
Lecture Notes on Algorithm Analysis

and Computational Complexity

(Fourth Edition)

Ian Parberry1

Department of Computer Sciences
University of North Texas

December 2001

1Author’s address: Department of Computer Sciences, University of North Texas, P.O. Box 311366, Denton, TX
76203–1366, U.S.A. Electronic mail: ian@cs.unt.edu.

License Agreement
This work is copyright Ian Parberry. All rights reserved. The author offers this work, retail value US$20,
free of charge under the following conditions:

No part of this work may be made available on a public forum (including, but not limited to a web
page, ftp site, bulletin board, or internet news group) without the written permission of the author.

●

No part of this work may be rented, leased, or offered for sale commercially in any form or by any
means, either print, electronic, or otherwise, without written permission of the author.

●

If you wish to provide access to this work in either print or electronic form, you may do so by
providing a link to, and/or listing the URL for the online version of this license agreement:
http://hercule.csci.unt.edu/ian/books/free/license.html. You may not link directly to the PDF file.

●

All printed versions of any or all parts of this work must include this license agreement. Receipt of
a printed copy of this work implies acceptance of the terms of this license agreement. If you have
received a printed copy of this work and do not accept the terms of this license agreement, please
destroy your copy by having it recycled in the most appropriate manner available to you.

●

You may download a single copy of this work. You may make as many copies as you wish for
your own personal use. You may not give a copy to any other person unless that person has read,
understood, and agreed to the terms of this license agreement.

●

You undertake to donate a reasonable amount of your time or money to the charity of your choice
as soon as your personal circumstances allow you to do so. The author requests that you make a
cash donation to The National Multiple Sclerosis Society in the following amount for each work
that you receive:

$5 if you are a student,❍

$10 if you are a faculty member of a college, university, or school,❍

$20 if you are employed full-time in the computer industry.❍

Faculty, if you wish to use this work in your classroom, you are requested to:

encourage your students to make individual donations, or❍

make a lump-sum donation on behalf of your class.❍

If you have a credit card, you may place your donation online at
https://www.nationalmssociety.org/donate/donate.asp. Otherwise, donations may be sent to:

National Multiple Sclerosis Society - Lone Star Chapter
8111 North Stadium Drive
Houston, Texas 77054

If you restrict your donation to the National MS Society's targeted research campaign, 100% of
your money will be directed to fund the latest research to find a cure for MS.

For the story of Ian Parberry's experience with Multiple Sclerosis, see
http://www.thirdhemisphere.com/ms.

●

http://hercule.csci.unt.edu/ian
http://hercule.csci.unt.edu/ian/books/free/
http://www.nationalmssociety.org/
https://www.nationalmssociety.org/donate/donate.asp
http://www.thirdhemisphere.com/ms

Preface

These lecture notes are almost exact copies of the overhead projector transparencies that I use in my CSCI
4450 course (Algorithm Analysis and Complexity Theory) at the University of North Texas. The material
comes from

• textbooks on algorithm design and analysis,
• textbooks on other subjects,
• research monographs,
• papers in research journals and conferences, and
• my own knowledge and experience.

Be forewarned, this is not a textbook, and is not designed to be read like a textbook. To get the best use
out of it you must attend my lectures.

Students entering this course are expected to be able to program in some procedural programming language
such as C or C++, and to be able to deal with discrete mathematics. Some familiarity with basic data
structures and algorithm analysis techniques is also assumed. For those students who are a little rusty, I
have included some basic material on discrete mathematics and data structures, mainly at the start of the
course, partially scattered throughout.

Why did I take the time to prepare these lecture notes? I have been teaching this course (or courses very
much like it) at the undergraduate and graduate level since 1985. Every time I teach it I take the time to
improve my notes and add new material. In Spring Semester 1992 I decided that it was time to start doing
this electronically rather than, as I had done up until then, using handwritten and xerox copied notes that
I transcribed onto the chalkboard during class.

This allows me to teach using slides, which have many advantages:

• They are readable, unlike my handwriting.
• I can spend more class time talking than writing.
• I can demonstrate more complicated examples.
• I can use more sophisticated graphics (there are 219 figures).

Students normally hate slides because they can never write down everything that is on them. I decided to
avoid this problem by preparing these lecture notes directly from the same source files as the slides. That
way you don’t have to write as much as you would have if I had used the chalkboard, and so you can spend
more time thinking and asking questions. You can also look over the material ahead of time.

To get the most out of this course, I recommend that you:

• Spend half an hour to an hour looking over the notes before each class.

iii

iv PREFACE

• Attend class. If you think you understand the material without attending class, you are probably kidding
yourself. Yes, I do expect you to understand the details, not just the principles.

• Spend an hour or two after each class reading the notes, the textbook, and any supplementary texts
you can find.

• Attempt the ungraded exercises.
• Consult me or my teaching assistant if there is anything you don’t understand.

The textbook is usually chosen by consensus of the faculty who are in the running to teach this course. Thus,
it does not necessarily meet with my complete approval. Even if I were able to choose the text myself, there
does not exist a single text that meets the needs of all students. I don’t believe in following a text section
by section since some texts do better jobs in certain areas than others. The text should therefore be viewed
as being supplementary to the lecture notes, rather than vice-versa.

Algorithms Course Notes

Introduction

Ian Parberry∗

Fall 2001

Summary

• What is “algorithm analysis”?
• What is “complexity theory”?
• What use are they?

The Game of Chess

According to legend, when Grand Vizier Sissa Ben
Dahir invented chess, King Shirham of India was so
taken with the game that he asked him to name his
reward.

The vizier asked for

• One grain of wheat on the first square of the
chessboard

• Two grains of wheat on the second square
• Four grains on the third square
• Eight grains on the fourth square
• etc.

How large was his reward?

How many grains of wheat?

63∑

i=0

2i = 264 − 1 = 1.8× 1019.

A bushel of wheat contains 5× 106 grains.
∗Copyright c© Ian Parberry, 1992–2001.

Therefore he asked for 3.7× 1012 bushels.

The price of wheat futures is around $2.50 per
bushel.

Therefore, he asked for $9.25 × 1012 = $92 trillion
at current prices.

The Time Travelling Investor

A time traveller invests $1000 at 8% interest com-
pounded annually. How much money does he/she
have if he/she travels 100 years into the future? 200
years? 1000 years?

Years Amount
100 $2.9× 106

200 $4.8× 109

300 $1.1× 1013

400 $2.3× 1016

500 $5.1× 1019

1000 $2.6× 1036

The Chinese Room

Searle (1980): Cognition cannot be the result of a
formal program.

Searle’s argument: a computer can compute some-
thing without really understanding it.

Scenario: Chinese room = person + look-up table

The Chinese room passes the Turing test, yet it has
no “understanding” of Chinese.

Searle’s conclusion: A symbol-processing program
cannot truly understand.

Analysis of the Chinese Room

1

How much space would a look-up table for Chinese
take?

A typical person can remember seven objects simul-
taneously (Miller, 1956). Any look-up table must
contain queries of the form:

“Which is the largest, a <noun>1, a
<noun>2, a <noun>3, a <noun>4, a <noun>5,
a <noun>6, or a <noun>7?”,

There are at least 100 commonly used nouns. There-
fore there are at least 100 · 99 · 98 · 97 · 96 · 95 · 94 =
8× 1013 queries.

100 Common Nouns

aardvark duck lizard sardine
ant eagle llama scorpion
antelope eel lobster sea lion
bear ferret marmoset seahorse
beaver finch monkey seal
bee fly mosquito shark
beetle fox moth sheep
buffalo frog mouse shrimp
butterfly gerbil newt skunk
cat gibbon octopus slug
caterpillar giraffe orang-utang snail
centipede gnat ostrich snake
chicken goat otter spider
chimpanzee goose owl squirrel
chipmunk gorilla panda starfish
cicada guinea pig panther swan
cockroach hamster penguin tiger
cow horse pig toad
coyote hummingbird possum tortoise
cricket hyena puma turtle
crocodile jaguar rabbit wasp
deer jellyfish racoon weasel
dog kangaroo rat whale
dolphin koala rhinocerous wolf
donkey lion salamander zebra

Size of the Look-up Table

The Science Citation Index:

• 215 characters per line
• 275 lines per page
• 1000 pages per inch

Our look-up table would require 1.45 × 108 inches
= 2, 300 miles of paper = a cube 200 feet on a side.

The Look-up Table and the Great Pyramid

Computerizing the Look-up Table

Use a large array of small disks. Each drive:

• Capacity 100× 109 characters
• Volume 100 cubic inches
• Cost $100

Therefore, 8 × 1013 queries at 100 characters per
query:

• 8,000TB = 80, 000 disk drives
• cost $8M at $1 per GB
• volume over 55K cubic feet (a cube 38 feet on
a side)

Extrapolating the Figures

Our queries are very simple. Suppose we use 1400
nouns (the number of concrete nouns in the Unix
spell-checking dictionary), and 9 nouns per query
(matches the highest human ability). The look-up
table would require

• 14009 = 2× 1028 queries, 2× 1030 bytes
• a stack of paper 1010 light years high [N.B. the
nearest spiral galaxy (Andromeda) is 2.1 × 106

light years away, and the Universe is at most
1.5× 1010 light years across.]

• 2×1019 hard drives (a cube 198 miles on a side)
• if each bit could be stored on a single hydrogen
atom, 1031 use almost seventeen tons of hydro-
gen

Summary

We have seen three examples where cost increases
exponentially:

2

• Chess: cost for an n × n chessboard grows pro-
portionally to 2n2

.
• Investor: return for n years of time travel is
proportional to 1000 × 1.08n (for n centuries,
1000× 2200n).

• Look-up table: cost for an n-term query is pro-
portional to 1400n.

Algorithm Analysis and Complexity Theory

Computational complexity theory = the study of the
cost of solving interesting problems. Measure the
amount of resources needed.

• time
• space

Two aspects:

• Upper bounds: give a fast algorithm
• Lower bounds: no algorithm is faster

Algorithm analysis = analysis of resource usage of
given algorithms

Exponential resource use is bad. It is best to

• Make resource usage a polynomial
• Make that polynomial as small as possible

Polynomial Good
Exponential Bad

Linear

Quadratic

Cubic

Exponential

Factorial

Y x 103

X
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

50.00 100.00 150.00

Motivation

Why study this subject?

• Efficient algorithms lead to efficient programs.
• Efficient programs sell better.
• Efficient programs make better use of hardware.
• Programmers who write efficient programs are
more marketable than those who don’t!

Efficient Programs

Factors influencing program efficiency

• Problem being solved
• Programming language
• Compiler
• Computer hardware
• Programmer ability
• Programmer effectiveness
• Algorithm

Objectives

What will you get from this course?

• Methods for analyzing algorithmic efficiency
• A toolbox of standard algorithmic techniques
• A toolbox of standard algorithms

3

J

Just when YOU
thought it was
safe to take CS
courses...

Discrete Mathematics

What’s this
class like?

CSCI 4450

Welcome To
CSCI 4450

Assigned Reading

CLR, Section 1.1

POA, Preface and Chapter 1.

http://hercule.csci.unt.edu/csci4450

4

Algorithms Course Notes

Mathematical Induction

Ian Parberry∗

Fall 2001

Summary

Mathematical induction:

• versatile proof technique
• various forms
• application to many types of problem

Induction with People

. .
.

Scenario 1:

Fact 1: The first person is Greek.

Fact 2: Pick any person in the line. If they are
Greek, then the next person is Greek too.

Question: Are they all Greek?

Scenario 2:

Fact: The first person is Ukranian.

Question: Are they all Ukranian?

Scenario 3:
∗Copyright c© Ian Parberry, 1992–2001.

Fact: Pick any person in the line. If they are Nige-
rian, then the next person is Nigerian too.

Question: Are they all Nigerian?

Scenario 4:

Fact 1: The first person is Indonesian.

Fact 2: Pick any person in the line. If all the people
up to that point are Indonesian, then the next person
is Indonesian too.

Question: Are they all Indonesian?

Mathematical Induction

. .
.

123456789
. .

.

To prove that a property holds for all IN, prove:

Fact 1: The property holds for 1.

Fact 2: For all n ≥ 1, if the property holds for n,
then it holds for n+ 1.

Alternatives

There are many alternative ways of doing this:

1

1. The property holds for 1.
2. For all n ≥ 2, if the property holds for n − 1,
then it holds for n.

There may have to be more base cases:

1. The property holds for 1, 2, 3.
2. For all n ≥ 3, if the property holds for n, then
it holds for n+ 1.

Strong induction:

1. The property holds for 1.
2. For all n ≥ 1, if the property holds for all 1 ≤

m ≤ n, then it holds for n+ 1.

Example of Induction

An identity due to Gauss (1796, aged 9):

Claim: For all n ∈ IN,
1 + 2 + · · ·+ n = n(n+ 1)/2.

First: Prove the property holds for n = 1.

1 = 1(1 + 1)/2

Second: Prove that if the property holds for n, then
the property holds for n+ 1.

Let S(n) denote 1 + 2 + · · ·+ n.

Assume: S(n) = n(n+ 1)/2 (the induction hypoth-
esis).
Required to Prove:

S(n+ 1) = (n+ 1)(n+ 2)/2.

S(n+ 1)
= S(n) + (n+ 1)
= n(n+ 1)/2 + (n+ 1) (by ind. hyp.)
= n2/2 + n/2 + n+ 1
= (n2 + 3n+ 2)/2
= (n+ 1)(n+ 2)/2

Second Example

Claim: For all n ∈ IN, if 1 + x > 0, then

(1 + x)n ≥ 1 + nx

First: Prove the property holds for n = 1.
Both sides of the equation are equal to 1 + x.

Second: Prove that if the property holds for n, then
the property holds for n+ 1.

Assume: (1 + x)n ≥ 1 + nx.
Required to Prove:

(1 + x)n+1 ≥ 1 + (n+ 1)x.

(1 + x)n+1

= (1 + x)(1 + x)n

≥ (1 + x)(1 + nx) (by ind. hyp.)
= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x (since nx2 ≥ 0)

More Complicated Example

Solve

S(n) =
n∑

i=1

(5i+ 3)

This can be solved analytically, but it illustrates the
technique.

Guess: S(n) = an2 + bn+ c for some a, b, c ∈ IR.

Base: S(1) = 8, hence guess is true provided a+ b+
c = 8.

Inductive Step: Assume: S(n) = an2 + bn+ c.
Required to prove: S(n+1) = a(n+1)2+b(n+1)+c.

Now,

S(n+ 1) = S(n) + 5(n+ 1) + 3

2

= (an2 + bn+ c) + 5(n+ 1) + 3
= an2 + (b+ 5)n+ c+ 8

We want

an2 + (b+ 5)n+ c+ 8
= a(n+ 1)2 + b(n+ 1) + c

= an2 + (2a+ b)n+ (a+ b+ c)

Each pair of coefficients has to be the same.

an + (b+5)n + (c+8) = an + (2a+b)n + (a+b+c)2 2

The first coefficient tells us nothing.

The second coefficient tells us b+5 = 2a+b, therefore
a = 2.5.

We know a+ b+ c = 8 (from the Base), so therefore
(looking at the third coefficient), c = 0.

Since we now know a = 2.5, c = 0, and a+b+c = 8,
we can deduce that b = 5.5.

Therefore S(n) = 2.5n2 + 5.5n = n(5n+ 11)/2.

Complete Binary Trees

Claim: A complete binary tree with k levels has ex-
actly 2k − 1 nodes.

Proof: Proof by induction on number of levels. The
claim is true for k = 1, since a complete binary tree
with one level consists of a single node.

Suppose a complete binary tree with k levels has 2k−
1 nodes. We are required to prove that a complete
binary tree with k + 1 levels has 2k+1 − 1 nodes.

A complete binary tree with k+1 levels consists of a
root plus two trees with k levels. Therefore, by the
induction hypothesis the total number of nodes is

1 + 2(2k − 1) = 2k+1 − 1

as required.

Tree with k
levels

Tree with k
levels

Another Example

Prove that for all n ≥ 1,

n∑
i=1

1/2i < 1.

The claim is clearly true for n = 1. Now assume
that the claim is true for n.

n+1∑
i=1

1/2i

=
1
2
+
1
4
+
1
8
+ · · ·+ 1

2n+1

=
1
2
+
1
2

(
1
2
+
1
4
+
1
8
+ · · ·+ 1

2n

)

=
1
2
+
1
2

n∑
i=1

1/2i

<
1
2
+
1
2
· 1 (by ind. hyp.)

= 1

A Geometric Example

Prove that any set of regions defined by n lines in the
plane can be coloured with only 2 colours so that no
two regions that share an edge have the same colour.

3

L

Proof by induction on n. True for n = 1 (colour one
side light, the other side dark). Now suppose that
the hypothesis is true for n lines.

Suppose we are given n + 1 lines in the plane. Re-
move one of the lines L, and colour the remaining
regions with 2 colours (which can be done, by the in-
duction hypothesis). Replace L. Reverse all of the
colours on one side of the line.

Consider two regions that have a line in common. If
that line is not L, then by the induction hypothe-
sis, the two regions have different colours (either the
same as before or reversed). If that line is L, then
the two regions formed a single region before L was
replaced. Since we reversed colours on one side of L
only, they now have different colours.

A Puzzle Example

A triomino is an L-shaped figure formed by the jux-
taposition of three unit squares.

An arrangement of triominoes is a tiling of a shape
if it covers the shape exactly without overlap. Prove
by induction on n ≥ 1 that any 2n × 2n grid that
is missing one square can be tiled with triominoes,
regardless of where the missing square is.

Proof by induction on n. True for n = 1:

Now suppose that the hypothesis is true for n. Sup-
pose we have a 2n+1 × 2n+1 grid with one square
missing.

NW NE

SW SE

Divide the grid into four 2n × 2n subgrids. Suppose
the missing square is in the NE subgrid. Remove
the squares closest to the center of the grid from the
other three subgrids. By the induction hypothesis,
all four subgrids can be tiled. The three removed
squares in the NW, SW, SE subgrids can be tiled
with a single triomino.

A Combinatorial Example

A Gray code is a sequence of 2n n-bit binary num-
bers where each adjacent pair of numbers differs in
exactly one bit.

4

n = 1 n = 2 n = 3 n = 4
0 00 000 0000
1 01 001 0001

11 011 0011
10 010 0010

110 0110
111 0111
101 0101
100 0100

1100
1101
1111
1110
1010
1011
1001
1000

B
in

ar
y

R
ef

le
ct

ed
 G

ra
y

C
od

e
on

 n
 B

it
s

B
inary R
eflected G
ray C
ode on n B
its

0

1

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0

Claim: the binary reflected Gray code on n bits is a
Gray code.

Proof by induction on n. The claim is trivially true
for n = 1. Suppose the claim is true for n bits.
Suppose we construct the n+ 1 bit binary reflected
Gray code as above from 2 copies of the n bit code.
Now take a pair of adjacent numbers. If they are in
the same half, then by the induction hypothesis they
differ in exactly one bit (since they both start with
the same bit). If one is in the top half and one is
in the bottom half, then they only differ in the first
bit.

Assigned Reading

Re-read the section in your discrete math textbook
or class notes that deals with induction. Alterna-
tively, look in the library for one of the many books
on discrete mathematics.

POA, Chapter 2.

5

Algorithms Course Notes

Algorithm Correctness

Ian Parberry∗

Fall 2001

Summary

• Confidence in algorithms from testing and cor-
rectness proof.

• Correctness of recursive algorithms proved di-
rectly by induction.

• Correctness of iterative algorithms proved using
loop invariants and induction.

• Examples: Fibonacci numbers, maximum, mul-
tiplication

Correctness

How do we know that an algorithm works?

Modes of rhetoric (from ancient Greeks)

• Ethos
• Pathos
• Logos

Logical methods of checking correctness

• Testing
• Correctness proof

Testing vs. Correctness Proofs

Testing: try the algorithm on sample inputs

Correctness Proof: prove mathematically

Testing may not find obscure bugs.

Using tests alone can be dangerous.

Correctness proofs can also contain bugs: use a com-
bination of testing and correctness proofs.

∗Copyright c© Ian Parberry, 1992–2001.

Correctness of Recursive Algorithms

To prove correctness of a recursive algorithm:

• Prove it by induction on the “size” of the prob-
lem being solved (e.g. size of array chunk, num-
ber of bits in an integer, etc.)

• Base of recursion is base of induction.
• Need to prove that recursive calls are given sub-

problems, that is, no infinite recursion (often
trivial).

• Inductive step: assume that the recursive calls
work correctly, and use this assumption to prove
that the current call works correctly.

Recursive Fibonacci Numbers

Fibonacci numbers: F0 = 0, F1 = 1, and for all
n ≥ 2, Fn = Fn−2 + Fn−1.

function fib(n)
comment return Fn

1. if n ≤ 1 then return(n)
2. else return(fib(n − 1)+fib(n − 2))

Claim: For all n ≥ 0, fib(n) returns Fn.

Base: for n = 0, fib(n) returns 0 as claimed. For
n = 1, fib(n) returns 1 as claimed.

Induction: Suppose that n ≥ 2 and for all 0 ≤ m <
n, fib(m) returns Fm.

RTP fib(n) returns Fn.

What does fib(n) return?

fib(n − 1) + fib(n − 2)

1

= Fn−1 + Fn−2 (by ind. hyp.)
= Fn.

Recursive Maximum

function maximum(n)
comment Return max of A[1..n].

1. if n ≤ 1 then return(A[1]) else
2. return(max(maximum(n − 1),A[n]))

Claim: For all n ≥ 1, maximum(n) returns
max{A[1], A[2], . . . , A[n]}. Proof by induction on
n ≥ 1.

Base: for n = 1, maximum(n) returns A[1] as
claimed.

Induction: Suppose that n ≥ 1 and maximum(n)
returns max{A[1], A[2], . . . , A[n]}.

RTP maximum(n + 1) returns

max{A[1], A[2], . . . , A[n + 1]}.

What does maximum(n + 1) return?

max(maximum(n), A[n + 1])
= max(max{A[1], A[2], . . . , A[n]}, A[n + 1])

(by ind. hyp.)
= max{A[1], A[2], . . . , A[n + 1]}.

Recursive Multiplication

Notation: For x ∈ IR, �x	 is the largest integer not
exceeding x.

function multiply(y, z)
comment return the product yz

1. if z = 0 then return(0) else
2. if z is odd
3. then return(multiply(2y, �z/2)+y)
4. else return(multiply(2y, �z/2))

Claim: For all y, z ≥ 0, multiply(y, z) returns yz.
Proof by induction on z ≥ 0.

Base: for z = 0, multiply(y, z) returns 0 as claimed.

Induction: Suppose that for z ≥ 0, and for all 0 ≤
q ≤ z, multiply(y, q) returns yq.

RTP multiply(y, z + 1) returns y(z + 1).

What does multiply(y, z + 1) return?

There are two cases, depending on whether z + 1 is
odd or even.

If z + 1 is odd, then multiply(y, z + 1) returns

multiply(2y, �(z + 1)/2) + y

= 2y�(z + 1)/2	 + y (by ind. hyp.)
= 2y(z/2) + y (since z is even)
= y(z + 1).

If z + 1 is even, then multiply(y, z + 1) returns

multiply(2y, �(z + 1)/2)
= 2y�(z + 1)/2	 (by ind. hyp.)
= 2y(z + 1)/2 (since z is odd)
= y(z + 1).

Correctness of Nonrecursive Algorithms

To prove correctness of an iterative algorithm:

• Analyse the algorithm one loop at a time, start-
ing at the inner loop in case of nested loops.

• For each loop devise a loop invariant that re-
mains true each time through the loop, and cap-
tures the “progress” made by the loop.

• Prove that the loop invariants hold.
• Use the loop invariants to prove that the algo-

rithm terminates.
• Use the loop invariants to prove that the algo-

rithm computes the correct result.

Notation

We will concentrate on one-loop algorithms.

The value in identifier x immediately after the ith
iteration of the loop is denoted xi (i = 0 means
immediately before entering for the first time).

2

For example, x6 denotes the value of identifier x after
the 6th time around the loop.

Iterative Fibonacci Numbers

function fib(n)
1. comment Return Fn

2. if n = 0 then return(0) else
3. a := 0; b := 1; i := 2
4. while i ≤ n do
5. c := a + b; a := b; b := c; i := i + 1
6. return(b)

Claim: fib(n) returns Fn.

Facts About the Algorithm

i0 = 2
ij+1 = ij + 1

a0 = 0
aj+1 = bj

b0 = 1
bj+1 = cj+1

cj+1 = aj + bj

The Loop Invariant

For all natural numbers j ≥ 0, ij = j + 2, aj = Fj ,
and bj = Fj+1.

The proof is by induction on j. The base, j = 0, is
trivial, since i0 = 2, a0 = 0 = F0, and b0 = 1 = F1.

Now suppose that j ≥ 0, ij = j + 2, aj = Fj and
bj = Fj+1.

RTP ij+1 = j + 3, aj+1 = Fj+1 and bj+1 = Fj+2.

ij+1 = ij + 1

= (j + 2) + 1 (by ind. hyp.)
= j + 3

aj+1 = bj

= Fj+1 (by ind. hyp.)

bj+1 = cj+1

= aj + bj

= Fj + Fj+1 (by ind. hyp.)
= Fj+2.

Correctness Proof

Claim: The algorithm terminates with b containing
Fn.

The claim is certainly true if n = 0. If n > 0, then
we enter the while-loop.

Termination: Since ij+1 = ij + 1, eventually i will
equal n + 1 and the loop will terminate. Suppose
this happens after t iterations. Since it = n + 1 and
it = t + 2, we can conclude that t = n − 1.

Results: By the loop invariant, bt = Ft+1 = Fn.

Iterative Maximum

function maximum(A, n)
comment Return max of A[1..n]

1. m := A[1]; i := 2
2. while i ≤ n do
3. if A[i] > m then m := A[i]
4. i := i + 1
4. return(m)

Claim: maximum(A, n) returns

max{A[1], A[2], . . . , A[n]}.

