
An Introduction to Formal Language Theory that

Integrates Experimentation and Proof

Allen Stoughton

Kansas State University

Draft of Fall 2004

Copyright c© 2003–2004 Allen Stoughton

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sec-
tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

The LATEX source of this book and associated lecture slides, and the
distribution of the Forlan toolset are available on the WWW at http:

//www.cis.ksu.edu/~allen/forlan/.

Contents

Preface v

1 Mathematical Background 1
1.1 Basic Set Theory . 1
1.2 Induction Principles for the Natural Numbers 11
1.3 Trees and Inductive Definitions 16

2 Formal Languages 21
2.1 Symbols, Strings, Alphabets and (Formal) Languages 21
2.2 String Induction Principles 26
2.3 Introduction to Forlan . 34

3 Regular Languages 44
3.1 Regular Expressions and Languages 44
3.2 Equivalence and Simplification of Regular Expressions 54
3.3 Finite Automata and Labeled Paths 78
3.4 Isomorphism of Finite Automata 86
3.5 Algorithms for Checking Acceptance and Finding Accepting

Paths . 94
3.6 Simplification of Finite Automata 99
3.7 Proving the Correctness of Finite Automata 103
3.8 Empty-string Finite Automata 114
3.9 Nondeterministic Finite Automata 120
3.10 Deterministic Finite Automata 129
3.11 Closure Properties of Regular Languages 145
3.12 Equivalence-testing and Minimization of Deterministic Finite

Automata . 174
3.13 The Pumping Lemma for Regular Languages 193
3.14 Applications of Finite Automata and Regular Expressions . . 199

ii

CONTENTS iii

4 Context-free Languages 204
4.1 (Context-free) Grammars, Parse Trees and Context-free Lan-

guages . 204
4.2 Isomorphism of Grammars . 213
4.3 A Parsing Algorithm . 215
4.4 Simplification of Grammars 219
4.5 Proving the Correctness of Grammars 221
4.6 Ambiguity of Grammars . 225
4.7 Closure Properties of Context-free Languages 227
4.8 Converting Regular Expressions and Finite Automata to

Grammars . 230
4.9 Chomsky Normal Form . 233
4.10 The Pumping Lemma for Context-free Languages 236

5 Recursive and R.E. Languages 242
5.1 A Universal Programming Language, and Recursive and Re-

cursively Enumerable Languages 243
5.2 Closure Properties of Recursive and Recursively Enumerable

Languages . 246
5.3 Diagonalization and Undecidable Problems 249

A GNU Free Documentation License 253

Bibliography 261

Index 263

List of Figures

1.1 Example Diagonalization Table for Cardinality Proof 9

3.1 Regular Expression to FA Conversion Example 151
3.2 DFA Accepting AllLongStutter 194

4.1 Visualization of Proof of Pumping Lemma for Context-free
Languages . 239

5.1 Example Diagonalization Table for R.E. Languages 249

iv

Preface

Background

Since the 1930s, the subject of formal language theory, also known as au-
tomata theory, has been developed by computer scientists, linguists and
mathematicians. (Formal) Languages are set of strings over finite sets of
symbols, called alphabets, and various ways of describing such languages
have been developed and studied, including regular expressions (which “gen-
erate” languages), finite automata (which “accept” languages), grammars
(which “generate” languages) and Turing machines (which “accept” lan-
guages). For example, the set of identifiers of a given programming language
is a formal language—one that can be described by a regular expression or a
finite automaton. And, the set of all strings of tokens that are generated by a
programming language’s grammar is another example of a formal language.

Because of its many applications to computer science, e.g., to compiler
construction, most computer science programs offer both undergraduate and
graduate courses in this subject. Many of the results of formal language
theory are proved constructively, using algorithms that are useful in practice.
In typical courses on formal language theory, students apply these algorithms
to toy examples by hand, and learn how they are used in applications. But
they are not able to experiment with them on a larger scale.

Although much can be achieved by a paper-and-pencil approach to the
subject, students would obtain a deeper understanding of the subject if
they could experiment with the algorithms of formal language theory us-
ing computer tools. Consider, e.g., a typical exercise of a formal language
theory class in which students are asked to synthesize an automaton that
accepts some language, L. With the paper-and-pencil approach, the stu-
dent is obliged to build the machine by hand, and then (perhaps) prove
that it is correct. But, given the right computer tools, another approach
would be possible. First, the student could try to express L in terms of
simpler languages, making use of various language operations (union, inter-

v

vi

section, difference, concatenation, closure). He or she could then synthesize
automata accepting the simpler languages, enter these machines into the
system, and then combine these machines using operations corresponding
to the language operations used to express L. With some such exercises, a
student could solve the exercise in both ways, and could compare the results.
Other exercises of this type could only be solved with machine support.

Integrating Experimentation and Proof

Over the past several years, I have been designing and developing a com-
puter toolset, called Forlan, for experimenting with formal languages. For-
lan is implemented in the functional programming language Standard ML
[MTHM97, Pau96], a language whose notation and concepts are similar to
those of mathematics. Forlan is used interactively. In fact, a Forlan session
is simply a Standard ML session in which the Forlan modules are pre-loaded.
Users are able to extend Forlan by defining ML functions.

In Forlan, the usual objects of formal language theory—automata, reg-
ular expressions, grammars, labeled paths, parse trees, etc.—are defined
as abstract types, and have concrete syntax. The standard algorithms of
formal language theory are implemented in Forlan, including conversions
between different kinds of automata and grammars, the usual operations
on automata and grammars, equivalence testing and minimization of deter-
ministic finite automata, etc. Support for the variant of the programming
language Lisp that we use (instead of Turing machines) as a universal pro-
gramming language is planned.

While developing Forlan, I have also been writing lectures notes on for-
mal language theory that are based around Forlan, and this book is the
outgrowth of those notes. I am attempting to keep the conceptual and no-
tational distance between the textbook and toolset as small as possible. The
book treats each concept or algorithm both theoretically, especially using
proof, and through experimentation, using Forlan. Special proofs that are
carried out assuming the correctness of Forlan’s implementation are labeled
“[Forlan]”, and theorems that are only proved in this way are also so-labeled.

