically optimal.

5.3 Bit-Production Modeling

For simplicity, we assume that each picture has a bit-production model that relates the
picture's nominal quantization Q to the number of coded bits B. This assumes that
the coding of one picture is independent of any other. This independence holds for
an encoding that uses only intraframe (I) pictures, but not for one that uses forward

72 CHAPTER 5. LEXICOGRAPHICALLY OPTIMAL BIT ALLOCATION

predictive (P) or bidirectionally predictive (B) pictures, for example. In practice,
the extent of the dependency is limited to small groups of pictures. Nonetheless, we
initially assume independence to ease analysis and defer treatment of dependencies
until a later chapter where we consider practical implementations.

We specify Q and B to be non-negative real-valued variables. In practice, the
quantization scale Qs and B are positive integers with Qs = b�I � Qc. However, to
facilitate analysis, we assume that there is a continuous function for each picture that
maps Q to B.

For a sequence of N pictures, we de�ne N corresponding bit-production mod-
els ff1; f2; : : : ; fNg that map nominal quantization scale to bits: bi = fi(qi), where
fi : [0;1] 7! [li; ui], with 0 � li < ui. (We number pictures in encoding order and
not temporal display order. See Section 2.15.) We require the models to have the
following properties:

1. fi(0) = ui,

2. fi(1) = li,

3. fi is continuous and monotonically decreasing.

From these conditions, it follows that fi is invertible with qi = gi(bi), where gi =
f�1i and gi : [li; ui] 7! [0;1]. We note that gi is also continuous and monotonically
decreasing. Although monotonicity does not always hold in practice, it is a generally
accepted assumption.

In video coding systems, the number of bits produced for a picture also depends
upon a myriad of coding choices besides quantization scale, such as motion compen-
sation and the mode used for coding each block. We assume that these choices are
made independent of quantization and prior to performing rate control.

5.4 Bu�er Constraints

The MPEG standards specify that an encoder should produce a bitstream that can be
decoded by a hypothetical decoder referred to as the Video Bu�ering Veri�er (VBV),
as shown in Figure 2.23 and described in Section 2.7. Data can be transferred to the
VBV either at a constant or variable bit rate.2 In either mode of operation, the num-
ber of bits produced by each picture must be controlled so as to satisfy constraints
imposed by the operation of the decoder bu�er, whose size BVBV is speci�ed in the
bitstream by the encoder. The encoder also speci�es the maximum transfer rate Rmax

into the VBV bu�er and the amount of time the decoder should wait before decod-
ing the �rst picture. In this section, we consider constraints on the number of bits
produced in each picture that follow from analysis of the VBV.

2The MPEG-1 standard only de�nes VBV operation with a constant bit rate while the MPEG-2
standard also allows for variable bit rate.

5.4. BUFFER CONSTRAINTS 73

5.4.1 Constant Bit Rate

We �rst examine the mode of operation in which the compressed bitstream is to be
delivered at a constant bit rate Rmax.

De�nition 5.1 Given a sequence of N pictures, an allocation s = hs1; s2; : : : ; sNi is
an N -tuple containing bit allocations for all N pictures, so that sn is the number of
bits allocated to picture n.

Let BVBV be the size of the decoder bu�er. Let Bf(s; n) denote the bu�er fullness
(the number of bits in the VBV bu�er), resulting from allocation s, just before the nth
picture is removed from the bu�er. Let B�

f (s; n) denote the bu�er fullness, resulting
from allocation s, just after the nth picture is removed. Then

B�
f (s; n) = Bf(s; n)� sn: (5.1)

Let Rmax be the rate at which bits enter the decoding bu�er. Let Tn be the amount
of time required to display picture n. Then Ba(n) = RmaxTn is the maximum number
of bits that can enter the bu�er in the time it takes to display picture n.

For constant bit rate (CBR) operation, the state of the VBV bu�er is described
by the recurrence

Bf(s; 1) = B1;

Bf(s; n+ 1) = Bf(s; n) +Ba(n)� sn;
(5.2)

where B1 is the initial bu�er fullness. Unwinding the recurrence, we can also express
(5.2) as

Bf(s; n+ 1) = B1 +
nX
j=1

Ba(j)�
nX
j=1

sj: (5.3)

To prevent the decoder bu�er from overowing we must have

Bf(s; n+ 1) � BVBV: (5.4)

The MPEG standards allow pictures to be skipped in certain applications. We
assume that all pictures are coded, in which case all of picture n must arrive at the
decoder by the time it is to be decoded and displayed; that is, we must have

Bf(s; n) � sn; (5.5)

or equivalently,
B�
f (s; n) � 0: (5.6)

A violation of this condition is called a bu�er underow.
We now have an upper bound and can derive a lower bound for the number of

bits that we can use to code picture n. From (5.2) and (5.4) we have

sn � Bf(s; n) +Ba(n)� BVBV:

74 CHAPTER 5. LEXICOGRAPHICALLY OPTIMAL BIT ALLOCATION

U2

T0 T0+T T0+2T T0+3T T0+4T

L2
Bi

F
ul

ln
es

s
B

uf
fe

r

BVBV

Time

0
0

Figure 5.1: Sample plot of bu�er fullness for CBR operation. Bits enter the decoder
bu�er at a constant rate until time T0, when the �rst picture is removed. Succes-
sive pictures are removed after a time interval T . Upper and lower bounds on the
number of bits that can be produced for the second picture are shown as U2 and L2,
respectively.

Since we cannot produce a negative number of bits, the lower bound on sn is

sn � maxfBf(s; n) +Ba(n)� BVBV; 0g: (5.7)

In summary, for constant bit rate operation, in order to pass video bu�er veri�-
cation, an allocation s must satisfy the following for all n:

maxfBf(s; n) +Ba(n)� BVBV; 0g � sn � Bf(s; n): (5.8)

An exemplary plot of the evolution of the bu�er fullness over time for CBR op-
eration is shown in Figure 5.1. In this example, the decoder waits T0 seconds before
decoding the �rst picture, at which time the bu�er fullness is B1. The time to display
each picture is assumed to be a constant T seconds. In the plot, the upper and lower
bounds for the number of bits to code picture 2 are shown as U2 and L2, respectively.

5.4.2 Variable Bit Rate

We now examine the scenario where the compressed video bitstream is to be delivered
at a variable bit rate (VBR). Speci�cally, we adopt the second VBR mode of the
MPEG-2 VBV model (see Section 2.7.4) where bits always enter the decoder bu�er

5.5. BUFFER-CONSTRAINED BIT ALLOCATION PROBLEM 75

at the peak rate Rmax until the bu�er is full.
3 Depending upon the state of the bu�er,

bits enter during each display interval at a rate that is e�ectively variable up to the
peak rate Rmax. The maximum number of bits entering the bu�er in the time it takes
to display picture n is Ba(n) = RmaxTn.

For VBR operation, the state of the VBV bu�er is described by:

Bf(s; 1) = BVBV;

Bf(s; n+ 1) = minfBVBV; Bf(s; n) +Ba(n)� sng:
(5.9)

Unlike the CBR case, the decoder bu�er is prevented from overowing by the
minimization in (5.9). When Bf(s; n) + Ba(n) � sn > BVBV, we say that picture n
results in a virtual overow. When a virtual overow occurs, the e�ective input rate
to the VBV bu�er during that display interval is less than the peak rate. Like the
CBR case, underow is possible and to prevent it (5.5) must hold. The evolution of
the bu�er fullness is shown for VBR operation in Figure 5.2. The time to display each
picture is assumed to be a constant T seconds. As shown in the plot, the number
of bits that enter the bu�er during each display interval is variable, with virtual
overows occurring for pictures 2 and 4.

5.4.3 Encoder vs. Decoder Bu�er

In the above discussion, we have focused solely on the decoder bu�er whereas Fig-
ure 2.20 shows the Rate Controller monitoring the fullness of the encoder bu�er. By
assuming a �xed channel delay the encoder bu�er fullness can be shown to mirror
the decoder bu�er fullness, except for an initial startup period. That is, an empty
decoder bu�er would correspond to a full encoder bu�er, and vice versa. The reader
is referred to [74] for a more complete discussion of bu�er constraints in video coder
systems.

5.5 Bu�er-Constrained Bit Allocation Problem

Using the bit-production model and VBV constraints de�ned above, we now formalize
the bu�er-constrained bit allocation problem.

De�nition 5.2 A bu�er-constrained bit allocation problem P is speci�ed by a tuple

P = hN;F;Btgt; BVBV; B1; Bai ;
3We note that with the same bit allocation, the VBV bu�er fullness for the second VBR mode is

always equal to or higher than the fullness when operating in the �rst VBR mode. Intuitively, if the
channel bit rate is not further constrained, a lexicographically optimal bit allocation for the second
VBR mode should not be worse (lexicographically) than an optimal bit allocation for the �rst VBR
mode, given the same total bit budget.

76 CHAPTER 5. LEXICOGRAPHICALLY OPTIMAL BIT ALLOCATION

U2

T T T T T0 0 0 0 0+T +2T +3T +4T

F
ul

ln
es

s
B

uf
fe

r

B

0

VBV

Time

0

Figure 5.2: Sample plot of bu�er fullness for VBR operation. Bits enter the decoder
bu�er at a constant rate until time T0, when the �rst picture is removed. Successive
pictures are removed after a time interval T . When the bu�er becomes full, no more
bits enter until the next picture is removed.

where N is the number of pictures; F = hf1; f2; : : : ; fNi is a sequence of N func-
tions, as speci�ed in Section 5.3, that model the relationship between the nominal
quantization scale and the number of coded bits for each picture; Btgt is the target
number of bits to code all N pictures; BVBV is the size of the VBV bu�er in bits; B1

is the number of bits initially in the VBV bu�er; Ba is a function that gives the max-
imum number of bits that can enter the decoding bu�er while each picture is being
displayed.

For convenience, in the sequel we shall use the shorter term \bit allocation prob-
lem" to refer to the bu�er-constrained bit allocation problem.

De�nition 5.3 Given a bit allocation problem P = hN;F;Btgt; BVBV; B1; Bai, an
allocation s is a legal allocation if the following conditions hold:

1.
PN

j=1 sj = Btgt

2. Equation (5.5) holds: Bf(s; n) � sn.

3. For CBR only, (5.7) holds: sn � maxfBf(s; n) +Ba(n)�BVBV; 0g.

In order for a CBR bit allocation problem to have a legal allocation, we must have

BVBV � max
j
Ba(j): (5.10)

5.6. LEXICOGRAPHIC OPTIMALITY 77

Also, the bu�er fullness at the end of the sequence must be within bounds. For an
allocation s, from (5.1) and (5.3) we have

B�
f (s;N) = B1 +

N�1X
j=1

Ba(j)� Btgt: (5.11)

The bound on B�
f (s;N) is thus

0 � B�
f (s;N) � BVBV: (5.12)

From (5.11) and (5.12), we have the following CBR bounds on Btgt:

B1 +
N�1X
j=1

Ba(j)� BVBV � Btgt � B1 +
N�1X
j=1

Ba(j): (5.13)

A VBR bit allocation problem does not have a lower bound for the target
bit rate Btgt since the VBV does not impose a lower bound on the number of
bits produced by each picture. The upper bound for Btgt depends upon whether
max1�j�NfBa(j)g > BVBV. In general, the VBR upper bound on Btgt is

Btgt � B1 +
N�1X
j=1

minfBa(j); BVBVg: (5.14)

However, in the sequel, we assume that maxj Ba(j) � BVBV. We also assume that
bit allocation problems are given so that a legal allocation exists.

5.6 Lexicographic Optimality

We now formally de�ne the lexicographic optimality criterion. As mentioned in Sec-
tion 5.1, we equate nominal quantization scale with perceptual distortion and de�ne
the optimality criterion based upon the nominal quantization Q assigned to each
picture.

Let S be the set of all legal allocations for a bit allocation problem P . For an
allocation s 2 S, let Qs = hQs

1; Q
s
2; : : : ; Q

s
Ni be the values of Q to achieve the bit

allocation speci�ed by s. Thus Qs
i = gi(si), where gi is as de�ned in Section 5.3.

Ideally, we would like an optimal allocation to use a constant nominal quantization
scale. However, this may not be feasible because of bu�er constraints. We could
consider minimizing an lk norm ofQs. However, as discussed earlier, such an approach
does not guarantee constant quality where possible and may result in some pictures
having extreme values of Qi.

Instead, we would like to minimize the maximum Qi. Additionally, given that the
maximum Qi is minimized, we want the second largest Qi to be as small as possible,
and so on. This is referred to as lexicographic optimality in the literature (e.g., [35]).

78 CHAPTER 5. LEXICOGRAPHICALLY OPTIMAL BIT ALLOCATION

We de�ne a sorted permutation DEC on Qs such that for DEC(Qs) =
hqj1; qj2 ; : : : ; qjN i, we have qj1 � qj2 � � � � � qjN . Let rank(s; k) be the kth element
of DEC(Qs); that is, rank(s; k) = qjk . We de�ne a binary relation � on allocations
as follows: s = hs1; : : : ; sNi � s0 = hs01; : : : ; s0Ni if and only if rank(s; j) = rank(s0; j)
for j = 1 ,2 ,. . . , k � 1 and rank(s; k) > rank(s0; k) for some 1 � k � N . We also
de�ne s � s0 if and only if s0 � s; s � s0 if and only if rank(s; j) = rank(s0; j) for
all j; s � s0 if and only if s � s0 or s � s0; and s � s0 if and only if s � s0 or s � s0.

De�nition 5.4 A legal allocation s� is lexicographically optimal if s� � s for all other
legal allocation s.

Lemma 5.1 (Constant-Q) Given a bit allocation problem P = hN;F;Btgt; BVBV; B1; Bai,
if there exists a legal allocation s and a quantization q such that gn(sn) is the constant
quantization q for all n, where gn is de�ned as in Section 5.3, then s is the only

lexicographically optimal allocation for P .

Proof : First we prove that s is optimal. Since s is a legal allocation, we have

NX
j=1

sj =
NX
j=1

fj(q) = Btgt:

Suppose that s is not optimal. Let s0 be an optimal allocation. Then rank(s0; k) <
rank(s; k) = q for some k, and rank(s0; j) � rank(s; j) for all j. Therefore s0l > fl(q)
for some l and s0j � fj(q) for all j since fj is a decreasing function. Thus

NX
j=1

s0j >
NX
j=1

fj(q) = Btgt:

So s0 is not a legal allocation, a contradiction. Therefore s is optimal.
Now we show that s is the only optimal allocation. Let s0 be an optimal allocation.

Since s and s0 are both optimal, s � s0 and s � s0, implying s � s0. Then rank(s; j) =
rank(s0; j) for all j. Therefore rank(s0; j) = q for all j. Thus s0 = s. 2

Lemma 5.1 establishes a desirable property of the lexicographic optimality cri-
terion: If a constant-Q allocation is legal, it is the only lexicographically optimal
allocation. This meets our objective of obtaining a constant-quality allocation (via
perceptual quantization) when feasible.

5.7 Related Work

In [79], the budget-constrained bit allocation problem (see Section 2.3.3) is examined
in the context of a discrete set of independent quantizers. A bit allocation algorithm
based upon Lagrangian minimization is presented as a more e�cient alternative to the

5.7. RELATED WORK 79

well-known dynamic programming solution based upon the Viterbi algorithm [83, 22].
This work lays the foundation for much of the ensuing work on optimal bit allocation.

Optimal budget-constrained bit allocation in a dependent, predictive coding set-
ting is examined in [81]. A parametric rate-distortion model is proposed for in-
traframe coding and forward predictive coding. The model has an exponential form
and is motivated by theoretical rate-distortion results for stationary Gaussian sources.
Lagrangian minimization is chosen as the optimization technique and a closed-form
solution is obtained in terms of known statistics and the Lagrange multiplier. A
search over the Lagrange multiplier then yields a solution to the budget-constrained
problem. The authors acknowledge that minimizing sum-distortion does not lead to
uniform distortion. They reformulate the problem to minimize the maximum (mini-
max) picture distortion by equating the distortion among pictures.4

Budget-constrained minimax bit allocation for dependent coding is also considered
in [77]. The authors provide a minimax solution by �rst showing how to �nd a
minimum-rate solution given a maximum distortion and then using an bisection search
to �nd the maximum distortion corresponding to the desired rate. However, the
bisection search is not guaranteed to converge in a �nite number of iterations.

In [74], bit-rate constraints for bu�ered video coders are derived for a general
variable-bit-rate channel, such as that provided by an ATM network. The constraints
take into account both the encoder and decoder bu�ers. The bit-rate constraints are
used in an ad-hoc algorithm that jointly selects the channel and encoder rates.

The problem of optimal bit allocation in a bu�ered video coder is considered
in [62]. The authors consider video coding with CBR bu�er constraints and formu-
late bit allocation as an integer programming problem. They assume a �nite set of
quantization scales, an integral number of coded bits, and independent coding. The
problem is optimally solved using a dynamic programming algorithm based upon the
Viterbi algorithm (as described in Section 2.3.3a). Heuristic methods based upon
Lagrangian minimization and other ad-hoc techniques are proposed to provide more
e�cient, but sub-optimal, solutions.

The discrete optimization framework of [62] is extended in [72] to handle depen-
dent coding. Except for a simple illustrative case, computing an optimal bit allocation
under the dependent framework requires time and space exponential in the number
of coding units. A heuristic pruning technique is proposed to reduce the number
of states considered. However, the e�ectiveness of the heuristic depends upon the
rate-distortion characteristics of the source.

In [33], the work of [62] is further extended to include transmission over a variable-
bit-rate channel with delay constraints. Besides bu�er and delay constraints, the
authors also consider constraints imposed by several policing mechanisms proposed
for ATM networks. Assuming a discrete set of quantizers and a discrete set of trans-
mission rates, the quantization and transmission rate can be jointly optimized using

4A minimax solution is produced by our lexicographic framework since lexicographic optimality
is a re�nement of minimax.

80 CHAPTER 5. LEXICOGRAPHICALLY OPTIMAL BIT ALLOCATION

the Viterbi algorithm to produce a minimum sum-distortion encoding. In the con-
struction of the trellis used by the Viterbi algorithm, states that violate the various
constraints are discarded. Unlike our framework, there is no explicit constraint on
the total number of bits used.

Joint control of encoder and channel rate is also considered in [18]. Instead of
considering global optimality, this work focuses on real-time control algorithms. An
algorithm is proposed that separates rate control into a \short-term" process and a
\long-term" process. The long term rate control sets a base quantization scale Qs

called the sequence quantization parameter.5 In normal operation, Qs is used to
code each picture. Long-term rate control monitors the average fullness of a virtual
encoder bu�er and adjusts Qs to maintain the bu�er fullness between two thresholds.
Short-term rate control is applied when the upper bound on encoder rate needs to be
enforced. Several methods are proposed for performing short-term rate control.