3

Facts About the Algorithm

m0 = A[1]
mj+1 = max{mj , A[ij]}

i0 = 2
ij+1 = ij + 1

The Loop Invariant

Claim: For all natural numbers j ≥ 0,

mj = max{A[1], A[2], . . . , A[j + 1]}
ij = j + 2

The proof is by induction on j. The base, j = 0, is
trivial, since m0 = A[1] and i0 = 2.

Now suppose that j ≥ 0, ij = j + 2 and

mj = max{A[1], A[2], . . . , A[j + 1]},

RTP ij+1 = j + 3 and

mj+1 = max{A[1], A[2], . . . , A[j + 2]}

ij+1 = ij + 1
= (j + 2) + 1 (by ind. hyp.)
= j + 3

mj+1

= max{mj , A[ij]}
= max{mj , A[j + 2]} (by ind. hyp.)
= max{max{A[1], . . . , A[j + 1]}, A[j + 2]}

(by ind. hyp.)
= max{A[1], A[2], . . . , A[j + 2]}.

Correctness Proof

Claim: The algorithm terminates with m containing
the maximum value in A[1..n].

Termination: Since ij+1 = ij + 1, eventually i will
equal n+1 and the loop will terminate. Suppose this
happens after t iterations. Since it = t+2, t = n−1.

Results: By the loop invariant,

mt = max{A[1], A[2], . . . , A[t + 1]}
= max{A[1], A[2], . . . , A[n]}.

Iterative Multiplication

function multiply(y, z)
comment Return yz, where y, z ∈ IN

1. x := 0;
2. while z > 0 do
3. if z is odd then x := x + y;
4. y := 2y; z := �z/2	;
5. return(x)

Claim: if y, z ∈ IN, then multiply(y, z) returns the
value yz. That is, when line 5 is executed, x = yz.

A Preliminary Result

Claim: For all n ∈ IN,

2�n/2	 + (n mod 2) = n.

Case 1. n is even. Then �n/2	 = n/2, n mod 2 = 0,
and the result follows.

Case 2. n is odd. Then �n/2	 = (n − 1)/2, n mod
2 = 1, and the result follows.

Facts About the Algorithm

Write the changes using arithmetic instead of logic.

From line 4 of the algorithm,

yj+1 = 2yj

zj+1 = �zj/2	

4

From lines 1,3 of the algorithm,

x0 = 0
xj+1 = xj + yj(zj mod 2)

The Loop Invariant

Loop invariant: a statement about the variables that
remains true every time through the loop.

Claim: For all natural numbers j ≥ 0,

yjzj + xj = y0z0.

The proof is by induction on j. The base, j = 0, is
trivial, since then

yjzj + xj = y0z0 + x0

= y0z0

Suppose that j ≥ 0 and

yjzj + xj = y0z0.

We are required to prove that

yj+1zj+1 + xj+1 = y0z0.

By the Facts About the Algorithm

yj+1zj+1 + xj+1

= 2yj�zj/2	 + xj + yj(zj mod 2)
= yj(2�zj/2	 + (zj mod 2)) + xj

= yjzj + xj (by prelim. result)
= y0z0 (by ind. hyp.)

Correctness Proof

Claim: The algorithm terminates with x containing
the product of y and z.

Termination: on every iteration of the loop, the
value of z is halved (rounding down if it is odd).
Therefore there will be some time t at which zt = 0.
At this point the while-loop terminates.

Results: Suppose the loop terminates after t itera-
tions, for some t ≥ 0. By the loop invariant,

ytzt + xt = y0z0.

Since zt = 0, we see that xt = y0z0. Therefore, the
algorithm terminates with x containing the product
of the initial values of y and z.

Assigned Reading

Problems on Algorithms: Chapter 5.

5

Algorithms Course Notes

Algorithm Analysis 1

Ian Parberry∗

Fall 2001

Summary

• O, Ω, Θ
• Sum and product rule for O
• Analysis of nonrecursive algorithms

Implementing Algorithms

Algorithm

Program

Executable

Programmer

Compiler

Computer

Constant Multiples

Analyze the resource usage of an algorithm to within
a constant multiple.

Why? Because other constant multiples creep in
when translating from an algorithm to executable
code:

• Programmer ability
• Programmer effectiveness
• Programming language
• Compiler
• Computer hardware

∗Copyright c© Ian Parberry, 1992–2001.

Recall: measure resource usage as a function of input
size.

Big Oh

We need a notation for “within a constant multiple”.
Actually, we have several of them.

Informal definition: f(n) is O(g(n)) if f grows at
most as fast as g.

Formal definition: f(n) = O(g(n)) if there exists
c, n0 ∈ IR+ such that for all n ≥ n0, f(n) ≤ c · g(n).

cg(n)

f(n)

n
0

time

n

Example

Most big-Os can be proved by induction.

Example: log n = O(n).

Claim: for all n ≥ 1, log n ≤ n. The proof is by
induction on n. The claim is trivially true for n = 1,
since 0 < 1. Now suppose n ≥ 1 and log n ≤ n.
Then,

log(n + 1)
≤ log 2n

= log n + 1
≤ n + 1 (by ind. hyp.)

1

Second Example

2n+1 = O(3n/n).

Claim: for all n ≥ 7, 2n+1 ≤ 3n/n. The proof is
by induction on n. The claim is true for n = 7,
since 2n+1 = 28 = 256, and 3n/n = 37/7 > 312.
Now suppose n ≥ 7 and 2n+1 ≤ 3n/n. RTP 2n+2 ≤
3n+1/(n + 1).

2n+2

= 2 · 2n+1

≤ 2 · 3n/n (by ind. hyp.)

≤ 3n

n + 1
· 3n

n
(see below)

= 3n+1/(n + 1).

(Note that we need

3n/(n + 1) ≥ 2
⇔ 3n ≥ 2n + 2
⇔ n ≥ 2.)

Big Omega

Informal definition: f(n) is Ω(g(n)) if f grows at
least as fast as g.

Formal definition: f(n) = Ω(g(n)) if there exists
c > 0 such that there are infinitely many n ∈ IN
such that f(n) ≥ c · g(n).

cg(n)

f(n)

Alternative Big Omega

Some texts define Ω differently: f(n) = Ω′(g(n)) if
there exists c, n0 ∈ IR+ such that for all n ≥ n0,
f(n) ≥ c · g(n).

cg(n)

f(n)

Is There a Difference?

If f(n) = Ω′(g(n)), then f(n) = Ω(g(n)), but the
converse is not true. Here is an example where
f(n) = Ω(n2), but f(n) �= Ω′(n2).

f(n)

0.6 n2

Does this come up often in practice? No.

Big Theta

Informal definition: f(n) is Θ(g(n)) if f is essentially
the same as g, to within a constant multiple.

Formal definition: f(n) = Θ(g(n)) if f(n) =
O(g(n)) and f(n) = Ω(g(n)).

2

cg(n)
f(n)

n
0

dg(n)

Multiple Guess

True or false?

• 3n5 − 16n + 2 = O(n5)?
• 3n5 − 16n + 2 = O(n)?
• 3n5 − 16n + 2 = O(n17)?
• 3n5 − 16n + 2 = Ω(n5)?
• 3n5 − 16n + 2 = Ω(n)?
• 3n5 − 16n + 2 = Ω(n17)?
• 3n5 − 16n + 2 = Θ(n5)?
• 3n5 − 16n + 2 = Θ(n)?
• 3n5 − 16n + 2 = Θ(n17)?

Adding Big Ohs

Claim. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),
then f1(n) + f2(n) = O(g1(n) + g2(n)).

Proof: Suppose for all n ≥ n1, f1(n) ≤ c1 ·g1(n) and
for all n ≥ n2, f2(n) ≤ c2 · g2(n).

Let n0 = max{n1, n2} and c0 = max{c1, c2}. Then
for all n ≥ n0,

f1(n) + f2(n) ≤ c1 · g1(n) + c2 · g2(n)
≤ c0(g1(n) + g2(n)).

Claim. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),
then f1(n) + f2(n) = O(max{g1(n), g2(n)}).

Proof: Suppose for all n ≥ n1, f1(n) ≤ c1 ·g1(n) and
for all n ≥ n2, f2(n) ≤ c2 · g2(n).

Let n0 = max{n1, n2} and c0 = c1 + c2. Then for all
n ≥ n0,

f1(n) + f2(n) ≤ c1 · g1(n) + c2 · g2(n)
≤ (c1 + c2)(max{g1(n), g2(n)})
= c0(max{g1(n), g2(n)}).

Multiplying Big Ohs

Claim. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),
then f1(n) · f2(n) = O(g1(n) · g2(n)).

Proof: Suppose for all n ≥ n1, f1(n) ≤ c1 ·g1(n) and
for all n ≥ n2, f2(n) ≤ c2 · g2(n).

Let n0 = max{n1, n2} and c0 = c1 · c2. Then for all
n ≥ n0,

f1(n) · f2(n) ≤ c1 · g1(n) · c2 · g2(n)
= c0 · g1(n) · g2(n).

Types of Analysis

Worst case: time taken if the worst possible thing
happens. T (n) is the maximum time taken over all
inputs of size n.

Average Case: The expected running time, given
some probability distribution on the inputs (usually
uniform). T (n) is the average time taken over all
inputs of size n.

Probabilistic: The expected running time for a ran-
dom input. (Express the running time and the prob-
ability of getting it.)

Amortized: The running time for a series of execu-
tions, divided by the number of executions.

Example

Consider an algorithm that for all inputs of n bits
takes time 2n, and for one input of size n takes time
nn.

Worst case: Θ(nn)

Average Case:

Θ(
nn + (2n − 1)n

2n
) = Θ(

nn

2n
)

Probabilistic: O(n) with probability 1 − 1/2n

3

Amortized: A sequence of m executions on different
inputs takes amortized time

O(
nn + (m − 1)n

m
) = O(

nn

m
).

Time Complexity

We’ll do mostly worst-case analysis. How much time
does it take to execute an algorithm in the worst
case?

assignment O(1)
procedure entry O(1)
procedure exit O(1)
if statement time for test plus

O(max of two branches)
loop sum over all iterations of

the time for each iteration

Put these together using sum rule and product rule.
Exception — recursive algorithms.

Multiplication

function multiply(y, z)
comment Return yz, where y, z ∈ IN

1. x := 0;
2. while z > 0 do
3. if z is odd then x := x + y;
4. y := 2y; z := �z/2�;
5. return(x)

Suppose y and z have n bits.

• Procedure entry and exit cost O(1) time
• Lines 3,4 cost O(1) time each
• The while-loop on lines 2–4 costs O(n) time (it

is executed at most n times).
• Line 1 costs O(1) time

Therefore, multiplication takes O(n) time (by the
sum and product rules).

Bubblesort

1. procedure bubblesort(A[1..n])
2. for i := 1 to n − 1 do
3. for j := 1 to n − i do
4. if A[j] > A[j + 1] then
5. Swap A[j] with A[j + 1]

• Procedure entry and exit costs O(1) time
• Line 5 costs O(1) time
• The if-statement on lines 4–5 costs O(1) time
• The for-loop on lines 3–5 costs O(n − i) time
• The for-loop on lines 2–5 costs O(

∑n−1
i=1 (n− i))

time.

O(
n−1∑

i=1

(n − i)) = O(n(n − 1) −
n−1∑

i=1

i) = O(n2)

Therefore, bubblesort takes time O(n2) in the worst
case. Can show similarly that it takes time Ω(n2),
hence Θ(n2).

Analysis Trick

Rather than go through the step-by-step method of
analyzing algorithms,

• Identify the fundamental operation used in the
algorithm, and observe that the running time
is a constant multiple of the number of funda-
mental operations used. (Advantage: no need
to grunge through line-by-line analysis.)

• Analyze the number of operations exactly. (Ad-
vantage: work with numbers instead of sym-
bols.)

This often helps you stay focussed, and work faster.

Example

In the bubblesort example, the fundamental opera-
tion is the comparison done in line 4. The running
time will be big-O of the number of comparisons.

• Line 4 uses 1 comparison
• The for-loop on lines 3–5 uses n−i comparisons

4

• The for-loop on lines 2–5 uses
∑n−1

i=1 (n−i) com-
parisons, and

n−1∑

i=1

(n − i) = n(n − 1) −
n−1∑

i=1

i

= n(n − 1) − n(n − 1)/2
= n(n − 1)/2.

Lies, Damn Lies, and Big-Os

(Apologies to Mark Twain.)

The multiplication algorithm takes time O(n).

What does this mean? Watch out for

• Hidden assumptions: word model vs. bit model
(addition takes time O(1))

• Artistic lying: the multiplication algorithm
takes time O(n2) is also true. (Robert Hein-
lein: There are 2 artistic ways of lying. One is
to tell the truth, but not all of it.)

• The constant multiple: it may make the algo-
rithm impractical.

Algorithms and Problems

Big-Os mean different things when applied to algo-
rithms and problems.

• “Bubblesort runs in time O(n2).” But is it
tight? Maybe I was too lazy to figure it out,
or maybe it’s unknown.

• “Bubblesort runs in time Θ(n2).” This is tight.
• “The sorting problem takes time O(n log n).”

There exists an algorithm that sorts in time
O(n log n), but I don’t know if there is a faster
one.

• “The sorting problem takes time Θ(n log n).”
There exists an algorithm that sorts in time
O(n log n), and no algorithm can do any better.

Assigned Reading

CLR, Chapter 1.2, 2.

POA, Chapter 3.

5

Algorithms Course Notes

Algorithm Analysis 2

Ian Parberry∗

Fall 2001

Summary

Analysis of iterative (nonrecursive) algorithms.

The heap: an implementation of the priority queue

• Insertion in time O(logn)
• Deletion of minimum in time O(logn)

Heapsort

• Build a heap in time O(n logn).
• Dismantle a heap in time O(n logn).
• Worst case analysis — O(n logn).
• How to build a heap in time O(n).

The Heap

A priority queue is a set with the operations

• Insert an element
• Delete and return the smallest element

A popular implementation: the heap. A heap is a
binary tree with the data stored in the nodes. It has
two important properties:

1. Balance. It is as much like a complete binary tree
as possible. “Missing leaves”, if any, are on the last
level at the far right.

∗Copyright c© Ian Parberry, 1992–2001.

2. Structure. The value in each parent is ≤ the
values in its children.

20

3

5

24

1240301521

11

9

10

Note this implies that the value in each parent is ≤
the values in its descendants (nb. includes self).

To Delete the Minimum

1. Remove the root and return the value in it.

20

33

5

24

1240301521

11

9

10

?

But what we have is no longer a tree!

2. Replace root with last leaf.

1

20

5

24

1240301521

11

9

10

12

20

5

24

40301521

11

9

10

12

But we’ve violated the structure condition!

3. Repeatedly swap the new element with its small-
est child until it reaches a place where it is no larger
than its children.

20

5

24

40301521

11

9

10

12

20

5

24

40301521

11

9

10

12

20

5

24

40301521

11

9

10

12

20

5

24

40301521

11

9 10

12

Why Does it Work?

Why does swapping the new node with its smallest
child work?

cb

a

c b

a
or

Suppose b ≤ c and a is not in the correct place. That
is, either a > b or a > c. In either case, since b ≤ c,
we know that a > b.

cb

a

c b

a
or

Then we get

c

b

a c

b

a
or

respectively.

Is b smaller than its children? Yes, since b < a and
b ≤ c.

2

Is c smaller than its children? Yes, since it was be-
fore.

Is a smaller than its children? Not necessarily.
That’s why we continue to swap further down the
tree.

Does the subtree of c still have the structure condi-
tion? Yes, since it is unchanged.

To Insert a New Element

20

3

5

24

1240301521

11

9

10

4
?

1. Put the new element in the next leaf. This pre-
serves the balance.

20

3

5

24

1240301521

11

9

10

4

But we’ve violated the structure condition!

2. Repeatedly swap the new element with its parent
until it reaches a place where it is no smaller than
its parent.

20

3

5

24

1240301521

11

9

10

4

20

3

5

24

1240301521

11

9

10

4

20

3

5

24

1240301521

11

9

10

4

20

3

5 24

1240301521

11

9

10

4

Why Does it Work?

Why does swapping the new node with its parent
work?

c

ed

a

b

Suppose c < a. Then we swap to get

3

c

ed

ab

Is a larger than its parent? Yes, since a > c.

Is b larger than its parent? Yes, since b > a > c.

Is c larger than its parent? Not necessarily. That’s
why we continue to swap

Is d larger than its parent? Yes, since d was a de-
scendant of a in the original tree, d > a.

Is e larger than its parent? Yes, since e was a de-
scendant of a in the original tree, e > a.

Do the subtrees of b, d, e still have the structure con-
dition? Yes, since they are unchanged.

Implementing a Heap

An n node heap uses an array A[1..n].

• The root is stored in A[1]
• The left child of a node in A[i] is stored in node

A[2i].
• The right child of a node in A[i] is stored in
node A[2i+ 1].

20

3

5

24

1240301521

11

9

10

20

3

5

24

12
40
30
15
21

11

9

10

1
2
3
4
5
6
7
8
9

10
11
12

A

1

2 3

4 5 6 7

8 9 10 11 12

Analysis of Priority Queue Operations

Delete the Minimum:

1. Remove root O(1)
2. Replace root O(1)
3. Swaps O(�(n))

where �(n) is the number of levels in an n-node heap.

Insert:

1. Put in leaf O(1)
2. Swaps O(�(n))

Analysis of �(n)

A complete binary tree with k levels has exactly 2k−
1 nodes (can prove by induction). Therefore, a heap
with k levels has no fewer than 2k−1 nodes and no
more than 2k − 1 nodes.

2 -1
nodes

k-1

2 -1
nodes

k

k-1
k

Therefore, in a heap with n nodes and k levels:

2k−1 ≤ n ≤ 2k − 1
k − 1 ≤ log n < k

k − 1 ≤ �log n� ≤ k

k − 1 ≤ �log n� ≤ k − 1
�log n� = k − 1

k = �log n�+ 1

Hence, number of levels is �(n) = �log n�+ 1.

Examples:

4

Left side: 8 nodes, �log 8�+1 = 4 levels. Right side:
15 nodes, �log 15�+ 1 = 4 levels.

So, insertion and deleting the minimum from an n-
node heap requires time O(logn).

Heapsort

Algorithm:

To sort n numbers.
1. Insert n numbers into an empty heap.
2. Delete the minimum n times.
The numbers come out in ascending order.

Analysis:

Each insertion costs time O(logn). Therefore cost
of line 1 is O(n logn).

Each deletion costs time O(logn). Therefore cost of
line 2 is O(n logn).

Therefore heapsort takes time O(n logn) in the
worst case.

Building a Heap Top Down

Cost of building a heap proportional to number of
comparisons. The above method builds from the top
down.

. . .

Cost of an insertion depends on the height of the
heap. There are lots of expensive nodes.

0

1 1

2 2 2 2

3 3 3 3 3 3 3 3

number of
comparisons

Number of comparisons (assuming a full heap):

�(n)−1∑
j=0

j2j = Θ(�(n)2�(n)) = Θ(n logn).

How do we know this? Can prove by induction that:

k∑
j=1

j2j = (k − 1)2k+1 + 2

= Θ(k2k)

Building a Heap Bottom Up

Cost of an insertion depends on the height of the
heap. But now there are few expensive nodes.

5

0

11

2 2

3

1 1

0 0 0 0 0 0 0

number of
comparisons

Number of comparisons is (assuming a full heap):

�(n)∑
i=1

(i − 1)︸ ︷︷ ︸
cost

· 2�(n)−i︸ ︷︷ ︸
copies

< 2�(n)

�(n)∑
i=1

i/2i = O(n ·
�(n)∑
i=1

i/2i).

What is
∑�(n)

i=1 i/2i? It is easy to see that it is O(1):

k∑
i=1

i/2i =
1
2k

k∑
i=1

i2k−i

=
1
2k

k−1∑
i=0

(k − i)2i

=
k

2k

k−1∑
i=0

2i − 1
2k

k−1∑
i=0

i2i

= k(2k − 1)/2k − ((k − 2)2k + 2)/2k
= k − k/2k − k + 2− 1/2k−1

= 2− k + 2
2k

≤ 2 for all k ≥ 1

Therefore building the heap takes time O(n). Heap-
sort is still O(n logn).

Questions

Can a node be deleted in time O(logn)?

Can a value be deleted in time O(logn)?

Assigned Reading

CLR Chapter 7.

POA Section 11.1

6

Algorithms Course Notes

Algorithm Analysis 3

Ian Parberry∗

Fall 2001

Summary

Analysis of recursive algorithms:

• recurrence relations
• how to derive them
• how to solve them

Deriving Recurrence Relations

To derive a recurrence relation for the running time
of an algorithm:

• Figure out what “n”, the problem size, is.
• See what value of n is used as the base of the

recursion. It will usually be a single value (e.g.
n = 1), but may be multiple values. Suppose it
is n0.

• Figure out what T (n0) is. You can usually
use “some constant c”, but sometimes a specific
number will be needed.

• The general T (n) is usually a sum of various
choices of T (m) (for the recursive calls), plus
the sum of the other work done. Usually the
recursive calls will be solving a subproblems of
the same size f(n), giving a term “a · T (f(n))”
in the recurrence relation.

∗Copyright c© Ian Parberry, 1992–2001.

T(n) =

a.T(f(n)) + g(n) otherwise

c if n = n 0

Base of recursion

Running time for base

Number of times
recursive call is
made

Size of problem solved
by recursive call

All other processing
not counting recursive
calls

Examples

procedure bugs(n)
if n = 1 then do something

else
bugs(n − 1);
bugs(n − 2);
for i := 1 to n do

something

T (n) =

1

procedure daffy(n)
if n = 1 or n = 2 then do something

else
daffy(n − 1);
for i := 1 to n do

do something new
daffy(n − 1);

T (n) =

procedure elmer(n)
if n = 1 then do something

else if n = 2 then do something else
else

for i := 1 to n do
elmer(n − 1);
do something different

T (n) =

procedure yosemite(n)
if n = 1 then do something

else
for i := 1 to n − 1 do

yosemite(i);
do something completely different

T (n) =

Analysis of Multiplication

function multiply(y, z)
comment return the product yz

1. if z = 0 then return(0) else
2. if z is odd
3. then return(multiply(2y, �z/2�)+y)
4. else return(multiply(2y, �z/2�))

Let T (n) be the running time of multiply(y, z),
where z is an n-bit natural number.

Then for some c, d ∈ IR,

T (n) =
{

c if n = 1
T (n − 1) + d otherwise

Solving Recurrence Relations

Use repeated substitution.

Given a recurrence relation T (n).

• Substitute a few times until you see a pattern
• Write a formula in terms of n and the number

of substitutions i.
• Choose i so that all references to T () become

references to the base case.
• Solve the resulting summation

This will not always work, but works most of the
time in practice.

The Multiplication Example

We know that for all n > 1,

T (n) = T (n − 1) + d.

Therefore, for large enough n,

T (n) = T (n − 1) + d

T (n − 1) = T (n − 2) + d

T (n − 2) = T (n − 3) + d

...
T (2) = T (1) + d

T (1) = c

Repeated Substitution

2

T (n) = T (n − 1) + d

= (T (n − 2) + d) + d

= T (n − 2) + 2d
= (T (n − 3) + d) + 2d
= T (n − 3) + 3d

There is a pattern developing. It looks like after i
substitutions,

T (n) = T (n − i) + id.

Now choose i = n − 1. Then

T (n) = T (1) + d(n − 1)
= dn + c − d.

Warning

This is not a proof. There is a gap in the logic.
Where did

T (n) = T (n − i) + id

come from? Hand-waving!

What would make it a proof? Either

• Prove that statement by induction on i, or
• Prove the result by induction on n.

Reality Check

We claim that

T (n) = dn + c − d.

Proof by induction on n. The hypothesis is true for
n = 1, since d + c − d = c.

Now suppose that the hypothesis is true for n. We
are required to prove that

T (n + 1) = dn + c.

Now,

T (n + 1) = T (n) + d

= (dn + c − d) + d (by ind. hyp.)
= dn + c.

Merge Sorting

function mergesort(L, n)
comment sorts a list L of n numbers,

when n is a power of 2
if n ≤ 1 then return(L) else

break L into 2 lists L1, L2 of equal size
return(merge(mergesort(L1, n/2),

mergesort(L2, n/2)))

Here we assume a procedure merge which can merge
two sorted lists of n elements into a single sorted list
in time O(n).

Correctness: easy to prove by induction on n.

Analysis: Let T (n) be the running time of
mergesort(L, n). Then for some c, d ∈ IR,

T (n) =
{

c if n ≤ 1
2T (n/2) + dn otherwise

1 3 8 10

5 6 9 11

1

3 8 10

5 6 9 11

1 3

8 10

5 6 9 11

1 3

8 10

5

6 9 11

1 3

8 10

5 6

9 11

1 3 8

10

5 6

9 11

1 3 8

10

5 6 9

11

1 3 8 105 6 9

11

1 3 8 105 6 9 11

3

T (n) = 2T (n/2) + dn

= 2(2T (n/4) + dn/2) + dn

= 4T (n/4) + dn + dn

= 4(2T (n/8) + dn/4) + dn + dn

= 8T (n/8) + dn + dn + dn

Therefore,

T (n) = 2iT (n/2i) + i · dn

Taking i = log n,

T (n) = 2log nT (n/2log n) + dn log n

= dn log n + cn

Therefore T (n) = O(n logn).

Mergesort is better than bubblesort (in the worst
case, for large enough n).

A General Theorem

Theorem: If n is a power of c, the solution to the
recurrence

T (n) =
{

d if n ≤ 1
aT (n/c) + bn otherwise

is

T (n) =

O(n) if a < c
O(n logn) if a = c
O(nlogc a) if a > c

Examples:

• If T (n) = 2T (n/3) + dn, then T (n) = O(n)
• If T (n) = 2T (n/2)+dn, then T (n) = O(n log n)

(mergesort)
• If T (n) = 4T (n/2) + dn, then T (n) = O(n2)

Proof Sketch

If n is a power of c, then

T (n) = a · T (n/c) + bn

= a(a · T (n/c2) + bn/c) + bn

= a2 · T (n/c2) + abn/c + bn

= a2(a · T (n/c3) + bn/c2) + abn/c + bn

= a3 · T (n/c3) + a2bn/c2 + abn/c + bn

...