Readers of this book are assumed to have a significant amount of expe-
rience reading and writing informal mathematical proofs, of the kind one
finds in mathematics books. This experience could have been gained, e.g.,
in courses on discrete mathematics, logic or set theory. The core sections
of the book assume no previous knowledge of Standard ML. Eventually, ad-
vanced sections covering the implementation of Forlan will be written, and

vii

these sections will assume the kind of familiarity with Standard ML that
could be obtained by reading [Pau96] or [Ull98].

Outline of the Book

The book consists of five chapters. Chapter 1, Mathematical Background,
consists of the material on set theory, induction principles for the natural
numbers, and trees and inductive definitions that is required in the remain-
ing chapters.

In Chapter 2, Formal Languages, we say what symbols, strings, alpha-
bets and (formal) languages are, introduce and show how to use several
string induction principles, and give an introduction to the Forlan toolset.
The remaining three chapters introduce and study more restricted sets of
languages.

In Chapter 3, Regular Languages, we study regular expressions and lan-
guages, four kinds of finite automata, algorithms for processing and convert-
ing between regular expressions and finite automata, properties of regular
languages, and applications of regular expressions and finite automata to
searching in text files and lexical analysis.

In Chapter 4, Context-free Languages, we study context-free grammars
and languages, algorithms for processing grammars and for converting regu-
lar expressions and finite automata to grammars, and properties of context-
free languages. It turns out that the set of all context-free languages is a
proper superset of the set of all regular languages.

Finally, in Chapter 5, Recursive and Recursively Enumerable Languages,
we study a universal programming language based on Lisp, which we use to
define the recursive and recursively enumerable languages. We study algo-
rithms for processing programs and for converting grammars to programs,
and properties of recursive and recursively enumerable languages. It turns
out that the context-free languages are a proper subset of the recursive lan-
guages, that the recursive languages are a proper subset of the recursively
enumerable languages, and that there are languages that are not recursively
enumerable. Furthermore, there are problems, like the halting problem (the
problem of determining whether a program P halts when run on an input w),
or the problem of determining if two grammars generate the same language,
that can’t be solved by programs.

viii

Further Reading and Related Work

This book covers the core material that is typically presented in an under-
graduate course on formal language theory. On the other hand, a typical
textbook on formal language theory covers much more of the subject than
we do. Readers who are interested in learning more about the subject, or
who would like to be exposed to alternative presentations of the material
in this book, should consult one of the many fine books on formal language
theory, such as [HMU01, LP98, Mar91].

The existing formal language toolsets fit into two categories. In the first
category are tools like JFLAP [BLP+97, HR00], Pâté [BLP+97, HR00], the
Java Computability Toolkit [RHND99], and Turing’s World [BE93] that are
graphically oriented and help students work out relatively small examples.
The second category consists of toolsets that, like Forlan, are embedded
in programming languages, and so that support sophisticated experimen-
tation with formal languages. Toolsets in this category include Automata
[Sut92], Grail+ [Yu02], HaLeX [Sar02] and Leiß’s Automata Library [Lei00].
I am not aware of any other textbook/toolset packages whose toolsets are
members of this second category.

Acknowledgments

It is a pleasure to acknowledge helpful conversations or e-mail exchanges
relating to this textbook/toolset project with Brian Howard, Rodney How-
ell, John Hughes, Nathan James, Patrik Jansson, Jace Kohlmeier, Dexter
Kozen, Aarne Ranta, Ryan Stejskal and Colin Stirling. Some of this work
was done while I was on sabbatical at the Department of Computing Science
of the University of Chalmers.

Chapter 1

Mathematical Background

This chapter consists of the material on set theory, induction principles for
the natural numbers, and trees and inductive definitions that will be required
in the later chapters.

1.1 Basic Set Theory

In this section, we will cover the material on sets, relations and functions
that will be needed in what follows. Much of this material should be at least
partly familiar.

Let’s begin by establishing notation for the standard sets of numbers.
We write:

• N for the set {0, 1, . . .} of all natural numbers;

• Z for the set {. . . ,−1, 0, 1, . . .} of all integers;

• R for the set of all real numbers.

Next, we say when one set is a subset of another set, as well as when
two sets are equal. Suppose A and B are sets. We say that:

• A is a subset of B (A ⊆ B) iff, for all x ∈ A, x ∈ B;

• A is equal to B (A = B) iff A ⊆ B and B ⊆ A;

• A is a proper subset of B (A (B) iff A ⊆ B but A 6= B.

In other words: A is a subset of B iff every everything in A is also in B, A
is equal to B iff A and B have the same elements, and A is a proper subset

1

CHAPTER 1. MATHEMATICAL BACKGROUND 2

of B iff everything in A is in B, but there is at least one element of B that
is not in A.

For example, ∅ (N, N ⊆ N and N (Z. The definition of ⊆ gives us
the most common way of showing that A ⊆ B: we suppose that x ∈ A, and
show (with no additional assumptions about x) that x ∈ B. Similarly, by
the definition of set equality, if we want to show that A = B, it will suffice
to show that A ⊆ B and B ⊆ A, i.e., that everything in A is in B, and
everything in B is in A.

Note that, for all sets A, B and C:

• if A ⊆ B ⊆ C, then A ⊆ C;

• if A ⊆ B (C, then A (C;

• if A (B ⊆ C, then A (C;

• if A (B (C, then A (C.

Given sets A and B, we say that:

• A is a superset of B (A ⊇ B) iff, for all x ∈ B, x ∈ A;

• A is a proper superset of B (A) B) iff A ⊇ B but A 6= B.

Of course, for all sets A and B, we have that: A = B iff A ⊇ B ⊇ A; and
A ⊆ B iff B ⊇ A. Furthermore, for all sets A, B and C:

• if A ⊇ B ⊇ C, then A ⊇ C;

• if A ⊇ B) C, then A) C;

• if A) B ⊇ C, then A) C;

• if A) B) C, then A) C.

We will make extensive use of the { · · · | · · · } notation for forming sets.
Let’s consider two representative examples of its use.