In [8], a model relating bits, distortion, and quantization scale is derived for block-
transform video coders. Assuming a stationary Gaussian process, the authors derive
a bit-production model containing transcendental functions. The model is applied to
control the frame rate of motion-JPEG and H.261 video coders.

In the operations research literature, lexicographic optimality has been applied
to such problems as resource location and allocation (e.g., [25, 41, 53, 55, 60, 67])
and is sometimes referred to as lexicographic minimax , since it can be viewed as a
re�nement of minimax theory.

5.8 Discussion

As described above, much of the previous work on optimal rate control for video
coding use the conventional rate-distortion approach of minimizing a sum-distortion
measure with budget and bu�er constraints. A drawback of this approach is that it
does not directly achieve the constancy in quality that is generally desired. In con-
trast, our proposed framework, based upon a novel lexicographic optimality criterion,
is aimed at achieving constant or near-constant quality video. We incorporate into
the framework a set of bu�er constraints based upon the Video Bu�ering Veri�er of
the popular MPEG video coding standards.

In the following chapters, we analyze rate control under both CBR and VBR
constraints. We derive a set necessary and su�cient conditions for optimality. These
conditions, intuitive and elegant, lead to e�cient algorithms for computing optimal
allocations in polynomial time and linear space.

In Chapter 11, we describe some extensions to the lexicographic framework. We
show how to apply the framework to allocate bits to multiple VBR streams for trans-
port over a CBR channel. We also show how to adapt the discrete framework of [62]
to perform lexicographic optimization.

5This is similar to the nominal quantization scale de�ned in Section 5.1.

Chapter 6

Lexicographic Bit Allocation under

CBR Constraints

CBR Constraints

In this chapter, we analyze the bu�er-constrained bit allocation problem under
constant-bit-rate VBV constraints, as described in Section 5.4.1. The analysis leads
to an e�cient dynamic programming algorithm for computing a lexicographically
optimal solution.

Before proceeding with a formal theoretical treatment, we �rst present some intu-
ition for the results that follow. If we consider a video sequence as being composed of
segments of di�ering coding di�culty, a segment of \easy" pictures can be coded at
a higher quality (lower distortion) than an immediately following segment of \hard"
pictures if we code each segment at a constant bit rate. Since we have a decoder
bu�er, we can vary the bit rate to some degree, depending upon the size of the bu�er.
If we could somehow \move" bits from the easy segment to the hard segment, we
would be able to code the easy segment at a lower quality than before and the hard
segment at a higher quality, thereby reducing the di�erence in quality between the
two segments. In terms of the decoder bu�er, this corresponds to �lling up the bu�er
during the coding of the easy pictures, which are coded with less than the average
bit rate. By use of the accumulated bits in the bu�er, the hard pictures can be coded
with e�ectively more than the average bit rate.

Similarly, suppose we have a hard segment followed by an easy segment. We would
like to empty the bu�er during the coding of the hard pictures to use as many bits
as the bu�er allows to code the hard pictures at above the average bit rate. This
simultaneously leaves room in the bu�er to accumulate excess bits resulting from
coding the easy pictures below the average bit rate.

This behavior of emptying and �lling the bu�er is intuitively desirable since this
means that we are taking advantage of the full capacity of the bu�er. In the following
analysis, we will show that such a behavior is indeed exhibited by a lexicographically
optimal bit allocation.

81

82CHAPTER 6. LEXICOGRAPHIC BIT ALLOCATION UNDERCBR CONSTRAINTS

6.1 Analysis

First, we seek to prove necessary conditions for lexicographic optimality. To do so,
we use the following lemma.

Lemma 6.1 Given two allocations s and s0 of size N that satisfy sk = s0k if and only

if k 62 fu; vg, if maxfgu(s0u); gv(s0v)g < maxfgu(su); gv(sv)g then s0 � s.

Proof : Suppose maxfgu(s0u); gv(s0v)g < maxfgu(su); gv(sv)g. Let j be the greatest
index such that rank(s; j) = maxfgu(su); gv(sv)g. Then rank(s; j) > rank(s; j +
1). Consider rank(s0; j). Either rank(s0; j) = rank(s; j + 1) or rank(s0; j) =
maxfgu(s0u); gv(s0v)g. In either case, rank(s; j) > rank(s0; j). Therefore s0 � s. 2

The following lemma establishes necessary conditions for an optimal allocation.

Lemma 6.2 Given a CBR bit allocation problem P = hN;F;Btgt; BVBV; B1; Bai, if
s� is an optimal allocation, the following are true:

1. If gj(s
�
j) > gj+1(s

�
j+1) for some 1 � j < N then Bf(s

�; j) = s�j .

2. If gj(s
�
j) < gj+1(s

�
j+1) for some 1 � j < N then Bf(s

�; j + 1) = BVBV.

Lemma 6.2 gives us a set of necessary \switching" conditions for optimality. It
states that an optimal allocation consists of segments of constant Q, with changes
in Q occurring only at bu�er boundaries. Also, Q must change in a speci�c manner
depending upon whether the bu�er is full or empty. We observe that in an optimal
allocation, the decoder bu�er is full before decoding starts on a relatively di�cult
scene, which is marked by an increase in Q (case 2). This policy makes the entire
capacity of the decoder bu�er available to code the more di�cult pictures. On the
other hand, before decoding a relatively easy scene, which is marked by a decrease in
Q (case 1), the bu�er is emptied in order to provide the most space to accumulate
bits when the easy scene uses less than the average bit rate. These observations agree
with the intuitions provided earlier.

A sketch of the proof of Lemma 6.2 is shown in Figure 6.1. The proof is by
contradiction. In the �gure, the VBV bu�er is shown for a hypothetical situation in
which Q1 < Q2 and Q2 > Q3 and the switching conditions are not met.

In the �rst case, for Q1 < Q2, if the bu�er is not full before picture 2 is decoded, an
alternate allocation can be constructed that is the same as the allocation shown except
that the VBV plot follows the dashed line for the segment between pictures 1 and 2.
The dashed line results from increasing Q1 and decreasing Q2 while still maintaining
Q1 < Q2 and not causing the bu�er to overow. This results in a better allocation
than before. Intuitively, this corresponds to shifting bits left-to-right from a relatively
easy picture (lower Q) to a relatively hard picture (higher Q). This shifting of bits
can take place until the bu�er becomes full.

6
.1
.
A
N
A
L
Y
S
IS

83

1
Q

2
Q

3
Q

1
Q

2
Q

<

Q
2

Q
3

>

0

0

B

B

T
T

+
T

T
+

2T
T

+
3T

T
im

e

Buffer

0
0

0
0

i

V
B

V

Fullness

F
igu

re
6.1:

S
ketch

for
p
ro
of
of

L
em

m
a
6.2.

In
th
e
secon

d
case,

for
Q
2
>
Q
3 ,

if
th
e
b
u
�
er

is
n
ot

em
p
ty

after
p
ictu

re
2
is

d
eco

d
ed
,
an

altern
ate

allo
cation

can
b
e
con

stru
cted

th
at

is
th
e
sam

e
as

th
e
allo

cation
sh
ow

n
ex
cep

t
th
at

th
e
V
B
V

p
lot

follow
s
th
e
d
otted

lin
e
for

th
e
segm

en
t
b
etw

een
p
ictu

res
2
an
d
3.

T
h
e
d
otted

lin
e
resu

lts
from

d
ecreasin

g
Q
2
an
d
in
creasin

g
Q
3
w
h
ile

still
m
ain

tain
in
g
Q
2
>
Q
3
an
d
n
ot

cau
sin

g
th
e
b
u
�
er

to
u
n
d
er

ow
.
T
h
is
resu

lts
in

a
b
etter

allo
cation

th
an

b
efore.

In
tu
itively,

th
is
corresp

on
d
s
to

sh
iftin

g
b
its

righ
t-to-left

from
a
relatively

easy
p
ictu

re
(low

er
Q
)
to

a
relatively

h
ard

p
ictu

re
(h
igh

er
Q
).
T
h
is

sh
iftin

g
of

b
its

can
take

p
lace

u
n
til

th
e
b
u
�
er

b
ecom

es
em

p
ty.

W
e
n
ote

th
at

L
em

m
a
5.1

follow
s
d
irectly

from
L
em

m
a
6.2.

P
roo

f
o
f
L
em

m
a
6
.2:

C
a
se

1
.

W
e
p
rove

C
ase

1
b
y
con

trad
iction

.
S
u
p
p
ose

B
f (s

�;j)
6=

s
�j .

L
et

�
=

B
f (s

�;j)�
s
�j .

T
h
en

b
y
(5.5),

�
>
0.

C
on
sid

er
an

allo
cation

s
0
th
at

d
i�
ers

from
s
�

on
ly

for
p
ictu

res
j
an
d
j
+
1;
th
at

is,

s
0k
=
s
�k

for
k
2
f1
;:::;N

g
nf
j;j

+
1g

an
d

s
0k 6=

s
�k

for
k
2
f
j;j

+
1g
:

(6.1)
In

ord
er

to
sh
ow

a
con

trad
iction

,
w
e
w
an
t
to

�
n
d
an

assign
m
en
t
to
s
0j
an
d
s
0j
+
1
th
at

m
akes

s
0
a
legal

allo
cation

an
d
\b
etter"

th
an

s
�.
B
y
\b
etter"

w
e
m
ean

g
j (s

0j);g
j
+
1 (s

0j
+
1)
<
g
j (s

�j):
(6.2)

E
q
u
ivalen

tly,
w
e
w
an
t

s
0j
>
s
�j

(6.3)

an
d

s
0j
+
1
>
f
j
+
1 (g

j (s
�j)):

(6.4)

84CHAPTER 6. LEXICOGRAPHIC BIT ALLOCATION UNDERCBR CONSTRAINTS

To meet the target bit rate, we must have

s0j + s0j+1 = s�j + s�j+1: (6.5)

Let � = s0j � s�j . Then s�j+1 � s0j+1 = �. By (6.3), we want � > 0. We want to show
that s0 is a legal allocation for some value of � > 0. To avoid VBV violations, (5.8)
must hold for all pictures under the allocation s0. From (6.1) and (6.5), we have

Bf(s
0; k) = Bf(s

�; k) for k 6= j + 1: (6.6)

Since s� is a legal allocation, there are no VBV violations for pictures 1, 2, : : :,
j � 1 under s0. Furthermore, if our choice for s0j does not cause a VBV violation for
picture j, then we are assured that there would be no VBV violations in pictures
j + 1, j + 2, : : :, N . So we must choose s0j subject to (5.8) and (6.3). Therefore

s�j < s0j � s�j +�: (6.7)

If 0 < � � �, then s0 is a legal allocation. We also want (6.4) to hold. For this we
need

� < s�j+1 � fj+1(gj(s�j)): (6.8)

Since gj(s
�
j) > gj+1(s

�
j+1), we have fj+1(gj(s

�
j)) < s�j+1. Therefore s

�
j+1�fj+1(gj(s�j)) >

0. So for
0 < � � minf�; s�j+1 � fj+1(gj(s�j))g (6.9)

s0 is a legal allocation that meets condition (6.2). By Lemma 6.1, s� � s0 and s� is
not an optimal allocation, a contradiction.

Case 2. We prove Case 2 by contradiction. Suppose Bf(s
�; j + 1) 6= BVBV. Let

� = BVBV � Bf(s
�; j + 1). Then by (5.4), � > 0. Consider an allocation s0 that

di�ers from s� only for pictures j and j + 1; that is,

s0k = s�k for k 2 f1; : : : ; Ng n fj; j + 1g : (6.10)

We want to �nd an assignment to s0j and s0j+1 that makes s
0 a legal allocation and

\better" than s�, in order to show a contradiction. By \better" we mean

gj(s
0
j); gj+1(s

0
j+1) < gj+1(s

�
j+1): (6.11)

Equivalently, we want
s0j+1 > s�j+1 (6.12)

and
s0j > fj(gj+1(s

�
j+1)): (6.13)

To meet the target bit rate, we must have

s0j + s0j+1 = s�j + s�j+1: (6.14)

6.1. ANALYSIS 85

Let � = s0j+1 � s�j+1. Then s�j � s0j = �. By (6.12), we want � > 0. We want to show
that s0 is a legal allocation for some value of � > 0. To avoid VBV violations, (5.8)
must hold for all pictures under the allocation s0. From (6.10) and (6.14), we have

Bf(s
0; k) = Bf(s

�; k) for k 6= j + 1: (6.15)

Since s� is a legal allocation, there are no VBV violations for pictures 1 to j�1 under
s0. Furthermore, if our choice for s0j does not cause a VBV violation, then we are
assured that there would be no VBV violations in pictures j + 1 to N . So we must
choose s0j subject to (5.8) and (6.12).

Bf(s
0; j + 1) = Bf(s

0; j) +Ba(j)� s0j
Bf(s

0; j + 1) = Bf(s
�; j) +Ba(j)� s0j

Bf(s
�; j + 1) = Bf(s

�; j) +Ba(j)� s�j
Bf(s

0; j + 1) = Bf(s
�; j + 1) + s�j � s0j

Bf(s
0; j + 1) = BVBV ��+ � � BVBV

From the above, we require � � �. If 0 < � � �, then s0 is a legal allocation. We
also want (6.13) to hold. For this we need

� < s�j � fj(gj+1(s�j+1)): (6.16)

Since gj+1(s
�
j+1) > gj(s

�
j), we have fj(gj+1(s

�
j+1)) < s�j . Therefore s

�
j�fj(gj+1(s�j+1)) >

0. So for
0 < � � minf�; s�j � fj(gj+1(s�j+1))g (6.17)

s0 is a legal allocation that meets condition (6.13). By Lemma 6.1, s� � s0 and s� is
not an optimal allocation, a contradiction.

2

The theorem that follows is the main result of this section and shows that the
switching conditions are also su�cient for optimality. But �rst we prove a useful
lemma that will be helpful in the proof of the theorem.

Lemma 6.3 Given bit allocations s and s0 with sj � s0j for u � j � v and Bf(s; u) �
Bf(s

0; u), we have Bf(s; v + 1) = Bf(s
0; v + 1) if and only if Bf(s; u) = Bf(s

0; u) and
sj = s0j for u � j � v.

Proof : We use (5.3) to express Bf(s; v + 1) in terms of Bf(s; u).

Bf(s; v + 1) = B1 +
vX

j=1

(Ba(j)� sj)

Bf(s; u) = B1 +
u�1X
j=1

(Ba(j)� sj)

Bf(s; v + 1) = Bf(s; u) +
vX

j=u

(Ba(j)� sj) :

86CHAPTER 6. LEXICOGRAPHIC BIT ALLOCATION UNDERCBR CONSTRAINTS

Similarly,

Bf(s
0; v + 1) = Bf(s

0; u) +
vX

j=u

�
Ba(j)� s0j

�
:

First we prove the \if" part. Suppose Bf(s; u) = Bf(s
0; u) and sj = s0j for u � j �

v. Then

Bf(s; v + 1) = Bf(s; u) +
vX

j=u

(Ba(j)� sj)

= Bf(s
0; u) +

vX
j=u

�
Ba(j)� s0j

�

= Bf(s
0; v + 1):

Now we prove the \only if" part. Suppose Bf(s; v + 1) = Bf(s
0; v + 1). Then

Bf(s; v + 1) = Bf(s
0; v + 1)

Bf(s; u) +
vX

j=u

(Ba(j)� sj) = Bf(s
0; u) +

vX
j=u

�
Ba(j)� s0j

�

Bf(s; u)� Bf(s
0; u) =

vX
j=u

(sj � s0j): (6.18)

But Bf(s; u) � Bf(s
0; u) and sj � s0j for u � j � v. Therefore Bf(s; u)�Bf(s

0; u) � 0
and

Pv
j=u(sj � s0j) � 0. Combined with (6.18), this implies that Bf(s; u) = Bf(s

0; u)
and

Pv
j=u sj =

Pv
j=u s

0
j. Since sj � s0j for u � j � v, this implies that sj = s0j for

u � j � v. 2

Theorem 6.1 Given a CBR bit allocation problem P = hN;F;Btgt; BVBV; B1; Bai,
a legal allocation s is optimal if and only if the following conditions hold. Also, the

optimal allocation is unique.

1. If gj(sj) > gj+1(sj+1) for some 1 � j < N , then Bf(s; j) = sj.

2. If gj(sj) < gj+1(sj+1) for some 1 � j < N , then Bf(s; j + 1) = BVBV.

Proof : Lemma 6.2 established these condition as necessary for optimality. Now
we need to show that these conditions are also su�cient for optimality and imply
uniqueness. Let s be a legal allocation that meets both conditions of the theorem.

Let s� be an optimal allocation for P . Let Qmax = max1�j�Nfgj(sj)g. Consider
the segments of consecutive pictures that are assigned Qmax by allocation s. Let u
be the index of the start of such a segment. There are two cases: u = 1 and u > 1.
If u = 1, then Bf(s; u) = Bf(s

�; u) = B1. If u > 1, then since u is the index of
the start of the segment, gu�1(su�1) < gu(su) which implies that Bf(s; u) = BVBV by

6.1. ANALYSIS 87

condition 2. Since s� is a legal allocation, Bf(s
�; u) � BVBV = Bf(s; u). In either case

we have
Bf(s; u) � Bf(s

�; u): (6.19)

Let v be the index of the end of the segment. Since s� is optimal, gj(s
�
j) � Qmax

for all j, and
s�j � sj for u � j � v: (6.20)

Therefore
Bf(s

�; j) � Bf(s; j) for u � j � v: (6.21)

There are two cases for v: v = N and v < N . If v = N , then Bf(s; v + 1) =
Bf(s

�; v + 1) = B1 +
PN�1

j=1 Ba(j) � Btgt. If v < N , then since v is the index of the
end of the segment, gv(sv) > gv+1(sv+1) which implies that

Bf(s; v) = sv (6.22)

by condition 1. Since s� is a legal allocation, Bf(s
�; v) � s�v. Combine this with (6.22)

and (6.20) we have
Bf(s

�; v) � Bf(s; v): (6.23)

Combining (6.21) and (6.23), we have Bf(s
�; v) = Bf(s; v) and s

�
v = sv. As a result,

Bf(s
�; v+1) = Bf(s; v+1). In either case, Bf(s

�; v+1) = Bf(s; v+1). By Lemma 6.3,
Bf(s

�; u) = Bf(s; u) and s
�
j = sj for u � j � v. As a consequence, Bf(s; j) = Bf(s

�; j)
for u � j � v.

We partition pictures 1 through N into segments, where, according to allocation
s, the pictures in a segment use the same value of Q, either the �rst picture in the
segment is picture 1 or the �rst picture in the segment uses a value of Q di�erent
from the previous picture, and either the last picture in the segment is picture N or
the last picture in the segment uses a value of Q di�erent from the next picture. Let
M be the number of such segments. We order the segments so that segment k uses a
value of Q greater than or equal to the value of Q used in segment j for j < k, and
denote the value of Q used by segment k as Q

(s)
k .