= aiT (n/ci) + bn

i−1∑
j=0

(a/c)j

= alogc nT (1) + bn

logc n−1∑
j=0

(a/c)j

= dalogc n + bn

logc n−1∑
j=0

(a/c)j

Now,

alogc n = (clogc a)logc n = (clogc n)logc a = nlogc a.

Therefore,

T (n) = d · nlogc a + bn

logc n−1∑
j=0

(a/c)j

The sum is the hard part. There are three cases to
consider, depending on which of a and c is biggest.

But first, we need some results on geometric pro-
gressions.

Geometric Progressions

Finite Sums: Define Sn =
∑n

i=0 αi. If α > 1, then

α · Sn − Sn =
n∑

i=0

αi+1 −
n∑

i=0

αi

= αn+1 − 1

Therefore Sn = (αn+1 − 1)/(α − 1).

Infinite Sums: Suppose 0 < α < 1 and let S =∑∞
i=0 αi. Then, αS =

∑∞
i=1 αi, and so S − αS = 1.

That is, S = 1/(1 − α).

Back to the Proof

Case 1: a < c.

logc n−1∑
j=0

(a/c)j <

∞∑
j=0

(a/c)j = c/(c − a).

4

Therefore,

T (n) < d · nlogc a + bcn/(c − a) = O(n).

(Note that since a < c, the first term is insignificant.)

Case 2: a = c. Then

T (n) = d · n + bn

logc n−1∑
j=0

1j = O(n log n).

Case 3: a > c. Then
∑logc n−1

j=0 (a/c)j is a geometric
progression.

Hence,

logc n−1∑
j=0

(a/c)j =
(a/c)logc n − 1

(a/c) − 1

=
nlogc a−1 − 1
(a/c) − 1

= O(nlogc a−1)

Therefore, T (n) = O(nlogc a).

Messy Details

What about when n is not a power of c?

Example: in our mergesort example, n may not be a
power of 2. We can modify the algorithm easily: cut
the list L into two halves of size �n/2� and �n/2	.
The recurrence relation becomes T ′(n) = c if n ≤ 1,
and

T ′(n) = T ′(�n/2�) + T ′(�n/2) + dn

otherwise.

This is much harder to analyze, but gives the same
result: T ′(n) = O(n log n). To see why, think of
padding the input with extra numbers up to the
next power of 2. You at most double the number
of inputs, so the running time is

T (2n) = O(2n log(2n)) = O(n logn).

This is true most of the time in practice.

Examples

If T (1) = 1, solve the following to within a constant
multiple:

• T (n) = 2T (n/2) + 6n
• T (n) = 3T (n/3) + 6n − 9
• T (n) = 2T (n/3) + 5n
• T (n) = 2T (n/3) + 12n + 16
• T (n) = 4T (n/2) + n
• T (n) = 3T (n/2) + 9n

Assigned Reading

CLR Chapter 4.

POA Chapter 4.

Re-read the section in your discrete math textbook
or class notes that deals with recurrence relations.
Alternatively, look in the library for one of the many
books on discrete mathematics.

5

Algorithms Course Notes

Divide and Conquer 1

Ian Parberry∗

Fall 2001

Summary

Divide and conquer and its application to

• Finding the maximum and minimum of a se-
quence of numbers

• Integer multiplication
• Matrix multiplication

Divide and Conquer

To solve a problem

• Divide it into smaller problems
• Solve the smaller problems
• Combine their solutions into a solution for the

big problem

Example: merge sorting

• Divide the numbers into two halves
• Sort each half separately
• Merge the two sorted halves

Finding Max and Min

Problem. Find the maximum and minimum ele-
ments in an array S[1..n]. How many comparisons
between elements of S are needed?

To find the max:

max:=S[1];
for i := 2 to n do

if S[i] > max then max := S[i]

(The min can be found similarly).
∗Copyright c© Ian Parberry, 1992–2001.

max of n ?
min of n − 1 ?
TOTAL ?

Divide and Conquer Approach

Divide the array in half. Find the maximum and
minimum in each half recursively. Return the max-
imum of the two maxima and the minimum of the
two minima.

function maxmin(x, y)
comment return max and min in S[x..y]
if y − x ≤ 1 then
return(max(S[x], S[y]),min(S[x], S[y]))

else
(max1,min1):=maxmin(x, �(x + y)/2�)
(max2,min2):=maxmin(�(x + y)/2� + 1, y)
return(max(max1,max2),min(min1,min2))

Correctness

The size of the problem is the number of entries in
the array, y − x + 1.

We will prove by induction on n = y − x + 1 that
maxmin(x, y) will return the maximum and mini-
mum values in S[x..y]. The algorithm is clearly cor-
rect when n ≤ 2. Now suppose n > 2, and that
maxmin(x, y) will return the maximum and mini-
mum values in S[x..y] whenever y − x + 1 < n.

In order to apply the induction hypothesis to the
first recursive call, we must prove that �(x+y)/2�−
x + 1 < n. There are two cases to consider, depend-
ing on whether y − x + 1 is even or odd.

Case 1. y − x + 1 is even. Then, y − x is odd, and

1

hence y + x is odd. Therefore,

�x + y

2
� − x + 1

=
x + y − 1

2
− x + 1

= (y − x + 1)/2
= n/2
< n.

Case 2. y − x + 1 is odd. Then y − x is even, and
hence y + x is even. Therefore,

�x + y

2
� − x + 1

=
x + y

2
− x + 1

= (y − x + 2)/2
= (n + 1)/2
< n (see below).

(The last inequality holds since

(n + 1)/2 < n ⇔ n > 1.)

To apply the ind. hyp. to the second recursive call,
must prove that y − (�(x + y)/2�+ 1) + 1 < n. Two
cases again:

Case 1. y − x + 1 is even.

y − (�x + y

2
� + 1) + 1

= y − x + y − 1
2

= (y − x + 1)/2
= n/2
< n.

Case 2. y − x + 1 is odd.

y − (�x + y

2
� + 1) + 1

= y − x + y

2
= (y − x + 1)/2 − 1/2
= n/2 − 1/2
< n.

Procedure maxmin divides the array into 2 parts.
By the induction hypothesis, the recursive calls cor-
rectly find the maxima and minima in these parts.
Therefore, since the procedure returns the maximum
of the two maxima and the minimum of the two min-
ima, it returns the correct values.

Analysis

Let T (n) be the number of comparisons made by
maxmin(x, y) when n = y − x + 1. Suppose n is a
power of 2.

What is the size of the subproblems? The first sub-
problem has size �(x + y)/2� − x + 1. If y − x + 1 is
a power of 2, then y − x is odd, and hence x + y is
odd. Therefore,

�x + y

2
� − x + 1 =

x + y − 1
2

− x + 1

=
y − x + 1

2
= n/2.

The second subproblem has size y − (�(x + y)/2� +
1) + 1. Similarly,

y − (�x + y

2
� + 1) + 1 = y − x + y − 1

2

=
y − x + 1

2
= n/2.

So when n is a power of 2, procedure maxmin on
an array chunk of size n calls itself twice on array
chunks of size n/2. If n is a power of 2, then so is
n/2. Therefore,

T (n) =
{

1 if n = 2
2T (n/2) + 2 otherwise

T (n) = 2T (n/2) + 2
= 2(2T (n/4) + 2) + 2
= 4T (n/4) + 4 + 2
= 8T (n/8) + 8 + 4 + 2

= 2iT (n/2i) +
i∑

j=1

2j

= 2log n−1T (2) +
log n−1∑

j=1

2j

2

= n/2 + (2log n − 2)
= 1.5n − 2

Therefore function maxmin uses only 75% as many
comparisons as the naive algorithm.

Multiplication

Given positive integers y, z, compute x = yz. The
naive multiplication algorithm:

x := 0;
while z > 0 do

if z mod 2 = 1 then x := x + y;
y := 2y; z := �z/2�;

This can be proved correct by induction using the
loop invariant yjzj + xj = y0z0.

Addition takes O(n) bit operations, where n is the
number of bits in y and z. The naive multiplication
algorithm takes O(n) n-bit additions. Therefore, the
naive multiplication algorithm takes O(n2) bit oper-
ations.

Can we multiply using fewer bit operations?

Divide and Conquer Approach

Suppose n is a power of 2. Divide y and z into two
halves, each with n/2 bits.

y a b
z c d

Then

y = a2n/2 + b

z = c2n/2 + d

and so

yz = (a2n/2 + b)(c2n/2 + d)
= ac2n + (ad + bc)2n/2 + bd

This computes yz with 4 multiplications of n/2 bit
numbers, and some additions and shifts. Running

time given by T (1) = c, T (n) = 4T (n/2)+dn, which
has solution O(n2) by the General Theorem. No gain
over naive algorithm!

But x = yz can also be computed as follows:

1. u := (a + b)(c + d)
2. v := ac
3. w := bd
4. x := v2n + (u − v − w)2n/2 + w

Lines 2 and 3 involve a multiplication of n/2 bit
numbers. Line 4 involves some additions and shifts.
What about line 1? It has some additions and a
multiplication of (n/2 + 1) bit numbers. Treat the
leading bits of a + b and c + d separately.

a + b a1 b1

c + d c1 d1

Then

a + b = a12n/2 + b1

c + d = c12n/2 + d1.

Therefore, the product (a+ b)(c+d) in line 1 can be
written as

a1c12n + (a1d1 + b1c1)2n/2︸ ︷︷ ︸
additions and shifts

+b1d1

Thus to multiply n bit numbers we need

• 3 multiplications of n/2 bit numbers
• a constant number of additions and shifts

Therefore,

T (n) =
{

c if n = 1
3T (n/2) + dn otherwise

where c, d are constants.

Therefore, by our general theorem, the divide and
conquer multiplication algorithm uses

T (n) = O(nlog 3) = O(n1.59)

bit operations.

3

Matrix Multiplication

The naive matrix multiplication algorithm:

procedure matmultiply(X, Y, Z, n);
comment multiplies n × n matrices X := Y Z

for i := 1 to n do
for j := 1 to n do

X[i, j] := 0;
for k := 1 to n do

X[i, j] := X[i, j] + Y [i, k] ∗ Z[k, j];

Assume that all integer operations take O(1) time.
The naive matrix multiplication algorithm then
takes time O(n3). Can we do better?

Divide and Conquer Approach

Divide X, Y, Z each into four (n/2)×(n/2) matrices.

X =
[

I J
K L

]

Y =
[

A B
C D

]

Z =
[

E F
G H

]

Then

I = AE + BG

J = AF + BH

K = CE + DG

L = CF + DH

Let T (n) be the time to multiply two n×n matrices.
The approach gains us nothing:

T (n) =
{

c if n = 1
8T (n/2) + dn2 otherwise

where c, d are constants.

Therefore,

T (n) = 8T (n/2) + dn2

= 8(8T (n/4) + d(n/2)2) + dn2

= 82T (n/4) + 2dn2 + dn2

= 83T (n/8) + 4dn2 + 2dn2 + dn2

= 8iT (n/2i) + dn2
i−1∑
j=0

2j

= 8log nT (1) + dn2

log n−1∑
j=0

2j

= cn3 + dn2(n − 1)
= O(n3)

Strassen’s Algorithm

Compute

M1 := (A + C)(E + F)
M2 := (B + D)(G + H)
M3 := (A − D)(E + H)
M4 := A(F − H)
M5 := (C + D)E
M6 := (A + B)H
M7 := D(G − E)

Then,

I := M2 + M3 − M6 − M7

J := M4 + M6

K := M5 + M7

L := M1 − M3 − M4 − M5

Will This Work?

I := M2 + M3 − M6 − M7

= (B + D)(G + H) + (A − D)(E + H)
− (A + B)H − D(G − E)

= (BG + BH + DG + DH)
+ (AE + AH − DE − DH)
+ (−AH − BH) + (−DG + DE)

= BG + AE

J := M4 + M6

4

= A(F − H) + (A + B)H
= AF − AH + AH + BH

= AF + BH

K := M5 + M7

= (C + D)E + D(G − E)
= CE + DE + DG − DE

= CE + DG

L := M1 − M3 − M4 − M5

= (A + C)(E + F) − (A − D)(E + H)
− A(F − H) − (C + D)E

= AE + AF + CE + CF − AE − AH

+ DE + DH − AF + AH − CE − DE

= CF + DH

Analysis of Strassen’s Algorithm

T (n) =
{

c if n = 1
7T (n/2) + dn2 otherwise

where c, d are constants.

T (n) = 7T (n/2) + dn2

= 7(7T (n/4) + d(n/2)2) + dn2

= 72T (n/4) + 7dn2/4 + dn2

= 73T (n/8) + 72dn2/42 + 7dn2/4 + dn2

= 7iT (n/2i) + dn2
i−1∑
j=0

(7/4)j

= 7log nT (1) + dn2

log n−1∑
j=0

(7/4)j

= cnlog 7 + dn2 (7/4)log n − 1
7/4 − 1

= cnlog 7 +
4
3
dn2(

nlog 7

n2
− 1)

= O(nlog 7)
≈ O(n2.8)

State of the Art

Integer multiplication: O(n log n log log n).

Schönhage and Strassen, “Schnelle multiplikation
grosser zahlen”, Computing, Vol. 7, pp. 281–292,
1971.

Matrix multiplication: O(n2.376).

Coppersmith and Winograd, “Matrix multiplication
via arithmetic progressions”, Journal of Symbolic
Computation, Vol. 9, pp. 251–280, 1990.

Assigned Reading

CLR Chapter 10.1, 31.2.

POA Sections 7.1–7.3

5

Algorithms Course Notes

Divide and Conquer 2

Ian Parberry∗

Fall 2001

Summary

Quicksort

• The algorithm
• Average case analysis — O(n logn)
• Worst case analysis — O(n2).

Every sorting algorithm based on comparisons and
swaps must make Ω(n logn) comparisons in the
worst case.

Quicksort

Let S be a list of n distinct numbers.

function quicksort(S)
1. if |S| ≤ 1
2. then return(S)
3. else
4. Choose an element a from S
5. Let S1, S2, S3 be the elements of S

which are respectively <,=, > a
6. return(quicksort(S1),S2,quicksort(S3))

Terminology: a is called the pivot value. The oper-
ation in line 5 is called pivoting on a.

Average Case Analysis

Let T (n) be the average number of comparisons
used by quicksort when sorting n distinct numbers.
Clearly T (0) = T (1) = 0.

Suppose a is the ith smallest element of S. Then

|S1| = i − 1
∗Copyright c© Ian Parberry, 1992–2001.

|S2| = 1
|S3| = n − i

The recursive calls need average time T (i − 1) and
T (n− i), and i can have any value from 1 to n with
equal probability. Splitting S into S1, S2, S3 takes
n−1 comparisons (compare a to n−1 other values).

Therefore, for n ≥ 2,

T (n) ≤ 1
n

n∑
i=1

(T (i − 1) + T (n − i)) + n − 1

Now,

n∑
i=1

(T (i − 1) + T (n − i))

=
n∑

i=1

T (i − 1) +
n∑

i=1

T (n − i)

=
n−1∑
i=0

T (i) +
n−1∑
i=0

T (i)

= 2
n−1∑
i=2

T (i)

Therefore, for n ≥ 2,

T (n) ≤ 2
n

n−1∑
i=2

T (i) + n − 1

How can we solve this? Not by repeated substitu-
tion!

Multiply both sides of the recurrence for T (n) by n.
Then, for n ≥ 2,

nT (n) = 2
n−1∑
i=2

T (i) + n2 − n.

1

Hence, substituting n − 1 for n, for n ≥ 3,

(n − 1)T (n − 1) = 2
n−2∑
i=2

T (i) + n2 − 3n+ 2.

Subtracting the latter from the former,

nT (n)− (n − 1)T (n − 1) = 2T (n − 1) + 2(n − 1),

for all n ≥ 3. Hence, for all n ≥ 3,

nT (n) = (n+ 1)T (n − 1) + 2(n − 1).

Therefore, dividing both sides by n(n+ 1),

T (n)/(n+ 1) = T (n − 1)/n+ 2(n − 1)/n(n+ 1).

Define S(n) = T (n)/(n + 1). Then, by definition,
S(0) = S(1) = 0, and by the above, for all n ≥ 3,
S(n) = S(n−1)+2(n−1)/n(n+1). This is true even
for n = 2, since S(2) = T (2)/3 = 1/3. Therefore,

S(n) ≤
{

0 if n ≤ 1
S(n − 1) + 2/n otherwise.

Solve by repeated substitution:

S(n) ≤ S(n − 1) + 2/n

≤ S(n − 2) + 2/(n − 1) + 2/n

≤ S(n − 3) + 2/(n − 2) + 2/(n − 1) + 2/n

≤ S(n − i) + 2
n∑

j=n−i+1

1
j
.

Therefore, taking i = n − 1,

S(n) ≤ S(1)+2
n∑

j=2

1
j
= 2

n∑
j=2

1
j
≤ 2

∫ n

1

1
x
dx = lnn.

Therefore,

T (n) = (n+ 1)S(n)
< 2(n+ 1) lnn

= 2(n+ 1) logn/ log e

≈ 1.386(n+ 1) logn.

Worst Case Analysis

Thus quicksort uses O(n logn) comparisons on av-
erage. Quicksort is faster than mergesort by a small
constant multiple in the average case, but much
worse in the worst case.

How about the worst case? In the worst case, i = 1
and

T (n) =
{

0 if n ≤ 1
T (n − 1) + n − 1 otherwise

It is easy to show that this is Θ(n2).

Best Case Analysis

How about the best case? In the best case, i = n/2
and

T (n) =
{

0 if n ≤ 1
2T (n/2) + n − 1 otherwise

for some constants c, d.

It is easy to show that this is n logn+O(n). Hence,
the average case number of comparisons used by
quicksort is only 39% more than the best case.

A Program

The algorithm can be implemented as a program
that runs in time O(n logn). To sort an array
S[1..n], call quicksort(1, n):

1. procedure quicksort(�, r)
2. comment sort S[�..r]
3. i := �; j := r;

a := some element from S[�..r];
4. repeat
5. while S[i] < a do i := i+ 1;
6. while S[j] > a do j := j − 1;
7. if i ≤ j then
8. swap S[i] and S[j];
9. i := i+ 1; j := j − 1;
10. until i > j;
11. if � < j then quicksort(�, j);
12. if i < r then quicksort(i, r);

Correctness Proof

Consider the loop on line 5.

2

5. while S[i] < a do i := i+ 1;

Loop invariant: For k ≥ 0, ik = i0 + k and S[v] < a
for all i0 ≤ v < ik.

. . .

all < a

. . .

i0 ik

. . .

Proof by induction on k. The invariant is vacuously
true for k = 0.

Now suppose k > 0. By the induction hypothesis,
ik−1 = i0+k− 1, and S[v] < a for all i0 ≤ v < ik−1.
Since we enter the while-loop on the kth iteration,
it must be the case that S[ik−1] < a. Therefore,
S[v] < a for all i0 ≤ v ≤ ik−1. Furthermore, i is
incremented in the body of the loop, so ik = ik−1 +
1 = (i0+ k− 1)+ 1 = i0+ k. This makes both parts
of the hypothesis true.

Conclusion: upon exiting the loop on line 5, S[i] ≥ a
and S[v] < a for all i0 ≤ v < i.

Consider the loop on line 6.

6. while S[j] > a do j := j − 1;

Loop invariant: For k ≥ 0, jk = j0 − k and S[v] > a
for all jk < v ≤ j0.

all > a

.

jk j0

. . .

Proof is similar to the above.

Conclusion: upon exiting the loop on line 6, S[j] ≤ a
and S[v] > a for all j < v ≤ j0.

The loops on lines 5,6 will always halt.

Question: Why?

Consider the repeat-loop on lines 4–10.

4. repeat
5. while S[i] < a do i := i+ 1;
6. while S[j] > a do j := j − 1;
7. if i ≤ j then
8. swap S[i] and S[j];
9. i := i+ 1; j := j − 1;
10. until i > j;

Loop invariant: after each iteration, either i ≤ j and

• S[v] ≤ a for all � ≤ v ≤ i, and
• S[v] ≥ a for all j ≤ v ≤ r.

r

all >= a

. . .

l

all <= a

. . .

i j

?

or i > j and

• S[v] ≤ a for all � ≤ v < i, and
• S[v] ≥ a for all j < v ≤ r.

l

all <= a

. . .

i r

all >= a

. . .

j

?

After lines 5,6

• S[v] ≤ a for all � ≤ v < i, and
• S[i] ≥ a
• S[v] ≥ a for all j < v ≤ r.
• S[j] ≤ a

If i > j, then the loop invariant holds. Otherwise,
line 8 makes it hold:

• S[v] ≤ a for all � ≤ v ≤ i, and
• S[v] ≥ a for all j ≤ v ≤ r.

The loop terminates since i is incremented and j is
decremented each time around the loop as long as
i ≤ j.

Hence we exit the repeat-loop with small values to
the left, and big values to the right.

3

l

all <= a

. . .

i r

all >= a

. . .

j

l

all <= a

. . .

i r

all >= a

. . .

j

(How can each of these scenarios happen?)

Correctness proof is by induction on the size of the
chunk of the array, r− �+1. It works for an array of
size 1 (trace through the algorithm). In each of the
two scenarios above, the two halves of the array are
smaller than the original (since i and j must cross).
Hence, by the induction hypothesis, the recursive
call sorts each half, which in both scenarios means
that the array is sorted.

What should we use for a? Candidates:

• S[�], S[r] (vanilla)
• S[�(�+ r)/2�] (fast on “nearly sorted” data)
• S[m] where m is a pseudorandom value, � ≤

m ≤ r (good for repeated use on similar data)

A Lower Bound

Claim: Any sorting algorithm based on comparisons
and swaps must make Ω(n logn) comparisons in the
worst case.

Mergesort makes O(n logn) comparisons. So, there
is no comparison-based sorting algorithm that is
faster than mergesort by more than a constant mul-
tiple.

Proof of Lower Bound

A sorting algorithm permutes its inputs into sorted
order.

It must perform one of n! possible permutations.

It doesn’t know which until it compares its inputs.

Consider a “many worlds” view of the algorithm.
Initially, it knows nothing about the input.

After it makes one comparison, it can be in one of
two possible worlds, depending on the result of that
comparison.

After it makes 2 comparisons, each of these worlds
can give rise to at most 2 more possible worlds.

Decision Tree

< >

<

< < < <

>

> > > >

><

After i comparisons, the algorithm gives rise to at
most 2i possible worlds.

But if the algorithm sorts, then it must eventually
give rise to at least n! possible worlds.

Therefore, if it sorts in at most T (n) comparisons in
the worst case, then

2T (n) ≥ n!,

That is,

T (n) ≥ log n!.

How Big is n!?

n!2 = (1 · 2 · · ·n)(n · · ·2 · 1)

=
n∏

k=1

k(n+ 1− k)

k(n+ 1− k) has its minimum when k = 1 or k = n,
and its maximum when k = (n+ 1)/2.

4

k

k(n+1-k)

1 n(n+1)/2

n

(n+1) /4
2

Therefore,
n∏

k=1

n ≤ n!2 ≤
n∏

k=1

(n+ 1)2

4

That is,
nn/2 ≤ n! ≤ (n+ 1)n/2n

Hence
log n! = Θ(n logn).

More precisely (Stirling’s approximation),

n! ∼
√
2πn

(n

e

)n

.

Hence,
log n! ∼ n logn+Θ(n).

Conclusion

T (n) = Ω(n logn), and hence any sorting algo-
rithm based on comparisons and swaps must make
Ω(n logn) comparisons in the worst case.

This is called the decision tree lower bound.

Mergesort meets this lower bound. Quicksort
doesn’t.

It can also be shown that any sorting algo-
rithm based on comparisons and swaps must make
Ω(n logn) comparisons on average. Both quicksort
and mergesort meet this bound.

Assigned Reading

CLR Chapter 8.

POA 7.5

5

Algorithms Course Notes

Divide and Conquer 3

Ian Parberry∗

Fall 2001

Summary

More examples of divide and conquer.

• selection in average time O(n)
• binary search in time O(logn)
• the towers of Hanoi and the end of the Universe

Selection

Let S be an array of n distinct numbers. Find the
kth smallest number in S.

function select(S, k)
if |S| = 1 then return(S[1]) else
Choose an element a from S
Let S1, S2 be the elements of S
which are respectively <, > a
Suppose |S1| = j (a is the (j + 1)st item)
if k = j + 1 then return(a)
else if k ≤ j then return(select(S1, k))
else return(select(S2,k − j − 1))

Let T (n) be the worst case for all k of the average
number of comparisons used by procedure select on
an array of n numbers. Clearly T (1) = 0.

Analysis

Now,

|S1| = j

|S2| = n − j − 1

Hence the recursive call needs an average time of
either T (j) or T (n−j−1), and j can have any value
from 0 to n − 1 with equal probability.

∗Copyright c© Ian Parberry, 1992–2001.

The average time for the recursive calls is thus at
most:

1
n

n−1∑
j=0

(either T (j) or T (n − j − 1))

When is it T (j) and when is it T (n − j − 1)?
• k ≤ j: recurse on S1, time T (j)
• k = j + 1: finished
• k > j + 1: recurse on S2, time T (n − j − 1)

The average time for the recursive calls is thus at
most:

1
n
(
k−2∑
j=0

T (n − j − 1) +
n−1∑
j=k

T (j))

Splitting S into S1, S2 takes n − 1 comparisons (as
in quicksort).

Therefore, for n ≥ 2,

T (n) ≤ 1
n
(
k−2∑
j=0

T (n − j − 1) +
n−1∑
j=k

T (j)) + n − 1

=
1
n
(

n−1∑
j=n−k+1

T (j) +
n−1∑
j=k

T (j)) + n − 1

What value of k maximizes

n−1∑
j=n−k+1

T (j) +
n−1∑
j=k

T (j)?

Decrementing the value of k deletes a term from the
left sum, and inserts a term into the right sum. Since
T is the running time of an algorithm, it must be
monotone nondecreasing.

1

Hence we must choose k = n − k + 1. Assume n
is odd (the case where n is even is similar). This
means we choose k = (n+ 1)/2.

. .
 .

T(n-2)

T(n-1)

T(n-m+2)

T(n-m+1)

. .
 .