For the first example, let

A = {n | n ∈ N and n2 ≥ 20 } = {n ∈ N | n2 ≥ 20 }.

(where the third of these expressions abbreviates the second one). Here, n
is a bound variable and is universally quantified—changing it uniformly to

CHAPTER 1. MATHEMATICAL BACKGROUND 3

m, for instance, wouldn’t change the meaning of A. By the definition of A,
we have that, for all n,

n ∈ A iff n ∈ N and n2 ≥ 20

Thus, e.g.,

5 ∈ A iff 5 ∈ N and 52 ≥ 20.

Since 5 ∈ N and 52 = 25 ≥ 20, it follows that 5 ∈ A. On the other hand,
5.5 6∈ A, since 5.5 6∈ N, and 4 6∈ A, since 42 6≥ 20.

For the second example, let

B = {n3 +m2 | n,m ∈ N and n,m ≥ 1 }.

Note that n3 +m2 is a term, rather than a variable. The variables n and m
are existentially quantified, rather than universally quantified, so that, for
all l,

l ∈ B iff l = n3 +m2, for some n,m such that n,m ∈ N and n,m ≥ 1

iff l = n3 +m2, for some n,m ∈ N such that n,m ≥ 1.

Thus, to show that 9 ∈ B, we would have to show that

9 = n3 +m2 and n,m ∈ N and n,m ≥ 1,

for some values of n,m. And, this holds, since 9 = 23 + 12 and 2, 1 ∈ N and
2, 1 ≥ 1.

Next, we consider some standard operations on sets. Recall the following
operations on sets A and B:

A ∪B = {x | x ∈ A or x ∈ B } (union)

A ∩B = {x | x ∈ A and x ∈ B } (intersection)

A−B = {x ∈ A | x 6∈ B } (difference)

A×B = { (x, y) | x ∈ A and y ∈ B } (product)

P(A) = {X | X ⊆ A } (power set).

Of course, union and intersection are both commutative and associative
(A ∪ B = B ∪ A, (A ∪ B) ∪ C = A ∪ (B ∪ C), A ∩ B = B ∩ A and
(A ∩ B) ∩ C = A ∩ (B ∩ C), for all sets A,B,C). Furthermore, we have
that union is idempotent (A ∪ A = A, for all sets A), and that ∅ is the
identity for union (∅ ∪ A = A = A ∪ ∅, for all sets A). Also, intersection

CHAPTER 1. MATHEMATICAL BACKGROUND 4

is idempotent (A ∩ A = A, for all sets A), and ∅ is a zero for intersection
(∅ ∩ A = ∅ = A ∩ ∅, for all sets A). A − B is formed by removing the
elements of B from A, if necessary. For example, {0, 1, 2} − {1, 4} = {0, 2}.
A × B consists of all ordered pairs (x, y), where x comes from A and y
comes from B. For example, {0, 1} × {1, 2} = {(0, 1), (0, 2), (1, 1), (1, 2)}. If
A and B have n and m elements, respectively, then A × B will have nm
elements. Finally, P(A) consists of all of the subsets of A. For example,
P({0, 1}) = {∅, {0}, {1}, {0, 1}}. If A has n elements, then P(A) will have
2n elements.

We can also form products of three or more sets. For example, we write
A×B × C for the set of all ordered triples (x, y, z) such that x ∈ A, y ∈ B
and z ∈ C.

As an example of a proof involving sets, let’s prove the following simple
proposition, which says that intersections may be distributed over unions:

Proposition 1.1.1
Suppose A, B and C are sets.

(1) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(2) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

Proof. We show (1), the proof of (2) being similar.
We must show that A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).
(A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C)) Suppose x ∈ A∩ (B ∪C). We must

show that x ∈ (A ∩ B) ∪ (A ∩ C). By our assumption, we have that x ∈ A
and x ∈ B ∪ C. Since x ∈ B ∪ C, there are two cases to consider.

• Suppose x ∈ B. Then x ∈ A ∩ B ⊆ (A ∩ B) ∪ (A ∩ C), so that
x ∈ (A ∩B) ∪ (A ∩ C).

• Suppose x ∈ C. Then x ∈ A ∩ C ⊆ (A ∩ B) ∪ (A ∩ C), so that
x ∈ (A ∩B) ∪ (A ∩ C).

((A∩B)∪ (A∩C) ⊆ A∩ (B ∪C)) Suppose x ∈ (A∩B)∪ (A∩C). We
must show that x ∈ A ∩ (B ∪ C). There are two cases to consider.

• Suppose x ∈ A ∩ B. Then x ∈ A and x ∈ B ⊆ B ∪ C, so that
x ∈ A ∩ (B ∪ C).

• Suppose x ∈ A ∩ C. Then x ∈ A and x ∈ C ⊆ B ∪ C, so that
x ∈ A ∩ (B ∪ C).

CHAPTER 1. MATHEMATICAL BACKGROUND 5

2

Next, we consider generalized versions of union and intersection that
work on sets of sets. If X is a set of sets, then the generalized union of X
(
⋃

X) is

{ a | a ∈ A, for some A ∈ X }.

Thus, to show that a ∈
⋃

X, we must show that a is in at least one element
A of X. For example

⋃

{{0, 1}, {1, 2}, {2, 3}} = {0, 1, 2, 3} = {0, 1} ∪ {1, 2} ∪ {2, 3},
⋃

∅ = ∅.

If X is a nonempty set of sets, then the generalized intersection of X
(
⋂

X) is

{ a | a ∈ A, for all A ∈ X }.

Thus, to show that a ∈
⋂

X, we must show that a is in every element A of
X. For example

⋂

{{0, 1}, {1, 2}, {2, 3}} = ∅ = {0, 1} ∩ {1, 2} ∩ {2, 3}.

If we allowed
⋂

∅, then it would contain all elements x of our universe
that are in all of the nonexistent elements of ∅, i.e., it would contain all
elements of our universe. It turns out, however, that there is no such set,
which is why we may only take generalized intersections of non-empty sets.