We will show that allocation s� uses the same number of bits as allocation s for
each picture in segment k, for 1 � k � M . This will establish the conditions in the
theorem as necessary and show that the optimal allocation is unique. We will prove
this by induction on k. The base case of k = 1 has already been proven.

Inductive Hypothesis: For all segments of pictures u to v with u = 1 or gu�1(su�1) 6=
gu(su), v = N or gv(sv) 6= gv+1(sv+1), and gj(sj) = Q

(s)
k , we have s�j = sj and

Bf(s; u) = Bf(s
�; u) for u � j � v.

Let us assume that the hypothesis is true for 1 � k < m. We will show that is
is also true for k = m. Consider a segment of consecutive pictures that are assigned
quantization Q(s)

m by allocation s. Let u be the index of the start of the segment and
v the index of the end of the segment.

88CHAPTER 6. LEXICOGRAPHIC BIT ALLOCATION UNDERCBR CONSTRAINTS

By the inductive hypothesis, s and s� use the same values of Q for all pictures for
which s uses Q > Q(s)

m . Because s� is optimal, gj(s
�
j) � gj(sj) = Q(s)

m for u � j � v,
and thus

s�j � sj for u � j � v: (6.24)

We consider all cases for the segment boundaries. For the left segment boundary
there are three cases: u = 1, gu�1(su�1) > gu(su), and gu�1(su�1) < gu(su). If u = 1,
then Bf(s

�; u) = Bf(s; u) = B1. If gu�1(su�1) > gu(su), then from the inductive
hypothesis, we have Bf(s

�; u�1) = Bf(s; u�1) and s�u�1 = su�1; therefore Bf(s
�; u) =

Bf(s; u). If gu�1(su�1) < gu(su), then from condition 2, we have Bf(s; u) = BVBV;
since s� is a legal allocation, Bf(s

�; u) � BVBV = Bf(s; u). For all three cases we have

Bf(s
�; u) � Bf(s; u): (6.25)

For the right segment boundary there are three cases: v = N , gv(sv) < gv+1(sv+1),
and gv(sv) > gv+1(sv+1). If v = N , then Bf(s

�; v + 1) = Bf(s; v + 1) = B1 +PN�1
j=1 Ba(j) � Btgt. If gv(sv) < gv+1(sv+1), then from the inductive hypothesis, we

have Bf(s
�; v + 1) = Bf(s; v + 1).

If gv(sv) > gv+1(sv+1), then from condition 1 we have Bf(s; v) = sv. From (6.24)
and (6.25) we have

Bf(s
�; j) � Bf(s; j) for u � j � v: (6.26)

Since s� is a legal allocation,

Bf(s
�; v) � s�v � sv = Bf(s; v): (6.27)

Combining (6.26) and (6.27), we have Bf(s
�; v) = Bf(s; v) and s�v = sv. Therefore

Bf(s
�; v + 1) = Bf(s; v + 1).
For all three cases we have

Bf(s
�; v + 1) = Bf(s; v + 1): (6.28)

From (6.24), (6.25), (6.28), and Lemma 6.3, we have s�j = sj for u � j � v. It
follows that Bf(s; j) = Bf(s

�; j) for u � j � v. By induction, we have s�j = sj for all
j, and so s = s�. 2

6.2 CBR Allocation Algorithm

Theorem 6.1 is a powerful result. It says that to �nd the optimal allocation we need
only to �nd a legal allocation that meets the stated switching conditions. In this
section, we use the technique of dynamic programming (DP) to develop an algorithm
to compute a lexicographically optimal CBR allocation in polynomial time and linear
space.

6.2. CBR ALLOCATION ALGORITHM 89

Initial Buffer

Fullness

Bot[1] Bot[2] Bot[k]

Top[1] Top[2] Top[k]

Next State

Figure 6.2: Illustration of search step in dynamic programming algorithm.

6.2.1 DP Algorithm

The basic idea behind dynamic programming is to decompose a given problem in
terms of optimal solutions to smaller problems. All we need to do is maintain invariant
the conditions stated in Theorem 6.1 for each subproblem we solve. We do this by
constructing optimal bit allocations for pictures 1 to k that end up with the VBV
bu�er in one of two states: full or empty. These states are exactly the states where a
change in Q may occur. Let Topk be the optimal allocation for pictures 1 to k that
end up with the VBV bu�er full, if such an allocation exists. Similarly, let Botk be
the optimal allocation for pictures 1 to k that end up with the VBV bu�er empty.
Suppose that we have computed Topi and Boti for 1 � i � k. To compute Topk+1,
we search for a legal allocation among

n
;;Top1; : : : ;Topk;Bot1; : : : ;Botk

o
, where ;

denotes the empty allocation, to which we can concatenate a constant-Q segment to
give a legal allocation s such that the switching conditions are met and the bu�er
ends up full, that is, Bf(s; k + 1) = BVBV. Similarly, for Botk+1 we search for a
previously computed allocation that, when extended by a constant-Q segment, meets
the switching conditions and results in the bu�er being empty, that is, Bf(s; k+1) =
sk+1.

The basic step in the DP algorithm is illustrated in Figure 6.2. The round nodes
represent bu�er states for which we have previously computed optimal allocations.
Each node stores the lastQ used in the optimal allocation for that state and the origin
of the last constant-Q segment leading to that state. The square node represents
the next state that we wish to compute. The dashed lines represent a constant-Q
allocation that connects the respective nodes. To compute a solution for the square
node, we need to search for an edge that connects the square node with a round node
such that the switching conditions are met. For each edge, the switching conditions
are checked by comparing the Q used for the edge against the last Q used in the
optimal solution for the round node that the edge connects. The allocation implied
by each edge is also checked for VBV compliance.

Once we have computed TopN�1 and BotN�1, we can compute the optimal alloc-
ation for all N pictures in a process similar to the one above for computing Topk

and Botk, except that the �nal allocation results in a �nal bu�er state that gives the

90CHAPTER 6. LEXICOGRAPHIC BIT ALLOCATION UNDERCBR CONSTRAINTS

desired target number of bits Btgt.

6.2.2 Correctness of DP Algorithm

When computing Topk and Botk for 1 � k � N � 1, we have insured that the condi-
tions of Theorem 6.1 are met. Additionally in the �nal computation, the conditions
are also met. Therefore we end up with a legal allocation that meets the conditions
of Theorem 6.1 and is thus optimal.

6.2.3 Constant-Q Segments

We have used the concept of a constant-Q segment extensively in the above discus-
sion. We now formalize this concept. First, we de�ne a family of bit-production
functions fFi;j(q)g that gives the number of bits resulting from allocating a constant
value of Q for pictures i to j, inclusive:

Fi;j(q) =
X

i�k�j

fk(q): (6.29)

What we are really interested in, though, is the inverse of Fi;j. We denote the inverse
as Gi;j so that Gi;j = F�1

i;j . Then Gi;j(B) gives the constant Q that results in B bits
being produced by pictures i to j collectively. Since fi is monotonically decreasing,
so is Fi;j, and thus Gi;j is monotonically increasing.

6.2.4 Verifying a Constant-Q Allocation

The DP algorithm for CBR bit allocation needs to verify whether a constant-Q alloc-
ation meets VBV bu�er constraints. This can be done in time linear in the length
of the allocation by simulating the VBV. In the DP algorithm, O(N2) veri�cations
of constant-Q allocations are needed. If each veri�cation requires linear time, this
translates to at least cubic time complexity for the DP algorithm.

We observe that the constant-Q allocations to be veri�ed start with the bu�er
either full, empty, or at its initial state; and end with the bu�er either full, empty,
or at its �nal state. We also note that for an allocation to a segment of pictures,
say from i to j, with a �xed initial bu�er state, say B1, and using BT bits, there is
a continuous range of Q values that results in a legal allocation. When additional
pictures are considered, this range of legal Q values never widens. Furthermore, the
upper bound for Q is simply the minimum Q among the constant-Q allocations for
pictures i to j in which the bu�er is exactly full for some picture k, where i � k < j.
More formally,

Gi;j(BT) � min
i�k<j

n
Gi;k

�
B1 +

X
i�m�k

Ba(m)� BVBV

�o
: (6.30)

6.3. RELATED WORK 91

Similarly, the lower bound for Q is the maximumQ among the constant-Q allocations
for pictures i to j in which the bu�er is exactly empty for some picture k, where
i � k < j. More formally,

Gi;j(BT) � max
i�k<j

n
Gi;k

�
B1 +

X
i�m<k

Ba(m)
�o
: (6.31)

We can use these observations to perform all the VBV veri�cations in constant time
per veri�cation with linear-time preprocessing.

6.2.5 Time and Space Complexity

The time complexity of the DP algorithm depends upon two main factors: the time
to compute a constant-Q allocation and the time to verify whether a sub-allocation
is legal.

We assume that fi and Gi;j can be evaluated in constant time with O(N) prepro-
cessing time and space. An example is fi(q) = �i=q + �i, where

Gi;j(B) =

P
i�k�j �k

B �Pi�k�j �k
:

We can precompute the pre�x sums of �i and �i in linear time and space and then
use these to compute Gi;j in constant time. The same technique can be used for
bit-production models of the form: fi(q) = �i=q

2 + �i=q + i, fi(q) = �i=q
3 + �i=q

2 +
i=q+�i, and fi(q) = �i=q

4+ �i=q
3+ i=q

2+�i=q+ �i. Examples of other functional
forms for fi with a closed-form solution for Gi;j can be found in [54]. Of course, we
need to insure that the models are monotonically decreasing.

Since VBV veri�cation and constant-Q calculation can be done in constant time
with linear-time preprocessing, computing Topk and Botk takes O(k) time. Therefore,
to compute an optimal allocation for a sequence ofN pictures would take

PN
k=1O(k) =

O(N2) time. If we store pointers for tracing the optimal sequence of concatenations,
the algorithm requires O(N) space.

In Chapter 8, we show how to use some sophisticated data structures for com-
putational geometry to reduce the running time to O(N log2N) in the worst case,
although in practice the running time is roughly linear.

6.3 Related Work

Conditions similar to the switching conditions of Theorem 6.1 have been described
in [46] for optimal bu�ered bit allocation under a minimum sum-distortion crite-
rion and assuming independent convex rate-distortion functions. In this work, the
Lagrange multiplier method is used to �nd a bit allocation that is optimal within
a convex-hull approximation. The optimal vector of Lagrange multipliers consists of

92CHAPTER 6. LEXICOGRAPHIC BIT ALLOCATION UNDERCBR CONSTRAINTS

constant-valued segments that increase (decrease, respectively) only when the decoder
bu�er is full (empty).

In [76], the theory of majorization [56] is applied to reduce the variability in
transmission rate for stored video. In this setting, the problem is to determine a
feasible transmission schedule by which a pre-compressed video bitstream can be
transmitted over a communications channel to the decoder without underowing or
overowing the decoder bu�er. As applied to this problem, majorization results in
minimizing the peak and variance in transmission rate. The authors provide an
optimal smoothing algorithm that runs in time linear in the length of the video
sequence.

It can be easily shown that the majorization solution to optimal smoothing of [76]
is in fact equivalent to lexicographic minimization of the transmitted rates, subject
to the constraint that the total number of bits transmitted is �xed. The linear
running time is possible because the bu�ering constraints are manifested as �xed
upper and lower bounds on the cumulated number of bits transmitted. In comparison,
in bu�er-constrained bit allocation, there is no �xed relationship between the bu�ering
constraints and the nominal quantization (equivalently, distortion) that is the object
of optimization. In a sense, the bu�er-constrained bit allocation problem that we
consider is \harder" than optimal smoothing. A more sophisticated data structure,
which we discuss in Chapter 8, is needed in order to reduce the running time to
near-linear time.

6.4 Discussion

The analyses presented here are based upon simpli�cations of the actual video coding
process. In particular, one of the prerequisites is an accurate bit-production model for
each picture of the video sequence. Another prerequisite is proper adaptive perceptual
quantization.

The bit-production model described in Section 5.3 assumes that the coding of a
particular picture is independent of the coding of any other picture. As noted earlier,
this independence assumption does not hold for video coders that employ a di�erential
coding scheme such as motion compensation. In this case, the coding of a reference
picture a�ects the coding of subsequent pictures that are coded with respect to it.
Therefore, the bit-production model for picture i would depend causally not only
upon the quantization scale used for picture i but also upon the quantization scales
used for its reference pictures. The dependent coding problem has been addressed
in the traditional distortion-minimization framework in [73]. Whether the results of
this chapter can be extended to a dependent-coding framework is an open problem.

The dynamic programming solution in Section 6.2 ignores some of the structure
that exists in the framework due to the monotonicity assumption and focuses solely
on achieving the switching conditions of Theorem 6.1 by \brute force." For example,
a \blind" search strategy is used to �nd the edge that connects the end state with a

6.4. DISCUSSION 93

previously-computed optimal sub-allocation and meets the switching conditions. A
feasible connector that fails the switching conditions may yield some knowledge that
can be used to reduce the search space. Improving the time-complexity is a promising
open problem.

94CHAPTER 6. LEXICOGRAPHIC BIT ALLOCATION UNDERCBR CONSTRAINTS

Chapter 7

Lexicographic Bit Allocation under

VBR Constraints

VBR Constraints

In this chapter, we analyze the bu�er-constrained bit allocation problem under
variable-bit-rate VBV constraints, as described in Section 5.4.2. The analysis leads
to an e�cient iterative algorithm for computing a lexicographically optimal solution.

In CBR operation, the total number of bits that a CBR stream can use is dictated
by the channel bit rate and the bu�er size. With VBR operation, the total number
of bits has no lower bound, and its upper bound is determined by the peak bit rate
and the bu�er size. Consequently, VBR is useful and most advantageous over CBR
when the average bit rate needs to be lower than the peak bit rate. This is especially
critical in storage applications, where the storage capacity, and not the transfer rate,
is the limiting factor. Another important application of VBR video coding is for
multiplexing multiple video bitstreams over a CBR channel [27]. In this application,
statistical properties of the multiple video sequences allow more VBR bitstreams with
a given peak rate Rmax to be multiplexed onto the channel than CBR bitstreams coded
at a constant rate of Rmax.

For typical VBR applications, then, the average bit rate is lower than the peak.
In this case, bits enter the decoder bu�er at an e�ective bit rate that is less than
the peak during the display interval of many pictures. In interesting cases, there will
be segments of pictures that will be coded with an average bit rate that is higher
than the peak. This is possible because of the bu�ering. During the display of these
pictures, the VBV bu�er �lls at the peak rate. Since these pictures require more
bits to code than the peak rate, they are \harder" to code than the other \easier"
pictures.

In order to equalize quality, the easy pictures should be coded at the same base
quality. It does not pay to code any of the hard pictures at a quality higher than that
of the easy pictures. The bits expended to do so could instead be better distributed
to raise the quality of the easy pictures. Among the hard pictures, there are di�erent

95

96CHAPTER 7. LEXICOGRAPHIC BIT ALLOCATION UNDERVBR CONSTRAINTS

levels of coding di�culty. Using the same intuitions from the CBR case, we can draw
similar conclusions about the bu�er emptying and �lling behavior among the hard
pictures.

In the following analysis, we show that a lexicographically optimal VBR bit alloc-
ation possesses the properties described above. In particular, the hard segments of
pictures in a VBR bit allocation behave as in a CBR setting. In fact, the VBR
algorithm invokes the CBR algorithm to allocate bits to segments of hard pictures.

7.1 Analysis

The following two lemmas characterize the \easy" pictures in an optimal allocation,
that is, the pictures that are coded with the best quality (lowest Q).

Lemma 7.1 Given a VBR bit allocation problem P = hN;F;Btgt; BVBV; B1; Bai and
an optimal allocation s�, if Bf(s

�; j) + Ba(j) � s�j > BVBV for 1 � j � N , then

gj(s
�
j) = min1�k�Nfgk(s�k)g.

Proof : Let Qmin = min1�k�Nfgk(s�k)g. Let j be an index such that Bf(s
�; j)+Ba(j)�

s�j > BVBV. Let � = Bf(s
�; j) +Ba(j)� s�j � BVBV. Thus, � > 0.

Suppose that gj(s
�
j) > Qmin. Let u be an index such that gu(s

�
u) = Qmin. Consider

an allocation s that di�ers from s� only for pictures j and u. We want to assign
values to sj and su that make s a legal allocation with gj(sj); gu(su) < gj(s

�
j), from

which s� � s, a contradiction.
The idea is that we want to shift a (positive) number of bits, say �, from picture u

to picture j but still have a legal allocation. Let sj = s�j + � and su = s�u � � with
� > 0. Then gj(sj) < gj(s

�
j) and

PN
k=1 sk =

PN
k=1 s

�
k = Btgt. We now need to show

that s does not result in a VBV bu�er underow, that is, Bf(s; k) � sk for 1 � k � N .
There are two cases to consider: u < j and u > j.

Case 1 : u < j. Since sk = s�k for k < u, we have Bf(s; k) = Bf(s
�; k) for 1 � k � u.

Since su < s�u and sk = s�k for u < k < j, we have Bf(s; k) � Bf(s
�; k) for u < k � j.

Therefore pictures 1 to j � 1 cannot cause any VBV bu�er underows. If we choose
0 < � < �, then Bf(s; j + 1) = BVBV and picture j also cannot cause a VBV bu�er
underow. Since sk = s�k for k > j and Bf(s; j + 1) = Bf(s

�; j + 1), pictures j + 1 to
N also cannot cause any VBV bu�er underows.

Case 2 : u > j. Since sk = s�k for k < j, we have Bf(s; k) = Bf(s
�; k) for 1 � k � j.

If we choose 0 < � < �, then Bf(s; j + 1) = BVBV and picture j also cannot cause a
VBV bu�er underow. Since sk = s�k for j < k < u, and Bf(s; j + 1) = Bf(s

�; j + 1)
(by a suitable choice of �), pictures j + 1 to u� 1 also cannot cause any VBV bu�er
underows. Since su < s�u, we have Bf(s; k) � Bf(s

�; k) for k : k � u. Therefore
pictures u to N also cannot cause any VBV bu�er underows.

7.1. ANALYSIS 97

Therefore s is a legal allocation with gj(sj) < gj(s
�
j). We need to guarantee that

gu(su) < gj(s
�
j). Let = gj(s

�
j) � gu(s�u). Since gj(s�j) > gu(s

�
u), we have > 0. Let

� = s�u � fu(gu(s�u) + =2). Since fu is decreasing and > 0, we have � > 0 and

s�u � � = fu(gu(s
�
u) + =2)

gu(s
�
u � �) = gu(s

�
u) + =2

< gu(s
�
u) +

= gj(s
�
j):

Consider the assignment � = minf�;�=2g. There are two cases: � � �=2 and
� > �=2. If � � �=2, we have � = � from which gu(su) = gu(s

�
u� �) = gu(s

�
u� �) <

gj(s
�
j); since 0 < � < �, the allocation s is legal. If � > �=2, we have � = �=2.