T(n-2)

T(n-1)

T(m+1)

T(m)

k=m

. .
 .

T(n-2)

T(n-1)

T(n-m+2)

. .
 .

T(n-2)

T(n-1)

T(m+1)

T(m)

k=m-1

T(m-1)

Write m=(n+1)/2
(shorthand for this diagram only.)

Therefore,

T (n) ≤ 2
n

n−1∑
j=(n+1)/2

T (j) + n − 1.

Claim that T (n) ≤ 4(n − 1). Proof by induction on
n. The claim is true for n = 1. Now suppose that
T (j) ≤ 4(j − 1) for all j < n. Then,

T (n)

≤ 2
n

 n−1∑

j=(n+1)/2

T (j)

+ n − 1

≤ 8
n

 n−1∑

j=(n+1)/2

(j − 1)

+ n − 1

=
8
n

 n−2∑

j=(n−1)/2

j

+ n − 1

=
8
n

n−2∑

j=1

j −
(n−3)/2∑

j=1

j

+ n − 1

=
8
n

(
(n − 1)(n − 2)

2
− (n − 3)(n − 1)

8

)

+ n − 1
=

1
n
(4n2 − 12n+ 8− n2 + 4n − 3) + n − 1

= 3n − 8 + 5
n
+ n − 1

≤ 4n − 4

Hence the selection algorithm runs in average time
O(n).

Worst case O(n2) (just like the quicksort analysis).

Comments

• There is an O(n) worst-case time algorithm
that uses divide and conquer (it makes a smart
choice of a). The analysis is more difficult.

• How should we pick a? It could be S[1] (average
case significant in the long run) or a random
element of S (the worst case doesn’t happen
with particular inputs).

Binary Search

Find the index of x in a sorted array A.

function search(A, x, �, r)
comment find x in A[�..r]
if � = r then return(�) else

m := �(�+ r)/2�
if x ≤ A[m]
then return(search(A, x, �, m))
else return(search(A, x, m+ 1, r))

Suppose n is a power of 2. Let T (n) be the worst case
number of comparisons used by procedure search on
an array of n numbers.

T (n) =
{

0 if n = 1
T (n/2) + 1 otherwise

(As in the maxmin algorithm, we must argue that
the array is cut in half.)

Hence,

T (n) = T (n/2) + 1

2

= (T (n/4) + 1) + 1
= T (n/4) + 2
= (T (n/8) + 1) + 2
= T (n/8) + 3
= T (n/2i) + i

= T (1) + logn

= logn

Therefore, binary search on an array of size n takes
time O(logn).

The Towers of Hanoi

1 2 3

Move all the disks from peg 1 to peg 3 using peg 2 as
workspace without ever placing a disk on a smaller
disk.

To move n disks from peg i to peg j using peg k as
workspace

• Move n− 1 disks from peg i to peg k using peg
j as workspace.

• Move remaining disk from peg i to peg j.
• Move n− 1 disks from peg k to peg j using peg

i as workspace.

How Many Moves?

Let T (n) be the number of moves it takes to move
n disks from peg i to peg j.

Clearly,

T (n) =
{

1 if n = 1
2T (n − 1) + 1 otherwise

Hence,

T (n) = 2T (n − 1) + 1
= 2(2T (n − 2) + 1) + 1

= 4T (n − 2) + 2 + 1
= 4(2T (n − 3) + 1) + 2 + 1
= 8T (n − 3) + 4 + 2 + 1

= 2iT (n − i) +
i−1∑
j=0

2j

= 2n−1T (1) +
n−2∑
j=0

2j

= 2n − 1

The End of the Universe

According to legend, there is a set of 64 gold disks
on 3 diamond needles, called the Tower of Brahma.
Legend reports that the Universe will end when the
task is completed. (Édouard Lucas, Récréations
Mathématiques, Vol. 3, pp 55–59, Gauthier-Villars,
Paris, 1893.)

How many moves will it need? If done correctly,
T (64) = 264 − 1 = 1.84 × 1019 moves. At one move
per second, that’s

1.84× 1019 seconds
= 3.07× 1017 minutes
= 5.12× 1015 hours
= 2.14× 1014 days
= 5.85× 1011 years

Current age of Universe is ≈ 1010 years.

3

The Answer to Life, the Universe, and
Everything

42
264-1

= 18,446,744,073,709,552,936

A Sneaky Algorithm

What if the monks are not good at recursion?

Imagine that the pegs are arranged in a circle. In-
stead of numbering the pegs, think of moving the
disks one place clockwise or anticlockwise.

2

31

Clockwise

Impress Your Friends and Family

If there are an odd number of disks:

• Start by moving the smallest disk in an anti-
clockwise direction.

• Alternate between doing this and the only other
legal move.

If there are an even number of disks, replace “anti-
clockwise” by “clockwise”.

How do you remember whether to start clockwise or
anticlockwise? Think of what happens with n = 1
and n = 2.

1 2 3 1 2 3

Odd

1 2 3

1 2 3 1 2 3

1 2 3

Even

What happens if you use the wrong direction?

A Formal Algorithm

Let D be a direction, either clockwise or anticlock-
wise. Let D be the opposite direction.

To move n disks in direction D, alternate between
the following two moves:

• If n is odd, move the smallest disk in direction
D. If n is even, move the smallest disk in direc-
tion D.

• Make the only other legal move.

This is exactly what the recursive algorithm does!
Or is it?

Formal Claim

When the recursive algorithm is used to move n disks
in direction D, it alternates between the following
two moves:

4

• If n is odd, move the smallest disk in direction
D. If n is even, move the smallest disk in direc-
tion D.

• Make the only other legal move.

The Proof

Proof by induction on n. The claim is true when
n = 1. Now suppose that the claim is true for n
disks. Suppose we use the recursive algorithm to
move n+1 disks in directionD. It does the following:

• Move n disks in direction D.
• Move one disk in direction D.
• Move n disks in direction D.

Let

• “D” denote moving the smallest disk in direc-
tion D,

• “D” denote moving the smallest disk in direc-
tion D

• “O” denote making the only other legal move.

Case 1. n+ 1 is odd. Then n is even, and so by the
induction hypothesis, moving n disks in direction D
uses

DODO · · ·OD

(NB. The number of moves is odd, so it ends with
D, not O.)

Hence, moving n+ 1 disks in direction D uses

DODO · · ·OD︸ ︷︷ ︸
n disks

O DODO · · ·OD︸ ︷︷ ︸
n disks

,

as required.

Case 2. n+ 1 is even. Then n is odd, and so by the
induction hypothesis, moving n disks in direction D
uses

DODO · · ·OD

(NB. The number of moves is odd, so it ends with
D, not O.)

Hence, moving n+ 1 disks in direction D uses

DODO · · ·OD︸ ︷︷ ︸
n disks

O DODO · · ·OD︸ ︷︷ ︸
n disks

,

as required.

Hence by induction the claim holds for any number
of disks.

Assigned Reading

CLR Chapter 10.2.

POA 7.5,7.6.

5

Algorithms Course Notes

Dynamic Programming 1

Ian Parberry∗

Fall 2001

Summary

Dynamic programming: divide and conquer with a
table.

Application to:

• Computing combinations
• Knapsack problem

Counting Combinations

To choose r things out of n, either

• Choose the first item. Then we must choose the
remaining r−1 items from the other n−1 items.
Or

• Don’t choose the first item. Then we must
choose the r items from the other n − 1 items.

Therefore,
(

n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1

r

)

Divide and Conquer

This gives a simple divide and conquer algorithm
for finding the number of combinations of n things
chosen r at a time.

function choose(n, r)
if r = 0 or n = r then return(1) else
return(choose(n − 1, r − 1) +

choose(n − 1, r))

∗Copyright c© Ian Parberry, 1992–2001.

Correctness Proof: A simple induction on n.

Analysis: Let T (n) be the worst case running time
of choose(n, r) over all possible values of r.

Then,

T (n) =
{

c if n = 1
2T (n − 1) + d otherwise

for some constants c, d.

Hence,

T (n) = 2T (n − 1) + d

= 2(2T (n − 2) + d) + d

= 4T (n − 2) + 2d+ d

= 4(2T (n − 3) + d) + 2 + d

= 8T (n − 3) + 4d+ 2d+ d

= 2iT (n − i) + d

i−1∑
j=0

2j

= 2n−1T (1) + d

n−2∑
j=0

2j

= (c+ d)2n−1 − d

Hence, T (n) = Θ(2n).

Example

The problem is, the algorithm solves the same sub-
problems over and over again!

1

6
4

2
1

2
2

3
1

3
2

3
3

3
3

4
2

4
3

4
3

4
4

5
3

5
4

2
1

2
2

3
2

2
1

2
2

3
2

1
0

1
1

1
0

1
1

1
0

1
1

Repeated Computation

6
4

2
1

2
2

3
1

3
2

3
3

3
3

4
2

4
3

4
3

4
4

5
3

5
4

2
1

2
2

3
2

2
1

2
2

3
2

1
0

1
1

1
0

1
1

1
0

1
1

A Better Algorithm

Pascal’s Triangle. Use a table T[0..n, 0..r].

T[i, j] holds
(

i
j

)
.

function choose(n, r)
for i := 0 to n − r do T[i, 0]:=1;
for i := 0 to r do T[i, i]:=1;
for j := 1 to r do
for i := j + 1 to n − r + j do
T[i, j]:=T[i − 1, j − 1] + T[i − 1, j]

return(T[n, r])

Initialization

0 r
0

n-r

n

Required answer

T

General Rule

To fill in T[i, j], we need T[i−1, j−1] and T[i−1, j]
to be already filled in.

i-1

i

j-1 j

+

Filling in the Table

Fill in the columns from left to right. Fill in each of
the columns from top to bottom.

1
2
3
4
5
6
7
8
9

10
11
12

24
36

0 r
0

n-r

n

25
26
27
28
29
30
31
32
33
34
35

13
14
15
16
17
18
19
20
21
22
23

Numbers show the
order in which the
entries are filled in

2

Example

1

2

4
5
6
7
8
9

10
11
12

0 r
0

n-r

n

13

1
1
1
1
1
1
1
1
1
1
1
1

1
1

1
1

1
1

1
1

1

3 3
6

6+4=10

Analysis

How many table entries are filled in?

(n − r + 1)(r + 1) = nr + n − r2 + 1 ≤ n(r + 1) + 1

Each entry takes time O(1), so total time required
is O(n2).

This is much better than O(2n).

Space: naive, O(nr). Smart, O(r).

Dynamic Programming

When divide and conquer generates a large number
of identical subproblems, recursion is too expensive.

Instead, store solutions to subproblems in a table.

This technique is called dynamic programming.

Dynamic Programming Technique

To design a dynamic programming algorithm:

Identification:

• devise divide-and-conquer algorithm
• analyze — running time is exponential
• same subproblems solved many times

Construction:

• take part of divide-and-conquer algorithm that
does the “conquer” part and replace recursive
calls with table lookups

• instead of returning a value, record it in a table
entry

• use base of divide-and-conquer to fill in start of
table

• devise “look-up template”
• devise for-loops that fill the table using “look-
up template”

function choose(n,r)

if r=0 or r=n then return(1) else

return(choose(n-1,r-1)+choose(n-1,r))

for i:=0 to n-r do T[i,0]:=1

for i:=0 to r do T[i,i]:=1

function choose(n,r)

for j:=1 to r do

for i:=j+1 to n-r+j do

T[i,j]:=T[i-1,j-1]+T[i-1,j]

return(T[n,r])

Divide and Conquer

Dynamic Programming

The Knapsack Problem

Given n items of length s1, s2, . . . , sn, is there a sub-
set of these items with total length exactly S?

s1 s2 s3 s4 s5 s6 s7

S

s1 s3 s6

S

s5s4 s7s2

3

Divide and Conquer

Want knapsack(i, j) to return true if there is a sub-
set of the first i items that has total length exactly
j.

s1 s2 s3 s4 si-1

j

. . .
si

When can knapsack(i, j) return true? Either the
ith item is used, or it is not.

• If the ith item is not used, and knapsack(i−1, j)
returns true.

s1 s2 s3 s4 . . .
si-1

j

• If the ith item is used, and knapsack(i−1, j−si)
returns true.

s1 s2 s3 s4 . . .
si

si-1

j

j- si

The Code

Call knapsack(n, S).

function knapsack(i, j)
comment returns true if s1, . . . , si can fill j
if i = 0 then return(j=0)
else if knapsack(i − 1, j) then return(true)
else if si ≤ j then
return(knapsack(i − 1, j − si))

Let T (n) be the running time of knapsack(n, S).

T (n) =
{

c if n = 1
2T (n − 1) + d otherwise

Hence, by standard techniques, T (n) = Θ(2n).

Dynamic Programming

Store knapsack(i, j) in table t[i, j].

t[i, j] is set to true iff either:

• t[i − 1, j] is true, or
• t[i − 1, j − si] makes sense and is true.

This is done with the following code:

t[i, j] := t[i − 1, j]
if j − si ≥ 0 then

t[i, j] := t[i, j] or t[i − 1, j − si]

i

jj-s i

i-1

Filling in the Table

0

n

S0
t f f f f f f f

The Algorithm

function knapsack(s1, s2, . . . , sn, S)
1. t[0, 0] :=true
2. for j := 1 to S do t[0, j] :=false
3. for i := 1 to n do
4. for j := 0 to S do
5. t[i, j] := t[i − 1, j]
6. if j − si ≥ 0 then
7. t[i, j] := t[i, j] or t[i − 1, j − si]
8. return(t[n, S])

Analysis:

• Lines 1 and 8 cost O(1).

4

• The for-loop on line 2 costs O(S).
• Lines 5–7 cost O(1).
• The for-loop on lines 4–7 costs O(S).
• The for-loop on lines 3–7 costs O(nS).

Therefore, the algorithm runs in time O(nS). This
is usable if S is small.

Example

s1 = 1, s2 = 2 s3 = 2, s4 = 4, s5 = 5, s6 = 2, s7 = 4,
S = 15.

t[i, j] := t[i − 1, j] or t[i − 1, j − si]
t[3, 3] := t[2, 3] or t[2, 3− s3]
t[3, 3] := t[2, 3] or t[2, 1]

t t
t

0
0 t f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7

f f f f f f f f f f f f f f
t f f f f f f f f f f f f f f

t
t

t
t
t

f f f f f f f f f f f f
t

t[i, j] := t[i − 1, j] or t[i − 1, j − si]
t[3, 4] := t[2, 4] or t[2, 4− s3]
t[3, 4] := t[2, 4] or t[2, 2]

tt
t

f
t

0
0 t f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7

f f f f f f f f f f f f f f
t f f f f f f f f f f f f f f

t
t

f f f f f f f f f f f
tt t
t

0
0 t f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7

f f f f f f f f f f f f f f
t f f f f f f f f f f f f f f

tt t
t
t
t
t
t
t
t

f f f f f f f f f f f f
tt t
tt t
tt t
tt t
tt t

t t
t t
t t
t t
t t

f f f f f f f f f f
t t t t
t t t t
t t t t
t t t t

f f f f f f
t t t t t f
t t
t t

t t t t
t t t t

Question: Can we get by with 2 rows?

Question: Can we get by with 1 row?

Assigned Reading

CLR Section 16.2.

POA Section 8.2.

5

Algorithms Course Notes

Dynamic Programming 2

Ian Parberry∗

Fall 2001

Summary

Dynamic programming applied to

• Matrix products problem

Matrix Product

Consider the problem of multiplying together n rect-
angular matrices.

M = M1 · M2 · · ·Mn

where each Mi has ri−1 rows and ri columns.

Suppose we use the naive matrix multiplication al-
gorithm. Then a multiplication of a p× q matrix by
a q × r matrix takes pqr operations.

Matrix multiplication is associative, so we can evalu-
ate the product in any order. However, some orders
are cheaper than others. Find the cost of the cheap-
est one.

N.B. Matrix multiplication is not commutative.

Example

If we multiply from right to left:

M = M1 · (M2 · (M3 · M4))

∗Copyright c© Ian Parberry, 1992–2001.

10 x 20 20 x 50 50 x 1 1 x 100

50 x 100

20 x 100

10 x 100

Cost = 5000

Cost = 100,000

Cost = 20,000

Total cost is 5, 000 + 100, 000 + 20, 000 = 125, 000.

However, if we begin in the middle:

M = (M1 · (M2 · M3)) · M4

20 x 1

10 x 1

10 x 100

Cost = 1000

Cost = 200

Cost = 1000

10 x 20 20 x 50 50 x 1 1 x 100

Total cost is 1000 + 200 + 1000 = 2200.

The Naive Algorithm

One way is to try all possible ways of parenthesizing
the n matrices. However, this will take exponen-
tial time since there are exponentially many ways of
parenthesizing them.

Let X(n) be the number of ways of parenthesizing
the n matrices. It is easy to see that X(1) = X(2) =

1

1 and for n > 2,

X(n) =
n−1∑
k=1

X(k) · X(n − k)

(just consider breaking the product into two pieces):

(M1 · M2 · · ·Mk)︸ ︷︷ ︸
X(k) ways

· (Mk+1 · · ·Mn)︸ ︷︷ ︸
X(n − k) ways

Therefore,

X(3) =
2∑

k=1

X(k) · X(3 − k)

= X(1) · X(2) + X(2) · X(1)
= 2

This is easy to verify: x(xx), (xx)x.

X(4)

=
3∑

k=1

X(k) · X(4 − k)

= X(1) · X(3) + X(2) · X(2) + X(3) · X(1)
= 5

This is easy to verify: x((xx)x), x(x(xx)), (xx)(xx),
((xx)x)x, (x(xx))x.

Claim: X(n) ≥ 2n−2. Proof by induction on n. The
claim is certainly true for n ≤ 4. Now suppose n ≥ 5.
Then

X(n) =
n−1∑
k=1

X(k) · X(n − k)

≥
n−1∑
k=1

2k−22n−k−2 (by ind. hyp.)

=
n−1∑
k=1

2n−4

= (n − 1)2n−4

≥ 2n−2 (since n ≥ 5)

Actually, it can be shown that

X(n) =
1
n

(
2(n − 1)
n − 1

)
.

Divide and Conquer

Let cost(i, j) be the minimum cost of computing

Mi · Mi+1 · · ·Mj .

What is the cost of breaking the product at Mk?

(Mi · Mi+1 · · ·Mk) · (Mk+1 · · ·Mj).

It is cost(i, k) plus cost(k + 1, j) plus the cost of
multiplying an ri−1×rk matrix by an rk×rj matrix.

Therefore, the cost of breaking the product at Mk is

cost(i, k) + cost(k + 1, j) + ri−1rkrj .

A Divide and Conquer Algorithm

This gives a simple divide and conquer algorithm.
Simply call cost(1, n).

function cost(i, j)
if i = j then return(0) else
return(mini≤k<j(cost(i, k) + cost(k + 1, j)

+ ri−1rkrj))

Correctness Proof: A simple induction.

Analysis: Let T (n) be the worst case running time
of cost(i, j) when j − i + 1 = n.

Then, T (0) = c and for n > 0,

T (n) =
n−1∑
m=1

(T (m) + T (n − m)) + dn

for some constants c, d.

Hence, for n > 0,

T (n) = 2
n−1∑
m=1

T (m) + dn.

Therefore,

T (n) − T (n − 1)

= (2
n−1∑
m=1

T (m) + dn) − (2
n−2∑
m=1

T (m) + d(n − 1))

= 2T (n − 1) + d

2

That is,
T (n) = 3T (n − 1) + d

And so,

T (n) = 3T (n − 1) + d

= 3(3T (n − 2) + d) + d

= 9T (n − 2) + 3d + d

= 9(3T (n − 3) + d) + 3d + d

= 27T (n − 3) + 9d + 3d + d

= 3mT (n − m) + d
m−1∑
�=0

3�

= 3nT (0) + d
n−1∑
�=0

3�

= c3n + d
3n − 1

2
= (c + d/2)3n − d/2

Hence, T (n) = Θ(3n).

Example

The problem is, the algorithm solves the same sub-
problems over and over again!

cost(1,4)

1,2 1,31,1 2,4 3,4 4,4

1,1 2,2 1,1 1,2 2,3 3,3 2,2 2,3 3,4 4,4 3,3 4,4

1,1 2,2 2,2 3,3 2,2 3,3 3,3 4,4

Dynamic Programming

This is a job for . . .

D
Dynamic programming!

Faster than a speeding divide and conquer!

Able to leap tall recursions in a single bound!

Details

Store cost(i, j) in m[i, j]. Therefore, m[i, j] = 0 if
i = j, and

min
i≤k<j

(m[i, k] + m[k + 1, j] + ri−1rkrj)

otherwise.

When we fill in the table, we had better make sure
that m[i, k] and m[k + 1, j] are filled in before we
compute m[i, j]. Compute entries of m[] in increas-
ing order of difference between parameters.

i

ji

j

Example

r0 = 10, r1 = 20, r2 = 50, r3 = 1, r4 = 100.

m[1, 2] = min
1≤k<2

(m[1, k] + m[k + 1, 2] + r0rkr2)

= r0r1r2 = 10000
m[2, 3] = r1r2r3 = 1000
m[3, 4] = r2r3r4 = 5000

3

10K0

0

0

0

1K

5K

m[1, 3]
= min

1≤k<3
(m[1, k] + m[k + 1, 3] + r0rkr3)

= min(m[1, 1] + m[2, 3] + r0r1r3,

m[1, 2] + m[3, 3] + r0r2r3)
= min(0 + 1000 + 200, 10000 + 0 + 500)
= 1200

10K0

0

0

0

1K

5K

1.2K

m[2, 4]
= min

2≤k<4
(m[2, k] + m[k + 1, 4] + r1rkr4)

= min(m[2, 2] + m[3, 4] + r1r2r4,

m[2, 3] + m[4, 4] + r1r3r4)
= min(0 + 5000 + 100000, 1000 + 0 + 2000)
= 3000

10K0

0

0

0

1K

5K

3K

1.2K

m[1, 4]
= min

1≤k<4
(m[1, k] + m[k + 1, 4] + r0rkr4)

= min(m[1, 1] + m[2, 4] + r0r1r4,

m[1, 2] + m[3, 4] + r0r2r4,

m[1, 3] + m[4, 4] + r0r3r4)
= min(0 + 3000 + 20000,

10000 + 5000 + 50000,

1200 + 0 + 1000)
= 2200

10K0

0

0

0

1K

5K

3K

1.2K2.2K

Filling in the Diagonal

for i := 1 to n do m[i, i] := 0

1 n

1

n

Filling in the First Superdiagonal

for i := 1 to n − 1 do
j := i + 1
m[i, j] := · · ·

4

1 n

1

n

Filling in the Second Superdiagonal

for i := 1 to n − 2 do
j := i + 2
m[i, j] := · · ·

1 n

1

n

Filling in the dth Superdiagonal

for i := 1 to n − d do
j := i + d
m[i, j] := · · ·

1 n

1

n

d+1

n-d

The Algorithm

function matrix(n)
1. for i := 1 to n do m[i, i] := 0
2. for d := 1 to n − 1 do
3 for i := 1 to n − d do
4. j := i + d
5. m[i, j] := mini≤k<j(m[i, k] + m[k + 1, j]

+ri−1rkrj)
6. return(m[1, n])

Analysis:

• Line 1 costs O(n).
• Line 5 costs O(n) (can be done with a single

for-loop).
• Lines 4 and 6 costs O(1).
• The for-loop on lines 3–5 costs O(n2).
• The for-loop on lines 2–5 costs O(n3).

Therefore the algorithm runs in time O(n3). This
is a characteristic of many dynamic programming
algorithms.

5

Other Orders

1
2

3
4

5
6

7

8
9

10
11

12
13

14
15

16
17

18

19
20

21
22

23
24

25

26
27
28 1

2
3

4
5

6
7
8

9
10

11
12

13 14
15

16
17

18
19

20
21

22 23
24

25

26
27
28

1
2
3

4
5
6

7
8
9

10

11
12
13
14
15

16
17
18
19
20
21

22
23
24
25
26
27
28

1
2 3

4 5 6
7 8 9 10

11 12 13 14 15
16 17 18 19 20 21

22 23 24 25 26 27 28

Assigned Reading

CLR Section 16.1, 16.2.

POA Section 8.1.

6

Algorithms Course Notes

Dynamic Programming 3

Ian Parberry∗

Fall 2001

Summary

Binary search trees

• Their care and feeding
• Yet another dynamic programming example –
optimal binary search trees

Binary Search Trees

A binary search tree (BST) is a binary tree with the
data stored in the nodes.

1. The value in a node is larger than the values in
its left subtree.

2. The value in a node is smaller than the values
in its right subtree.

Note that this implies that the values must be dis-
tinct. Let �(v) denote the value stored at node v.

Examples

10

155

2 7 12 10

15

5

2

7 12

Application

Binary search trees are useful for storing a set S of
ordered elements, with operations:

∗Copyright c© Ian Parberry, 1992–2001.

1. search(x, S) return true iff x ∈ S.

2. min(S) return the smallest value in S.

3. delete(x, S) delete x from S.

4. insert(x, S) insert x into S.

The Search Operation

procedure search(x, v)
comment is x in BST with root v?
if x = �(v) then return(true) else
if x < �(v) then
if v has a left child w
then return(search(x, w))
else return(false)

else if v has a right child w
then return(search(x, w))
else return(false)

Correctness: An easy induction on the number of
layers in the tree.

Analysis: Let T (d) be the runtime on a BST of d
layers. Then T (0) = 0 and for d > 0, T (d) ≤ T (d −
1) + O(1). Therefore, T (d) = O(d).

The Min Operation

procedure min(v);
comment return smallest in BST with root v
if v has a left child w
then return(min(w))
else return(�(v)))

Correctness: An easy induction on the number of
layers in the tree.

Analysis: Once again O(d).

1

The Delete Operation

To delete x from the BST:

Procedure search can be modified to return the node
v that has value x (instead of a Boolean value). Once
this has been found, there are four cases.

1. v is a leaf.

Then just remove v from the tree.

2. v has exactly one child w, and v is not the root.

Then make the parent of v the parent of w.

wv

w

x

3. v has exactly one child w, and v is the root.