Next, we consider relations and functions. A relation R is a set of ordered
pairs. The domain of a relation R (domain(R)) is {x | (x, y) ∈ R, for some
y }, and the range of R (range(R)) is { y | (x, y) ∈ R, for some x }. We
say that R is a relation from a set X to a set Y iff domain(R) ⊆ X
and range(R) ⊆ Y , and that R is a relation on a set A iff domain(R) ∪
range(R) ⊆ A. We often write x R y for (x, y) ∈ R.

Consider the relation

R = {(0, 1), (1, 2), (0, 2)}.

Then, domain(R) = {0, 1}, range(R) = {1, 2}, R is a relation from {0, 1}
to {1, 2}, and R is a relation on {0, 1, 2}.

Given a set A, the identity relation on A (idA) is { (x, x) | x ∈ A }. For
example, id{1,3,5} is {(1, 1), (3, 3), (5, 5)}. Given relations R and S, the com-
position of S and R (S ◦ R) is { (x, z) | (x, y) ∈ R and (y, z) ∈ S, for some

CHAPTER 1. MATHEMATICAL BACKGROUND 6

y }. For example, if R = {(1, 1), (1, 2), (2, 3)} and S = {(2, 3), (2, 4), (3, 4)},
then S ◦R = {(1, 3), (1, 4), (2, 4)}.

It is easy to show, roughly speaking, that ◦ is associative and has the
identity relations as its identities:

(1) For all sets A and B, and relations R from A to B, idB ◦ R = R =
R ◦ idA.

(2) For all sets A, B, C and D, and relations R from A to B, S from B
to C, and T from C to D, (T ◦ S) ◦R = T ◦ (S ◦R).

Because of (2), we can write T ◦ S ◦ R, without worrying about how it is
parenthesized.

The inverse of a relation R is the relation { (y, x) | (x, y) ∈ R }, i.e., it
is the relation obtained by reversing each of the pairs in R. For example, if
R = {(0, 1), (1, 2), (1, 3)}, then the inverse of R is {(1, 0), (2, 1), (3, 1)}.

A relation R is:

• reflexive on a set A iff, for all x ∈ A, (x, x) ∈ R;

• transitive iff, for all x, y, z, if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R;

• symmetric iff, for all x, y, if (x, y) ∈ R, then (y, x) ∈ R;

• a function iff, for all x, y, z, if (x, y) ∈ R and (x, z) ∈ R, then y = z.

Suppose, e.g., that R = {(0, 1), (1, 2), (0, 2)}. Then:

• R is not reflexive on {0, 1, 2}, since (0, 0) 6∈ R.

• R is transitive, since whenever (x, y) and (y, z) are in R, it follows that
(x, z) ∈ R. Since (0, 1) and (1, 2) are in R, we must have that (0, 2) is
in R, which is indeed true.

• R is not symmetric, since (0, 1) ∈ R, but (1, 0) 6∈ R.

• R a not a function, since (0, 1) ∈ R and (0, 2) ∈ R. Intuitively, given
an input of 0, it’s not clear whether R’s output is 1 or 2.

The relation

f = {(0, 1), (1, 2), (2, 0)}

is a function. We think of it as sending the input 0 to the output 1, the
input 1 to the output 2, and the input 2 to the output 0.

CHAPTER 1. MATHEMATICAL BACKGROUND 7

If f is a function and x ∈ domain(f), we write f(x) for the application
of f to x, i.e., the unique y such that (x, y) ∈ f . We say that f is a
function from a set X to a set Y iff f is a function, domain(f) = X and
range(f) ⊆ Y . We write X → Y for the set of all functions from X to Y .

For the f defined above, we have that f(0) = 1, f(1) = 2, f(2) = 0, f is
a function from {0, 1, 2} to {0, 1, 2}, and f ∈ {0, 1, 2}→ {0, 1, 2}.

Given a set A, it is easy to see that idA, the identity relation on A, is
a function from A to A, and we call it the identity function on A. It is the
function that returns its input. Given sets A, B and C, if f is a function
from A to B, and g is a function from B to C, then the composition g ◦ f of
(the relations) g and f is the function from A to C such that h(x) = g(f(x)),
for all x ∈ A. In other words, g ◦ f is the function that runs f and then
g, in sequence. Because of how composition of relations worked, we have,
roughly speaking, that ◦ is associative and has the identity functions as its
identities:

(1) For all sets A and B, and functions f from A to B, idB ◦ f = f =
f ◦ idA.

(2) For all sets A, B, C and D, and functions f from A to B, g from B
to C, and h from C to D, (h ◦ g) ◦ f = h ◦ (g ◦ f).

Because of (2), we can write h ◦ g ◦ f , without worrying about how it is
parenthesized. It is the function that runs f , then g, then h, in sequence.

Next, we see how we can use functions to compare the sizes (or cardi-
nalities) of sets. A bijection f from a set X to a set Y is a function from X
to Y such that, for all y ∈ Y , there is a unique x ∈ X such that (x, y) ∈ f .

For example,

f = {(0, 5.1), (1, 2.6), (2, 0.5)}

is a bijection from {0, 1, 2} to {0.5, 2.6, 5.1}. We can visualize f as a one-to-
one correspondence between these sets:

1

0

2

0.5

5.1

2.6

f

We say that a set X has the same size as a set Y (X ∼= Y) iff there is a
bijection from X to Y . It’s not hard to show that for all sets X,Y, Z:

CHAPTER 1. MATHEMATICAL BACKGROUND 8

(1) X ∼= X;

(2) If X ∼= Y ∼= Z, then X ∼= Z;

(3) If X ∼= Y , then Y ∼= X.

E.g., consider (2). By the assumptions, we have that there is a bijection
f from X to Y , and there is a bijection g from Y to Z. Then g ◦ f is a
bijection from X to Z, showing that X ∼= Z.

We say that a set X is:

• finite iff X ∼= {1, . . . , n}, for some n ∈ N;

• infinite iff it is not finite;

• countably infinite iff X ∼= N;

• countable iff X is either finite or countably infinite;

• uncountable iff X is not countable.