Since gu is decreasing and � > �=2, we have gu(s
�
u � �=2) < gu(s

�
u � �) and thus

gu(su) = gu(s
�
u � �) = gu(s

�
u � �=2) < gj(s

�
j). Since 0 < � < �, the allocation s is

legal.
Since s is a legal allocation that di�ers from s� only for pictures u and j with

gu(su) < gj(s
�
j) and gj(sj) < gj(s

�
j), from Lemma 6.1 we have s� � s, but s� is not

optimal, a contradiction. Therefore gj(s
�
j) = min1�k�Nfgk(s�k)g. 2

Lemma 7.2 Given a VBR bit allocation problem P = hN;F;Btgt; BVBV; B1; Bai and
an optimal allocation s�, if Bf(s

�; N) > s�N then gN(s
�
N) = min1�k�Nfgk(s�k)g.

Proof : Let Qmin = min1�k�Nfgk(s�k)g. Let j be an index such that Bf(s
�; j)+Ba(j)�

s�j > BVBV. Let � = Bf(s
�; N)� s�N . Since Bf(s

�; N) > s�N , we have � > 0. Suppose
that gN(s

�
N) > Qmin. Let u be an index such that gu(s

�
u) = Qmin. Now consider an

allocation s that di�ers from s� only for pictures u and N . We want to assign values
to sN and su that make s a legal allocation with gN(sN); gu(su) < gN(s

�
N), from which

s� � s, thereby arriving at a contradiction. Let sN = s�N + � and su = s�u � � with
� > 0. Then gN(sN) < gN(s

�
N) and

PN
k=1 sk =

PN
k=1 s

�
k = Btgt. We now need to show

that s does not result in a VBV bu�er underow, that is, Bf(s; k) � sk for 1 � k � N .
Since sk = s�k for k < u, we have Bf(s; k) = Bf(s

�; k) for 1 � k � u. Since su < s�u
and sk = s�k for u < k < N , we have Bf(s; k) � Bf(s

�; k) for u < k � N . Therefore
pictures 1 to N �1 cannot cause any VBV bu�er underows. For picture N , we have
Bf(s;N) � Bf(s

�; N) = � + s�N = � + sN � �. Therefore if we choose � < �, then
Bf(s;N) > sN and picture N also cannot cause a VBV bu�er underow.

Therefore s is a legal allocation with gN(sN) < gN(s
�
N). We need to guarantee that

gu(su) < gN(s
�
N). Let = gN(s

�
N) � gu(s�u). Since gN(s�N) > gu(s

�
u), we have > 0.

Let � = s�u � fu(gu(s�u) + =2). Since fu is decreasing and > 0, we have � > 0 and

s�u � � = fu(gu(s
�
u) + =2)

gu(s
�
u � �) = gu(s

�
u) + =2

< gu(s
�
u) +

= gN(s
�
N):

98CHAPTER 7. LEXICOGRAPHIC BIT ALLOCATION UNDERVBR CONSTRAINTS

Consider the assignment � = minf�;�=2g. There are two cases: � � �=2 and
� > �=2. If � � �=2, we have � = � from which gu(su) = gu(s

�
u� �) = gu(s

�
u� �) <

gN(s
�
N); since 0 < � < �, the allocation s is legal. If � > �=2, we have � = �=2.

Since gu is decreasing and � > �=2, we have gu(s
�
u � �=2) < gu(s

�
u � �) and thus

gu(su) = gu(s
�
u � �) = gu(s

�
u ��=2) < gN(s

�
N). Since 0 < � < �, the allocation s is

legal.
Since s is a legal allocation that di�ers from s� only for pictures u and N with

gu(su) < gN(s
�
N) and gN(sN) < gN(s

�
N), from Lemma 6.1, we have s� � s, and s� is

not optimal, a contradiction. Therefore gN(s
�
N) = min1�k�Nfgk(s�k)g. 2

The next lemma gives a set of switching conditions for changes in Q that are
similar to the results of Lemma 6.2.

Lemma 7.3 Given a VBR bit allocation problem P = hN;F;Btgt; BVBV; B1; Bai, if
s� is an optimal allocation, the following are true:

1. If gj(s
�
j) > gj+1(s

�
j+1) for 1 � j < N , then Bf(s

�; j) = s�j .

2. If gj(s
�
j) < gj+1(s

�
j+1) for 1 � j < N , then Bf(s

�; j + 1) = BVBV and Bf(s
�; j +

1) +Ba(j + 1)� s�j+1 � BVBV.

Proof :
Case 1. The proof is identical to the proof of Case 1 of Lemma 6.2, except that
condition (5.5) now holds instead of (5.8).
Case 2. Suppose that Case 2 is false. Then either Bf(s

�; j + 1) < BVBV or
Bf(s

�; j + 1) + Ba(j + 1) � s�j+1 > BVBV. Suppose that Bf(s
�; j + 1) + Ba(j + 1) �

s�j+1 > BVBV. Then by Lemma 7.1, gj+1(s
�
j+1) � gj(s

�
j), a contradiction. Therefore

Bf(s
�; j + 1) +Ba(j + 1)� s�j+1 � BVBV.
Suppose that Bf(s

�; j + 1) < BVBV. Let � = BVBV � Bf(s
�; j + 1). Then � > 0.

Consider an allocation s that di�ers from s� only for pictures j and j + 1. We want
to assign values to sj and sj+1 that make s a legal allocation with gj(sj); gj+1(sj+1) <
gj+1(s

�
j+1), from which s� � s, thereby arriving at a contradiction.

Let = gj+1(s
�
j+1) � gj(s

�
j) and � = s�j � fj(gj(s

�
j) + =2). Since gj(s

�
j) <

gj+1(s
�
j+1), we have > 0. Since fj is decreasing and > 0, we have � > 0 and

s�j � � = fj(gj(s
�
j) + =2)

gj(s
�
j � �) = gj(s

�
j) + =2

< gj(s
�
j) +

= gj+1(s
�
j+1):

Consider the assignments sj = s�j � � and sj+1 = s�j+1 + �, where � = minf�;�=2g.
By this assignment, we have gj+1(sj+1) < gj+1(s

�
j+1). We now show that gj(sj) <

gj+1(s
�
j+1). There are two cases: � � �=2 and � > �=2. If � � �=2, we have � = �

7.1. ANALYSIS 99

from which gj(sj) = gj(s
�
j � �) = gj(s

�
j � �) < gj+1(s

�
j+1). If � > �=2, we have

� = �=2. Since gj is decreasing and � > �=2, we have gj(s
�
j � �=2) < gj(s

�
j � �)

and thus gj(sj) = gj(s
�
j � �) = gj(s

�
j � �=2) < gj+1(s

�
j+1). In either case, we have

gj(sj) < gj+1(s
�
j+1).

We now need to show that allocation s as de�ned above is a legal allocation.
Since sk = s�k for k < j, we have Bf(s; k) = Bf(s

�; k) for 1 � k � j. Therefore
there are no VBV bu�er violations in pictures 1 to j � 1. Since sj < s�j , we have
Bf(s; j+1) > Bf(s

�; j+1). Therefore picture j cannot cause a VBV bu�er underow.
Now we need to show that pictures j + 1 to N also cannot cause a VBV bu�er

underow. Since Bf(s
�; j + 1) < BVBV, we have Bf(s

�; j + 1) = Bf(s
�; j) +Ba(j)� s�j

and

Bf(s; j) +Ba(j)� sj = Bf(s
�; j) +Ba(j)� (s�j � �)

= Bf(s
�; j + 1) + �

< Bf(s
�; j + 1) + �

= BVBV:

Thus Bf(s; j+1) = Bf(s; j)+Ba(j)� sj. We have already shown that Bf(s
�; j+1)+

Ba(j + 1)� s�j+1 � BVBV. Therefore Bf(s
�; j + 2) = Bf(s

�; j + 1) +Ba(j + 1)� s�j+1.
Now,

Bf(s; j + 1) +Ba(j + 1)� sj+1 = Bf(s; j) +Ba(j)� sj +Ba(j + 1)� sj+1
= Bf(s

�; j + 1) + � +Ba(j + 1)� (s�j+1 + �)

= Bf(s
�; j + 1) +Ba(j + 1)� s�j+1

= Bf(s
�; j + 2)

� BVBV:

Therefore Bf(s; j+2) = Bf(s
�; j+2). Since sk = s�k for k > j +1, we have Bf(s; k) =

Bf(s
�; k) for k > j + 1. Therefore pictures j + 1 to N cannot cause a VBV bu�er

underow and s is a legal allocation.
Since s is a legal allocation that di�ers from s� only for pictures j and j + 1 and

we have gj(sj) < gj+1(s
�
j+1) and gj+1(sj+1) < gj+1(s

�
j+1), from Lemma 6.1 we have

s� � s, but s� is not optimal, a contradiction. 2

The following theorem is the main result of this section. It shows that the
minimum-Q and switching conditions in the previous lemmas are also su�cient for
optimality.

Theorem 7.1 Given a VBR bit allocation problem P = hN;F;Btgt; BVBV; B1; Bai,
a legal allocation s is optimal if and only if the following conditions hold. Also, the

optimal allocation is unique.

100CHAPTER 7. LEXICOGRAPHIC BIT ALLOCATION UNDER VBR CONSTRAINTS

1. If Bf(s; j)+Ba(j)�sj > BVBV for 1 � j � N , then gj(sj) = min1�k�Nfgk(sk)g.

2. If Bf(s
�; N) > s�N then gN(s

�
N) = min1�k�Nfgk(s�k)g.

3. If gj(sj) > gj+1(sj+1) for 1 � j < N , then Bf(s; j) = sj.

4. If gj(sj) < gj+1(sj+1) for 1 � j < N , then Bf(s; j + 1) = BVBV and Bf(s; j +
1) +Ba(j + 1)� sj+1 � BVBV.

Proof : Lemmas 7.1, 7.2, and 7.3 establish these as necessary conditions. Now we need
to show that these conditions are also su�cient for optimality and imply uniqueness.

The proof for su�ciency and uniqueness is similar to that of Theorem 6.1 except
for segments with the minimum Q. Here we consider only segments that use the
minimum Q.

Let s� be an optimal allocation, Qmin = min1�j�Nfgj(sj)g, and Jmin =
fj : gj(sj) = Qming. By condition 2, if gN(sN) > Qmin then it must be that
Bf(s;N) = sN , or equivalently, Bf(s;N +1) = Ba(N). Therefore Bf(s;N) is known if
picture N does not use the minimum Q, and we can use arguments of Theorem 6.1.
Following the steps of Theorem 6.1, we can show that s�j = sj for j : gj(sj) > Qmin.

Since s� is optimal, we have gj(s
�
j) � gj(sj) for j 2 Jmin. Therefore

s�j � sj for j 2 Jmin: (7.1)

Since the total number of bits allocated is the same for s and s�, we have the number
of bits to be allocated to pictures in J must also be the same. That is,

X
j2Jmin

s�j =
X

j2Jmin

sj: (7.2)

But (7.1) and (7.2) both hold if and only if s�j = sj for j 2 Jmin. Therefore s = s�. 2

Although Theorem 7.1 is an important result, it does not show us how to compute
the minimum Q with which to code the \easy" pictures. The following lemmas and
theorem show that, if we relax the bit budget constraint, we can �nd the minimumQ,
and therefore the optimal allocation, to meet the bit budget by an iterative process.
Furthermore, the iterative process is guaranteed to converge to the optimal allocation
in a �nite number of steps.

Lemma 7.4 Given two VBR bit allocation problems P (1) =
D
N;F;B

(1)
tgt ; BVBV; B1; Ba

E
and P (2) =

D
N;F;B

(2)
tgt ; BVBV; B1; Ba

E
that have optimal allocations s(1) and s(2), re-

spectively, with B
(1)
tgt < B

(2)
tgt , then s

(1) � s(2).

7.1. ANALYSIS 101

Proof : Let Jover =
n
j : Bf(s

(1); j) +Ba(j)� s(1)j > BVBV

o
. Then Jover contains ex-

actly the pictures that result in virtual overows, as de�ned in Section 5.4.2. If we
start with allocation s(1), it is clear that we can use more bits for the pictures in Jover
without changing the bu�er fullness Bf(s

(1); n). Let Bover =
P

j2Jover

�
Bf(s

(1); j) +

Ba(j)� s(1)j � BVBV

�
: Then Bover is the maximum number of bits we can add to the

pictures in Jover without changing the bu�er fullness. Let � = B
(2)
tgt �B(1)

tgt . There are
two cases to consider: � � Bover and � > Bover.

Case 1 : � � Bover. Consider an allocation s for problem P (2) constructed as follows.
Let sj = s

(1)
j for j 62 Jover. We then distribute � bits to the pictures in Jover without

changing the bu�er fullness. Then sj � s
(1)
j which implies that gj(sj) � gj(s

(1)
j).

Since � > 0, we also have sj > s
(1)
j for some j 2 Jover. Since Bf(s; j) = Bf(s

(1); j) for

all j, s does not cause any bu�er underows. Since we used B
(1)
tgt +� = B

(2)
tgt bits in

s, s is a legal allocation for P (2).

Case 2 : � > Bover. Consider an allocation s for problem P (2) constructed as follows.
Let sj = s

(1)
j for j 62 Jover [fNg. We then distribute Bover bits to pictures in Jover.

We do this with the assignments: sj = s(1) + (Bf(s
(1); j) + Ba(j) � s(1)j � BVBV) for

j 2 Jover. Finally, we distribute the remaining � � Bover bits to picture N with
sN = s

(1)
N +�� Bover.

We have shown how to create a legal allocation s for P (2) starting with s(1). When
we add more bits to s(1) to form s, we strictly decrease Q for the pictures that we add
bits to and never increase Q anywhere. Therefore s(1) � s. Since s(2) is the optimal
allocation for P (2), we have s � s(2). Therefore s(1) � s(2). 2

Lemma 7.5 Given two VBR bit allocation problems P (1) =
D
N;F;B

(1)
tgt ; BVBV; B1; Ba

E
and P (2) =

D
N;F;B

(2)
tgt ; BVBV; B1; Ba

E
that have optimal allocations s(1) and s(2),

respectively, with B
(1)
tgt < B

(2)
tgt , then s

(1)
j = s

(2)
j for j such that gj(s

(1)
j) >

min1�k�Nfgk(s(1)k)g:

Proof : We provide an inductive proof similar to that used to prove Theorem 6.1.
First we assume that s(1) is not a constant-Q allocation, for if it were, the lemma
would hold vacuously.

Let Q
(1)
k be the kth largest value of Q assigned by allocation s(1). Let Q

(1)
min be the

minimum value of Q.

Inductive Hypothesis: For all segments of pictures u to v with u = 1 or gu�1(su�1) 6=
gu(su), v = N or gv(sv) 6= gv+1(sv+1), and gj(sj) = Q

(1)
k > Q

(1)
min, we have s

(1)
j = s

(2)
j

and Bf(s
(1); j) = Bf(s

(2); j) for u � j � v.

102CHAPTER 7. LEXICOGRAPHIC BIT ALLOCATION UNDER VBR CONSTRAINTS

We �rst prove the base case of k = 1. Consider the segments of consecutive
pictures that are assigned quantization Q

(1)
1 by allocation s(1). Let u be the index

of the start of such a segment. We consider two cases: u = 1 and u > 1. If u = 1,
then Bf(s

(1); u) = Bf(s
(2); u) = B1. If u > 1, then since u is the index of the start of

the segment, we have gu�1(s
(1)
u�1) < gu(s

(1)
u), which implies that Bf(s

(1); u) = BVBV by
Lemma 7.3; since s(2) is a legal allocation, we have Bf(s

(2); u) � BVBV. In either case
we have

Bf(s
(1); u) � Bf(s

(2); u) (7.3)

Let v be the index of the end of the segment. We consider two cases: v = N and
v < N . If v = N , then by the contrapositive of Lemma 7.2, Bf(s

(1); v) = s(1)v . (Here
we use the condition that Q

(1)
1 > Q

(1)
min.) If v < N , then since v is the index of the end

of the segment, we have gv(s
(1)
v) > gv+1(s

(1)
v+1), which implies that Bf(s

(1); v) = s(1)v by
Lemma 7.3. In either case we have

Bf(s
(1); v) = s(1)v : (7.4)

From Lemma 7.4, we have s(1) � s(2). Therefore gj(s
(2)
j) � Q

(1)
1 for all j and thus

s
(1)
j � s

(2)
j for u � j � v: (7.5)

From (7.3) and (7.5) we have

Bf(s
(1); j) � Bf(s

(2); j) for u � j � v: (7.6)

Since s(2) is a legal allocation, we have

Bf(s
(2); v) � s(2)v � s(1)v = Bf(s

(1); v): (7.7)

Combining (7.6) and (7.7), we have Bf(s
(1); v) = Bf(s

(2); v) and s(1)v = s(2)v . There-

fore Bf(s
(1); v + 1) = Bf(s

(2); v + 1). Since Q
(1)
1 > Q

(1)
min, by the contrapositive of

Lemma 7.2, we see that the bu�er fullness for pictures u to v is updated as with
CBR operation. Therefore we can use the results of Lemma 6.3, which implies that
Bf(s

(1)
j) = Bf(s

(2); j) and s
(1)
j = s

(2)
j for u � j � v.

Let us assume that the inductive hypothesis is true for 1 � k < m. We need
to show that it is also true for k = m where Q(1)

m > Q
(1)
min. Consider a segment of

consecutive pictures that are assigned quantization Q(1)
m . Let u be the index of the

start of the segment and v the index of the end of the segment. We consider all
cases for the segment boundaries. For the left segment boundary we consider three
cases: u = 1, gu�1(s

(1)
u�1) > gu(s

(1)
u), and gu�1(s

(1)
u�1) < gu(s

(1)
u). If u = 1, then we

have Bf(s
(1); u) = Bf(s

(2); u) = B1. If gu�1(s
(1)
u�1) > gu(s

(1)
u), then from the inductive

hypothesis, we have Bf(s
(1); u � 1) = Bf(s

(2); u � 1) and s
(1)
u�1 = s

(2)
u�1; therefore

Bf(s
(1); u) = Bf(s

(2); u). If gu�1(s
(1)
u�1) < gu(s

(1)
u), then from Lemma 7.3, we have

7.1. ANALYSIS 103

Bf(s
(1); u) = BVBV; since s

(2) is a legal allocation, we have Bf(s
(2); u) � BVBV =

Bf(s
(1); u). For all three cases we have

Bf(s
(2); u) � Bf(s

(1); u): (7.8)

For the right segment boundary we consider three cases: v = N , gv(s
(1)
v) >

gv+1(s
(1)
v+1), and gv(s

(1)
v) < gv+1(s

(1)
v+1). If v = N , then by the contrapositive of

Lemma 7.2, Bf(s
(1); v) = s(1)v . (We use the condition that Q(1)

m 6= Q
(1)
min.) If

gv(s
(1)
v) > gv+1(s

(1)
v+1), then by Lemma 7.3, Bf(s

(1); v) = s(1)v . If gv(s
(1)
v) < gv+1(s

(1)
v+1),

then from the inductive hypothesis, we have Bf(s
(1); v + 1) = Bf(s

(2); v + 1). For the
�rst two cases, we have

Bf(s
(1); v) = s(1)v (7.9)

From Lemma 7.4, we have s(1) � s(2). Therefore gj(s
(2)
j) � Q(1)

m for u � j � v and
thus

s
(1)
j � s

(2)
j for u � j � v: (7.10)

From (7.8) and (7.10) we have

Bf(s
(1); j) � Bf(s

(2); j) for u � j � v: (7.11)

Since s(2) is a legal allocation, we have

Bf(s
(2); v) � s(2)v � s(1)v = Bf(s

(1); v): (7.12)

Combining (7.11) and (7.12), we have Bf(s
(1); v) = Bf(s

(2); v) and s(1)v = s(2)v .
Therefore Bf(s

(1); v + 1) = Bf(s
(2); v + 1). So for all three cases for v, we have

Bf(s
(1); v + 1) = Bf(s

(2); v + 1).