Then make w the new root.

wv

w

x

4. v has 2 children.

This is the interesting case. First, find the smallest
element s in the right subtree of v (using procedure
min). Delete s (note that this uses case 1 or 2 above).
Replace the value in node v with s.

10

155

2 7 12

13

155

2 7

12

13

v

s

Note: could have used largest in left subtree for s.

Correctness: Obvious for cases 1, 2, 3. In case 4,
s is larger than all of the values in the left subtree
of v, and smaller than the other values in the right
subtree of v. Therefore s can replace the value in v.

Analysis: Running time O(d) — dominated by
search for node v.

The Insert Operation

procedure insert(x, v);
comment insert x in BST with root v
if v is the empty tree
then create a root node v with �(v) = x

else
if x < �(v) then
if v has a left child w
then insert(x, w)
else
create a new left child w of v
�(w) := x

else if x > �(v) then
if v has a right child w
then insert(x, w)
else
create a new right child w of v
�(w) := x

Correctness: Once again, an easy induction.

Analysis: Once again O(d).

Analysis

All operations run in time O(d).

But how big is d?

The worst case for an n node BST is O(n) and
Ω(log n).

2

The average case is O(logn).

Average Case Analysis

What is the average case running time for n in-
sertions into an empty BST? Suppose we insert
x1, . . . , xn, where x1 < x2 < · · · < xn (not neces-
sarily inserted in that order). Then

• Run time is proportional to number of compar-
isons.

• Measure number of comparisons, T (n).
• The root is equally likely to be xj for 1 ≤ j ≤ n
(whichever is inserted first).

Suppose the root is xj . List the values to be inserted
in ascending order.

• x1, . . . , xj−1: these go to the left of the root;
needs j − 1 comparisons to root, T (j − 1) com-
parisons to each other.

• xj : this is the root; needs no comparisons
• xj+1, . . . , xn: these go to the right of the root;
needs n− j comparisons to root, T (n− j) com-
parisons to each other.

Therefore, when the root is xj the total number of
comparisons is

T (j − 1) + T (n − j) + n − 1

Therefore, T (0) = 0, and for n > 0,

T (n) =
1
n

n∑
j=1

(n − 1 + T (j − 1) + T (n − j))

= n − 1 +
1
n
(

n∑
j=1

T (j − 1) +
n∑

j=1

T (n − j))

= n − 1 +
2
n

n−1∑
j=0

T (j)

This is just like the quicksort analysis! It can be
shown similarly that T (n) ≤ kn log n where k =
loge 4 ≈ 1.39.

Therefore, each insert operation takes O(logn) time
on average.

Optimal Binary Search Trees

Given:

• S = {x1, . . . xn}, xi < xi+1 for 1 ≤ i < n.
• For all 1 ≤ i ≤ n, the probability pi that we
will be asked search(xi, S).

• For all 0 ≤ i ≤ n, the probability qi that we will
be asked search(x, S) for some xi < x < xi+1

(where x0 = −∞, xn+1 = ∞).

The problem: construct a BST that has the mini-
mum number of expected comparisons.

Fictitious Nodes

Add fictitious nodes labelled 0, 1, . . . , n to the BST.
Node i is where we would fall off the tree on a query
search(x, S) where xi < x < xi+1.

Example:

x 1

x 2

x 3

x 4

x 5

x 6

x 7

x 8

x 9

x10

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

q
1

q2 q3

q4 q5

q6 q7 q8 q9

q10

q
0

0 1

2 3 4 5

6 7 8 9

10

Depth of a Node

Definition: The depth of a node v is

3

• 0 if v is the root
• d+ 1 if v’s parent has depth d

10

15

5

2

0

1

2

3 127

Cost of a Node

Let depth(xi) be the depth of the node v with �(v) =
xi.

Number of comparisons for search(xi, S) is

depth(xi) + 1.

This happens with probability pi.

Number of comparisons for search(x, S) for some
xi < x < xi+1 is

depth(i).

This happens with probability qi.

Cost of a BST

The expected number of comparisons is therefore

n∑
h=1

ph(depth(xh) + 1)

︸ ︷︷ ︸
real

+
n∑

h=0

qhdepth(h)

︸ ︷︷ ︸
fictitious

.

Given the probabilities, we want to find the BST
that minimizes this value.

Call it the cost of the BST.

Weight of a BST

Let Ti,j be the min cost BST for xi+1, . . . , xj , which
has fictitious nodes i, . . . , j. We are interested in
T0,n.

Let ci,j be the cost of Ti,j .

Let

wi,j =
j∑

h=i+1

ph +
j∑

h=i

qh.

What is wi,j? Call it the weight of Ti,j . Increasing
the depths by 1 by making Ti,j the child of some
node increases the cost of Ti,j by wi,j .

ci,j =
j∑

h=i+1

ph(depth(xh) + 1) +
j∑

h=i

qhdepth(h).

ji

Ti,j
nodes x ,...,xi+1 j

Constructing Ti,j

To find the best tree Ti,j :

Choose a root xk. Construct Ti,k−1 and Tk,j .

Ti,k-1

xk

Tk,j

Computing ci,j

ci,j = (ci,k−1 + wi,k−1) + (ck,j + wk,j) + pk

= ci,k−1 + ck,j + (wi,k−1 + wk,j + pk)

= ci,k−1 + ck,j +
k−1∑

h=i+1

ph +
k−1∑
h=i

qh +

4

j∑
h=k+1

ph +
j∑

h=k

qh + pk

= ci,k−1 + ck,j +
j∑

h=i+1

ph +
j∑

h=i

qh

= ci,k−1 + ck,j + wi,j

Which xk do we choose to be the root?

Pick k in the range i + 1 ≤ k ≤ j such that

ci,j = ci,k−1 + ck,j + wi,j

is smallest.

Loose ends:

• if k = i+ 1, there is no left subtree
• if k = j, there is no right subtree
• Ti,i is the empty tree, with wi,i = qi, and ci,i =
0.

Dynamic Programming

To compute the cost of the minimum cost BST, store
ci,j in a table c[i, j], and store wi,j in a table w[i, j].

for i := 0 to n do
w[i, i] := qi

c[i, i] := 0
for � := 1 to n do
for i := 0 to n − � do
j := i+ �
w[i, j] := w[i, j − 1] + pj + qj

c[i, j] := mini<k≤j(c[i, k − 1] + c[k, j] + w[i, j])

Correctness: Similar to earlier examples.

Analysis: O(n3).

Assigned Reading

CLR, Chapter 13.

POA Section 8.3.

5

Algorithms Course Notes

Dynamic Programming 4

Ian Parberry∗

Fall 2001

Summary

Dynamic programming applied to

• All pairs shortest path problem (Floyd’s Algo-
rithm)

• Transitive closure (Warshall’s Algorithm)

Constructing solutions using dynamic programming

• All pairs shortest path problem
• Matrix product

Graphs

A graph is an ordered pair G = (V, E) where

V is a finite set of vertices
E ⊆ V × V is a set of edges

For example,

V = {1, 2, 3, 4, 5}
E = {(1, 2), (1, 4), (1, 5), (2, 3),

(3, 4), (3, 5), (4, 5)}

1

2

3 4

5

∗Copyright c© Ian Parberry, 1992–2001.

Directed Graphs

A directed graph is a graph with directions on the
edges.

For example,

V = {1, 2, 3, 4, 5}
E = {(1, 2), (1, 4), (1, 5), (2, 3),

(4, 3), (3, 5), (4, 5)}

2

1

5

43

Labelled, Directed Graphs

A labelled directed graph is a directed graph with
positive costs on the edges.

2

1

5

43

10

10010

30

20

50 60

Applications: cities and distances by road.

Conventions

n is the number of vertices
e is the number of edges

1

Questions:

What is the maximum number of
edges in an undirected graph of n
vertices?

What is the maximum number of
edges in a directed graph of n
vertices?

Paths in Graphs

A path in a graph G = (V, E) is a sequence of edges

(v1, v2), (v2, v3), . . . , (vn, vn+1) ∈ E

• The length of a path is the number of edges.
• The cost of a path is the sum of the costs of the

edges.

For example, (1, 2), (2, 3), (3, 5). Length 3. Cost 70.

2

1

5

43

10

10010

30

20

50 60

All Pairs Shortest Paths

Given a labelled, directed graph G = (V, E), find for
each pair of vertices v, w ∈ V the cost of the shortest
(i.e. least cost) path from v to w.

Define Ak to be an n × n matrix with Ak[i, j] the
cost of the shortest path from i to j with internal
vertices numbered ≤ k.

A0[i, j] equals

• If i �= j and (i, j) ∈ E, then the cost of the edge
from i to j.

• If i �= j and (i, j) �∈ E, then ∞.
• If i = j, then 0.

Computing Ak

Consider the shortest path from i to j with internal
vertices 1..k. Either:

• It does not go through k, in which place it costs
Ak−1[i, j].

• It goes through k, in which case it goes through
k only once, so it costs Ak−1[i, k] + Ak−1[k, j].
(Only true for positive costs.)

i j

k

Vertices numbered at most
k-1

Hence,

Ak[i, j] = min{Ak−1[i, j], Ak−1[i, k] + Ak−1[k, j]}

A kAk-1

i

k

j k

i

j

All entries in Ak depend upon row k and column k
of Ak−1.

The entries in row k and column k of Ak are the
same as those in Ak−1.

Row k:

Ak[k, j] = min{Ak−1[k, j],
Ak−1[k, k] + Ak−1[k, j]}

= min{Ak−1[k, j], 0 + Ak−1[k, j]}
= Ak−1[k, j]

Column k:

Ak[i, k] = min{Ak−1[i, k],
Ak−1[i, k] + Ak−1[k, k]}

= min{Ak−1[i, k], Ak−1[i, k] + 0}
= Ak−1[i, k]

Therefore, we can use the same array.

2

Floyd’s Algorithm

for i := 1 to n do
for j := 1 to n do
if (i, j) ∈ E
then A[i, j] := cost of (i, j)
else A[i, j] := ∞

A[i, i] := 0
for k := 1 to n do
for i := 1 to n do
for j := 1 to n do
if A[i, k] + A[k, j] < A[i, j] then

A[i, j] := A[i, k] + A[k, j]

Running time: O(n3).

0

0

60

70

30

0

600

00

1000 10 00 30

00 0 50 00 00

00 00 0

0

0

00 10

00 00 20 60

00 00 00 00

1000 10 00 30

00 0 50 00 00

00 00 0

0

0

00 10

00 00 20 60

00 00 00 00

10010 30

00 0 50 00 00

00 0

0

0

00 10

00 00 20 60

00 00 00 00

600

00

10 30

00 50 00

00 0

0

0

00 10

00 00 20

00 00 00 00

60

60

30

0

500

00

10 30

00 50 00

00

0

0

00 10

00 00 20

00 00 00 00

0

60

60

30

0

500

00

10 30

00 50 00

00

0

00 10

00 00 20

00 00 00 00

A0

A3

A4

A1

A2

A5

Storing the Shortest Path

for i := 1 to n do
for j := 1 to n do
P [i, j] := 0
if (i, j) ∈ E
then A[i, j] := cost of (i, j)
else A[i, j] := ∞

A[i, i] := 0
for k := 1 to n do
for i := 1 to n do
for j := 1 to n do
if A[i, k] + A[k, j] < A[i, j] then

A[i, j] := A[i, k] + A[k, j]
P [i, j] := k

Running time: Still O(n3).

Note: On termination, P [i, j] contains a vertex on
the shortest path from i to j.

Computing the Shortest Path

for i := 1 to n do
for j := 1 to n do
if A[i, j] < ∞ then
print(i); shortest(i, j); print(j)

procedure shortest(i, j)
k := P [i, j]
if k > 0 then

shortest(i, k); print(k); shortest(k, j)

Claim: Calling procedure shortest(i, j) prints the in-
ternal nodes on the shortest path from i to j.

Proof: A simple induction on the length of the path.

Warshall’s Algorithm

Transitive closure: Given a directed graph G =
(V, E), find for each pair of vertices v, w ∈ V whether
there is a path from v to w.

Solution: make the cost of all edges 1, and run
Floyd’s algorithm. If on termination A[i, j] �= ∞,
then there is a path from i to j.

A cleaner solution: use Boolean values instead.

3

for i := 1 to n do
for j := 1 to n do

A[i, j] := (i, j) ∈ E
A[i, i] := true

for k := 1 to n do
for i := 1 to n do
for j := 1 to n do

A[i, j] := A[i, j] or (A[i, k] and A[k, j])

Finding Solutions Using Dynamic
Programming

We have seen some examples of finding the cost of
the “best” solution to some interesting problems:

• cheapest order of multiplying n rectangular ma-
trices

• min cost binary search tree
• all pairs shortest path

We have also seen some examples of finding whether
solutions exist to some interesting problems:

• the knapsack problem
• transitive closure

What about actually finding the solutions?

We saw how to do it with the all pairs shortest path
problem.

The principle is the same every time:

• In the inner loop there is some kind of “deci-
sion” taken.

• Record the result of this decision in another ta-
ble.

• Write a divide-and-conquer algorithm to con-
struct the solution from the information in the
table.

Matrix Product

As another example, consider the matrix product
algorithm.

for i := 1 to n do m[i, i] := 0
for d := 1 to n − 1 do
for i := 1 to n − d do
j := i + d
m[i, j] := mini≤k<j(m[i, k] + m[k + 1, j]

+ri−1rkrj)

In more detail:

for i := 1 to n do m[i, i] := 0
for d := 1 to n − 1 do
for i := 1 to n − d do

j := i + d
m[i, j] := m[i, i] + m[i + 1, j] + ri−1rirj

for k := i + 1 to j − 1 do
if m[i, k] + m[k + 1, j] + ri−1rkrj < m[i, j]
then

m[i, j] := m[i, k] + m[k + 1, j] + ri−1rkrj

Add the extra lines:

for i := 1 to n do m[i, i] := 0
for d := 1 to n − 1 do
for i := 1 to n − d do

j := i + d
m[i, j] := m[i, i] + m[i + 1, j] + ri−1rirj

P [i, j] := i

for k := i + 1 to j − 1 do
if m[i, k] + m[k + 1, j] + ri−1rkrj < m[i, j]
then

m[i, j] := m[i, k] + m[k + 1, j] + ri−1rkrj

P [i, j] := k

Example

r0 = 10, r1 = 20, r2 = 50, r3 = 1, r4 = 100.

m[1, 2] = min
1≤k<2

(m[1, k] + m[k + 1, 2] + r0rkr2)

= r0r1r2 = 10000
m[2, 3] = r1r2r3 = 1000
m[3, 4] = r2r3r4 = 5000

3

2

10

0

0

0

10K0

0

0

0

1K

5K

m P

m[1, 3]

4

= min
1≤k<3

(m[1, k] + m[k + 1, 3] + r0rkr3)

= min(m[1, 1] + m[2, 3] + r0r1r3,

m[1, 2] + m[3, 3] + r0r2r3)
= min(0 + 1000 + 200, 10000 + 0 + 500)
= 1200

10K0

0

0

0

1K

5K

1.2K

3

2

10

0

0

0P

1

m

m[2, 4]
= min

2≤k<4
(m[2, k] + m[k + 1, 4] + r1rkr4)

= min(m[2, 2] + m[3, 4] + r1r2r4,

m[2, 3] + m[4, 4] + r1r3r4)
= min(0 + 5000 + 100000, 1000 + 0 + 2000)
= 3000

3

2

10

0

0

0P

1

3

10K0

0

0

0

1K

5K

3K

1.2K

m

m[1, 4]
= min

1≤k<4
(m[1, k] + m[k + 1, 4] + r0rkr4)

= min(m[1, 1] + m[2, 4] + r0r1r4,

m[1, 2] + m[3, 4] + r0r2r4,

m[1, 3] + m[4, 4] + r0r3r4)
= min(0 + 3000 + 20000,

1000 + 5000 + 50000,
1200 + 0 + 1000)

= 2200

10K0

0

0

0

1K

5K

3K

1.2K2.2K

3

2

10

0

0

0P

1

3

3

m

Performing the Product

Suppose we have a function matmultiply that multi-
plies two rectangular matrices and returns the result.

function product(i, j)
comment returns Mi · Mi+1 · · ·Mj

if i = j then return(Mi) else
k := P [i, j]
return(matmultiply(product(i, k),

product(k + 1, j)))

Main body: product(1, n).

Parenthesizing the Product

Suppose we want to output the parenthesization in-
stead of performing it. Use arrays L, R:

• L[i] stores the number of left parentheses in
front of matrix Mi

• R[i] stores the number of right parentheses be-
hind matrix Mi.

for i := 1 to n do
L[i] := 0; R[i] := 0

product(1, n)
for i := 1 to n do
for j := 1 to L[i] do print(“(”)
print(“Mi”)
for j := 1 to R[i] do print(“)”)

procedure product(i, j)
if i < j − 1 then

k := P [i, j]
if k > i then
increment L[i] and R[k]

if k + 1 < j then
increment L[k + 1] and R[j]

product(i,k)
product(k+1,j)

5

Example

product(1,4)

k:=P[1,4]=3

Increment L[1], R[3]

product(1,3)

k:=P[1,3]=1

Increment L[2], R[3]

product(1,1)

product(2,3)

product(4,4)

L

R

1 2 3 4

1 2 3 4

1 0 0 0

0 0 1 0

L

R

1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0

L

R

1 2 3 4

1 2 3 4

1 1 0 0

0 0 2 0

M1 M2 M3 M4()()

Assigned Reading

CLR Section 16.1, 26.2.

POA Section 8.4, 8.6.

6

Algorithms Course Notes

Greedy Algorithms 1

Ian Parberry∗

Fall 2001

Summary

Greedy algorithms for

• Optimal tape storage
• Continuous knapsack problem

Greedy Algorithms

• Start with a solution to a small subproblem
• Build up to a solution to the whole problem
• Make choices that look good in the short term

Disadvantage: Greedy algorithms don’t always
work. (Short term solutions can be disastrous in
the long term.) Hard to prove correct.

Advantage: Greedy algorithms work fast when they
work. Simple algorithms, easy to implement.

Optimal Tape Storage

Given n files of length

m1, m2, . . . , mn

find which order is the best to store them on a tape,
assuming

• Each retrieval starts with the tape rewound.
• Each retrieval takes time equal to the length of

the preceding files in the tape plus the length of
the retrieved file.

• All files are to be retrieved.

Example

n = 3; m1 = 5, m2 = 10, m3 = 3.
∗Copyright c© Ian Parberry, 1992–2001.

There are 3! = 6 possible orders.

1,2,3: (5+10+3)+(5+10)+5 =38
1,3,2: (5+3+10)+(5+3) +5 =31
2,1,3: (10+5+3)+(10+5)+10=43
2,3,1: (10+3+5)+(10+3)+10=41
3,1,2: (3+5+10)+(3+5) +3 =29
3,2,1: (3+10+5)+(3+10)+3 =34

The best order is 3, 1, 2.

The Greedy Solution

make tape empty
for i := 1 to n do

grab the next shortest file
put it next on tape

The algorithm takes the best short term choice with-
out checking to see whether it is the best long term
decision.

Is this wise?

Correctness

Suppose we have files f1, f2, . . . , fn, of lengths
m1, m2, . . . , mn respectively. Let i1, i2, . . . , in be a
permutation of 1, 2, . . . , n.

Suppose we store the files in order

fi1 , fi2 , . . . , fin
.

What does this cost us?

To retrieve the kth file on the tape, fik
, costs

k∑
j=1

mij

1

Therefore, the cost of retrieving them all is

n∑
k=1

k∑
j=1

mij
=

n∑
k=1

(n − k + 1)mik

To see this:

fi1 : mi1

fi2 : mi1+mi2

fi3 : mi1+mi2+mi3
...

fin−1 : mi1+mi2+mi3+. . . +min−1

fin
: mi1+mi2+mi3+. . . +min−1+min

Total is

nmi1 + (n − 1)mi2 + (n − 2)mi3 + . . .

+ 2min−1 + min
=

n∑
k=1

(n − k + 1)mik

The greedy algorithm picks files fi in nondecreasing
order of their size mi. It remains to prove that this
is the minimum cost permutation.

Claim: Any permutation in nondecreasing order of
mi’s has minimum cost.

Proof: Let Π = (i1, i2, . . . , in) be a permutation of
1, 2, . . . , n that is not in nondecreasing order of mi’s.
We will prove that it cannot have minimum cost.

Since mi1 , mi2 , . . . , min
is not in nondecreasing or-

der, there must exist 1 ≤ j < n such that mij
>

mij+1 .

Let Π′ be permutation Π with ij and ij+1 swapped.

The cost of permutation Π is

C(Π) =
n∑

k=1

(n − k + 1)mik

=
j−1∑
k=1

(n − k + 1)mik
+

(n − j + 1)mij
+ (n − j)mij+1 +

n∑
k=j+2

(n − k + 1)mik

The cost of permutation Π′ is

C(Π′) =
j−1∑
k=1

(n − k + 1)mik
+

(n − j + 1)mij+1 + (n − j)mij
+

n∑
k=j+2

(n − k + 1)mik

Hence,

C(Π) − C(Π′) = (n − j + 1)(mij
− mij+1)

+ (n − j)(mij+1 − mij
)

= mij
− mij+1

> 0 (by definition of j)

Therefore, C(Π′) < C(Π), and so Π cannot be a
permutation of minimum cost. This is true of any Π
that is not in nondecreasing order of mi’s.

Therefore the minimum cost permutation must be
in nondecreasing order of mi’s.

Analysis

O(n log n) for sorting

O(n) for the rest

The Continuous Knapsack Problem

This is similar to the knapsack problem met earlier.

• given n objects A1, A2, . . . , An

• given a knapsack of length S
• Ai has length si

• Ai has weight wi

• an xi-fraction of Ai, where 0 ≤ xi ≤ 1 has
length xisi and weight xiwi

Fill the knapsack as full as possible using fractional
parts of the objects, so that the weight is mini-
mized.

Example

S = 20.

2

s1 = 18, s2 = 10, s3 = 15.

w1 = 25, w2 = 15, w3 = 24.

(x1, x2, x3)
∑3

i=1 xisi

∑3
i=1 xiwi

(1,1/5,0) 20 28
(1,0,2/15) 20 28.2
(0,1,2/3) 20 31
(0,1/2,1) 20 31.5

...

The first one is the best so far. But is it the best
overall?

The Greedy Solution

Define the density of object Ai to be wi/si. Use
as much of low density objects as possible. That
is, process each in increasing order of density. If
the whole thing fits, use all of it. If not, fill the
remaining space with a fraction of the current object,
and discard the rest.

First, sort the objects in nondecreasing density, so
that wi/si ≤ wi+1/si+1 for 1 ≤ i < n.

Then, do the following:

s := S; i := 1
while si ≤ s do

xi := 1
s := s − si

i := i + 1
xi := s/si

for j := i + 1 to n do
xj := 0

Example

5
10

15
20

25
300

5
10

15
20

25
300

5
10

15
20

25
300

A 1

A 2

A 3

density = 25/18=1.4

density =15/10=1.5

density =24/15=1.6

5
10

15
20

25
300

A 1

A 2

A 3

5
10

15
20

25
300

A 2

A 3

5
10

15
20

25
300

A 2

A 3

Correctness

Claim: The greedy algorithm gives a solution of min-
imal weight.

(Note: a solution of minimal weight. There may be
many solutions of minimal weight.)

Proof: Let X = (x1, x2, . . . , xn) be the solution gen-
erated by the greedy algorithm.

If all the xi are 1, then the solution is clearly optimal
(it is the only solution).

Otherwise, let j be the smallest number such that

3

xj �= 1. From the algorithm,

xi = 1 for 1 ≤ i < j

0 ≤ xj < 1
xi = 0 for j < i ≤ n

Therefore,
j∑

i=1

xisi = S.

Let Y = (y1, y2, . . . , yn) be a solution of minimal
weight. We will prove that X must have the same
weight as Y , and hence has minimal weight.

If X = Y , we are done. Otherwise, let k be the least
number such that xk �= yk.

Proof Stategy

Transform Y into X, maintaining weight.

We will see how to transform Y into Z, which looks
“more like” X.

x 1 x 2 xk-1 y k y k+1 y n

x 1 x 2 xk-1 x k z k+1 z n

x 1 x 2 xk-1 x k x k+1 x n

... ...

... ...

... ...

Y=

Z=

X=

Digression

It must be the case that yk < xk. To see this, con-
sider the three possible cases:

Case 1: k < j. Then xk = 1. Therefore, since
xk �= yk, yk must be smaller than xk.

Case 2: k = j. By the definition of k, xk �= yk. If
yk > xk,

S =
n∑

i=1

yisi

=
k−1∑
i=1

yisi + yksk +
n∑

i=k+1

yisi

=
k−1∑
i=1

xisi + yksk +
n∑

i=k+1

yisi

=
k∑

i=1

xisi + (yk − xk)sk +
n∑

i=k+1

yisi

=
j∑

i=1

xisi + (yk − xk)sk +
n∑

i=k+1

yisi

= S + (yk − xk)sk +
n∑

i=k+1

yisi

> S

which contradicts the fact that Y is a solution.
Therefore, yk < xk.

Case 3: k > j. Then xk = 0 and yk > 0, and so

S =
n∑

i=1

yisi

=
j∑

i=1

yisi +
n∑

i=j+1

yisi

=
j∑

i=1

xisi +
n∑

i=j+1

yisi

= S +
n∑

i=j+1

yisi

> S

This is not possible, hence Case 3 can never happen.

In the other 2 cases, yk < xk as claimed.

Back to the Proof

Now suppose we increase yk to xk, and decrease as
many of yk+1, . . . , yn as necessary to make the total
length remain at S. Call this new solution Z =
(z1, z2, . . . , zn).