Every set X has a size or cardinality (|X|) and we have that, for all sets
X and Y , |X| = |Y | iff X ∼= Y . The sizes of finite sets are natural numbers.

We have that:

• The sets ∅ and {0.5, 2.6, 5.1} are finite, and are thus also countable;

• The sets N, Z, R and P(N) are infinite;

• The set N is countably infinite, and is thus countable;

• The set Z is countably infinite, and is thus countable, because of the
existence of the following bijection:

· · · · · ·024 3

· · · · · ·0 1−1−2 2

· · ·· · ·

1

• The sets R and P(N) are uncountable.

To prove that R and P(N) are uncountable, one uses an important tech-
nique called “diagonalization”, which we will see again in Chapter 5. Let’s
consider the proof that P(N) is uncountable.

We proceed using proof by contradiction. Suppose P(N) is countable.
Since P(N) is not finite, it follows that there is a bijection f from N to

CHAPTER 1. MATHEMATICAL BACKGROUND 9

1 1 0

0 0 1

0 1 1

i j k· · · · · · · · · · · ·

..

.

.

.

.

.

.

.

.

.

.

i

j

k

Figure 1.1: Example Diagonalization Table for Cardinality Proof

P(N). Our plan is to define a subset X of N such that X 6∈ range(f), thus
obtaining a contradiction, since this will show that f is not a bijection from
N to P(N).

Consider the infinite table in which both the rows and the columns are
indexed by the elements of N, listed in ascending order, and where a cell
(n,m) contains 1 iff m ∈ f(n), and contains 0 iff m 6∈ f(n). Thus the nth
column of this table represents the set f(n) of natural numbers.

Figure 1.1 shows how part of this table might look, where i, j and k
are sample elements of N: Because of the table’s data, we have, e.g., that
i ∈ f(i) and j 6∈ f(i).

To define our X ⊆ N, we work our way down the diagonal of the table,
putting n into our set just when cell (n, n) of the table is 0, i.e., when
n 6∈ f(n). This will ensure that, for all n ∈ N, X 6= f(n).

With our example table:

• since i ∈ f(i), but i 6∈ X, we have that X 6= f(i);

• since j 6∈ f(j), but j ∈ X, we have that X 6= f(j);

• since k ∈ f(k), but k 6∈ X, we have that X 6= f(k).

CHAPTER 1. MATHEMATICAL BACKGROUND 10

We conclude this section by turning the above ideas into a shorter, but
more opaque, proof that:

Proposition 1.1.2
P(N) is uncountable.

Proof. Suppose, toward a contradiction, that P(N) is countable. Thus,
there is a bijection f from N to P(N). Define X ∈ {n ∈ N | n 6∈ f(n) }, so
that X ∈ P(N). By the definition of f , it follows that X = f(n), for some
n ∈ N. There are two cases to consider.

• Suppose n ∈ X. Because X = f(n), we have that n ∈ f(n). Hence,
by the definition of X, it follows that n 6∈ X—contradiction.

• Suppose n 6∈ X. Because X = f(n), we have that n 6∈ f(n). Hence,
by the definition of X, it follows that n ∈ X—contradiction.

Since we obtained a contradiction in both cases, we have an overall contra-
diction. 2

We have seen how bijections may be used to determine whether sets have
the same size. But how can one compare the relative sizes of sets, i.e., say
whether one set is smaller or larger than another? The answer is to make
use of injective functions.

A function f is an injection (or is injective) iff, for all x, y, z, if (x, z) ∈ f
and (y, z) ∈ f , then x = y. I.e., a function is injective iff it never sends
two different elements of its domain to the same element of its range. For
example, the function

{(0, 1), (1, 2), (2, 3), (3, 0)}

is injective, but the function

{(0, 1), (1, 2), (2, 1)}

is not injective (both 0 and 2 are sent to 1). Of course, if f is a bijection
from X to Y , then f is injective.

We say that a set X is dominated by a set Y (X ¹ Y) iff there is an
injective function whose domain is X and whose range is a subset of Y . For
example, the injection idN shows that N ¹ R.

It’s not hard to show that for all sets X,Y, Z:

(1) X ¹ X;

CHAPTER 1. MATHEMATICAL BACKGROUND 11

(2) If X ¹ Y ¹ Z, then X ¹ Z.

Clearly, if X ∼= Y , then X ¹ Y ¹ X. A famous result of set theory,
called the Schröder-Bernstein Theorem, says that, for all sets X and Y , if
X ¹ Y ¹ X, then X ∼= Y . And, one of the forms of the famous Axiom of
Choice says that, for all sets X and Y , either X ¹ Y or Y ¹ X. Finally,
the sizes or cardinalities of sets are ordered in such a way that, for all sets
X and Y , |X| ≤ |Y | iff X ¹ Y .

Given the above machinery, one can generalize Proposition 1.1.2 into
Cantor’s Theorem, which says that, for all sets X, |X| is strictly smaller
than |P(X)|.

1.2 Induction Principles for the Natural Numbers

In this section, we consider two methods for proving that every natural
number n has some property P (n). The first method is the familiar principle
of mathematical induction. The second method is the principle of strong
(or course-of-values) induction.

The principle of mathematical induction says that

for all n ∈ N, P (n)

follows from showing

• (basis step)

P (0);

• (inductive step)

for all n ∈ N, if (†) P (n), then P (n+ 1).

We refer to the formula (†) as the inductive hypothesis. In other words,
to show that every natural number has property P , we must carry out two
steps. In the basis step, we must show that 0 has property P . In the
inductive step, we must assume that n is a natural number with property
P . We must then show that n+1 has property P , without making any more
assumptions about n.

Let’s consider a simple example of mathematical induction, involving the
iterated composition of a function with itself. The nth composition fn of a

CHAPTER 1. MATHEMATICAL BACKGROUND 12

function f ∈ A→A with itself is defined by recursion:

f0 = idA, for all sets A and f ∈ A→A;

fn+1 = f ◦ fn, for all sets A, f ∈ A→A and n ∈ N.