Since Q(1)
n > Q

(1)
min, by the contrapositive of Lemma 7.2, we see that the bu�er

fullness for pictures u to v is updated the same as with CBR operation. Therefore
we can use the results of Lemma 6.3, which implies that Bf(s

(1)
j) = Bf(s

(2); j) and

s
(1)
j = s

(2)
j for u � j � v.

By induction, we have s
(1)
j = s

(2)
j for all j such that gj(s

(1); j) > Q
(1)
min. 2

Lemma 7.6 Given two VBR bit allocation problems P (1) =
D
N;F;B

(1)
tgt ; BVBV; B1; Ba

E
and P (2) =

D
N;F;B

(2)
tgt ; BVBV; B1; Ba

E
that have optimal allocations s(1) and s(2), re-

spectively, with B
(1)
tgt < B

(2)
tgt , then min1�j�Nfgj(s(1)j)g > min1�j�Nfgj(s(2)j)g:

Proof : Let Q
(1)
min = min1�j�Nfgj(s(1)j)g and Q

(2)
min = min1�j�Nfgj(s(2)j)g. From

Lemma 7.4 we have s(1) � s(2). From Lemma 7.5, the only pictures that can be
assigned a di�erent Q by s(1) and s(2) are those that are assigned quantization Q

(1)
min

by s(1). But s(1) � s(2) which implies that s(2) must assign to some picture a quanti-
zation lower than Q

(1)
min. Therefore Q

(1)
min > Q

(2)
min. 2

104CHAPTER 7. LEXICOGRAPHIC BIT ALLOCATION UNDER VBR CONSTRAINTS

We summarize Lemmas 7.4, 7.5, and 7.6 with the following theorem.

Theorem 7.2 Given two VBR bit allocation problems P (1) =
D
N;F;B

(1)
tgt ; BVBV; B1; Ba

E
and P (2) =

D
N;F;B

(2)
tgt ; BVBV; B1; Ba

E
that have optimal allocations s(1) and s(2), re-

spectively, with B
(1)
tgt < B

(2)
tgt , then

1. s(1) � s(2),

2. s
(1)
j = s

(2)
j for j such that gj(s

(1)
j) > min1�k�Nfgk(s(1)k)g, and

3. min1�j�Nfgj(s(1)j)g > min1�j�Nfgj(s(2)j)g.

7.2 VBR Allocation Algorithm

Theorems 7.1 and 7.2 give us a way to �nd the optimal allocation for a given VBR
allocation problem. If we know the minimum Q that the optimal allocation uses,
then it would be straightforward to �nd the optimal allocation. However, in general
we do not know what that minimum Q would be. Theorem 7.2 gives us an iterative
way to �nd the minimum Q.

7.2.1 VBR Algorithm

Here we sketch an iterative algorithm for computing a VBR allocation.

1. Mark all pictures as easy. Let Beasy Btgt.

2. Allocate Beasy bits to easy pictures using a constant Q. Let Qmin be the value
of Q used.

3. Simulate operation of VBV to identify hard and easy segments of pictures. A
hard segment contains pictures that lead to a bu�er underow and consists of
pictures that follow the most recent virtual overow up to and including the
picture that caused the overow. After identifying a hard segment, reset the
bu�er fullness to empty and continue the simulation.

4. Allocate bits to each newly identi�ed hard segment according to the CBR al-
gorithm, with a bit budget such that the underow is just prevented. By pre-
venting underow in the hard segments, we are left with extra unallocated bits.

5. Let Bhard be the total number of bits allocated to hard pictures. Let Beasy
Btgt � Bhard.

6. If a new hard segment has been identi�ed in Step 3, goto Step 2.

7.2. VBR ALLOCATION ALGORITHM 105

7.2.2 Correctness of VBR Algorithm

Here we prove that the VBR algorithm computes a lexicographically optimal alloc-
ation. We do this by showing that the algorithm computes an allocation that satis�es
the switching conditions of Theorem 7.1.

First, we make several observations about the VBR algorithm.

1. Pictures marked \easy" are assigned the same value of Q,

2. \Hard" pictures are marked in segments that start either at the beginning of
the video sequence or with the bu�er full and that end with the bu�er empty.

3. Segments of hard pictures are allocated using the CBR algorithm.

The correctness of the CBR algorithm insures that within hard segments condi-
tions 3 and 4 of Theorem 7.1 hold. In order to show that the other conditions also
hold, we �rst need to show that the CBR algorithm does not assign a Q lower than
the Qmin computed in Step 2.

Lemma 7.7 Let s be an allocation computed by the VBR algorithm. Let i and j de-

note the indices of the beginning and end, respectively, of a hard segment as identi�ed

in Step 3. Then

min
i�k�j

fgk(sk)g � Qmin:

Proof : Let s0 be an allocation that is the same as s except for pictures i to j, where
s0 uses Qmin. Thus, in a VBV simulation using s0 for pictures i to j, s0 does not cause
a virtual overow and underows only at picture j. Let u and v mark the beginning
and end, respectively, of a segment with the minimum Q in the CBR allocation for
pictures i to j. We consider two cases for u: u = i and u > i. If u = i, then we
have Bf(s; u) = Bf(s

0; u) since sk = s0k for k < i. If u > i, then since u marks the
beginning of a segment with minimum Q in the CBR allocation for pictures i to j,
from Theorem 6.1, Bf(s; u� 1) = su�1. This implies that Bf(s; u) = Ba(u� 1). Since
s0 does not cause an underow for picture u� 1, Bf(s

0; u� 1) � s0u�1, which implies
that Bf(s

0; u) � Ba(u� 1). In either case, we have

Bf(s
0; u) � Bf(s; u): (7.13)

We consider two cases for v: v = j and v < j. If v = j, then Bf(s
0; v) < s0v

since an underow occurs at picture j. Thus Bf(s
0; v + 1) < Ba(v). But since s is

a legal allocation, Bf(s; v + 1) � Ba(v). If v < j, then since v marks the end of a
segment with minimumQ in the CBR allocation for pictures i to j, from Theorem 6.1,
Bf(s; v + 1) = BVBV. Since s

0 does not cause virtual overow, Bf(s
0; v + 1) � BVBV.

In either case,
Bf(s

0; v + 1) � Bf(s; v + 1): (7.14)

106CHAPTER 7. LEXICOGRAPHIC BIT ALLOCATION UNDER VBR CONSTRAINTS

Expanding for Bf(s; u) and Bf(s; v + 1) we have

Bf(s; u) = B1 +
u�1X
k=1

Ba(k)�
u�1X
k=1

sk; (7.15)

Bf(s; v + 1) = B1 +
vX

k=1

Ba(k)�
vX

k=1

sk: (7.16)

Subtracting (7.16) from (7.15), canceling like terms, and rearranging, we have

vX
k=u

sk =
vX

k=u

Ba(k) +Bf(s; u)� Bf(s; v + 1): (7.17)

The same manipulations with Bf(s
0; u) and Bf(s

0; v + 1) yield

vX
k=u

s0k =
vX

k=u

Ba(k) +Bf(s
0; u)� Bf(s

0; v + 1): (7.18)

Combining (7.13), (7.14), (7.17), and (7.18) we have

vX
k=u

sk �
vX

k=u

s0k: (7.19)

Pictures u to v use a constant Q in both allocations s and s0, where s uses Q =
mini�k�jfgk(sk)g and s0 uses Qmin. Therefore we have

Fu;v
�
min
i�k�j

fgk(sk)g
�
� Fu;v(Qmin): (7.20)

Since Fu;v is a monotonically decreasing function (see Section 6.2.3), we have

min
i�k�j

fgk(sk)g � Qmin:

2

From Lemma 7.7, we can conclude that after each iteration of the VBR algorithm,
Qmin is indeed the minimum Q. Since hard segments do not include pictures that
cause a virtual overow and does not include the last picture if it does not cause a
bu�er underow, conditions 1 and 2 of Theorem 7.1 also hold.

We are now ready to state the main result of this section.

Theorem 7.3 (Correctness of VBR Algorithm) Each pass through the VBR al-

gorithm results in an allocation that is lexicographically optimal for the number of bits

actually allocated.

7.3. DISCUSSION 107

7.2.3 Time and Space Complexity

We note that the loop in the VBR algorithm terminates when no more hard segments
are identi�ed. This implies that the algorithm terminates after at most N iterations,
where N is the number of pictures.

Assuming that Gi;j can be evaluated in constant time, we have shown in Sec-
tion 6.2.5 that the CBR algorithm operates in O(N2) time and uses O(N) space. Not
counting the executions of the CBR algorithm, each iteration of the VBR algorithm
takes O(N) time and space. Since at most O(N) iterations are performed, the time
complexity excluding the executions of the CBR algorithm is O(N2).

We can defer actually invoking the CBR algorithm in Step 4 of the VBR algorithm
until the end. This would avoid invoking the CBR algorithm more than once for each
hard picture. Let M be the number of hard segments found by the VBR algorithm
and Li be the size of the ith segment. The time consumed by execution of the CBR
algorithm can be expressed as

TCBR(N) =
MX
i=1

O(L2
i) = O

� MX
i=1

L2
i

�
: (7.21)

Since
PM

i=1 Li � N , we have

MX
i=1

L2
i �

� MX
i=1

Li
�2
� N2:

Therefore the time complexity of the VBR algorithm is O(N2), the same as that
for the CBR algorithm. For cases where there are relatively few hard segments,
computing an optimal VBR allocation will likely be faster in practice than computing
a CBR allocation. Furthermore, Theorem 7.3 guarantees that we can halt the VBR
algorithm after any number of iterations and have an optimal allocation. The decision
to continue depends upon whether the achieved bit consumption is acceptable. With
each iteration the number of bits allocated increases.

7.3 Discussion

The above complexity analysis is performed in the context of o�-line global optimiza-
tion. The vast majority of CBR video coders in operation today work in real-time
mode without the luxury of lookahead processing. Since VBR coders can potentially
give better quality for the same bit budget, they are targeted for quality-sensitive
applications (such as encoding a Hollywood movie) where expensive o�-line process-
ing is a viable option. However, the above analysis does allow for \one-pass" VBR
encoding. By substituting a real-time CBR algorithm for the optimal one invoked
by the VBR algorithm, we can construct a one-pass real-time VBR encoder. Though
necessarily sub-optimal, the resulting coder would have complexity comparable to
existing CBR coders. An approach along these lines is discussed in Chapter 9.

108CHAPTER 7. LEXICOGRAPHIC BIT ALLOCATION UNDER VBR CONSTRAINTS

Chapter 8

A More E�cient Dynamic

Programming Algorithm

More E�cient Dynamic Programming

[This chapter is still being developed, so only a brief summary is included here.]

In this chapter, we develop an improved dynamic programming approach to CBR
(and thus VBR) bit allocation to the ones covered earlier in Chapters 6 and 7.

The algorithm is a modi�cation of the Lee-Preparata approach for �nding shortest
paths within rectilinear boundaries [43]. Instead of maintaining the two double ended
queues (deques) from the actual queue size at each time instance as in the current
algorithm, the deques instead are replaced by a data structure developed by Preparata
and Vitter [68] for hidden-line elimination and convex hulls on terrains. The data
structure maintains the recursive structure of the lower convex hull of points (for the
upper boundary) and the upper convex hull of points (for the lower boundary). In
the context of rate control, it allows queries such as determining from a given starting
point and queue size the smallest value of Q that causes overow (before it would
cause underow). The process is like computing the tangent from a point to a convex
surface.)

The important point is that we need a data structure that can be queried from
any bu�er fullness at relevant times, not just from the bu�er fullness in the schedule,
which in the original algorithm is at the top boundary or the bottom boundary. In
our new algorithm, we'll need to handle frames one at a time, not several at a time
with the same Q, since the bu�er fullness value may need to be corrected after each
frame.

When we consider the lower convex hull of the upper boundary, we mean the
set of paths (each with a constant Q) that go from one time to another. That's
what's maintained in the deque associated with the upper boundary in the linear-
time algorithm. What we're really storing is not a convex hull but a set of paths
such that the Q values for the paths are strictly increasing. (The paths are in a sense
convex.)

109

110CHAPTER 8. AMORE EFFICIENT DYNAMIC PROGRAMMING ALGORITHM

It is anticipated that the basic algorithm without the sophisticated terrain data
structure of [68] will run in linear time in practice. We will report on the full details
of the algorithms and the timings in the �nal version.

Chapter 9

Real-Time VBR Rate Control

[This chapter is still being developed; a copy of a related article, entitled \Real-Time

VBR Rate Control of MPEG Video Based upon Lexicographic Bit Allocation" is in-

cluded in the Appendix.]

111

112 CHAPTER 9. REAL-TIME VBR RATE CONTROL

Chapter 10

Implementation of Lexicographic

Bit Allocation

Implementation

In this chapter, we describe an implementation of rate control using the lexico-
graphically optimal bit allocation algorithms presented in Chapters 6 and 7 within
a publicly available software MPEG-2 encoder [58]. With this implementation, we
aim to: 1) verify the e�ectiveness of lexicographic optimality, 2) assess the practical
implications of the assumptions made in the framework, namely independent coding
and continuous variables, 3) explore various bit-production models, and 4) develop
robust techniques for recovering from errors with the approximate models.

10.1 Perceptual Quantization

For perceptual quantization, we use the TM5 adaptive quantization scheme (described
in Section 2.7.5), where the nominal quantization scale is modulated by an activity
factor that is computed from the spatial activity of the luminance blocks within a
macroblock. In TM5, the actual quantization scale used for coding a particular mac-
roblock is determined from an initially computed (global) reference quantization scale,
a (local) feedback factor that is dependent of the state of a virtual encoding bu�er,
and the activity factor. For modeling purposes, we de�ne the nominal quantization
for a picture as the average of the product of the reference quantization scale and the
bu�er-feedback factor over all coded macroblocks.

10.2 Bit-Production Modeling

The framework in Chapter 5 presumes the existence of an exact continuous bit-
production model for each picture. In practice, the rate-distortion function of a

113

114CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

complex encoding system, such as MPEG, cannot be determined exactly for non-
trivial classes of input. Therefore, approximate models are used in practice.

As the complexity analyses in Sections 6.2.5 and 7.2.3 show, the running time
for the optimal bit allocation algorithms depends on the time to evaluate Gi;j, the
function that is used to compute a constant-Q sub-allocation. In practice, therefore,
the chosen models should admit e�cient computation of Gi;j. In this section we
examine two classes of models|hyperbolic and linear spline|for which Gi;j can be
e�ciently computed.

It turns out that a simple combination of the two models gives much better results
than either one. The idea is to use a piecewise hyperbolic model similar to the linear-
spline except that a hyperbolic function is used to interpolate between control points.
Computing a constant Q still takes constant time with linear time preprocessing.

10.2.1 Hyperbolic Model

In [82], the following simple \hyperbolic" model forms the basis of an adaptive bit
allocation algorithm:

fi(qi) =
�i

qi
+ �i; (10.1)

where �i is associated with the complexity of coding picture i and �i with the over-
head for coding the picture. The hyperbolic model is one of the simplest models to
exhibit the monotonicity and concavity characteristic of rate-distortion functions.1

Several instances of the hyperbolic model are plotted in Figure 10.1. TM5 adopts a
similar model where only the complexity term is used. With adaptive quantization
techniques, �i and �i are typically estimated from the results of encoding previous
pictures. The parameters can also be determined by coding a sampling of blocks in
picture i and �tting the parameters to the coding statistics.

With the hyperbolic model, there is a simple closed-form expression for Gi;j:

Gi;j(b) =

P
i�k�j �k

b�Pi�k�j �k
: (10.2)

As previously discussed in Section 6.2.5, we can precompute the cumulative sums
for �i and �i in linear time and space and then use these to compute Gi;j in constant
time. This results in a time complexity of O(N2) for both optimal CBR and VBR
allocation.

In related work, Ding and Liu [19] propose the following more general class of
bit-production models and describe its use in rate control:

fi(q) =
�i

qi
+ �i: (10.3)

The extra parameter i is dependent on the picture type (I, P, or B) and is intended
to capture the di�erent rate-distortion characteristics for each picture type. One

1Our framework only assumes monotonicity and not concavity.

10.2. BIT-PRODUCTION MODELING 115

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

B
its

Quantization

f(q) = 100/q + 10
f(q) = 200/q + 20
f(q) = 400/q + 10
f(q) = 500/q + 30

Figure 10.1: Several instances of a simple \hyperbolic" bit-production model.

drawback to (10.3) is that the model is non-linear with respect to the parameters,
and we know of no closed-form solution to Gi;j in the general setting. Although
numerical techniques can be used to solve for Gi;j, this could adversely a�ect the
computational e�ciency of the bit allocation algorithms.

In preliminary experiments, we �nd that the hyperbolic model works well near
the operating point where �i and �i have been determined, but is not reliable at a
distant operating point. This observation leads us to formulate the following encoding
strategy.

1. Encode the sequence using the standard TM5 coder, keeping statistics (for each
picture) of the average nominal quantization scale, the total number of bits
used, and the number of bits used to code the quantized DCT coe�cients.

2. Compute �i and �i from the statistics gathered in the previous encoding pass.
Allocate bits to pictures with the lexicographic bit allocation algorithm and
encode the sequence using this allocation, gathering statistics as before.

3. Repeat Step 2.

The idea is that with each encoding, the accuracy of the bit models will improve as
the operating Q is determined and re�ned for each picture.

10.2.2 Linear-Spline Model

As noted above, the hyperbolic model works well with small changes in the quanti-
zation scale Q. However, with a large variation in Q between successive pictures, as
may occur with a scene change, the model becomes less reliable. This is because the
model is de�ned by only two parameters �i and �i. Previously, we have compensated

116CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

for this by performing multiple encoding passes to ensure that the parameters are
determined close to the actual operating point. We now consider a di�erent approach
where more e�ort is expended to construct more accurate bit models that are then
used to encode the video sequence in a single pass.