Therefore,

1. (zk − yk)sk > 0

2.
∑n

i=k+1(zi − yi)si < 0

4

3. (zk − yk)sk +
∑n

i=k+1(zi − yi)si = 0

Then,

n∑
i=1

ziwi

=
k−1∑
i=1

ziwi + zkwk +
n∑

i=k+1

ziwi

=
k−1∑
i=1

yiwi + zkwk +
n∑

i=k+1

ziwi

=
n∑

i=1

yiwi − ykwk −
n∑

i=k+1

yiwi +

zkwk +
n∑

i=k+1

ziwi

=
n∑

i=1

yiwi + (zk − yk)wk +
n∑

i=k+1

(zi − yi)wi

=
n∑

i=1

yiwi + (zk − yk)skwk/sk +

n∑
i=k+1

(zi − yi)siwi/si

≤
n∑

i=1

yiwi + (zk − yk)skwk/sk +

n∑
i=k+1

(zi − yi)siwk/sk (by (2) & density)

=
n∑

i=1

yiwi +

(
(zk − yk)sk +

n∑
i=k+1

(zi − yi)si

)
wk/sk

=
n∑

i=1

yiwi (by (3))

Now, since Y is a minimal weight solution,

n∑
i=1

ziwi �<
n∑

i=1

yiwi.

Hence Y and Z have the same weight. But Z looks

“more like” X — the first k entries of Z are the same
as X.

Repeating this procedure transforms Y into X and
maintains the same weight. Therefore X has mini-
mal weight.

Analysis

O(n log n) for sorting

O(n) for the rest

Assigned Reading

CLR Section 17.2.

POA Section 9.1.

5

Algorithms Course Notes

Greedy Algorithms 2

Ian Parberry∗

Fall 2001

Summary

A greedy algorithm for

• The single source shortest path problem (Dijk-
stra’s algorithm)

Single Source Shortest Paths

Given a labelled, directed graph G = (V, E) and
a distinguished vertex s ∈ V , find for each vertex
w ∈ V a shortest (i.e. least cost) path from s to w.

More precisely, construct a data structure that al-
lows us to compute the vertices on a shortest path
from s to w for any w ∈ V in time linear in the
length of that path.

Vertex s is called the source.

Let δ(v, w) denote the cost of the shortest path from
v to w.

Let C[v, w] be the cost of the edge from v to w (∞
if it doesn’t exist, 0 if v = w).

Dijkstra’s Algorithm: Overview

Maintain a set S of vertices whose minimum distance
from the source is known.

• Initially, S = {s}.
• Keep adding vertices to S.
• Eventually, S = V .

A internal path is a path from s with all internal
vertices in S.

Maintain an array D with:
∗Copyright c© Ian Parberry, 1992–2001.

• If w �∈ S, then D[w] is the cost of the shortest
internal path to w.

• If w ∈ S, then D[w] is the cost of the shortest
path from s to w, δ(s, w).

The Frontier

A vertex w is on the frontier if w �∈ S, and there is
a vertex u ∈ S such that (u, w) ∈ E.

Frontier

SG

s

All internal paths end at vertices in S or the fron-
tier.

Adding a Vertex to S

Which vertex do we add to S? The vertex w ∈ V −S
with smallest D value. Since the D value of vertices
not on the frontier or in S is infinite, w will be on
the frontier.

Claim: D[w] = δ(s, w).

That is, we are claiming that the shortest internal
path from s to w is a shortest path from s to w.

1

Consider the shortest path from s to w. Let x be
the first frontier vertex it meets.

w

xs

S

Then

δ(s, w) = δ(s, x) + δ(x, w)
= D[x] + δ(x, w)
≥ D[w] + δ(x, w) (By defn. of w)
≥ D[w]

But by the definition of δ, δ(s, w) ≤ D[w].

Hence, D[w] = δ(s, w) as claimed.

Observation

Claim: If u is placed into S before v, then δ(s, u) ≤
δ(s, v).

Proof: Proof by induction on the number of ver-
tices already in S when v is put in. The hypothesis
is certainly true when |S| = 1. Now suppose it is
true when |S| < n, and consider what happens when
|S| = n.

Consider what happens at the time that v is put into
S. Let x be the last internal vertex on the shortest
path to v.

S
u

v
x

s

Case 1: x was put into S before u.

Go back to the time that u was put into S.

S
u

v
x

s

Since x was already in S, v was on the frontier. But
since u was chosen to be put into S before v, it
must have been the case that D[u] ≤ D[v]. Since
u was chosen to be put into S, D[u] = δ(s, u). By
the definition of x, and because x was put into S
before u, D[v] = δ(s, v). Therefore, δ(s, u) = D[u] ≤
D[v] = δ(s, v).

Case 2: x was put into S after u.

Since x was put into S before v, at the time x was
put into S, |S| < n. Therefore, by the induction
hypothesis, δ(s, u) ≤ δ(s, x). Therefore, by the defi-
nition of x, δ(s, u) ≤ δ(s, x) ≤ δ(s, v).

Updating the Cost Array

The D value of frontier vertices may change, since
there may be new internal paths containing w.

There are 2 ways that this can happen. Either,

• w is the last internal vertex on a new internal
path, or

• w is some other internal vertex on a new internal
path

If w is the last internal vertex:

2

x

w

x

w

D[x]

D[w]+C[w,x]

s

s

S

S

Old internal path of cost

New internal path of cost

If w is not the last internal vertex:

x

x

w

w

s
y

y
s

Was a non-internal path

Becomes an internal path

S

S

This cannot be shorter than any other path from s
to x.

Vertex y was put into S before w. Therefore, by the
earlier Observation, δ(s, y) ≤ δ(s, w).

That is, it is cheaper to go from s to y directly than
it is to go through w. So, this type of path can be
ignored.

The D value of vertices outside the frontier may
change

D[y]=D[w]+C[w,y]

yw

D[y]=

yw

OO

s

s

The D value of vertices in S do not change (they are
already the shortest).

Therefore, for every vertex v ∈ V , when w is moved
from the frontier to S,

D[v] := min{D[v], D[w] + C[w, v]}

Dijkstra’s Algorithm

1. S := {s}
2. for each v ∈ V do
3. D[v] := C[s, v]
4. for i := 1 to n − 1 do
5. choose w ∈ V − S with smallest D[w]
6. S := S ∪ {w}
7. for each vertex v ∈ V do
8. D[v] := min{D[v], D[w] + C[w, v]}

First Implementation

Store S as a bit vector.

• Line 1: initialize the bit vector, O(n) time.
• Lines 2–3: n iterations of O(1) time per itera-
tion, total of O(n) time

• Line 4: n − 1 iterations
• Line 5: a linear search, O(n) time.
• Line 6: O(1) time

3

• Lines 7–8: n iterations of O(1) time per itera-
tion, total of O(n) time

• Lines 4–8: n − 1 iterations, O(n) time per iter-
ation

Total time O(n2).

Second Implementation

Instead of storing S, store S′ = V − S. Implement
S′ as a heap, indexed on D value.

Line 8 only needs to be done for those v such that
(w, v) ∈ E. Provide a list for each w ∈ V of those
vertices v such that (w, v) ∈ E (an adjacency list).

1–3. makenull(S′)
for each v ∈ V except s do

D[v] := C[s, v]
insert(v, S′)

4. for i := 1 to n − 1 do
5–6. w := deletemin(S′)
7. for each v such that (w, v) ∈ E do
8. D[v] := min{D[v], D[w] + C[w, v]}

move v up the heap

Analysis

• Line 8: O(logn) to adjust the heap
• Lines 7–8: O(n logn)
• Lines 5–6: O(logn)
• Lines 4–8: O(n2 log n)
• Lines 1–3: O(n logn)

Total: O(n2 log n)

But, line 8 is executed exactly once for each edge:
each edge (u, v) ∈ E is used once when u is placed
in S. Therefore, the true complexity is O(e logn):

• Lines 1–3: O(n logn)
• Lines 4–6: O(n logn)
• Lines 4,8: O(e logn)

Dense and Sparse Graphs

Which is best? They match when e log n = Θ(n2),
that is, e = Θ(n2/ log n).

• use first implementation on dense graphs (e
is larger than n2/ log n, technically, e =
ω(n2/ log n))

• use second implementation on sparse graphs
(e is smaller than n2/ logn, technically, e =
o(n2/ log n))

The second implementation can be improved by im-
plementing the priority queue using Fibonacci heaps.
Run time is O(n logn+ e).

Computing the Shortest Paths

We have only computed the costs of the shortest
paths. What about constructing them?

Keep an array P , with P [v] the predecessor of v in
the shortest internal path.

Every time D[v] is modified in line 8, set P [v] to w.

1. S := {s}
2. for each v ∈ V do
3. D[v] := C[s, v]

if (s, v) ∈ E then P [v] := s else P [v] := 0
4. for i := 1 to n − 1 do
5. choose w ∈ V − S with smallest D[w]
6. S := S ∪ {w}
7. for each vertex v ∈ V − S do
8. if D[w] + C[w, v] < D[v] then

D[v] := D[w] + C[w, v]
P [v] := w

Reconstructing the Shortest Paths

For each vertex v, we know that P [v] is its predeces-
sor on the shortest path from s to v. Therefore, the
shortest path from s to v is:

• The shortest path from s to P [v], and
• the edge (P [v], v).

To print the list of vertices on the shortest path from
s to v, use divide-and-conquer:

procedure path(s, v)
if v �= s then path(s, P [v])
print(v)

To use, do the following:

4

if P [v] �= 0 then path(s, v)

Correctness: Proof by induction.

Analysis: linear in the length of the path; proof by
induction.

Example

2

1

5

43

10

10010

30

20

50 60

Dark shading: S
Light shading: frontier

Source is vertex 1.

D

P 1 0 1 1

100300010

2 3 4 5

Dark shading: S
Light shading: entries
 that have changed

2

1

5

43

10

10010

30

20

50 60

D

P 1 2 1 1

100306010

2 3 4 5

2

1

5

43

10

10010

30

20

50 60

D

P 1 4 1 4

90305010

2 3 4 5

2

1

5

43

10

10010

30

20

50 60

D

P 1 4 1 3

60305010

2 3 4 5

2

1

5

43

10

10010

30

20

50 60

D

P 1 4 1 3

60305010

2 3 4 5

To reconstruct the shortest paths from the P array:

P [2] P [3] P [4] P [5]
1 4 1 3

Vertex Path Cost
2: 1 2 10
3: 1 4 3 20 + 30 = 50
4: 1 4 30
5: 1 4 3 5 10 + 20 + 30 = 60

The costs agree with the D array.

The same example was used for the all pairs shortest
path problem.

5

Assigned Reading

CLR Section 25.1, 25.2.

6

Algorithms Course Notes

Greedy Algorithms 3

Ian Parberry∗

Fall 2001

Summary

Greedy algorithms for

• The union-find problem
• Min cost spanning trees (Prim’s algorithm and
Kruskal’s algorithm)

The Union-Find Problem

Given a set {1, 2, . . . , n} initially partitioned into n
disjoint subsets, one member per subset, we want to
perform the following operations:

• find(x): return the name of the subset that x is
in

• union(x, y): combine the two subsets that x and
y are in

What do we use for the “name” of a subset? Use
one of its members.

A Data Structure for Union-Find

Use a tree:

• implement with pointers and records
• the set elements are stored in the nodes
• each child has a pointer to its parent
• there is an array P [1..n] with P [i] pointing to
the node containing i

∗Copyright c© Ian Parberry, 1992–2001.

3 8 6 5

4
1

2
7

12

109

11

Set 1 is {1,3,6,8} Set 7 is {4,5,7}

Set 2 is {2}

Set 11 is {9,10,11,12}

3 8 6 5

4
1

2
7

1 2 3 4 5 6 7 8 9 10 11 12

9

P

12

10

11

Implementing the Operations

• find(x): Follow the chain of pointers starting at
P [x] to the root of the tree containing x. Return
the set element stored there.

• union(x, y): Follow the chains of pointers start-
ing at P [x] and P [y] to the roots of the trees
containing x and y, respectively. Make the root
of one tree point to the root of the other.

1

Example

11

7

3 8 6 5

4
1

2
9

12

10

union(4,12):

1 2 3 4 5 6 7 8 9 10 11 12
P

Analysis

Running time proportional to number of layers in
the tree. But this may be Ω(n) for an n-node tree.

n

3

2

1

n

3

2

1

n

3

2

1

n

3

2

1

union(1,2) union(1,3) union(1,n)Initially After After After

Improvement

Make the root of the smaller tree point to the root
of the bigger tree.

3

2

1

union(1,2) union(1,3)

4

5

3

2

1

4

5

3

2

1

4

5

union(4,5)

3

2

1

4

5

union(2,5)

3

2

1

4

5

Initially After After After After

5 nodes, 3 layers

More Analysis

Claim: If this algorithm is used, every tree with n
nodes has at most �log n�+ 1 layers.

Proof: Proof by induction on n, the number of nodes
in the tree. The claim is clearly true for a tree with
1 node. Now suppose the claim is true for trees
with less than n nodes, and consider a tree T with
n nodes.

T was made by unioning together two trees with less
than n nodes each.

Suppose the two trees have m and n−m nodes each,
where m ≤ n/2.

m
n-m

m n-m

T1 T2

Then, by the induction hypothesis, T has

max{depth(T1) + 1, depth(T2)}
= max{�logm�+ 2, �log(n − m)�+ 1}
≤ max{�log n/2�+ 2, �log n�+ 1}
= �log n�+ 1

layers.

Implementation detail: store count of nodes in root
of each tree. Update during union in O(1) extra
time.

Conclusion: union and find operations take time
O(logn).

2

It is possible to do better using path compression.
When traversing a path from leaf to root, make all
nodes point to root. Gives better amortized perfor-
mance.

O(logn) is good enough for our purposes.

Spanning Trees

A graph S = (V, T) is a spanning tree of an undi-
rected graph G = (V, E) if:

• S is a tree, that is, S is connected and has no
cycles

• T ⊆ E

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

Spanning Forests

A graph S = (V, T) is a spanning forest of an undi-
rected graph G = (V, E) if:

• S is a forest, that is, S has no cycles
• T ⊆ E

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

Min Cost Spanning Trees

Given a labelled, undirected, connected graph G,
find a spanning tree for G of minimum cost.

1 2

3

56

4 7

1 2

3

56

4 7

20

23

28

36

25

17

16

9

3

151
4

20

23

28

36

25

17

16

9

3

151
4

Cost = 23+1+4+9+3+17=57

The Muddy City Problem

The residents of Muddy City are too cheap to pave
their streets. (After all, who likes to pay taxes?)
However, after several years of record rainfall they
are tired of getting muddy feet. They are still too
miserly to pave all of the streets, so they want to
pave only enough streets to ensure that they can
travel from every intersection to every other inter-
section on a paved route, and they want to spend as
little money as possible doing it. (The residents of
Muddy City don’t mind walking a long way to save
money.)

Solution: Create a graph with a node for each in-
tersection, and an edge for each street. Each edge
is labelled with the cost of paving the corresponding
street. The cheapest solution is a min-cost spanning
tree for the graph.

An Observation About Trees

Claim: Let S = (V, T) be a tree. Then:

1. For every u, v ∈ V , the path between u and v
in S is unique.

2. If any edge (u, v)
∈ T is added to S, then a
unique cycle results.

Proof:

1. If there were more than one path between u
and v, then there would be a cycle, which con-
tradicts the definition of a tree.

3

u v

2. Consider adding an edge (u, v)
∈ T to T . There
must already be a path from u to v (since a tree
is connected). Therefore, adding an edge from
u to v creates a cycle.

u v u v

This cycle must be unique, since if adding (u, v) cre-
ates two cycles, then there must have been a cycle
before, which contradicts the definition of a tree.

u v

u v

u v

Key Fact

Here is the principle behind MCST algorithms:

Claim: Let G = (V, E) be a labelled, undirected
graph, and S = (V, T) a spanning forest for G.

Suppose S is comprised of trees

(V1, T1), (V2, T2), . . . , (Vk, Tk)

for some k ≤ n.

Let 1 ≤ i ≤ k. Suppose e = (u, v) is the cheapest
edge leaving Vi (that is, an edge of lowest cost in
E − T such that u ∈ Vi and v
∈ Vi).

Consider all of the spanning trees that contain T .
There is a spanning tree that includes T ∪ {e} that
is as cheap as any of them.

Decision Tree

For every spanning tree here
there is one at least as cheap there

Choose e Choose edges
other than e

Proof: Suppose there is a spanning tree that includes
T but does not include e. Adding e to this spanning
tree introduces a cycle.

Vi Vi

u v

w
x

vu
e

d

e

Therefore, there must be an edge d = (w, x) such
that w ∈ Vi and x
∈ Vi.

Let c(e) denote the cost of e and c(d) the cost of d.
By hypothesis, c(e) ≤ c(d).

There is a spanning tree that includes T ∪ {e} that
is at least as cheap as this tree. Simply add edge e
and delete edge d.

• Is the new spanning tree really a spanning tree?
Yes, because adding e introduces a unique new
cycle, and deleting d removes it.

• Is it more expensive? No, because c(e) ≤ c(d).

Corollary

Claim: Let G = (V, E) be a labelled, undirected
graph, and S = (V, T) a spanning forest for G.

Suppose S is comprised of trees

(V1, T1), (V2, T2), . . . , (Vk, Tk)

4

for some k ≤ n.

Let 1 ≤ i ≤ k. Suppose e = (u, v) is an edge of
lowest cost in E − T such that u ∈ Vi and v
∈ Vi.

If S can be expanded to a min cost spanning tree,
then so can S′ = (V, T ∪ {e}).

Proof: Suppose S can be expanded to a min cost
spanning tree M . By the previous result, S′ =
(V, T ∪{e}) can be expanded to a spanning tree that
is at least as cheap as M , that is, a min cost spanning
tree.

General Algorithm

1. F := set of single-vertex trees
2. while there is > 1 tree in F do
3. Pick an arbitrary tree Si = (Vi, Ti) from F
4. e := min cost edge leaving Vi

5. Join two trees with e

1. F := ∅
for j := 1 to n do

Vj := {j}
F := F ∪ {(Vj , ∅)}

2. while there is > 1 tree in F do
3. Pick an arbitrary tree Si = (Vi, Ti) from F
4. Let e = (u, v) be a min cost edge,

where u ∈ Vi, v ∈ Vj , j
= i
5. Vi := Vi ∪ Vj ; Ti := Ti ∪ Tj ∪ {e}

Remove tree (Vj , Tj) from forest F

Many ways of implementing this.

• Prim’s algorithm
• Kruskal’s algorithm

Prim’s Algorithm: Overview

Take i = 1 in every iteration of the algorithm.

We need to keep track of:

• the set of edges in the spanning forest, T1

• the set of vertices V1

• the edges that lead out of the tree (V1, T1), in
a data structure that enables us to choose the
one of smallest cost

Example

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

20

23

28

36

25

17

16
9

3

151 4

1 2

3

56

4 7

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

Prim’s Algorithm

Q is a priority queue of edges, ordered on cost.

1. T1 := ∅; V1 := {1}; Q := empty
2. for each w ∈ V such that (1, w) ∈ E do
3 insert(Q, (1, w))
4. while |V1| < n do
5. e :=deletemin(Q)
6. Suppose e = (u, v), where u ∈ V1

7. if v
∈ V1 then
8. T1 := T1 ∪ {e}
9. V1 := V1 ∪ {v}
10. for each w ∈ V such that (v, w) ∈ E do
11. insert(Q, (v, w))

Data Structures

For

• E: adjacency list
• V1: linked list
• T1: linked list
• Q: heap

Analysis

• Line 1: O(1)
• Line 3: O(log e)

5

• Lines 2–3: O(n log e)
• Line 5: O(log e)
• Line 6: O(1)
• Line 7: O(1)
• Line 8: O(1)
• Line 9: O(1)
• Lines 4–9: O(e log e)
• Line 11: O(log e)
• Lines 4,10–11: O(e log e)

Total: O(e log e) = O(e logn)

Kruskal’s Algorithm: Overview

At every iteration of the algorithm, take e = (u, v)
to be the unused edge of smallest cost, and Vi and
Vj to be the vertex sets of the forest such that u ∈ Vi

and v ∈ Vj .

We need to keep track of

• the vertices of spanning forest

F = {V1, V2, . . . , Vk}

(note: F is a partition of V)
• the set of edges in the spanning forest, T
• the unused edges, in a data structure that en-
ables us to choose the one of smallest cost

Example

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

1 2

3

56

4 7

20

23

28

36

25

17

16
9

3

151 4

1 2

3

56

4 7

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

20

23

28

36

25

17

16
9

3

151 4

Kruskal’s Algorithm

T is the set of edges in the forest.

F is the set of vertex-sets in the forest.

1. T := ∅; F := ∅
2. for each vertex v ∈ V do F := F ∪ {{v}}
3. Sort edges in E in ascending order of cost
4. while |F | > 1 do
5. (u, v) := the next edge in sorted order
6. if find(u)
= find(v) then
7. union(u, v)
8. T := T ∪ {(u, v)}

Lines 6 and 7 use union-find on F .

On termination, T contains the edges in the min cost
spanning tree for G = (V, E).

Data Structures

For

• E: adjacency list
• F : union-find data structure
• T : linked list

Analysis

• Line 1: O(1)
• Line 2: O(n)
• Line 3: O(e log e) = O(e logn)
• Line 5: O(1)
• Line 6: O(logn)
• Line 7: O(logn)
• Line 8: O(1)
• Lines 4–8: O(e logn)

Total: O(e logn)

Questions

Would Prim’s algorithm do this?

6

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

111

12

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

111

12

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

111

12

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

111

12

Would Kruskal’s algorithm do this?

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

111

12

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

111

12

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

111

12

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

111

12

Could a min-cost spanning tree algorithm do this?

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

21

12

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

21

12

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

21

12

6

2

3

5

7

41

2

3

4
5

6

7

8 9
10

21

12

Assigned Reading

CLR Chapter 24.

7

Algorithms Course Notes

Backtracking 1

Ian Parberry∗

Fall 2001

Summary

Backtracking: exhaustive search using divide-and-
conquer.

General principles:

• backtracking with binary strings
• backtracking with k-ary strings
• pruning
• how to write a backtracking algorithm

Application to

• the knapsack problem
• the Hamiltonian cycle problem
• the travelling salesperson problem

Exhaustive Search

Sometimes the best algorithm for a problem is to try
all possibilities.

This is always slow, but there are standard tools that
we can use to help: algorithms for generating basic
objects such as

• 2n binary strings of length n
• kn k-ary strings of length n
• n! permutations
• n!/r!(n− r)! combinations of n things chosen r

at a time

Backtracking speeds the exhaustive search by prun-
ing.

Bit Strings

Problem: Generate all the strings of n bits.
∗Copyright c© Ian Parberry, 1992–2001.

Solution: Use divide-and-conquer. Keep current
binary string in an array A[1..n]. Aim is to call
process(A) once with A[1..n] containing each binary
string. Call procedure binary(n):

procedure binary(m)
comment process all binary strings of length m
if m = 0 then process(A) else

A[m] := 0; binary(m − 1)
A[m] := 1; binary(m − 1)

Correctness Proof

Claim: For all m ≥ 1, binary(m) calls process(A)
once with A[1..m] containing every string of m bits.

Proof: The proof is by induction on m. The claim
is certainly true for m = 0.

Now suppose that binary(m − 1) calls process(A)
once with A[1..m−1] containing every string of m−1
bits.

First, binary(m)

• sets A[m] to 0, and
• calls binary(m − 1).

By the induction hypothesis, this calls process(A)
once with A[1..m] containing every string of m bits
ending in 0.

Then, binary(m)

• sets A[m] to 1, and
• calls binary(m − 1).

By the induction hypothesis, this calls process(A)
once with A[1..m] containing every string of m bits
ending in 1.

1

Hence, binary(m) calls process(A) once with A[1..m]
containing every string of m bits.

Analysis

Let T (n) be the running time of binary(n). Assume
procedure process takes time O(1). Then,

T (n) =
{

c if n = 1
2T (n − 1) + d otherwise

Therefore, using repeated substitution,

T (n) = (c + d)2n−1 − d.

Hence, T (n) = O(2n), which means that the algo-
rithm for generating bit-strings is optimal.

k-ary Strings

Problem: Generate all the strings of n numbers
drawn from 0..k − 1.

Solution: Keep current k-ary string in an ar-
ray A[1..n]. Aim is to call process(A) once with
A[1..n] containing each k-ary string. Call procedure
string(n):

procedure string(m)
comment process all k-ary strings of length m
if m = 0 then process(A) else
for j := 0 to k − 1 do
A[m] := j; string(m − 1)

Correctness proof: similar to binary case.

Analysis: similar to binary case, algorithm optimal.

Backtracking Principles

Backtracking imposes a tree structure on the solu-
tion space. e.g. binary strings of length 3:

000 100 010 110 001 101 011 111

?00 ?10 ?01 ?11

??0 ??1

???

Backtracking does a preorder traversal on this tree,
processing the leaves.

Save time by pruning: skip over internal nodes that
have no useful leaves.

k-ary strings with Pruning

Procedure string fills the array A from right to left,
string(m, k) can prune away choices for A[m] that
are incompatible with A[m + 1..n].

procedure string(m)
comment process all k-ary strings of length m
if m = 0 then process(A) else
for j := 0 to k − 1 do
if j is a valid choice for A[m] then

A[m] := j; string(m − 1)

Devising a Backtracking Algorithm

Steps in devising a backtracker:

• Choose basic object, e.g. strings, permutations,
combinations. (In this lecture it will always be
strings.)

• Start with the divide-and-conquer code for gen-
erating the basic objects.

• Place code to test for desired property at the
base of recursion.

• Place code for pruning before each recursive
call.

General form of generation algorithm:

procedure generate(m)
if m = 0 then process(A) else
for each of a bunch of numbers j do

A[m] := j; generate(m − 1)

General form of backtracking algorithm:

procedure generate(m)
if m = 0 then process(A) else
for each of a bunch of numbers j do
if j consistent with A[m + 1..n]
then A[m] := j; generate(m − 1)

2

The Knapsack Problem

To solve the knapsack problem: given n rods, use
a bit array A[1..n]. Set A[i] to 1 if rod i is to be
used. Exhaustively search through all binary strings
A[1..n] testing for a fit.

n = 3, s1 = 4, s2 = 5, s3 = 2, L = 6.