Thus, if f ∈ A→A, then f0 = idA, f
1 = f ◦f0 = f ◦ idA = f , f2 = f ◦f1 =

f ◦ f , etc. For example, if f is the function from N to N that adds two to
its input, then fn(m) = m+ 2n, for all n,m ∈ N.

Proposition 1.2.1
For all n,m ∈ N, fn+m = fn ◦ fm.

In other words, the proposition says that running a function n+m times
will produce the same result as running it m times, and then running it n
times. For the proof, we have to begin by figuring whether we should do
induction on n or m or both (one induction inside the other). It turns out
that we can prove our result by fixing m, and then doing induction on n.
Readers should consider whether another approach will work.

Proof. Suppose m ∈ N. We use mathematical induction to show that, for
all n ∈ N, fn+m = fn ◦fm. (Thus, our property P (n) is “fn+m = fn ◦fm”.)

(Basis Step) We have that f 0+m = fm = idA ◦ fm = f0 ◦ fm.
(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:

fn+m = fn ◦ fm. We must show that f (n+1)+m = fn+1 ◦ fm. We have that

f (n+1)+m = f (n+m)+1

= f ◦ fn+m (definition of f (n+m)+1)

= f ◦ fn ◦ fm (inductive hypothesis)

= fn+1 ◦ fm (definition of fn+1).

2

The principle of strong induction says that

for all n ∈ N, P (n)

follows from showing

for all n ∈ N,
if (‡) for all m ∈ N, if m < n, then P (m),
then P (n).

CHAPTER 1. MATHEMATICAL BACKGROUND 13

We refer to the formula (‡) as the inductive hypothesis. In other words,
to show that every natural number has property P , we must assume that n
is a natural number, and that every natural number that is strictly smaller
than n has property P . We must then show that n has property P , without
making any more assumptions about n.

As an example use of the principle of strong induction, we will prove a
proposition that we would normally take for granted:

Proposition 1.2.2
Every nonempty set of natural numbers has a least element.

Proof. Let X be a nonempty set of natural numbers.
We begin by using strong induction to show that, for all n ∈ N,

if n ∈ X, then X has a least element.

Suppose n ∈ N, and assume the inductive hypothesis: for all m ∈ N, if
m < n, then

if m ∈ X, then X has a least element.

We must show that

if n ∈ X, then X has a least element.

Suppose n ∈ X. It remains to show that X has a least element. If n
is less-than-or-equal-to every element of X, then we are done. Otherwise,
there is an m ∈ X such that m < n. By the inductive hypothesis, we have
that

if m ∈ X, then X has a least element.

But m ∈ X, and thus X has a least element. This completes our strong
induction.

Now we use the result of our strong induction to prove that X has a
least element. Since X is a nonempty subset of N, there is an n ∈ N such
that n ∈ X. By the result of our induction, we can conclude that

if n ∈ X, then X has a least element.

But n ∈ X, and thus X has a least element. 2

CHAPTER 1. MATHEMATICAL BACKGROUND 14

It is easy to see that any proof using mathematical induction can be
turned into one using strong induction. (Split into the cases where n = 0
and n = m+ 1, for some m.)

Are there results that can be proven using strong induction but not
using mathematical induction? The answer turns out to be “no”. In fact,
a proof using strong induction can be mechanically turned into one using
mathematical induction, but at the cost of making the property P (n) more
complicated. Challenge: find a P (n) that can be used to prove Lemma 1.2.2
using mathematical induction. (Hint: make use of the technique of the
following proposition.)

As a matter of style, one should use mathematical induction whenever
it is convenient to do so, since it is the more straightforward of the two
principles.

Given the preceding claim, it’s not surprising that we can prove the va-
lidity of the principle of strong induction using only mathematical induction:

Proposition 1.2.3
Suppose P (n) is a property, and

for all n ∈ N,
if for all m ∈ N, if m < n, then P (m),
then P (n).

Then

for all n ∈ N, P (n).

Proof. Suppose P (n) is a property, and assume property (*):

for all n ∈ N,
if for all m ∈ N, if m < n, then P (m),
then P (n).

Let the property Q(n) be

for all m ∈ N, if m < n, then P (m).

First, we use mathematical induction to show that, for all n ∈ N, Q(n).
(Basis Step) Suppose m ∈ N and m < 0. We must show that P (m).

Since m < 0 is a contradiction, we are allowed to conclude anything. So, we
conclude P (m).

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
Q(n). We must show that Q(n + 1). Suppose m ∈ N and m < n + 1. We
must show that P (m). Since m ≤ n, there are two cases to consider.

CHAPTER 1. MATHEMATICAL BACKGROUND 15

• Suppose m < n. Because Q(n), we have that P (m).

• Suppose m = n. We must show that P (n). By Property (*), it will
suffice to show that

for all m ∈ N, if m < n, then P (m).

But this formula is exactly Q(n), and so were are done.

Now, we use the result of our mathematical induction to show that, for all
n ∈ N, P (n). Suppose n ∈ N. By our mathematical induction, we have
Q(n). By Property (*), it will suffice to show that

for all m ∈ N, if m < n, then P (m).

But this formula is exactly Q(n), and so we are done. 2

We conclude this section by showing one more proof using strong induc-
tion. Define f ∈ N→ N by: for all n ∈ N,

f(n) =

n/2 if n is even,
0 if n = 1,
n+ 1 if n > 1 and n is odd.

Proposition 1.2.4
For all n ∈ N, there is an l ∈ N such that f l(n) = 0.

In other words, the proposition says that, for all n ∈ N, one can get from
n to 0 by running f some number of times.

Proof. We use strong induction to show that, for all n ∈ N, there is
an l ∈ N such that f l(n) = 0. Suppose n ∈ N, and assume the inductive
hypothesis: for all m ∈ N, if m < n, then there is an l ∈ N such that
f l(m) = 0. We must show that there is an l ∈ N such that f l(n) = 0. There
are four cases to consider.

(n = 0) We have that f 0(n) = idN(0) = 0.
(n = 1) We have that f 1(n) = f(1) = 0.
(n > 1 and n is even) Since n is even, we have that n = 2i, for some

i ∈ N. And, because 2i = n > 1, we can conclude that i ≥ 1. Hence i < i+i,
with the consequence that

n

2
=

2i

2
= i < i+ i = 2i = n.