Lin, Ortega, and Kuo [51, 50] propose using cubic-spline interpolation models of
rate and distortion in conjunction with a gradient-based rate control algorithm [48,
49]. The spline models are computed by �rst encoding each picture several times
using a select set of M quantization scales, fx1, x2, : : :, xMg with x1 < x2 < � � � <
xM , and measuring the actual rate. Each quantization/rate pair is called a control

point. For picture i, the function between two consecutive control points (xk; yi;k)
and (xk+1; yi;k+1) has the form

fki (xk) = aikx
3 + bikx

2 + cikx+ dik: (10.4)

The parameters aik, bik, cik, and dik are computed from four control points
(xk�1; yi;k�1), (xk; yi;k), (xk+1; yi;k+1), and (xk+2; yi;k+2), such that fki (xk) = yi;k and
fk+1i (xk+1) = yi;k+1 and the �rst-order derivatives of fki and fk+1i are continuous at
the control points. The authors suggest using the Fibonacci-like set f1, 2, 3, 5, 8, 13,
21, 31g for the control quantization scales to exploit the exponential-decay typical of
rate-distortion functions.

One drawback of a cubic-spline model is that it is generally not monotonic. To
ensure monotonicity, we consider a simpler linear-spline interpolation model, where
a line segment is used to interpolate the bit-production function between control
points. For picture i, the function between two consecutive control points (xk; yi;k)
and (xk+1; yi;k+1) has the form

fki (xk) = �i;kx + �i;k: (10.5)

As in [48, 49], we choose the control quantization scales to be f1, 2, 3, 5, 8, 13, 21,
31g to exploit the exponential-decay property of rate-distortion functions. In case
the control points themselves do not exhibit monotonicity, we enforce monotonicity
by skipping those control points where the monotonicity property is violated. For
quantization scales less than x1 or greater than xM , we extrapolate using the param-
eters (�i;k; �i;k) or (�i;M�1; �i;M�1), respectively. An example of a linear-spline model
is shown in Figure 10.2.

The linear-spline model has a simple closed-form expression for Gi;j if we know
the two control points that bracket the operating point. Because of the monotonicity
property, we can determine the two bracketing points using binary search. Between
the control points xk and xk+1, Gi;j can be computed as

Gi;j(b) =
b�Pi�m�j �m;kP

i�m�j �m;k
: (10.6)

If xk � Gi;j � xk+1 then the correct operating point has been found. If Gi;j < xk,
the operating point must lie between two control points with lower indices. Similarly,

10.3. PICTURE-LEVEL RATE CONTROL 117

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

B
its

Quantization

Control Points

Figure 10.2: Example of a linear-spline interpolation model.

if Gi;j > xk+1, the operating point must lie between two control points with higher
indices. A simple binary search procedure can be used to �nd the operating point.

Since there are a �xed number of control points, we can compute Gi;j in constant
time with linear-time preprocessing. As with the hyperbolic model, we can compute
optimal CBR and VBR allocations in quadratic time.

The cubic-spline model of [51, 50] is used in a dependent-coding framework, where
the e�ects of coding previous pictures are taken into account in the modeling. Our
framework assumes independent coding and does not take these e�ects into account.
However, from the switching theorems, we note that an optimal allocation has seg-
ments of constant Q. This provides a basis for estimating the linear-spline model
parameters. By encoding the video sequence multiple times with a constant Q deter-
mined from the control points, we can construct a linear-spline interpolation model
for each picture. We expect these models to be reasonably accurate within a segment
of constant Q. At the boundary between segments, however, we can expect some
discrepancy in the models for dependent pictures (P and B types).

10.3 Picture-Level Rate Control

Even with accurate bit-production models, the actual number of bits produced will
inevitably depart from the model. There are essentially two ways to cope with bit-
modeling errors.

10.3.1 Closed-Loop Rate Control

A popular approach taken in TM5 is to regulate the quantization scale at the mac-
roblock level while coding a picture so that the desired bit allocation is met. This

118CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

is achieved with a closed-loop feedback mechanism using the fullness of a virtual en-
coder bu�er to control the macroblock quantization. One drawback of this technique
is that the coded quality within a picture may vary considerably, especially for a
picture that contains regions of varying complexity. With gross errors in the bit-
production models, the actual average quantization scale may di�er markedly from
the desired quantization scale, thereby adversely a�ecting the coded quality.

10.3.2 Open-Loop Rate Control

Another approach is to perform open-loop control where the assigned (nominal) quan-
tization scale is used to code a picture. We can then adjust the bit allocation of the
remaining uncoded pictures to compensate for the di�erence between desired and
actual bit production. An advantage of this approach is that the quality is more con-
stant within a picture. In addition, less processing is required to code each picture.
A disadvantage is that, since the bit production is not controlled below the picture
layer, the actual bit production may vary from the target and potentially cause the
bu�er to overow or underow.

After coding a picture, we can reallocate bits to the remaining pictures optimally
(for the given models). Instead of recomputing an optimal allocation from scratch
and incurring an extra factor of N in the time complexity, we can take advantage of
dynamic programming to increase the time complexity by only a constant factor. We
do this for a CBR allocation and for hard pictures in a VBR allocation by constructing
the dynamic programming table in the CBR algorithm in reverse.

As presented in Section 6.2, the dynamic programming algorithm works by solving
for sub-allocations for pictures 1 to k for increasing values of k. We can also rework
the dynamic programming to compute optimal sub-allocations for pictures k to N for
decreasing values of k. We do this by computing optimal allocations that start with
the bu�er empty or full at picture k and ends with the bu�er at the �nal bu�er state
after picture N .

With a reverse dynamic programming table, we can compute a revised allocation
for picture k, after encoding picture k� 1, by searching for a proper constant-Q con-
nector starting with the known VBV bu�er fullness before picture k is removed. With
the reverse dynamic programming table available, this search consumes O(N) time
for the hyperbolic and linear-spline interpolation models. The total additional time
to recover from bit-production errors is then O(N2), the same as the time complexity
for computing the initial allocation.

As stated, the above procedure applies to a CBR allocation and to hard pictures in
a VBR allocation (which are allocated using the CBR routine). For easy pictures in a
VBR allocation, we can simply recompute a new value for Qmin. Here, we assume that
errors in bit-production modeling are not severe enough to change the classi�cation
of hard and easy pictures.

10.4. BUFFER GUARD ZONES 119

BVBV

F
ul

ln
es

s
B

uf
fe

r

VBV0.95 B

VBV0.05 B
0

Guard Zones

Figure 10.3: Guard zones to safeguard against underow and overow of VBV bu�er.
A bit allocation is computed so that the bu�er fullness remains between the guard
zones.

10.3.3 Hybrid Rate Control

In early experiments, we observed that closed-loop rate control resulted in rapid
uctuations in the nominal quantization scale2 between pictures owing to the bu�er-
feedback mechanism. With accurate bit-production models, however, the need to
perform low-level rate control below the picture level is questionable. This suggests
using open-loop control. As noted earlier, since we assume independent coding, we
can expect more errors in the bit-production models at pictures where the assigned
Q changes. With these observations, we propose a hybrid rate control strategy where
closed-loop control is used for pictures at the boundaries of a constant-Q segment
and open-loop control is used for the rest. Another motivation for using closed-loop
control for boundary pictures is that the VBV bu�er should be either nearly empty
or nearly full for these pictures, and the bit rate must be carefully controlled to avoid
underowing or overowing the bu�er.

10.4 Bu�er Guard Zones

Even with the picture-level rate control strategies outlined above, there is still the
possibility of the VBV bu�er overowing or underowing. To safeguard against this,
we compute a bit allocation using a slightly smaller bu�er than that speci�ed in the
MPEG bitstream so that we can have guard zones near the top and bottom of the
bu�er. For the experiments with CBR, have we chosen to place the guard zones at
5% and 95% of maximum bu�er size. This is illustrated in Figure 10.3. For VBR
mode, the upper guard zone is not needed since bu�er overow is not a concern.

2By nominal quantization scale, we mean the average measured macroblock quantization scale
with perceptual quantization factored out.

120CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

10.5 Encoding Simulations

To assess the behavior and e�ectiveness of the lexicographic bit allocation algorithms,
the bit-production models, and the rate control strategies outlined above, we con-
ducted encoding simulations using several short (� 100 pictures) benchmark video
sequences (flower garden, football, mobile, and table tennis) in SIF format
and a longer (3,660 pictures) promotional video clip courtesy of IBM Corporation.

10.5.1 Initial Experiments

Initially, we used the short video clips to evaluate the bit-production models and
rate control strategies. To simulate scene changes, we concatenated the four short
video clips into a 418{picture video sequence in the following order: flower garden,
mobile, football, table tennis.

We implemented the rate control algorithms within the software encoder provided
by the MPEG-2 Simulation Group [58]. The coding parameters are listed in Ta-
ble 10.1. For CBR mode, we speci�ed a peak bit rate of 1.0 Mbits/sec. For VBR,
we used an average bit rate of 1.0 Mbits/sec and a peak bit rate of 1.2 Mbits/sec.
The VBV bu�er size was set to 720,896 bits. For reference, we also ran the encoder
with TM5 rate control using the sample parameters.3 In order to reduce factors that
would a�ect the actual bit production, full-search motion estimation was initially
performed using a �xed nominal quantization scale of 13, and the same motion vec-
tors were then used for all the encodings. The coding decisions, however, were still
determined on-line.

In the �rst set of simulations, we used the hyperbolic model and performed mul-
tiple encoding passes. The results of the encodings are presented in Table 10.2 and
Figures 10.4 to 10.9. The table collects some summary statistics for the various
coders. Figures 10.4 and 10.5 show the evolution of the bu�er fullness. Figures 10.6
and 10.7 plot the computed and observed sequence of nominal quantization Q. The
computed Q consists of piecewise constant segments, as dictated by theory.

The initial pass of the Hyperbolic CBR and VBR coders used statistics gathered
with the TM5 coder in order to determine the parameters of the bit-production mod-
els. Later passes of the Hyperbolic CBR (VBR) coder used statistics gathered from
the previous pass. From the results in Table 10.2 and Figure 10.4, the Hyperbolic
CBR coder does not exhibit much change between passes. However, the Hyperbolic
VBR coder does show reduction in the standard deviation in PSNR and nominal Q
and better usage of the VBV bu�er with later passes.

As evident from Figure 10.4, the TM5 coder uses only a fraction of the VBV bu�er
and maintains the bu�er relatively level. In contrast, the lexicographic coders make

3A minor modi�cation was made to the TM5 model in that the levels of the virtual encoding
bu�ers used to regulate the quantization scale are restricted to the range [0; 2r], where r is the
reaction parameter de�ned in Section 2.7.5.

10.5. ENCODING SIMULATIONS 121

Value Description
418 number of frames

1 number of first frame

15 N (# of frames in GOP)

3 M (I/P frame distance)

0 ISO/IEC 11172-2 stream

0 0:frame pictures, 1:field pictures

352 horizontal_size

240 vertical_size

2 aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1

5 frame_rate_code 1=23.976, 2=24, 3=25, 4=29.97, 5=30 frames/sec

1000000.0 bit_rate (bits/sec)

44 vbv_buffer_size (in multiples of 16 kbit)

0 low_delay

0 constrained_parameters_flag

4 Profile ID: Simple = 5, Main = 4, SNR = 3, Spatial = 2, High = 1

8 Level ID: Low = 10, Main = 8, High 1440 = 6, High = 4

1 progressive_sequence

1 chroma_format: 1=4:2:0, 2=4:2:2, 3=4:4:4

2 video_format: 0=comp., 1=PAL, 2=NTSC, 3=SECAM, 4=MAC, 5=unspec.

5 color_primaries

5 transfer_characteristics

4 matrix_coefficients

352 display_horizontal_size

240 display_vertical_size

0 intra_dc_precision (0: 8 bit, 1: 9 bit, 2: 10 bit, 3: 11 bit

0 top_field_first

1 1 1 frame_pred_frame_dct (I P B)

0 0 0 concealment_motion_vectors (I P B)

1 1 1 q_scale_type (I P B)

1 0 0 intra_vlc_format (I P B)

0 0 0 alternate_scan (I P B)

0 repeat_first_field

1 progressive_frame

0 P distance between complete intra slice refresh

0 rate control: r (reaction parameter)

0 rate control: avg_act (initial average activity)

0 rate control: Xi (initial I frame global complexity measure)

0 rate control: Xp (initial P frame global complexity measure)

0 rate control: Xb (initial B frame global complexity measure)

0 rate control: d0i (initial I frame virtual buffer fullness)

0 rate control: d0p (initial P frame virtual buffer fullness)

0 rate control: d0b (initial B frame virtual buffer fullness)

3 3 23 23 P: forw_hor_f_code forw_vert_f_code search_width/height

1 1 7 7 B1: forw_hor_f_code forw_vert_f_code search_width/height

2 2 15 15 B1: back_hor_f_code back_vert_f_code search_width/height

2 2 15 15 B2: forw_hor_f_code forw_vert_f_code search_width/height

1 1 7 7 B2: back_hor_f_code back_vert_f_code search_width/height

Table 10 1: Parameters for MPEG 2 Simulation Group software encoder used to

122CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Average Std. Dev. Average Std. Dev. Maximum Minimum
Method PSNR (dB) of PSNR Nom. Q of Nom. Q Nom. Q Nom. Q

TM5 CBR 26:66 3:06 16:19 4:48 26:20 6:70

Hyperbolic
CBR, Pass 1 26:48 2:67 16:19 3:44 22:63 7:78
Hyperbolic
CBR, Pass 2 26:48 2:66 16:23 3:40 21:44 7:43
Hyperbolic
CBR, Pass 3 26:48 2:67 16:28 3:41 20:68 7:20

Hyperbolic
VBR, Pass 1 26:54 2:36 15:95 2:77 21:15 9:16
Hyperbolic
VBR, Pass 2 26:52 2:10 16:00 2:14 19:60 9:34
Hyperbolic
VBR, Pass 3 26:49 1:99 16:09 1:83 19:22 9:76

Linear-Spline
CBR, Hybrid 26:73 2:68 15:80 3:36 19:48 8:29

Linear-Spline
VBR, Hybrid 26:66 1:87 15:83 1:13 17:59 12:97

Table 10.2: Summary of initial coding experiments.

10.5. ENCODING SIMULATIONS 123

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450

B
uf

fe
r

Fu
lln

es
s

Frame

(a) TM5 CBR

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450

B
uf

fe
r

Fu
lln

es
s

Frame

(b) Hyperbolic CBR Pass 1

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450

B
uf

fe
r

Fu
lln

es
s

Frame

(c) Hyperbolic CBR Pass 2

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450

B
uf

fe
r

Fu
lln

es
s

Frame

(d) Hyperbolic CBR Pass 3

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450

B
uf

fe
r

Fu
lln

es
s

Frame

(e) Linear-Spline CBR

Figure 10.4: Evolution of bu�er fullness for CBR coders.

124CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450

B
uf

fe
r

Fu
lln

es
s

Frame

(a) Hyperbolic VBR Pass 1

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450
B

uf
fe

r
Fu

lln
es

s
Frame

(b) Hyperbolic VBR Pass 2

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450

B
uf

fe
r

Fu
lln

es
s

Frame

(c) Hyperbolic VBR Pass 3

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300 350 400 450

B
uf

fe
r

Fu
lln

es
s

Frame

(d) Linear-Spline VBR

Figure 10.5: Evolution of bu�er fullness for VBR coders.

10.5. ENCODING SIMULATIONS 125

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

(a) TM5 CBR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Actual
Target

(b) Hyperbolic CBR Pass 1

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Actual
Target

(c) Hyperbolic CBR Pass 2

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Actual
Target

(d) Hyperbolic CBR Pass 3

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Actual
Target

(e) Linear-Spline CBR

Figure 10.6: Nominal quantization scale for CBR coders.

126CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Actual
Target

(a) Hyperbolic VBR Pass 1

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450
N

om
in

al
 Q

Frame

Actual
Target

(b) Hyperbolic VBR Pass 2

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Actual
Target

(c) Hyperbolic VBR Pass 3

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Actual
Target

(d) Linear-Spline VBR

Figure 10.7: Nominal quantization scale for VBR coders.

10.5. ENCODING SIMULATIONS 127

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

(a) TM5 CBR

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

(b) Hyperbolic CBR Pass 1

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

(c) Hyperbolic CBR Pass 2

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

(d) Hyperbolic CBR Pass 3

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

(e) Linear-Spline CBR

Figure 10.8: PSNR for CBR coders.

128CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

(a) Hyperbolic VBR Pass 1

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450
PS

N
R

 (
dB

)
Frame

(b) Hyperbolic VBR Pass 2

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

(c) Hyperbolic VBR Pass 3

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

(d) Linear-Spline VBR

Figure 10.9: PSNR for VBR coders.

10.5. ENCODING SIMULATIONS 129

better use of the VBV bu�er.

Comparing hyperbolic modeling with closed-loop rate control on the one hand with
linear-spline modeling with hybrid rate-control on the other, we see that the latter
outperforms the former in all aspects. It is noteworthy that the hyperbolic model
seems to underestimate the bit production while the linear-spline model overestimates
the bit production. The result is that the actual nominal quantization scales used are
higher than the target for the hyperbolic model and lower for the linear-spline model.

10.5.2 Coding a Longer Sequence

Since the video clips used in the initial experiments are short and we had to concate-
nate them to form somewhat arti�cial scene changes, we were not able to detect much
perceptual di�erence between the di�erent encodings. To assess the perceptual gains
of lexicographically optimal bit allocation, we performed additional coding simula-
tions using a longer video sequence with varied and dynamic content. The sequence
consists of 3,660 frames of a commercial produced by the IBM Corporation to demon-
strate its MPEG-2 encoding chipset. The clip starts with a fade-in to a spokeswoman
standing in front of a slowing changing background. A block diagram in one corner
of the picture then rotates and zooms to �ll the screen. The diagram then remains
static with some illumination changes before fading back to the spokeswoman. On
one side of the picture, a collage of di�erent video clips scroll up the screen. One
of the clips zooms to occupy the full picture. The clips cycle through a variety of
action-�lled scenes from horses running to a skydiver rotating on a skateboard to a
bicycle race and �nally to highlights from a basketball game.

The video sequence is in NTSC CCIR-601 format. We coded the sequence in CBR
mode at 3 Mbits/sec and in VBR mode at 3 Mbits/sec average and 4.5 Mbits/sec
peak. The encoding parameters used are shown in Table 10.3. The VBV bu�er size
is 1,835,008 bits. We used linear-spline interpolation models in conjunction with the
hybrid rate control strategy.