000 100 010 110 001 101 011 111

?00 ?10 ?01 ?11

??0 ??1

??? 0

0 2

0 5 2 7

0 4 5 9 2 6

Length used

Gray means pruned

The Algorithm

Use the binary string algorithm. Pruning: let � be
length remaining,

• A[m] = 0 is always legal
• A[m] = 1 is illegal if sm > �; prune here

To print all solutions to knapsack problem with n
rods of length s1, . . . , sn, and knapsack of length L,
call knapsack(n, L).

procedure knapsack(m, �)
comment solve knapsack problem with m

rods, knapsack size �
if m = 0 then

if � = 0 then print(A)
else

A[m] := 0; knapsack(m − 1, �)
if sm ≤ � then
A[m] := 1; knapsack(m − 1, � − sm)

Analysis: time O(2n).

Generalized Strings

Note that k can be different for each digit of the
string, e.g. keep an array D[1..n] with A[m] taking
on values 0..D[m] − 1.

procedure string(m)
comment process all strings of length m
if m = 0 then process(A) else
for j := 0 to D[m] − 1 do
A[m] := j; string(m − 1)

Application: in a graph with n nodes, D[m] could
be the degree of node m.

Hamiltonian Cycles

A Hamiltonian cycle in a directed graph is a cycle
that passes through every vertex exactly once.

1

6

2

3

5

7

4

Problem: Given a directed graph G = (V, E), find a
Hamiltonian cycle.

Store the graph as an adjacency list (for each vertex
v ∈ {1, 2, . . . , n}, store a list of the vertices w such
that (v, w) ∈ E).

Store a Hamiltonian cycle as A[1..n], where the cycle
is

A[n] → A[n − 1] → · · · → A[2] → A[1] → A[n]

Adjacency list:

N 1 2 3
1 2
2 3 4 6
3 4
4 1 7
5 3
6 1 4 7
7 5

D
1 1
2 3
3 1
4 2
5 1
6 3
7 1

Hamiltonian cycle:

1 2 3 4 5 6 7
A 6 2 1 4 3 5 7

3

The Algorithm

Use the generalized string algorithm. Pruning: Keep
a Boolean array U [1..n], where U [m] is true iff ver-
tex m is unused. On entering m,

• U [m] = true is legal
• U [m] = false is illegal; prune here

To solve the Hamiltonian cycle problem, set up ar-
rays N (neighbours) and D (degree) for the in-
put graph, and execute the following. Assume that
n > 1.

1. for i := 1 to n − 1 do U [i] := true
2. U [n] := false; A[n] := n
3. hamilton(n − 1)

procedure hamilton(m)
comment complete Hamiltonian cycle

from A[m + 1] with m unused nodes
4. if m = 0 then process(A) else
5. for j := 1 to D[A[m + 1]] do
6. w := N [A[m + 1], j]
7. if U [w] then
8. U [w]:=false
9. A[m] := w; hamilton(m − 1)

10. U [w]:=true

procedure process(A)
comment check that the cycle is closed

11. ok:=false
12. for j := 1 to D[A[1]] do
13. if N [A[1], j] = A[n] then ok:=true
14. if ok then print(A)

Notes on the algorithm:

• From line 2, A[n] = n.
• Procedure process(A) closes the cycle. At the

point where process(A) is called, A[1..n] con-
tains a Hamiltonian path from vertex A[n] to
vertex A[1]. It remains to verify the edge from
vertex A[1] to vertex A[n], and print A if suc-
cessful.

• Line 7 does the pruning, based on whether the
new node has been used (marked in line 8).

• Line 10 marks a node as unused when we return
from visiting it.

Analysis

How long does it take procedure hamilton to find one
Hamiltonian cycle? Assume that there are none.

Let T (n) be the running time of hamilton(v, n).
Suppose the graph has maximum out-degree d.
Then, for some b, c ∈ IN,

T (n) ≤
{

bd if n = 0
dT (n − 1) + c otherwise

Hence (by repeated substitution), T (n) = O(dn).

Therefore, the total running time on an n-vertex
graph is O(dn) if there are no Hamiltonian cycles.
The running time will be O(dn + d) = O(dn) if one
is found.

Travelling Salesperson

Optimization problem (TSP): Given a directed la-
belled graph G = (V, E), find a Hamiltonian cycle
of minimum cost (cost is sum of labels on edges).

Bounded optimization problem (BTSP): Given a di-
rected labelled graph G = (V, E) and B ∈ IN, find a
Hamiltonian cycle of cost ≤ B.

It is enough to solve the bounded problem. Then
the full problem can be solved using binary search.

Suppose we have a procedure BTSP(x) that returns
a Hamiltonian cycle of length at most x if one exists.
To solve the optimization problem, call TSP(1, B),
where B is the sum of all the edge costs (the cheapest
Hamiltonian cycle costs less that this, if one exists).

function TSP(�, r)
comment return min cost Ham. cycle

of cost ≤ r and ≥ �
if � = r then return (BTSP(�)) else
m :=
(� + r)/2�
if BTSP(m) succeeds
then return(TSP(�, m))
else return(TSP(m + 1, r))

(NB. should first call BTSP(B) to make sure a
Hamiltonian cycle exists.)

Procedure TSP is called O(log B) times (analysis
similar to that of binary search). Suppose

4

• the graph has n edges
• the graph has labels at most b (so B ≤ bn)
• procedure BTSP runs in time O(T (n)).

Then, procedure TSP runs in time

(log n + log b)T (n).

Backtracking for BTSP

Let C[v, w] be cost of edge (v, w) ∈ E, C[v, w] = ∞
if (v, w) ∈ E.

1. for i := 1 to n − 1 do U [i] := true
2. U [n] := false; A[n] := n
3. hamilton(n − 1, B)

procedure hamilton(m, b)
comment complete Hamiltonian cycle from

A[m + 1] with m unused nodes, cost ≤ b
4. if m = 0 then process(A, b) else
5. for j := 1 to D[A[m + 1]] do
6. w := N [A[m + 1], j]
7. if U [w] and C[A[m + 1], w] ≤ b then
8. U [w]:=false
9. A[m] := w

hamilton(m − 1, b − C[v, w])
10. U [w]:=true

procedure process(A, b)
comment check that the cycle is closed

11. if C[A[1], n] ≤ b then print(A)

Notes on the algorithm:

• Extra pruning of expensive tours is done in
line 7.

• Procedure process (line 11) is made easier using
adjacency matrix.

Analysis: time O(dn), as for Hamiltonian cycles.

5

Algorithms Course Notes

Backtracking 2

Ian Parberry∗

Fall 2001

Summary

Backtracking with permutations.

Application to

• the Hamiltonian cycle problem
• the peaceful queens problem

Permutations

Problem: Generate all permutations of n distinct
numbers.

Solution:

• Backtrack through all n-ary strings of length n,
pruning out non-permutations.

• Keep a Boolean array U [1..n], where U [m] is
true iff m is unused.

• Keep current permutation in an array A[1..n].
• Aim is to call process(A) once with A[1..n] con-

taining each permutation.

Call procedure permute(n):

procedure permute(m)
comment process all perms of length m

1. if m = 0 then process(A) else
2. for j := 1 to n do
3. if U [j] then
4. U [j]:=false
5. A[m] := j; permute(m − 1)
6. U [j]:=true

Note: this is what we did in the Hamiltonian cycle
algorithm. A Hamiltonian cycle is a permutation of
the nodes of the graph.

∗Copyright c© Ian Parberry, 1992–2001.

Analysis

Clearly, the algorithm runs in time O(nn). But this
analysis is not tight: it does not take into account
pruning.

How many times is line 3 executed? Running time
will be big-O of this.

What is the situation when line 3 is executed? The
algorithm has, for some 0 ≤ i < n,

• filled in i places at the top of A with part of a
permutation, and

• tries n candidates for the next place in line 2.

What do the top i places in a permutation look like?

• i things chosen from n without duplicates
• permuted in some way

permutation of i
things chosen from n

try n
things

How many ways are there of filling in part of a per-
mutation? (

n
i

)
i!

Therefore, number of times line 3 is executed is

n
n−1∑
i=0

(
n
i

)
i!

1

= n
n−1∑
i=0

n!
(n − i)!

= n · n!
n∑

i=1

1
i!

≤ (n + 1)!(e − 1)
≤ 1.718(n + 1)!

Analysis of Permutation Algorithm

Therefore, procedure permute runs in time O((n +
1)!).

This is an improvement over O(nn). Recall that

n! ∼
√

2πn
(n

e

)n

.

Faster Permutations

The permutation generation algorithm is not opti-
mal: off by a factor of n

• generates n! permutations
• takes time O((n + 1)!).

A better algorithm: use divide and conquer to devise
a faster backtracking algorithm that generates only
permutations.

• Initially set A[i] = i for all 1 ≤ i ≤ n.
• Instead of setting A[n] to 1..n in turn, swap

values from A[1..n − 1] into it.

1 2 3 4

1

2

3
?

?

?

4

3

2

1

All permutations with 4
in the last place

All permutations with 3
in the last place

All permutations with 2
in the last place

All permutations with 1
in the last place

procedure permute(m)
comment process all perms in A[1..m]

1. if m = 1 then process(A) else
2. permute(m − 1)
3. for i := 1 to m − 1 do
4. swap A[m] with A[j] for some 1 ≤ j < m
5. permute(m − 1)

Problem: How to make sure that the values swapped
into A[m] in line 4 are distinct?

Solution: Make sure that A is reset after every re-
cursive call, and swap A[m] with A[i].

procedure permute(m)
1. if m = 1 then process else
2. permute(m − 1)
3. for i := m − 1 downto 1 do
4. swap A[m] with A[i]
5. permute(m − 1)
6. swap A[m] with A[i]

2

1 2
12

n=2

n=3

n=4

1 2

1 2 3
12 3

1 23
1 23

123
12 3

1 2 3

1 23

123

1 2 3

1 2 3

1 243
1 24 3

1 243
1 243

1 24 3
1 24 3

12 43
12 43

124 3
12 4 3

1243
124 3

1 2 3 4
12 3

1 23
1 23

12 3
123

4

4
4

4
4

1 2 34
1 24

12 4
124

1 2 4
12 4

3

3
3

3
3

1 2 3 4

1 23 4
1 2 3 4

123 4
1 2 3 4

1 2 4 3

1 24 3
1 2 4 3

124 3
1 2 4 3
1 2 3 4

1 24 3

1 243
1 24 3

1 243
1 24 3
1 2 3 4

124 3

124 3
124 3

12 43
124 3

1 2 3 4

unprocessed at

n=2
n=3
n=4

Analysis

Let T (n) be the number of swaps made by
permute(n). Then T (1) = 0, and for n > 2,
T (n) = nT (n − 1) + 2(n − 1).

Claim: For all n ≥ 1, T (n) ≤ 2n! − 2.

Proof: Proof by induction on n. The claim is cer-
tainly true for n = 1. Now suppose the hypothesis
is true for n. Then,

T (n + 1) = (n + 1)T (n) + 2n

≤ (n + 1)(2n! − 2) + 2n

= 2(n + 1)! − 2.

Hence, procedure permute runs in time O(n!), which
is optimal.

Hamiltonian Cycles on Dense Graphs

Use adjacency matrix: M [i, j] true iff (i, j) ∈ E.

1. for i := 1 to n do
2. A[i] := i
3. hamilton(n − 1)

procedure hamilton(m)
comment find Hamiltonian cycle from A[m]

with m unused nodes
4. if m = 0 then process(A) else
5. for j := m downto 1 do
6. if M [A[m + 1], A[j]] then
7. swap A[m] with A[j]
8. hamilton(m − 1)
9. swap A[m] with A[j]

procedure process(A)
comment check that the cycle is closed

10. if M [A[1], n] then print(A)

Analysis

Therefore, the Hamiltonian circuit algorithms run in
time

• O(dn) (using generalized strings)
• O((n − 1)!) (using permutations).

Which is the smaller of the two bounds? It depends
on d. The string algorithm is better if d ≤ n/e
(e = 2.7183 . . .).

Notes on algorithm:

• Note upper limit in for-loop on line 5 is m, not
m − 1: why?

• Can also be applied to travelling salesperson.

The Peaceful Queens Problem

How many ways are there to place n queens on an
n × n chessboard so that no queen threatens any
other.

3

Number the rows and columns 1..n. Use an array
A[1..n], with A[i] containing the row number of the
queen in column i.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

4 2 7 3 6 8 5 1A

This is a permutation!

An Algorithm

procedure queen(m)
1. if m = 0 then process else
2. for i := m downto 1 do
3. if OK to put queen in (A[i], m) then
4. swap A[m] with A[i]
5. queen(m − 1)
6. swap A[m] with A[i]

How do we determine if it is OK to put a queen in
position (i, j)? It is OK if there is no queen in the
same diagonal or backdiagonal.

Consider the following array: entry (i, j) contains
i + j.

10
2 3 4 5 6 7 8 9

11
12
13
14
15
16

3 4 5 6 7 8 9
104 5 6 7 8 9
11105 6 7 8 9
1211106 7 8 9
131211107 8 9
14131211108 9
1514131211109

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Note that:

• Entries in the same back-diagonal are identical.

• Entries are in the range 2..2n.

Consider the following array: entry (i, j) contains
i − j.

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
0 -1
1
2
3
4
5
6
7

-2 -3 -4 -5 -6 -7
0 -1 -2 -3 -4 -5 -6

0 -1 -2 -3 -4 -5
0 -1 -2 -3 -4

0 -1 -2 -3
0 -1 -2

0 -1
0

1
2
3
4
5
6

1
2
3
4
5

1
2
3
4

1
2
3

1
2 1

Note that:

• Entries in the same diagonal are identical.
• Entries are in the range −n + 1..n − 1.

Keep arrays b[2..2n] and d[−n + 1..n−1] (initialized
to true) such that:

• b[i] is false if back-diagonal i is occupied by a
queen, 2 ≤ i ≤ 2n.

• d[i] is false if diagonal i is occupied by a queen,
−n + 1 ≤ i ≤ n − 1.

procedure queen(m)
1. if m = 0 then process else
2. for i := m downto 1 do
3. if b[A[i] + m] and d[A[i] − m] then
4. swap A[m] with A[i]
5. b[A[m] + m] := false
6. d[A[m] − m] := false
7. queen(m − 1)
8. b[A[m] + m] := true
9. d[A[m] − m] := true
10. swap A[m] with A[i]

Experimental Results

How well does the algorithm work in practice?

• theoretical running time: O(n!)
• implemented in Berkeley Unix Pascal on Sun

Sparc 2
• practical for n ≤ 18
• possible to reduce run-time by factor of 2 (not

implemented)

4

• improvement over naive backtracking (theoreti-
cally O(n ·n!)) observed to be more than a con-
stant multiple

n count time
6 4 < 0.001 seconds
7 40 < 0.001 seconds
8 92 < 0.001 seconds
9 352 0.034 seconds

10 724 0.133 seconds
11 2,680 0.6 seconds
12 14,200 3.3 seconds
13 73,712 18.0 seconds
14 365,596 1.8 minutes
15 2,279,184 11.6 minutes
16 14,772,512 1.3 hours
17 95,815,104 9.1 hours
18 666,090,624 2.8 days

Comparison of Running Times

perm
vanilla

time (secs)

n
1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

10.00 15.00

Ratio of Running Times
ratio

n1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

10.00 15.00

5

Algorithms Course Notes

Backtracking 3

Ian Parberry∗

Fall 2001

Summary

Backtracking with combinations.

• principles
• analysis

Combinations

Problem: Generate all the combinations of n things
chosen r at a time.

Solution: Keep the current combination in an array
A[1..r]. Call procedure choose(n, r).

procedure choose(m, q)
comment choose q elements out of 1..m
if q = 0 then process(A)
else for i := q to m do

A[q] := i
choose(i − 1, q − 1)

Correctness

Proved in three parts:

1. Only combinations are processed.
2. The right number of combinations are pro-

cessed.
3. No combination is processed twice.

Claim 1. If 0 ≤ r ≤ n, then in combinations pro-
cessed by choose(n, r), A[1..r] contains a combina-
tion of r things chosen from 1..n.

Proof: Proof by induction on r. The hypothesis is
vacuously true for r = 0.

∗Copyright c© Ian Parberry, 1992–2001.

Now suppose that r > 0 and for all i ≥ r − 1, in
combinations processed by choose(i, r − 1), A[1..r−
1] contains a combination of r−1 things chosen from
1..i.

Now, choose(n, r) calls choose(i − 1, r − 1) with i
running from r to n. Therefore, by the induction
hypothesis and since A[r] is set to i, in combinations
processed by choose(n, r), A[1..r] contains a combi-
nation of r − 1 things chosen from 1..i − 1, followed
by the value i.

That is, A[1..r] contains a combination of r things
chosen from 1..n.

Claim 2. A call to choose(n, r) processes exactly(
n
r

)

combinations.

Proof: Proof by induction on r. The hypothesis is
certainly true for r = 0.

Now suppose that r > 0 and a call to choose(i,r−1)
generates exactly (

i
r − 1

)

combinations, for all r − 1 ≤ i ≤ n.

Now, choose(n, r) calls choose(i − 1, r − 1) with i
running from r to n. Therefore, by the induction
hypothesis, the number of combinations generated
is

n∑
i=r

(
i − 1
r − 1

)
=

n−1∑
i=r−1

(
i

r − 1

)

=
(

n
r

)
.

The first step follows by re-indexing, and the second
step follows by Identity 2:

1

Identity 1

Claim:
(

n
r

)
+

(
n

r − 1

)
=

(
n + 1

r

)

Proof:
(

n
r

)
+

(
n

r − 1

)

=
n!

r!(n − r)!
+

n!
(r − 1)!(n − r + 1)!

=
(n + 1 − r)n! + rn!

r!(n + 1 − r)!

=
(n + 1)n!

r!(n + 1 − r)!

=
(

n + 1
r

)
.

Identity 2

Claim: For all n ≥ 0 and 1 ≤ r ≤ n,

n∑
i=r

(
i
r

)
=

(
n + 1
r + 1

)
.

Proof: Proof by induction on n. Suppose r ≥ 1. The
hypothesis is certainly true for n = r, in which case
both sides of the equation are equal to 1.

Now suppose n > r and that

n∑
i=r

(
i
r

)
=

(
n + 1
r + 1

)
.

We are required to prove that

n+1∑
i=r

(
i
r

)
=

(
n + 2
r + 1

)
.

Now, by the induction hypothesis,

n+1∑
i=r

(
i
r

)

=
n∑

i=r

(
i
r

)
+

(
n + 1

r

)

=
(

n + 1
r + 1

)
+

(
n + 1

r

)

=
(

n + 2
r + 1

)
(By Identity 1).

Back to the Correctness Proof

Claim 3. A call to choose(n, r) processes combina-
tions of r things chosen from 1..n without repeating
a combination.

Proof: The proof is by induction on r, and is similar
to the above.

Now we can complete the correctness proof: By
Claim 1, a call to procedure choose(n, r) generates
combinations of r things from 1..n (since r things at
a time are processed from the array A. By Claim
3, it never duplicates a combination. By Claim 2, it
generates exactly the right number of combinations.
Therefore, it generates exactly the combinations of
r things chosen from 1..n.

Analysis

Let T (n, r) be the number of assignments to A made
in choose(n, r).

Claim: For all n ≥ 1 and 0 ≤ r ≤ n,

T (n, r) ≤ r

(
n
r

)
.

Proof: A call to choose(n, r) makes the following
recursive calls:

for i := r to n do
A[r] := i
choose(i − 1, r − 1)

The costs are the following:

2

Call Cost
choose(r − 1,r − 1) T (r − 1, r − 1) + 1
choose(r,r − 1) T (r, r − 1) + 1

...
choose(n − 1,r − 1) T (n − 1, r − 1) + 1

Therefore, summing these costs:

T (n, r) =
n−1∑

i=r−1

T (i, r − 1) + (n − r + 1)

We will prove by induction on r that

T (n, r) ≤ r

(
n
r

)
.

The claim is certainly true for r = 0. Now suppose
that r > 0 and for all i < n,

T (i, r − 1) ≤ (r − 1)
(

i
r − 1

)
.

Then by the induction hypothesis and Identity 2,

T (n, r)

=
n−1∑

i=r−1

T (i, r − 1) + (n − r + 1)

≤
n−1∑

i=r−1

((r − 1)
(

i
r − 1

)
) + (n − r + 1)

= (r − 1)
n−1∑

i=r−1

(
i

r − 1

)
+ (n − r + 1)

= (r − 1)
(

n
r

)
+ (n − r + 1)

≤ r

(
n
r

)

This last step follows since, for 1 ≤ r ≤ n,(
n
r

)
≥ n − r + 1

This can be proved by induction on r. It is certainly
true for r = 1, since both sides of the inequality are
equal to n in this case.

Now suppose that r > 1.

(
n
r

)
=

n!
r!(n − r)!

=
n(n − 1)!

r(r − 1)!((n − 1) − (r − 1))!

=
n

r

(n − 1)!
(r − 1)!((n − 1) − (r − 1))!

=
n

r

(
n − 1
r − 1

)

≥ n

r
((n − 1) − (r − 1) + 1) (by hyp.)

≥ n − r + 1 (since r ≤ n)

Optimality

Therefore, the combination generation algorithm

runs in time O(r
(

n
r

)
) (since the amount of extra

computation done for each assignment is a constant).

Therefore, the combination generation algorithm
seems to have running time that is not optimal to

within a constant multiple (since there are
(

n
r

)

combinations).

Unfortunately, it often seems to require this much
time. In the following table, A denotes the number
of assignments to array A, C denotes the number of
combinations, and Ratio denotes A/C.

Experiments

3

n r A C Ratio
20 1 20 20 1.00
20 2 209 190 1.10
20 3 1329 1140 1.17
20 4 5984 4845 1.24
20 5 20348 15504 1.31
20 6 54263 38760 1.40
20 7 116279 77520 1.50
20 8 203489 125970 1.62
20 9 293929 167960 1.75
20 10 352715 184756 1.91
20 11 352715 167960 2.10
20 12 293929 125970 2.33
20 13 203489 77520 2.62
20 14 116279 38760 3.00
20 15 54263 15504 3.50
20 16 20348 4845 4.20
20 17 5984 1140 5.25
20 18 1329 190 6.99
20 19 209 20 10.45
20 20 20 1 20.00

Optimality for r ≤ n/2

It looks like T (n) < 2
(

n
r

)
provided r ≤ n/2. But

is this true, or is it just something that happens with
small numbers?

Claim: If 1 ≤ r ≤ n/2, then

T (n, r) ≤ 2
(

n
r

)
− r.

Observation: With induction, you often have to
prove something stronger than you want.

Proof: First, we will prove the claim for r = 1, 2.
Then we will prove it for 3 ≤ r ≤ n/2 by induction
on n.

The Case r = 1

T (n, 1) = n (by observation), and

2
(

n
1

)
− 1 = 2n − 1 ≥ n.

Hence,

T (n, 1) ≤ 2
(

n
1

)
− 1,

as required.

The Case r = 2

Since

T (n, 2) =
n−1∑
i=1

T (i, 1) + (n − 1)

=
n−1∑
i=1

i + (n − 1)

= n(n − 1)/2 + (n − 1)
= (n + 2)(n − 1)/2,

and

2
(

n
2

)
− 2 = n(n − 1) − 2,

we require that

(n + 2)(n − 1)/2 ≤ n(n − 1) − 2
⇔ 2n(n − 1) − (n + 2)(n − 1) ≥ 4
⇔ (n − 2)(n − 1) ≥ 4
⇔ n2 − 3n − 2 ≥ 0.

This is true since n ≥ 4 (recall, r ≤ n/2), since the
largest root of n2−3n−2 ≥ 0 is (3+

√
17)/2 < 3.562.

The Case 3 ≤ r ≤ n/2

Claim: If 3 ≤ r ≤ n/2, then

T (n, r) ≤ 2
(

n
r

)
− r.

Proof by induction on n. The base case is n = 6.
The only choice for r is 3. Experiments show that
the algorithm uses 34 assignments to produce 20
combinations. Since 2 · 20 − 2 = 38 > 34, the hy-
pothesis holds for the base case.

Now suppose n ≥ 6, which implies that r ≥ 3. By
the induction hypothesis and the case r = 1, 2,

T (n, r)

=
n−1∑

i=r−1

T (i, r − 1) + (n − r + 1)

≤
n−1∑

i=r−1

(
2

(
i

r − 1

)
− (r − 1)

)
+ (n − r + 1)

4

= 2
n−1∑

i=r−1

(
i

r − 1

)
− (n − r + 1)(r − 2)

= 2
(

n
r

)
− (n − r + 1)(r − 2)

≤ 2
(

n
r

)
− (n − n

2
+ 1)(3 − 2)

< 2
(

n
r

)
− r.

Optimality Revisited

Hence, our algorithm is optimal for r ≤ n/2.

Sometimes this is just as useful: if r > n/2, generate
the items not chosen, instead of the items chosen.

5

Algorithms Course Notes

Backtracking 4

Ian Parberry∗

Fall 2001

Summary

More on backtracking with combinations. Applica-
tion to:

• the clique problem
• the independent set problem
• Ramsey numbers

Complete Graphs

The complete graph on n vertices is Kn = (V, E)
where V = {1, 2, . . . , n}, E = V × V .

1 2

3

56

4

1 2 1

4 3

2

34

5

1

2

K2 K4

K5
K6

1

3

2

K3

Subgraphs

A subgraph of a graph G = (V, E) is a graph B =
(U, F) such that U ⊆ V and F ⊆ E.

∗Copyright c© Ian Parberry, 1992–2001.

1 2

3

56

4 3

1 2

4

6 5

Induced Subgraphs

An induced subgraph of a graph G = (V, E) is a
graph B = (U, F) such that U ⊆ V and F = (U ×
U) ∩ E.

1 2

3

56

4 3

1 2

4

6 5

The Clique Problem

A clique is an induced subgraph that is complete.
The size of a clique is the number of vertices.

The clique problem:

Input: A graph G = (V, E), and an integer r.

Output: A clique of size r in G, if it exists.

Assumption: given u, v ∈ V , we can check whether
(u, v) ∈ E in O(1) time (use adjacency matrix).

Example

Does this graph have a clique of size 6?

1

Yes!

A Backtracking Algorithm

Use backtracking on a combination A of r vertices
chosen from V . Assume a procedure process(A) that
checks to see whether the vertices listed in A form a
clique. A represents a set of vertices in a potential
clique. Call clique(n, r).