CHAPTER 1. MATHEMATICAL BACKGROUND 16

Hence n/2 < n. Thus, by the inductive hypothesis, it follows that there is
an l ∈ N such that f l(n/2) = 0. Hence,

f l+1(n) = (f l ◦ f1)(n) (Proposition 1.2.1)

= f l(f(n))

= f l(n/2) (definition of f(n), since n is even)

= 0.

(n > 1 and n is odd) Since n is odd, we have that n = 2i+1, for some
i ∈ N. And, because 2i + 1 = n > 1, we can conclude that i ≥ 1. Hence
i+ 1 < i+ i+ 1, with the consequence that

n+ 1

2
=

(2i+ 1) + 1

2
=

2i+ 2

2
=

2(i+ 1)

2
= i+ 1 < i+ i+ 1 = 2i+ 1 = n.

Hence (n + 1)/2 < n. Thus, by the inductive hypothesis, there is an l ∈ N
such that f l((n+ 1)/2) = 0. Hence,

f l+2(n) = (f l ◦ f2)(n) (Proposition 1.2.1)

= f l(f(f(n)))

= f l(f(n+ 1)) (definition of f(n), since n > 1 and n is odd)

= f l((n+ 1)/2) (definition of f(n+ 1), since n+ 1 is even)

= 0.

2

1.3 Trees and Inductive Definitions

In this section, we will introduce and study ordered trees of arbitrary (finite)
arity whose nodes are labeled by elements of some set. The definition of the
set of such trees will be our first example of an inductive definition. In later
chapters, we will define regular expressions (in Chapter 3) and parse trees
(in Chapter 4) as restrictions of the trees we consider here.

Suppose X is a set. The set TreeX of X-trees is the least set such that,
(†) for all x ∈ X, n ∈ N and tr 1, . . . , trn ∈ TreeX ,

x

tr1 · · · trn

∈ TreeX .

CHAPTER 1. MATHEMATICAL BACKGROUND 17

The root label of the tree

x

tr1 · · · trn

is x, and tr1 is the tree’s first child, etc. We are treating

·

· · · · ·

as a constructor, so that

=

x

y1 · · · yn

x′

· · · y′
n′y′1

iff x = x′, n = n′, y1 = y′1, . . . , yn = y′n′ .
When we say that TreeX is the “least” set satisfying property (†), we

mean least with respect to ⊆. I.e., we are saying that TreeX is the unique
set such that:

• TreeX satisfies property (†); and

• if A is a set satisfying property (†), then TreeX ⊆ A.

In other words:

• TreeX satisfies (†) and doesn’t contain any extraneous elements; and

• TreeX consists of precisely those values that can be constructed in
some number of steps using (†).

The definition of TreeX is our first example of an inductive definition,
a definition in which we collect together all of the values that can be con-
structed using some set of rules.

Here are some example elements of TreeN:

• (remember that n can be 0)

3

•

CHAPTER 1. MATHEMATICAL BACKGROUND 18

4

3 1 6

•

4

3 1 6

9

2

We sometimes use linear notation for trees, writing an X-tree

x

tr1 · · · trn

as

x(tr1, . . . , trn).

We often abbreviate x() (the childless tree whose root label is x) to x.
For example, we can write the N-tree

4

3 1 6

9

2

as 2(4(3, 1, 6), 9).
Every inductive definition gives rise to an induction principle, and the

definition of TreeX is no exception. The induction principle for TreeX says
that

for all tr ∈ TreeX , P (tr)

follows from showing

for all x ∈ X, n ∈ N and tr 1, . . . , trn ∈ TreeX ,
if (†) P (tr1), . . . , P (trn),
then P (x(tr1, . . . , trn)).

CHAPTER 1. MATHEMATICAL BACKGROUND 19

We refer to (†) as the inductive hypothesis.
When we draw a tree, we can point at a position in the drawing and call

it a node. The formal analogue of this graphical notion is called a path. The
set Path of paths is the least set such that

• nil ∈ Path;

• For all n ∈ N and pat in Path, n→ pat ∈ Path.

(Here, nil and → are constructors, which tells us when paths are equal.) A
path

n1 → · · · → nl → nil,

consists of directions to a node in the drawing of a tree: one starts at the
root node of a tree, goes from there to the n1’th child, . . . , goes from there
to the nl’th child, and then stops.

Some examples of paths and corresponding nodes for the N-tree

4

3 1 6

9

2

are:

• nil corresponds to the node labeled 2;

• 1→ nil corresponds to the node labeled 4;

• 1→ 2→ nil corresponds to the node labeled 1.

We consider a path pat to be valid for a tree tr iff following the directions
of pat never causes us to try to select a nonexistent child. E.g., the path
1→ 2→nil isn’t valid for the tree 6(7(8)), since the tree 7(8) lacks a second
child.

As usual, if the sub-tree at position pat in tr has no children, then we call
the sub-tree’s root node a leaf or external node; otherwise, the sub-tree’s
root node is called an internal node. Note that we can form a tree tr ′ from
a tree tr by replacing the sub-tree at position pat in tr by a tree tr ′′.

We define the size of an X-tree tr to be the number of elements of

{ pat | pat is a valid path for tr }.

CHAPTER 1. MATHEMATICAL BACKGROUND 20

The length of a path pat (|pat |) is defined recursively by:

|nil| = 0;

|n→ pat | = 1 + |pat |, for all n ∈ N and pat ∈ Path.

Given this definition, we can define the height of an X-tree tr to be the
largest element of

{ |pat | | pat is a valid path for tr }.

For example, the tree

4

3 1 6

9

2

has:

• size 6, since exactly six paths are valid for this tree; and

• height 2, since the path 1→1→nil is valid for this tree and has length
2, and there are no paths of greater length that are valid for this tree.

Chapter 2

Formal Languages

In this chapter, we say what symbols, strings, alphabets and (formal) lan-
guages are, introduce several string induction principles, and give an intro-
duction to the Forlan toolset.