Some encoding statistics are listed in Table 10.4. The bu�er fullness, nominal
Q, and PSNR plots are shown in Figures 10.10, 10.11, and 10.12, respectively. The
di�erences between the di�erent coders are much more pronounced with these simu-
lations than with the previous ones. The lexicographic CBR coder is able to control
the quantization to a narrower range than the TM5 coder, with a resulting increase
in PSNR. The lexicographic VBR coder sacri�ces quality in earlier pictures in or-
der to code better the later more complex pictures. The result is that the nominal
quantization is nearly constant and the PSNR plot is more even.

Visually, the lexicographic VBR coder produced near constant-quality video with
few noticeable coding artifacts. In contrast, both CBR coders produced noticeable
blocking artifacts in scenes with high motion, especially in the basketball scene. How-
ever, the lexicographic CBR coder fared noticeably better than TM5 at maintaining
constant quality through scene changes and reducing artifacts during complex scenes

130CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Value Description
3660 number of frames

0 number of first frame

15 N (# of frames in GOP)

3 M (I/P frame distance)

0 ISO/IEC 11172-2 stream

0 0:frame pictures, 1:field pictures

720 horizontal_size

480 vertical_size

2 aspect_ratio_information 1=square pel, 2=4:3, 3=16:9, 4=2.11:1

4 frame_rate_code 1=23.976, 2=24, 3=25, 4=29.97, 5=30 frames/sec

3000000.0 bit_rate (bits/sec)

112 vbv_buffer_size (in multiples of 16 kbit)

0 low_delay

0 constrained_parameters_flag

4 Profile ID: Simple = 5, Main = 4, SNR = 3, Spatial = 2, High = 1

8 Level ID: Low = 10, Main = 8, High 1440 = 6, High = 4

0 progressive_sequence

1 chroma_format: 1=4:2:0, 2=4:2:2, 3=4:4:4

2 video_format: 0=comp., 1=PAL, 2=NTSC, 3=SECAM, 4=MAC, 5=unspec.

5 color_primaries

5 transfer_characteristics

4 matrix_coefficients

720 display_horizontal_size

480 display_vertical_size

0 intra_dc_precision (0: 8 bit, 1: 9 bit, 2: 10 bit, 3: 11 bit

1 top_field_first

0 0 0 frame_pred_frame_dct (I P B)

0 0 0 concealment_motion_vectors (I P B)

1 1 1 q_scale_type (I P B)

1 0 0 intra_vlc_format (I P B)

0 0 0 alternate_scan (I P B)

0 repeat_first_field

0 progressive_frame

0 P distance between complete intra slice refresh

0 rate control: r (reaction parameter)

0 rate control: avg_act (initial average activity)

0 rate control: Xi (initial I frame global complexity measure)

0 rate control: Xp (initial P frame global complexity measure)

0 rate control: Xb (initial B frame global complexity measure)

0 rate control: d0i (initial I frame virtual buffer fullness)

0 rate control: d0p (initial P frame virtual buffer fullness)

0 rate control: d0b (initial B frame virtual buffer fullness)

4 4 63 63 P: forw_hor_f_code forw_vert_f_code search_width/height

2 2 15 15 B1: forw_hor_f_code forw_vert_f_code search_width/height

3 3 31 31 B1: back_hor_f_code back_vert_f_code search_width/height

3 3 31 31 B2: forw_hor_f_code forw_vert_f_code search_width/height

2 2 15 15 B2: back_hor_f_code back_vert_f_code search_width/height

Table 10 3: Parameters for MPEG 2 Simulation Group software encoder used to

10.5. ENCODING SIMULATIONS 131

Average Std. Dev. Average Std. Dev. Maximum Minimum
Method PSNR (dB) of PSNR Nom. Q of Nom. Q Nom. Q Nom. Q

TM5 CBR 33:34 4:95 14:00 9:88 48:86 1:95
Linear-Spline
CBR, Hybrid 33:45 4:77 13:01 7:97 29:62 2:61
Linear-Spline
VBR, Hybrid 33:08 2:58 11:80 2:07 17:68 8:00

Table 10.4: Summary of coding simulations with IBM Commercial.

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06
1.8e+06

0 500 1000 1500 2000 2500 3000 3500 4000

B
uf

fe
r

Fu
lln

es
s

Frame

(a) TM5 CBR

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06
1.8e+06

0 500 1000 1500 2000 2500 3000 3500 4000

B
uf

fe
r

Fu
lln

es
s

Frame

(b) Linear-Spline CBR

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06
1.8e+06

0 500 1000 1500 2000 2500 3000 3500 4000

B
uf

fe
r

Fu
lln

es
s

Frame

(c) Linear-Spline VBR

Figure 10.10: Evolution of bu�er fullness for coding IBM Commercial.

132CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

(a) TM5 CBR

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Actual
Target

(b) Linear-Spline CBR

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Actual
Target

(c) Linear-Spline VBR

Figure 10.11: Nominal quantization scale for coding IBM Commercial.

10.5. ENCODING SIMULATIONS 133

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

(a) TM5 CBR

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

(b) Linear-Spline CBR

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

(c) Linear-Spline VBR

Figure 10.12: PSNR for coding IBM Commercial.

134CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

of short duration.

10.6 Limiting Lookahead

The above rate control algorithms compute an allocation for the entire video sequence.
This may not be feasible when the sequence consists of many pictures, as in a feature-
length movie, for example. One way to deal with this is to partition the sequence
into blocks consisting of a small number of consecutive pictures. Optimal allocation
can then be performed on the blocks separately. In order to do this, the starting and
ending bu�er fullness must be speci�ed for each block for the CBR case. For the
VBR case, the bit budget must also be speci�ed for each block. This approach is
globally suboptimal; however, it is easy to parallelize since the block allocations are
independent of each other.

Another approach is to use limited lookahead in conjunction with hybrid rate
control. Using a lookahead window of size W and a step size S � W , the procedure
is as follows:

1. Compute a bit allocation for the next W pictures not yet coded by computing
a reverse dynamic programming table.

2. Code the next S pictures using hybrid rate control, using the dynamic program-
ming table to recover from model errors.

3. Repeat Step 1.

This procedure can be thought of as performing lookahead with a sliding window.
Another approach similar to the hybrid rate control method is to use the allocation

computed from a given model and only recompute the allocation when the bu�er
fullness breach preset bu�er boundaries, such as 10% and 90% of bu�er fullness. As
with hybrid rate control, reverse dynamic programming can be used to speed up the
reallocation.

10.7 Related Work

A suite of heuristic methods is proposed in [62] to reduce the complexity as com-
pared to an optimal bit allocation based on the Viterbi algorithm. A Lagrangian
optimization technique is applied to recompute an allocation incrementally for each
picture, similar to technique described in Section 10.3.2. In addition, the Lagrangian
optimization is performed with a �nite window size. In essence, this method imple-
ments limited lookahead with a sliding window, similar to the technique described
in Section 10.6. The authors also describe the heuristic of recomputing a allocation
only when the bu�er reaches prede�ned threshold levels.

10.8. DISCUSSION 135

In this chapter, we have considered a simple hyperbolic model and a linear-spline
model of bit production. In [8], a bit-production model is derived for block-transform
coders based on rate-distortion theory and assuming a stationary Gaussian process.
The model is applied for VBR coding with motion JPEG and H.261 coders. In [10],
an adaptive tree-structured piecewise linear bit-production model is proposed and
applied to MPEG video coding using a one-pass encoding strategy. A cubic-spline
model of rate and distortion is proposed in [51, 50] for use with a gradient-based
rate-control algorithm [48, 49] that attempts to minimize MSE. The model takes into
account the temporal dependencies introduced by predictive coding.

10.8 Discussion

In this chapter, we have described an implementation of the bit allocation algorithms
of Chapters 6 and 7 within an MPEG-2 software encoder. In addition to evalu-
ating two types of bit-production models, we have developed robust techniques for
recovering from errors in the bit-production models. Since we can view coding depen-
dencies as contributing to errors in the (independent) bit-production models, these
error-recovery techniques e�ectively allow us to apply the bit-allocation framework
to predictive video coders.

136CHAPTER 10. IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Chapter 11

Extensions of the Lexicographic

Framework

Extensions

In Chapters 5 through 7, we laid a theoretical foundation for lexicographic bit
allocation, and in Chapter 10 we demonstrated that the framework works well in
practice. In this chapter, we provide evidence that the framework is also exible
and general by showing how it can be readily applied to other domains, extended to
perform statistical multiplexing, and used in a discrete optimization setting.

11.1 Applicability to Other Coding Domains

While the lexicographic bit allocation framework was originally motivated and for-
mulated for MPEG video coding, it can be applied equally well in other lossy coding
domains for which bu�er-constrained bit allocation is a valid problem and where a
perceptual distortion measure needs to be equalized among coding units. Obvious
examples include lossy image coding (such as speci�ed by the JPEG standard [65]),
where the coding unit would logically be a block of pixels, and audio coding, where
a coding unit might correspond to half a second of sampled sound.

In the original formulation, we identi�ed a perceptually-adjusted quantization
scale as the object of optimization. In general, any signal or combination of signals
that can be controlled to a�ect the bit production of the encoder can be used.

137

138 CHAPTER 11. EXTENSIONS OF THE LEXICOGRAPHIC FRAMEWORK

11.2 Multiplexing VBR Streams over a CBR

Channel

11.2.1 Introduction

There are many scenarios where multiple compressed video streams are to be trans-
mitted through a common channel. Two obvious examples are networked video and
digital video broadcasting. In these types of applications, the transmission channel is
typically bandwidth-limited. With the available bandwidth, we would like to provide
as much video programming as possible without having to sacri�ce quality.

An often-cited motivation for VBR video encoding is that VBR encoding can
potentially allow for the simultaneous transmission of more video streams over a
common channel than CBR encoding at the same quality level. The main reasoning
is provided through a concept called statistical multiplexing. Statistical multiplex-
ing is based on the observation that the bit rate of constant-quality video is highly
variable from frame to frame. In order to achieve image quality that is not less lexi-
cographically than that of a constant-quality VBR encoding, a CBR encoding would
require a bit rate that would correspond to the peak rate of the VBR encoding. Since
a VBR encoding typically requires the peak rate for only a small percentage of time,
it uses less bandwidth on average than a comparable CBR encoding. Furthermore,
assuming that the VBR streams have independent bit-rate characteristics, we can
transmit more VBR streams than CBR streams over a common channel with a low
probability that the combined instantaneous bit rate would exceed the channel rate.

As an example, consider a channel with a bandwidth of 100 Mbits/sec. Suppose
that for a desired level of quality, a peak rate of 10 Mbits/sec is required for coding
a suite of video programming. Using CBR encoding, up to 10 sequences can be
transmitted through the channel simultaneously. Since the peak rate is required
only a small percentage of the time, suppose that the actual average rate is only
5 Mbits/sec. Then using VBR encoding with a peak rate of 10 Mbits/sec and average
rate of 5 Mbits/sec, we can potentially transmit 20 simultaneous sequences. This
would correspond to a statistical multiplexing gain of 2.

In order to transmit the 20 VBR sequences simultaneously, however, the instan-
taneous bit rate for the 20 sequences must not exceed the channel capacity for an
extended period of time, which is determined by the amount of bu�ering present.
Assuming that the bit rates of the di�erent video streams are uncorrelated in time,
there is a low probability that the channel capacity would be exceeded in any time
interval. Quantifying and minimizing this probability are central themes of research.

The advantage of VBR encoding over CBR is illustrated through a simple example
in Figure 11.1. In this example, three VBR encodings are shown multiplexed using
at most the same bandwidth required by a CBR encoding of only two of the sources.

In the remainder of this section, we will show how our basic lexicographic bit
allocation framework can be readily extended to handle the multiplexing of multiple

11.2. MULTIPLEXING VBR STREAMS OVER A CBR CHANNEL 139

C
on

su
m

pt
io

n
B

an
dw

id
th

Program 1 Program 2

Time

(a) Multiplexing of 2 CBR Bitstreams

Program 2 Program 3Program 1

Time

B
an

dw
id

th
C

on
su

m
pt

io
n

(b) Multiplexing of 3 VBR Bitstreams

Figure 11.1: Example of how three VBR bitstreams can be multiplexed into the same
channel as two CBR bitstreams, for a statistical multiplexing gain of 1.5.

VBR bitstreams over a CBR channel. However, in contrast to typical statistical
multiplexing techniques, as exempli�ed in Figure 11.1, our method allocates bits to
the VBR bitstreams in a deterministic manner, making full use of all the available
channel bandwidth.

In related work, a bu�ered rate control scheme for multiplexing VBR sources
onto a CBR channel is described in [64]. This work is based on the rate-distortion
framework of [63] and [11] and uses a multiplexing model very similar to the one we
are about to present. As described in the paper, the basic allocation unit is taken to
be a GOP.

11.2.2 Multiplexing Model

We �rst elaborate a model for multiplexing multiple VBR bitstreams onto a CBR
channel. Since our bit allocation framework is deterministic and uses lookahead, we
assume that complete statistics of the multiple video sources are available to the bit
allocation algorithm. This requirement can be met by providing a centralized encoder
for the multiple sources, as depicted in Figure 11.2. In the �gure, M video sources
enter a encoder/multiplexer that produces a single multiplexed stream for transport
over a CBR channel. On the receiving end, a demultiplexer/decoder performs de-
multiplexing and decoding to reproduce the M video sequences. This multiplexing
model is similar to that proposed in [27].

This model is applicable to applications such as a video server where the video
sequences to be multiplexed are known in advance. An especially noteworthy case is
that of near-video-on-demand (NVOD), where a single sequence is to be transmitted

140 CHAPTER 11. EXTENSIONS OF THE LEXICOGRAPHIC FRAMEWORK

Encoder/Multiplexer

Input 1

Input 2

Input M

Demultiplexer/Decoder

Output 1

Output 2

Output M

CBR Channel

Figure 11.2: System for transmitting multiple sequences over a single channel.

Multiplexer

Buffer

CBR ChannelVBR EncoderInput 2

VBR EncoderInput 1

VBR EncoderInput M

Figure 11.3: Block diagram of encoder/multiplexer.

simultaneously with di�erent starting times. For example, 20 copies of a 2-hour long
movie can be multiplexed so that the viewing of the movie can begin every six minutes.

The encoder/multiplexer block is expanded in Figure 11.3. As shown, the input
video sources are encoded individually and time-division multiplexed and stored in a
bu�er before being output to the channel at a constant bit rate. The encoders are
synchronized so that they output the encoding of a picture at the same time every T

seconds. The multiplexer then concatenates the multiple encodings in order as shown
in Figure 11.4.

The demultiplexer/decoder block is expanded in Figure 11.5. The demulti-

Program 2 Program 3Program 1

Frame 2 Frame 1

Time

To Channel

Figure 11.4: Operation of multiplexer.

11.2. MULTIPLEXING VBR STREAMS OVER A CBR CHANNEL 141

Decoder

Decoder

Decoder

Output 1

Output 2

Output M

CBR Channel

Buffer

Demultiplexer

Figure 11.5: Block diagram of demultiplexer/decoder.

plexer/decoder mirrors the operation of the encoder/multiplexer. Incoming bits from
the channel are stored in a decoding bu�er. Every T seconds, the demultiplexer in-
stantaneously removes from the bu�er all bits needed to decode the next picture of all
sequences and routes the bitstreams to the appropriate decoders, which then output
the reconstructed video.

The multiplexing model described above resembles the operation of the single-
stream encoder and decoder system implied by the MPEG Video Bu�ering Veri�er.
If we view the di�erent input sources as providing \slices" of the same picture, the
resemblance would be very close indeed. This construction is intentional and allows
us to apply the lexicographic framework to allocate bits optimally to the multiple
VBR bitstreams.

11.2.3 Lexicographic Criterion

Before we can apply our lexicographic bit allocation framework, we need to de�ne
an optimality criterion. Since there are multiple sources, a lexicographical criterion
based on the encoding of a single video sequence is certainly not appropriate. We
need to consider the quality of all the sequences. A simple way to do this is to
consider the concatenation of all the sequences and de�ne a lexicographic criterion on
the concatenated video stream. By doing this, we are putting equal weight to each
picture of each video sequence. We can also consider extending the lexicographic
criterion to compare vectors of length M instead of scalar quantities. However, as we
will see, this is equivalent to just considering the concatenation of the M sequences.

142 CHAPTER 11. EXTENSIONS OF THE LEXICOGRAPHIC FRAMEWORK

11.2.4 Equivalence to CBR Bit Allocation

In this section, we show in the multiplexing model put forth above that the problem
of optimal bit allocation for multiple VBR streams reduces to a CBR bit allocation
problem for a single stream.

The multiplexing model follows the operation of the MPEG Video Bu�ering Ver-
i�er (VBV). We can view the bu�er, the demultiplexer, and the bank of M decoders
in Figure 11.5 as comprising a single VBV. The lexicographic framework of Chapter 5
can then be applied. Since the transmission channel operates at a constant bit rate,
the CBR constraints of Chapter 6 would apply.

For display interval i, we need to consider the quantization scales used to code
picture i of each of the M video sequences. Given a �xed bit budget for coding
picture i of each video sequence, it is easy to show that the same quantization scale
must be used to code picture i of all sequences to achieve lexicographic optimality; if
the quantization scales di�er, we can always shift bits around to reduce the highest
quantization scale by increasing a lower quantization scale. This result also holds if
we formulate the lexicographic criterion using vectors of quantization scales.

By using a combined bit-production model that is the sum of the bit-production
models for the individual sequences, we can then allocate bits jointly to the sequences
using the CBR algorithm of Chapter 6.

While the above technique guarantees that the bu�er in Figure 11.5 does not
overow or underow, it should be noted that doing so does not guarantee MPEG
VBV compliance for the individual sequences, except when the individual VBV bu�ers
are at least the size of the bu�er in Figure 11.5. A multiplexing model that explicitly
includes individual decoder bu�ers is certainly possible. However, analysis of this
situation is not as straightforward as the above model and remains an open problem.

11.3 Bit Allocation with a Discrete Set of Quan-

tizers

One of the assumptions made in Chapter 5 is that there is a continuous relationship
between quantization (distortion) and rate. As shown in Chapters 6 and 7, this as-
sumption facilitates rigorous analysis of the bu�er-constrained bit allocation problem
under the lexicographic optimality criterion and results in an elegant characteriza-
tion of the optimal solution. In order to apply directly the results of the analysis, we
need to construct a continuous model of the relationship between quantization and
rate. As demonstrated in Chapter 10, this can be done by gathering statistics during
multiple encoding passes and �tting these to a chosen functional form. Because of
the inevitable error in the modeling, some form of error recovery is needed, such as
the scheme proposed in Chapter 10.

In most practical coders, however, both the set of available quantizers and the

11.3. BIT ALLOCATION WITH A DISCRETE SET OF QUANTIZERS 143

number of bits produced are discrete and �nite. The problem of bu�er-constrained
bit allocation under these conditions have been examined by Ortega, Ramchandran,
and Vetterli [63]. They provide a dynamic programming algorithm to �nd a CBR
allocation that minimizes a sum-distortion metric. In this section, we briey describe
their algorithm and show how it can be readily extended to perform lexicographic
minimization.