Backtracking without pruning:

procedure clique(m, q)
if q = 0 then process(A) else
for i := q to m do

A[q] := i
clique(i − 1, q − 1)

Backtracking with pruning (line 3):

procedure clique(m, q)
1. if q = 0 then print(A) else
2. for i := q to m do
3. if (A[q], A[j]) ∈ E for all q < j ≤ r

then
4. A[q] := i
5. clique(i − 1, q − 1)

Analysis

Line 3 takes time O(r). Therefore, the algorithm
takes time

• O(r
(

n
r

)
) if r ≤ n/2, and

• O(r2

(
n
r

)
) otherwise.

The Independent Set Problem

An independent set is an induced subgraph that has
no edges. The size of an independent set is the num-
ber of vertices.

The independent set problem:

Input: A graph G = (V, E), and an integer r.

Output: Does G have an independent set of size r?

Assumption: given u, v ∈ V , we can check whether
(u, v) ∈ E in O(1) time (use adjacency matrix).

Complement Graphs

The complement of a graph G = (V, E) is a graph
G = (V, E), where E = (V × V) − E.

1 2

3

56

4

1

4

6 5

3

2
G G

Cliques and Independent Sets

A clique in G is an independent set in G.

2

1 2

3

56

4

G

1 2

3

56

4

G

Therefore, the independent set problem can be
solved with the clique algorithm, in the same run-
ning time: Change the if statement in line 3 from
“if (A[q], A[j]) ∈ E” to “if (A[i], A[j])
∈ E”.

Ramsey Numbers

Ramsey’s Theorem: For all i, j ∈ IN, there exists
a value R(i, j) ∈ IN such that every graph G with
R(i, j) vertices either has a clique of size i or an
independent set of size j.

So, R(i, j) is the smallest number n such that every
graph on n vertices has either a clique of size i or an
independent set of size j.

i j R(i, j)
3 3 6
3 4 9
3 5 14
3 6 18
3 7 23
3 8 28?
3 9 36
4 4 18

R(3, 8) is either 28 or 29, rumored to be 28.

Finding Ramsey Numbers

If the following prints anything, then R(i, j) > n.
Run it for n = 1, 2, 3, . . . until the first time it doesn’t
print anything. That value of n will be R(i, j).

for each graph G with n vertices do
if (G doesn’t have a clique of size i) and

(G doesn’t have an indept. set of size j)
then print(G)

How do we implement the for-loop?

Backtrack through all binary strings A representing
the upper triangle of the incidence matrix of G.

n-1 entries
n-2 entries

2 entries
1 entry

. .
 .

. .
 .

1 2 3 n. . .

1
2
3

n

. .
 .

How many entries does A have?

n−1∑
i=1

i = n(n − 1)/2

To test if (i, j) ∈ E, where i < j, we need to consult
the (i, j) entry of the incidence matrix. This is stored
in

A[n(i − 1) − i(i + 1)/2 + j].

1,2 1,n. . . 2,3 2,n. . . i,i+1 i,j.... . .

(n-1) + (n-2) +...+(n-(i-1)) j-i

Address is:

=
i−1∑
k=1

(n − k) + (j − i)

= n(i − 1) − i(i − 1)/2 + j − i

= n(i − 1) − i(i + 1)/2 + j.

3

Example

1 2

3

56

4

G

0
10 1 1 0 1

0
0

0
0

1 1 1 0
0 1 1

1 1
1

11101
1110

011
11

1

1 2 3 4 5 6
1
2
3
4
5
6

1 1 1
1 1 1 0

0 1 1
1 1

1

1
1 2 3 4 5 6

1
2
3
4
5
6

0

1

1 1 11 0
1 1 1 0

0 1 1
1 1

1 1 1 1 1 1 0 0 1 1 1 1 11 0

1 1 1 1 1 1 0 0 1 1 1 1 11 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Further Reading

R. L. Graham and J. H. Spencer, “Ramsey Theory”,
Scientific American, Vol. 263, No. 1, July 1990.

R. L. Graham, B. L. Rothschild, and J. H. Spencer,
Ramsey Theory, John Wiley & Sons, 1990.

4

Algorithms Course Notes

NP Completeness 1

Ian Parberry∗

Fall 2001

Summary

An introduction to the theory of NP completeness:

• Polynomial time computation
• Standard encoding schemes
• The classes P and NP.
• Polynomial time reductions
• NP completeness
• The satisfiability problem
• Proving new NP completeness results

Polynomial Time

Encode all inputs in binary. Measure running time
as a function of n, the number of bits in the input.

Assume

• Each instruction takes O(1) time
• The word size is fixed
• There is as much memory as we need

A program runs in polynomial time if there are con-
stants c, d ∈ IN such that on every input of size n,
the program halts within time d · nc.

Polynomial time is not well-defined. Padding the
input to 2n bits (with extra zeros) makes an expo-
nential time algorithm run in linear time.

But this doesn’t tell us how to compute faster.

∗Copyright c© Ian Parberry, 1992–2001.

10110

1011000000000000000000000000000000000

Program

Output

Time 2n

Program

Output

Time 2 nlog = n

Standard Encoding Scheme

We must insist that inputs are encoded in binary as
tersely as possible.

Padding by a polynomial amount is acceptable (since
a polynomial of a polynomial is a polynomial), but
padding by an exponential amount is not acceptable.

Insist that encoding be no worse than a polynomial
amount larger than the standard encoding scheme.
The standard encoding scheme contains a list each
mathematical object and a terse way of encoding it:

• Integers: Store in binary using two’s comple-
ment.

154

-97

010011010

10011111

• Lists: Duplicate each bit of each list element,
and separate them using 01.

1

4,8,16,22

100,1000,10000,10110

110000,11000000,1100000000,1100111100

1100000111000000011100000000011100111100

• Sets: Store as a list of set elements.
• Graphs: Number the vertices consecutively, and
store as an adjacency matrix.

Standard Measures of Input Size

There are some shorthand sizes that we can easily
remember. These are no worse than a polynomial of
the size of the standard encoding.

• Integers: log2 of the absolute value of the inte-
ger.

• Lists: number of items in the list times size of
each item. If it is a list of n integers, and each
integer has less than n bits, then n will suffice.

• Sets: size of the list of elements.
• Graphs: Number of vertices or number of edges.

Recognizing Valid Encodings

Not all bit strings of size n encode an object. Some
are simply nonsense. For example, all lists use an
even number of bits. An algorithm for a problem
whose input is a list must deal with the fact that
some of the bit strings that it gets as inputs do not
encode lists.

For an encoding scheme to be valid, there must be a
polynomial time algorithm that can decide whether
a given inputs string is a valid encoding of the type
of object we are interested in.

Examples

Polynomial time algorithms

• Sorting
• Matrix multiplication
• Optimal binary search trees
• All pairs shortest paths
• Transitive closure
• Single source shortest paths
• Min cost spanning trees

Exponential Time

A program runs in exponential time if there are con-
stants c, d ∈ IN such that on every input of size n,
the program halts within time d · 2nc

.

Once again we insist on using the standard encoding
scheme.

Example: n! ≤ nn = 2n log n is counted as exponen-
tial time

Exponential time algorithms:

• The knapsack problem
• The clique problem
• The independent set problem
• Ramsey numbers
• The Hamiltonian cycle problem

How do we know there are not polynomial time al-
gorithms for these problems?

Polynomial Good
Exponential Bad

Complexity Theory

We will focus on decision problems, that is, problems
that have a Boolean answer (such as the knapsack,
clique and independent set problems).

Define P to be the set of decision problems that can
be solved in polynomial time.

If x is a bit string, let |x| denote the number of bits
in x.

Define NP to be the set of decision problems of the
following form, where R ∈ P, c ∈ IN:

“Given x, does there exist y with |y| ≤ |x|c such that
(x, y) ∈ R.”

2

That is, NP is the set of existential questions that
can be verified in polynomial time.

Problems and Languages

The language corresponding to a problem is the set
of input strings for which the answer to the problem
is affirmative.

For example, the language corresponding to the
clique problem is the set of inputs strings that en-
code a graph G and an integer r such that G has a
clique of size r.

We will use capital letters such as A or CLIQUE to
denote the language corresponding to a problem.

For example, x ∈ CLIQUE means that x encodes a
graph G and an integer r such that G has a clique
of size r.

Example

The clique problem:

• x is a pair consisting of a graph G and an integer
r,

• y is a subset of the vertices in G; note y has size
smaller than x,

• R is the set of (x, y) such that y forms a clique
in G of size r. This can easily be checked in
polynomial time.

Therefore the clique problem is a member of NP.
The knapsack problem and the independent set
problem are members of NP too. The problem of
finding Ramsey numbers doesn’t seem to be in NP.

P versus NP

Clearly P ⊆ NP.

To see this, suppose that A ∈ P. Then A can be
rewritten as “Given x, does there exist y with size
zero such that x ∈ A.”

P
NP

Min cost
spanning
trees

CLIQUE

INDEPENDENT SET

KNAPSACK

It is not known whether P = NP.

But it is known that there are problems in NP with
the property that if they are members of P then
P = NP. That is, if anything in NP is outside of
P, then they are too. They are called NP complete
problems.

P
NP

NP complete problems

Every problem in NP can be solved in exponential
time. Simply use exhaustive search to try all of the
bit strings y.

Also known:

• If P �= NP then there are problems in NP that
are neither in P nor NP complete.

• Hundreds of NP complete problems.

Reductions

A problem A is reducible to B if an algorithm for B
can be used to solve A. More specifically, if there is
an algorithm that maps every instance x of A into
an instance f(x) of B such that x ∈ A iff f(x) ∈ B.

3

What we want: a program that we can ask questions
about A.

Is x in A?

Program
 for A

Yes!

Instead, all we have is a program for B.

Is x in A?

Program
 for B

Say what?

This is not much use for answering questions about
A.

Program
 for B

But, if A is reducible to B, we can use f to translate
the question about A into a question about B that
has the same answer.

Is x in A?

Program
 for f

Is f(x) in B?

Program
 for B

Yes!

Polynomial Time Reductions

A problem A is polynomial time reducible to B, writ-
ten A ≤p B if there is a polynomial time algorithm

that maps every instance x of A into an instance
f(x) of B such that x ∈ A iff f(x) ∈ B. Note that
the size of f(x) can be no greater than a polynomial
of the size if x.

Observation 1.

Claim: If A ≤p B and B ∈ P, then A ∈ P.

Proof: Suppose there is a function f that can be
computed in time O(nc) such that x ∈ A iff f(x) ∈
B. Suppose also that B can be recognized in time
O(nd).

Given x such that |x| = n, first compute f(x) using
this program. Clearly, |f(x)| = O(nc). Then run
the polynomial time algorithm for B on input f(x).
The compete process recognizes A and takes time

O(|f(x)|d) = O((nc)d) = O(ncd).

Therefore, A ∈ P.

Proving NP Completeness

Polynomial time reductions are used for proving NP
completeness results.

Claim: If B ∈ NP and for all A ∈ NP, A ≤p B, then
B is NP complete.

Proof: It is enough to prove that if B ∈ P then
P = NP.

Suppose B ∈ P. Let A ∈ NP. Then, since by hy-
pothesis A ≤p B, by Observation 1 A ∈ P. There-
fore P = NP.

The Satisfiability Problem

A variable is a member of {x1, x2, . . .}.

A literal is either a variable xi or its complement xi.

A clause is a disjunction of literals

C = xi1 ∨ xi2 ∨ · · · ∨ xik
.

A Boolean formula is a conjunction of clauses

C1 ∧ C2 ∧ · · · ∧ Cm.

4

Satisfiability (SAT)
Instance: A Boolean formula F .
Question: Is there a truth assignment to
the variables of F that makes F true?

Example

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2) ∧ (x1 ∨ x2)

This formula is satisfiable: simply take x1 = 1, x2 =
0, x3 = 0.

(1 ∨ 0 ∨ 1) ∧ (0 ∨ 1 ∨ 1) ∧
(1 ∨ 1) ∧ (0 ∨ 1)

= 1 ∧ 1 ∧ 1 ∧ 1
= 1

But the following is not satisfiable (try all 8 truth
assignments)

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧
(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

Cook’s Theorem

SAT is NP complete.

This was published in 1971. It is proved by show-
ing that every problem in NP is polynomial time re-
ducible to SAT. The proof is long and tedious. The
key technique is the construction of a Boolean for-
mula that simulates a polynomial time algorithm.
Given a problem in NP with polynomial time ver-
ification problem A, a Boolean formula F is con-
structed in polynomial time such that

• F simulates the action of a polynomial time al-
gorithm for A

• y is encoded in any assignment to F
• the formula is satisfiable iff (x, y) ∈ A.

Observation 2

Claim: If A ≤p B and B ≤p C, then A ≤p C (tran-
sitivity).

Proof: Almost identical to the Observation 1.

Claim: If B ≤p C, C ∈ NP, and B is NP complete,
then C is NP complete.

Proof: Suppose B is NP complete. Then for every
problem A ∈ NP, A ≤p B. Therefore, by transi-
tivity, for every problem A ∈ NP, A ≤p C. Since
C ∈ NP, this shows that C is NP complete.

New NP Complete Problems from Old

Therefore, to prove that a new problem C is NP
complete:

1. Show that C ∈ NP.

2. Find an NP complete problem B and prove that
B ≤p C.

(a) Describe the transformation f .
(b) Show that f can be computed in polyno-

mial time.
(c) Show that x ∈ B iff f(x) ∈ C.

i. Show that if x ∈ B, then f(x) ∈ C.
ii. Show that if f(x) ∈ C, then x ∈ B, or

equivalently, if x �∈ B, then f(x) �∈ C.

This technique was used by Karp in 1972 to prove
many NP completeness results. Since then, hun-
dreds more have been proved.

In the Soviet Union at about the same time, there
was a Russian Cook (although the proof of the NP
completeness of SAT left much to be desired), but
no Russian Karp.

The standard text on NP completeness:
M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, 1979.

What Does it All Mean?

Scientists have been working since the early 1970’s
to either prove or disprove P �= NP. The consensus
of opinion is that P �= NP.

5

This open problem is rapidly gaining popularity as
one of the leading mathematical open problems to-
day (ranking with Fermat’s last theorem and the
Reimann hypothesis). There are several incorrect
proofs published by crackpots every year.

It has been proved that CLIQUE, INDEPENDENT
SET, and KNAPSACK are NP complete. Therefore,
it is not worthwhile wasting your employer’s time
looking for a polynomial time algorithm for any of
them.

Assigned Reading

CLR, Section 36.1–36.3

6

Algorithms Course Notes

NP Completeness 2

Ian Parberry∗

Fall 2001

Summary

The following problems are NP complete:

• 3SAT
• CLIQUE
• INDEPENDENT SET
• VERTEX COVER

Reductions

SAT

3SAT

CLIQUE

INDEPENDENT
 SET

VERTEX
 COVER

3SAT

3SAT is the satisfiability problem with at most 3
literals per clause. For example,

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2) ∧ (x1 ∨ x2)

3SAT is a subproblem of SAT. Does that mean that
3SAT is automatically NP complete?

∗Copyright c© Ian Parberry, 1992–2001.

No:

• Some subproblems of NP complete problems are
NP complete.

• Some subproblems of NP complete problems are
in P.

Claim: 3SAT is NP complete.

Proof: Clearly 3SAT is in NP: given a Boolean for-
mula with n operations, it can be evaluated on a
truth assignment in O(n) time using standard ex-
pression evaluation techniques.

It is sufficient to show that SAT ≤p 3SAT. Trans-
form an instance of SAT to an instance of 3SAT as
follows. Replace every clause

(�1 ∨ �2 ∨ · · · ∨ �k)

where k > 3, with clauses

• (�1 ∨ �2 ∨ y1)
• (�i+1 ∨ yi−1 ∨ yi) for 2 ≤ i ≤ k − 3
• (�k−1 ∨ �k ∨ yk−3)

for some new variables y1, y2, . . . , yk−3 different for
each clause.

Example

Instance of SAT:

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6) ∧
(x1 ∨ x2 ∨ x3 ∨ x5) ∧
(x1 ∨ x2 ∨ x6) ∧ (x1 ∨ x5)

Corresponding instance of 3SAT:

(x1 ∨ x2 ∨ y1) ∧ (x3 ∨ y1 ∨ y2) ∧

1

(x4 ∨ y2 ∨ y3) ∧ (x5 ∨ x6 ∨ y3) ∧
(x1 ∨ x2 ∨ z1) ∧ (x3 ∨ x5 ∨ z1) ∧
(x1 ∨ x2 ∨ x6) ∧ (x1 ∨ x5)

Program
 for f

Program
for 3SAT

Yes!

x 2x 1 x 6x 3 x 4 x 5() . . .Is

in SAT?
x 2x 1 y 1(Is

in 3SAT?

x 3

)
y 2()y 1

. . .

Back to the Proof

Clearly, this transformation can be computed in
polynomial time.

Does this reduction preserve satisfiability?

Suppose the original Boolean formula is satisfiable.
Then there is a truth assignment that satisfies all of
the clauses. Therefore, for each clause

(�1 ∨ �2 ∨ · · · ∨ �k)

there will be some �i with 1 ≤ i ≤ k that is assigned
truth value 1. Then in the new instance of 3SAT ,
set each

• �j for 1 ≤ j ≤ k to the same truth value
• yj = 1 for 1 ≤ j ≤ i − 2
• yj = 0 for i − 2 < j ≤ k − 3.

Every clause in the new Boolean formula is satisfied.

Clause Made true by
(�1 ∨ �2 ∨ y1)∧ y1

(�3 ∨ y1 ∨ y2)∧ y2

...
(�i−1 ∨ yi−3 ∨ yi−2)∧ yi−2

(�i ∨ yi−2 ∨ yi−1)∧ �i

(�i+1 ∨ yi−1 ∨ yi)∧ yi−1
...

(�k−2 ∨ yk−4 ∨ yk−3)∧ yk−4

(�k−1 ∨ �k ∨ yk−3) yk−3

Therefore, if the original Boolean formula is satisfi-
able, then the new Boolean formula is satisfiable.

Conversely, suppose the new Boolean formula is sat-
isfiable.

If y1 = 0, then since there is a clause

(�1 ∨ �2 ∨ y1)

in the new formula, and the new formula is satis-
fiable, it must be the case that one of �1, �2 = 1.
Hence, the original clause is satisfied.

If yk−3 = 1, then since there is a clause

(�k−1 ∨ �k ∨ yk−3)

in the new formula, and the new formula is satisfi-
able, it must be the case that one of �k−1, �k = 1.
Hence, the original clause is satisfied.

Otherwise, y1 = 1 and yk−3 = 0, which means there
must be some i with 1 ≤ i ≤ k − 4 such that yi = 1
and yi+1 = 0. Therefore, since there is a clause

(�i+2 ∨ yi ∨ yi+1)

in the new formula, and the new formula is satisfi-
able, it must be the case that �i+2 = 1. Hence, the
original clause is satisfied.

This is true for all of the original clauses. Therefore,
if the new Boolean formula is satisfiable, then the
old Boolean formula is satisfiable.

This completes the proof that 3SAT is NP com-
plete.

Clique

Recall the CLIQUE problem again:

CLIQUE
Instance: A graph G = (V, E), and an
integer r.
Question: Does G have a clique of size r?

Claim: CLIQUE is NP complete.

Proof: Clearly CLIQUE is in NP: given a graph G,
an integer r, and a set V ′ of at least r vertices, it
is easy to see whether V ′ ⊆ V forms a clique in G
using O(n2) edge-queries.

2

It is sufficient to show that 3SAT ≤p CLIQUE.
Transform an instance of 3SAT into an instance of
CLIQUE as follows. Suppose we have a Boolean
formula F consisting of r clauses:

F = C1 ∧ C2 ∧ · · · ∧ Cr

where each

Ci = (�i,1 ∨ �i,2 ∨ �i,3)

Construct a graph G = (V, E) as follows.

V = {(i, 1), (i, 2), (i, 3) such that 1 ≤ i ≤ r}.

The set of edges E is constructed as follows:
((g, h), (i, j)) ∈ E iff g �= i and either:

• �g,h = �i,j , or
• �g,h and �i,j are literals of different variables.

Clearly, this transformation can be carried out in
polynomial time.

Example

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2) ∧ (x1 ∨ x2)

Exactly the same literal in different clauses
Literals of different variables in different clauses

Clause 4

Clause 3
Clause 2

Clause 1

(,1)x1 (,1)x2

(,3)x1

(,3)x2

3(,1)x

(,2)x1

(,2)x2

(,2)x3

(,4)x2

(,4)x1

Program
 for f

Program
 for
 CLIQUE

Yes!

x 2x 1 x 3(Is

in 3SAT?

x 1

)
x 3()x 2

. . .

Is (,4)

in CLIQUE?

Back to the Proof

Observation: there is an edge between (g, h) and
(i, j) iff literals �g,h and �i,j are in different clauses
and can be set to the same truth value.

Claim that F is satisfiable iff G has a clique of size
r.

Suppose that F is satisfiable. Then there exists an
assignment that satisfies every clause. Suppose that
for all 1 ≤ i ≤ r, the true literal in Ci is �i,ji

, for some
1 ≤ ji ≤ 3. Since these r literals are assigned the
same truth value, by the above observation, vertices
(i, ji) must form a clique of size r.

Conversely, suppose that G has a clique of size r.
Each vertex in the clique must correspond to a literal
in a different clause (since no edges go between ver-
tices representing literals in different clauses). Since
there are r of them, each clause must have exactly
one literal in the clique. By the observation, all of
these literals can be assigned the same truth value.
Setting the variables to make these literals true will
satisfy all clauses, and hence satisfy the formula F .

Therefore, G has a clique of size r iff F is satisfiable.

This completes the proof that CLIQUE is NP com-
plete.

Example

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2) ∧ (x1 ∨ x2)

3

Clause 3
Clause 2

Clause 1

Clause 4 (,1)x1 (,1)x2

(,3)x1

(,3)x2

3(,1)x

(,2)x1

(,2)x2

(,2)x3

(,4)x2

(,4)x1

Independent Set

Recall the INDEPENDENT SET problem again:

INDEPENDENT SET

Instance: A graph G = (V, E), and an
integer r.

Question: Does G have an independent
set of size r?

Claim: INDEPENDENT SET is NP complete.

Proof: Clearly INDEPENDENT SET is in NP:
given a graph G, an integer r, and a set V ′ of at least
r vertices, it is easy to see whether V ′ ⊆ V forms an
independent set in G using O(n2) edge-queries.

It is sufficient to show that CLIQUE ≤p INDEPEN-
DENT SET.

Suppose we are given a graph G = (V, E). Since
G has a clique of size r iff G has an independent
set of size r, and the complement graph G can be
constructed in polynomial time, it is obvious that
INDEPENDENT SET is NP complete.

Program
 for f

 Program for
INDEPENDENT
 SET

Yes!

Is (, 3)

in INDEPENDENT
 SET?

Is (, 3)

in CLIQUE?

Vertex Cover

A vertex cover for a graphG = (V, E) is a set V ′ ⊆ V
such that for all edges (u, v) ∈ E, either u ∈ V ′ or
v ∈ V ′.

Example:

1 2

3

56

4

VERTEX COVER

Instance: A graph G = (V, E), and an
integer r.

Question: Does G have a vertex cover of
size r?

Claim: VERTEX COVER is NP complete.

Proof: Clearly VERTEX COVER is in NP: it is
easy to see whether V ′ ⊆ V forms a vertex cover in
G using O(n2) edge-queries.

It is sufficient to show that INDEPENDENT SET
≤p VERTEX COVER. Claim that V ′ is an indepen-
dent set iff V − V ′ is a vertex cover.

4

Vertex Cover

Independent Set

Suppose V ′ is an independent set in G. Then, there
is no edge between vertices in V ′. That is, every edge
in G has at least one endpoint in V −V ′. Therefore,
V − V ′ is a vertex cover.

Conversely, suppose V − V ′ is a vertex cover in G.
Then, every edge in G has at least one endpoint in
V − V ′. That is, there is no edge between vertices
in V ′. Therefore, V ′ is a vertex cover.

Program
 for f

Program for
 VERTEX
 COVER

Yes!

Is (, 4)

in VERTEX
 COVER?

Is (, 3)

in INDEPENDENT
 SET?

Assigned Reading

CLR, Sections 36.4–36.5

5

	Cover Page
	License Agreement
	Preface
	Contents by Lecture
	1. Introduction
	2. Induction
	3. Correctness
	4. Analysis 1
	5. Analysis 2
	6. Analysis 3
	7. Divide and Conquer 1
	8. Divide and Conquer 2
	9. Divide and Conquer 3
	10. Dynamic Programming 1
	11. Dynamic Programming 2
	12. Dynamic Programming 3
	13. Dynamic Programming 4
	14. Greedy Algorithms 1
	15. Greedy Algorithms 2
	16. Greedy Algorithms 3
	17. Backtracking 1
	18. Backtracking 2
	19. Backtracking 3
	20. Backtracking 4
	21. NP completeness 1
	22. NP completeness 2

	Index by Major Algorithm
	3SAT
	Binary Search Trees
	Bubblesort
	Clique
	Backtracking
	NP-completeness

	Dijkstra's Algorithm
	Floyd's Algorithm
	Generating All
	Bit strings
	k-ary Strings
	Generalized Strings
	Permutations
	Combinations

	Hamiltonian Cycles
	Heaps
	Heapsort
	Independent Set
	Backtracking
	NP-completeness

	Iterated Matrix Product
	Knapsack Problem
	Continuous
	Discrete
	Backtracking
	Dynamic Programming

	Kruskal's Algorithm
	Maxmin
	Min-cost Spanning Trees
	Multiplication (shift-and-add)
	Multiplication (divide-and-conquer)
	Optimal Binary Search Trees
	Optimal Tape Storage
	Peaceful Queens
	Prim's Algorithm
	Quicksort
	Ramsey Numbers
	Satisfiability Problem (SAT)
	Selection
	Strassen's Algorithm
	Towers of Hanoi
	Travelling Salesperson
	Union-find Problem
	Vertex Cover
	Warshall's Algorithm