11.3.1 Dynamic Programming

The dynamic programming algorithm described in [63] is based on the Viterbi al-
gorithm outlined in Section 2.3.3a for solving the budget-constrained bit allocation
problem. To handle the additional bu�er constraints, the bu�er fullness is recorded
at each state instead of the total number of bits used so far; for CBR coding, the
number of bits used can be determined from the bu�er fullness. We can use the
recurrence equations in Section 5.4.1 to update the bu�er fullness and create a trellis.
Instead of pruning states that exceed a given bit budget, we instead prune states that
overow or underow the bu�er. At each stage in the construction of the trellis, we
compare the current sum distortion associated with edges that enter a new state and
record the minimum distortion along with a pointer to the source state. At the last
stage of trellis construction, we identify the state with the minimum sum distortion
and backtrack through the stored pointers to recover an optimal bit allocation. Since
an integral number of bits is generated, the maximum number of states that can be
generated at each stage is equal to the size of the bu�er. Therefore, with M quantiz-
ers, N pictures, and a bu�er of size B, the dynamic programming algorithm of [63]
requires O(MBN) time to compute an optimal bit allocation.

11.3.2 Lexicographic Extension

It is straightforward to modify the dynamic programming algorithm of [63] to perform
lexicographic minimization. Instead of keeping track of a minimum sum distortion
value, a scalar, we keep track of a lexicographic minimum, a vector. A naive imple-
mentation would store a vector of length k for a state at the kth stage in the trellis,
where the vector records the quantizers used for coding the �rst k pictures. However,
since the set of quantizers is �nite and we are only concerned with the number of times
a given quantizer is used and not with the order in which the quantizers are used,
we only need to store M values at each state, where M is the number of quantizers.
Each of these M values count the number of times a given quantizer has been used
to code the �rst k pictures in an optimal path ending at the given state. Given two
vectors of quantizer counts, a lexicographic comparison can be performed in O(M)
time. With this modi�cation, we can �nd a lexicographically optimal bit allocation
in O(M2BN) time.

144 CHAPTER 11. EXTENSIONS OF THE LEXICOGRAPHIC FRAMEWORK

Bibliography

[1] V. R. Algazi, Y. Kato, M. Miyahara, and K. Kotani. Comparison of image coding
techniques with a picture quality scale. In Proceedings of SPIE, Applications of

Digital Image Processing XV, pages 396{405, San Diego, CA, July 1992.

[2] V. Bhaskaran and K. Konstantinides. Image and Video Compression Standards.
Kluwer Academic Publishers, Boston, MA, 1995.

[3] M. Bierling. Displacement estimation by hierarchical blockmatching. SPIE Vol.

1001 Visual Communications and Image Processing, pages 942{951, 1988.

[4] CCIR Recommendation 601. Encoding parameters of digital television for stu-
dios, 1982.

[5] CCITT. Description of reference model 8 (RM8), June 1989. Study Group
XV|Document 525.

[6] CCITT. Video codec for audiovisual services at p � 64 kbit/s, August 1990.
Study Group XV|Report R 37.

[7] M. H. Chan, Y. B. Yu, and A. G. Constantinides. Variable size block match-
ing motion compensation with applications to video coding. IEE proceedings,
137(4):205{212, 1990.

[8] J.-J. Chen and H.-M. Hang. A transform video coder source model and its
application. In Proceedings ICIP'94, volume 2, pages 967{971, 1994.

[9] M. C. Chen and Jr. A. N. Willson. Rate-distortion optimal motion estimation
algorithm for video coding. In Proceedings 1996 International Conference on

Acoustics, Speech and Signal Processing, volume 4, pages 2096{2099, Atlanta,
GA, May 1996.

[10] J.-B. Cheng and H.-M. Hang. Adaptive piecewise linear bits estimation model
for MPEG based video coding. In Proceedings ICIP'95, volume 2, pages 551{554,
1995.

145

146 BIBLIOGRAPHY

[11] J. Choi and D. Park. A stable feedback control of the bu�er state using the
controlled lagrange multiplier method. IEEE Transactions on Image Processing,
3(5):546{557, September 1994.

[12] P. A. Chou, T. Lookabaugh, and R. M. Gray. Entropy-constrained vector quan-
tization. IEEE Transactions on Signal Processing, 37(1):31{42, January 1989.

[13] K. W. Chun, K. W. Lim, H.D. Cho, and J. B. Ra. An adaptive perceptual quanti-
zation algorithm for video coding. IEEE Transactions on Consumer Electronics,
39(3):555{558, August 1993.

[14] T.-Y. Chung, K.-H. Jung, Y.-N. Oh, and D.-H. Shin. Quantization control for
improvement of image quality compatible with MPEG2. IEEE Transactions on

Consumer Electronics, 40(4):821{825, November 1994.

[15] W. C. Chung, F. Kossentini, and M. J. T. Smith. A new approach to scalable
video coding. In Proceedings 1995 Data Compression Conference, pages 381{390,
Snowbird, UT, March 1995. IEEE Computer Society Press.

[16] G. Cicalini, L Favalli, and A. Mecocci. Dynamic psychovisual bit allocation for
improved quality bit rate in MPEG-2 transmission over ATM links. Electronic

Letters, 32(4):370{371, February 1996.

[17] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, New York, 1991.

[18] W. Ding. Joint encoder and channel rate control of VBR video over ATM net-
works, April 1996. preprint.

[19] W. Ding and B. Liu. Rate control of MPEG video coding and recording by rate-
quantization modeling. IEEE Transactions on Circuits and Systems for Video

Technology, 6(1):12{20, February 1996.

[20] F. Dufaux and M. Kunt. Multigrid block matching motion estimation with an
adaptive local mesh re�nement. SPIE Vol. 1818 Visual Communications and

Image Processing, pages 97{109, 1992.

[21] H. Everett. Generalized langrange multiplier method for solving problems of
optimum allocation of resources. Operation Research, 11:399{417, 1963.

[22] G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61:268{278, March
1973.

[23] J. E. Fowler and S. C. Ahalt. Di�erential vector quantization of real-time video.
In Proceedings 1994 Data Compression Conference, pages 205{214, Snowbird,
UT, March 1994. IEEE Computer Society Press.

BIBLIOGRAPHY 147

[24] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer
Academic Press, 1992.

[25] J. B. Ghosh. Siting facilities along a line when equity of service is desirable.
Journal of Operation Research Society, 47(3):435{445, March 1996.

[26] B. G. Haskell, A. Puri, and A. N. Netravali. Digital Video: An Introduction to

MPEG{2. Chapman & Hall, New York, NY, 1997.

[27] B. G. Haskell and A. R. Reibman. Multiplexing of variable rate encoded streams.
IEEE Transactions on Circuits and Systems for Video Technology, 4(4):417{424,
August 1994.

[28] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural

Computation. Addison-Wesley, Redwood City, CA, 1991.

[29] D. T. Hoang, P. M. Long, and J. S. Vitter. Explicit bit-minimization for motion-
compensated video coding. In Proceedings 1994 Data Compression Conference,
pages 175{184, Snowbird, UT, March 1994. IEEE Computer Society Press.

[30] D. T. Hoang, P. M. Long, and J. S. Vitter. Rate-distortion optimizations for
motion estimation in low-bitrate video coding. Technical Report CS-1995-16,
Duke University, Dept. of Computer Science, 1995.

[31] D. T. Hoang, P. M. Long, and J. S. Vitter. E�cient cost measures for motion
compensation at low bit rates. In Proceedings 1996 Data Compression Confer-

ence, pages 102{111, Snowbird, Utah, March 1996.

[32] D. T. Hoang, P. M. Long, and J. S. Vitter. Rate-distortion optimizations for mo-
tion estimation in low-bit-rate video coding. In V. Bhaskaran, F. Sijstermans,
and S. Panchanathan, editors, Digital Video Compression: Algorithms and Tech-

nologies 1996, pages 18{27, 1996. Proc. SPIE 2668.

[33] C.-Y. Hsu, A. Ortega, and A. R. Reibman. Joint selection of source and channel
rate for VBR video transmission under ATM policing constraints. IEEE Journal

on Selected Areas in Communications, 1997. To appear.

[34] A. C. Hung. PVRG-p64 codec 1.1, 1993.
URL: ftp://havefun.stanford.edu/pub/p64.

[35] T. Ibaraki and N. Katoh. Resource Allocation Problems. MIT Press, Cambridge,
MA, 1988.

[36] ISO. Cd11172-2: Coding of moving pictures and associated audio for digital
storage media at up to about 1.5 mbits/s, November 1991.

148 BIBLIOGRAPHY

[37] ISO-IEC/JTC1/SC29/WG11/N0400. Test model 5, April 1993. Document AVC-
491b, Version 2.

[38] ISO-IEC/JTC1/SC29/WG11/N0802. Generic coding of moving pictures and
associated audio information: Video, November 1994. MPEG Draft Recommen-
dation ITU-T H.262, ISO/IEC 13818-2.

[39] J. R. Jain and A. K. Jain. Displacement measurement and its application in
interframe coding. IEEE Transactions on Communications, COM-29(12):1799{
1808, 1981.

[40] N. S. Jayant, J. Johnson, and R. Safranek. Signal compression based on models
of human perception. Proceedings of the IEEE, 81:1385{1422, October 1993.

[41] R. S. Klein, H. Luss, and D. R. Smith. Lexicographic minimax algorithm for mul-
tiperiod resource allocation. Mathematical Programming, 55(2):213{234, June
1992.

[42] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro. Motion-compensated
interframe coding for video conferencing. In Proceedings IEEE National Telecom-

munication Conference, volume 4, pages G5.3.1{G5.3.5, November 1981.

[43] D. T. Lee and Franco P. Preparata. Euclidean Shortest Paths in the Presence of
Rectilinear Barriers. Networks, 14(3):393{410, 1984.

[44] D. J. LeGall. MPEG: A video compression standard for multimedia applications.
Communications of the ACM, 34(4):46{58, April 1991.

[45] H. Li, A. Lundmark, and R. Forchheimer. Image sequence coding at very low bi-
trates: A review. IEEE Transactions on Image Processing, 3(5):589{609, Septem-
ber 1994.

[46] D. W. Lin and J.-J. Chen. E�cient bit allocation under multiple constraints on
cumulated rates for delayed video coding. In J. Biemond and E. J. Delp, editors,
Visual Communications and Image Processing '97, pages 1370{1381, February
1997. Proc. SPIE 3024.

[47] F.-H. Lin and R. M. Mersereau. An optimization of MPEG to maximize subjec-
tive quality. In Proceedings ICIP'95, volume 2, pages 547{550, 1995.

[48] L.-J. Lin, A. Ortega, and C.-C. J. Kuo. Gradient-based bu�er control techniques
for MPEG. In Proceedings VCIP'95, Taipei, Taiwan, May 1995.

[49] L.-J. Lin, A. Ortega, and C.-C. J. Kuo. A gradient-based rate control algorithm
with applications to MPEG video. In Proceedings ICIP'95, Washington, D.C.,
October 1995.

BIBLIOGRAPHY 149

[50] L.-J. Lin, A. Ortega, and C.-C. J. Kuo. Cubic spline approximation of rate
and distortion functions for MPEG video. In V. Bhaskaran, F. Sijstermans, and
S. Panchanathan, editors, Digital Video Compression: Algorithms and Technolo-

gies 1996, pages 169{180, 1996. Proc. SPIE 2668.

[51] L.-J. Lin, A. Ortega, and C.-C. J. Kuo. Rate control using spline-interpolated
R-D characteristics. In Proceedings VCIP'96, 1996.

[52] M. Liou. Overview of the p� 64 kbit/s video coding standard. Communications

of the ACM, 34(4):60{63, April 1991.

[53] M. Luptacik and F. Turnovec. Lexicographic geometric programming. European
Journal of Operational Research, 51(2):259{269, March 1991.

[54] H. Luss and S. K. Gupta. Allocation of e�ort resources among competitive
activities. Operations Research, 23:360{366, 1975.

[55] E. Marchi and J. A. Oviedo. Lexicographic optimality in the multiple objective
linear programming. The nucleolar solution. European Journal of Operational

Research, 57(3):355{359, March 1992.

[56] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Ap-

plications. Academic Press, 1979.

[57] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, editors. MPEG

Video Compression Standard. Chapman & Hall, New York, NY, 1997.

[58] MPEG Software Simulation Group. MPEG-2 encoder/decoder version 1.1a, July
4, 1994. URL: http://www.mpeg.org/MSSG.

[59] A. N. Netravali and B. G. Haskell. Digital Pictures: Representation, Compres-

sion, and Standards. Plenum Press, second edition, 1995.

[60] W. Ogryczak. On the lexicographic minimax approach to location{allocation
problems. Technical Report IS - MG 94/22, Universit�e Libre de Bruxelles, De-
cember 1994.

[61] L. A. Olzak and J. P. Thomas. Seeing spatial patterns. In K. Bo�, L. Kaufman,
and J. Thomas, editors, Handbook of Perception and Human Performance. Wiley,
1986.

[62] A. Ortega, K. Ramchandran, and M. Vetterli. Optimal bu�er-constrained source
quantization and fast approximations. In Proceedings 1992 International Sym-

posium on Circuits and Systems, pages 192{195, San Diego, CA, May 1992.

150 BIBLIOGRAPHY

[63] A. Ortega, K. Ramchandran, and M. Vetterli. Optimal trellis-based bu�ered
compression and fast approximations. IEEE Transactions on Image Processing,
3(1):26{40, January 1994.

[64] D. Park and K. Kim. Bu�ered rate-distortion control of MPEG compressed video
channel for DBS applications. In Proceedings IEEE Internation Conference on

Communications, volume 3, pages 1751{1755, 1995.

[65] W.B. Pennebaker and J. L. Mitchell. JPEG|Still Image Data Compression

Standard. Van Nostrand Reinhold, New York, 1993.

[66] M. R. Pickering and J. F. Arnold. A perceptually e�cient VBR rate control
algorithm. IEEE Transactions on Image Processing, 3(5):527{532, September
1994.

[67] A. Premoli and W. Ukovich. Piecewise lexicographic programming. A new model
for practical decision problems. Journal of Optimization Theory and Applica-

tions, 72(1):113{142, January 1992.

[68] F. P. Preparata and J. S. Vitter. A simpli�ed technique for hidden-line elimina-
tion in terrains. International Journal of Computational Geometry & Applica-

tions, 3(2):167{181, 1993.

[69] A. Puri and R. Aravind. Motion-compensated video coding with adaptive per-
ceptual quantization. IEEE Transactions on Circuits and Systems for Video

Technology, 1(4):351{361, December 1991.

[70] A. Puri and H.-M. Hang. Adaptive schemes for motion-compensated coding.
SPIE Vol. 1001 Visual Communications and Image Processing, pages 925{935,
1988.

[71] A. Puri, H.-M. Hang, and D. L. Schilling. An e�cient block-matching algorithm
for motion compensated coding. In Proceedings 1987 International Conference

on Acoustics, Speech and Signal Processing, pages 25.4.1{25.4.4, 1987.

[72] K. Ramchandran, A. Ortega, and M. Vetterli. Bit allocation for dependent
quantization with applications to MPEG video coders. In Proceedings 1993 In-

ternational Conference on Acoustics, Speech and Signal Processing, volume 5,
pages 381{384, 1993.

[73] K. Ramchandran, A. Ortega, and M. Vetterli. Bit allocation for dependent
quantization with applications to multiresolution and MPEG video coders. IEEE
Transactions on Image Processing, 3(5):533{545, September 1994.

[74] A. R. Reibman and B. G. Haskell. Constraints on variable bit-rate video for ATM
networks. IEEE Transactions on Circuits and Systems for Video Technology,
2(4):361{372, December 1992.

BIBLIOGRAPHY 151

[75] J. Ribas-Corbera and D. L. Neuho�. Optimal bit allocations for lossless video
coders: Motion vectors vs. di�erence frames. In Proceedings ICIP'95, volume 3,
pages 180{183, 1995.

[76] J. D. Salehi, Z.-L. Zhang, J. F. Kurose, and D. Towsley. Supporting stored video:
Reducing rate variability and end-to-end resource requirements through optimal
smoothing. In Proceedings 1996 ACM International Conference on Measurement

and Modeling of Computer Systems (ACM SIGMETRICS), May 1996.

[77] G. M. Schuster and A. K. Katsaggelos. Rate-Distortion Based Video Compres-

sion: Optimal Video Frame Compression and Object Boundary Encoding. Kluwer
Academic Publishers, Boston, MA, 1997.

[78] C. E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379{423, July 1948.

[79] Y. Shoham and A. Gersho. E�cient bit allocation for an arbitrary set of quantiz-
ers. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(9):1445{
1453, September 1988.

[80] R. Srinivasan and K. R. Rao. Predictive coding based on e�cient motion esti-
mation. In Proceedings International Conference on Communications, volume 1,
pages 521{526, 1988.

[81] K. M. Uz, J. M. Shapiro, and M. Czigler. Optimal bit allocation in the presence of
quantizer feedback. In Proceedings 1993 International Conference on Acoustics,

Speech and Signal Processing, volume 5, pages 385{388, 1993.

[82] E. Viscito and C. Gonzales. A video compression algorithm with adaptive bit
allocation and quantization. In SPIE Proceedings: Visual Communications and

Image Processing, volume 1605, pages 58{72, November 1991.

[83] A. J. Viterbi and J. K. Omura. Principles of Digital Communication and Coding.
McGraw-Hill, 1979.

[84] X. Wang, S. M. Shende, and K. Sayood. Online compression of video sequences
using adaptive vq codebooks. In Proceedings 1994 Data Compression Conference,
pages 185{194, Snowbird, UT, March 1994. IEEE Computer Society Press.

[85] S. J. P. Westen, R. L. Lagendijk, and J. Biemond. Perceptual optimization of
image coding algorithms. In Proceedings ICIP'95, volume 2, pages 69{72, 1995.

[86] B. Widrow and M. E. Ho�. Adaptive switching circuits. In 1960 IRE WESCON

Convention Record, volume 4, pages 96{104, 1960.

152 BIBLIOGRAPHY

[87] T. Wiegand, M. Lightstone, D. Mukherjee, T. G. Campbell, and S. K. Mitra.
Rate-distortion optimized mode selection for very low bit rate video coding and
the emerging H.263 standard. IEEE Transactions on Circuits and Systems for

Video Technology, 6(2):182{190, April 1996.

[88] X. Zhang, M. C. Cavenor, and J. F. Arnold. Adaptive quadtree coding of motion-
compensated image sequences for use on the broadband ISDN. IEEE Transac-

tions on Circuits and Systems for Video Technology, 3(3):222{229, 1993.

Appendix A

Appendix

153