2.1 Symbols, Strings, Alphabets and (Formal)
Languages

In this section, we define the basic notions of the subject: symbols, strings,
alphabets and (formal) languages. In subsequent chapters, we will study
four more restricted kinds of languages: the regular (Chapter 3), context-free
(Chapter 4), recursive and recursively enumerable (Chapter 5) languages.

In most presentations of formal language theory, the “symbols” that
make up strings are allowed to be arbitrary elements of the mathematical
universe. This is convenient in some ways, but it means that, e.g., the
collection of all strings is too “big” to be a set. Furthermore, if we were to
adopt this convention, then we wouldn’t be able to have notation in Forlan
for all strings and symbols. These considerations lead us to the following
definition.

A symbol is one of the following finite sequences of ASCII characters:

• One of the digits 0–9;

• One of the upper case letters A–Z;

• One of the lower case letters a–z;

• A 〈, followed by any finite sequence of printable ASCII characters in
which 〈 and 〉 are properly nested, followed by a 〉.

21

CHAPTER 2. FORMAL LANGUAGES 22

For example, 〈id〉 and 〈〈a〉b〉 are symbols. On the other hand, 〈a〉〉 is not a
symbol since 〈 and 〉 are not properly nested in a〉.

Whenever possible, we will use the mathematical variables a, b and c
to name symbols. To avoid confusion, we will try to avoid situations in
which we must simultaneously use, e.g., the symbol a and the mathematical
variable a.

We write Sym for the set of all symbols. We order Sym by length (num-
ber of ASCII characters) and then lexicographically (in dictionary order).
So, we have that

0 < · · · < 9 < A < · · · < Z < a < · · · < z,

and, e.g.,

z < 〈be〉 < 〈by〉 < 〈on〉 < 〈can〉 < 〈con〉.

Obviously, Sym is infinite, but is it countably infinite? To see that the
answer is “yes”, let’s first see that it is possible to enumerate (list in some
order, without repetition) all of the finite sequences of ASCII characters.
We can list these sequences first according to length, and then according to
lexicographic order. Thus the set of all such sequences is countably infinite.
And since every symbol is such a sequence, it follows that Sym is countably
infinite, too.

Now that we know what symbols are, we can define strings in the stan-
dard way. A string is a finite sequence of symbols. We write the string with
no symbols (the empty string) as %, instead of the conventional ε, since
this symbol can also be used in Forlan. Some other examples of strings are
ab, 0110 and 〈id〉〈num〉. Whenever possible, we will use the mathematical
variables u, v, w, x, y and z to name strings.

The length of a string x (|x|) is the number of symbols in the string. For
example: |%| = 0, |ab| = 2, |0110| = 4 and |〈id〉〈num〉| = 2.

We write Str for the set of all strings. We order Str first by length and
then lexicographically, using our order on Sym. Thus, e.g.,

% < ab < a〈be〉 < a〈by〉 < 〈can〉〈be〉 < abc.

Since every string is a finite sequence of ASCII characters, it follows that
Str is countably infinite.

The concatenation of strings x and y (x @ y) is the string consisting of
the symbols of x followed by the symbols of y. For example, % @ abc = abc

and 01 @ 10 = 0110. Concatenation is associative: for all x, y, z ∈ Str,

(x@ y) @ z = x@ (y @ z).

CHAPTER 2. FORMAL LANGUAGES 23

And, % is the identify for concatenation: for all x ∈ Str,

% @ x = x@% = x.

We often abbreviate x @ y to xy. This abbreviation introduces some
harmless ambiguity. For example, all of 0 @ 10, 01 @ 0 and 0 @ 1 @ 0 are
abbreviated to 010. Fortunately, all of these expressions have the same
value, so this kind of ambiguity is not a problem.

We define the string xn resulting from raising a string x to a power
n ∈ N by recursion on n:

x0 = %, for all x ∈ Str;

xn+1 = xxn, for all x ∈ Str and n ∈ N.

We assign this operation higher precedence than concatenation, so that xxn

means x(xn) in the above definition. For example, we have that

(ab)2 = (ab)(ab)1 = (ab)(ab)(ab)0 = (ab)(ab)% = abab.

Proposition 2.1.1
For all x ∈ Str and n,m ∈ N, xn+m = xnxm.

Proof. Suppose x ∈ Str and m ∈ N. We use mathematical induction to
show that, for all n ∈ N, xn+m = xnxm.

(Basis Step) We have that x0+m = xm = %xm = x0xm.
(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:

xn+m = xnxm. We must show that x(n+1)+m = xn+1xm. We have that

x(n+1)+m = x(n+m)+1

= xxn+m (definition of x(n+m)+1)

= xxnxm (inductive hypothesis)

= xn+1xm (definition of xn+1).

2

Thus, if x ∈ Str and n ∈ N, then

xn+1 = xxn (definition),

and

xn+1 = xnx1 = xnx (Proposition 2.1.1).

Next, we consider the prefix, suffix and substring relations on strings.
Suppose x and y are strings. We say that:

CHAPTER 2. FORMAL LANGUAGES 24

• x is a prefix of y iff y = xv for some v ∈ Str;

• x is a suffix of y iff y = ux for some u ∈ Str;

• x is a substring of y iff y = uxv for some u, v ∈ Str.

In other words, x is a prefix of y iff x is an initial part of y, x is a suffix
of y iff x is a trailing part of y, and x is a substring of y iff x appears in
the middle of y. But note that the strings u and v can be empty in these
definitions. Thus, e.g., a string x is always a prefix of itself, since x = x%.
A prefix, suffix or substring of a string other than the string itself is called
proper.

For example:

• % is a proper prefix, suffix and substring of ab;

• a is a proper prefix and substring of ab;

• b is a proper suffix and substring of ab;

• ab is a (non-proper) prefix, suffix and substring of ab.

Having said what symbols and strings are, we now come to alphabets.
An alphabet is a finite subset of Sym. We use Σ (upper case Greek letter
sigma) to name alphabets. For example, ∅, {0} and {0, 1} are alphabets.
We write Alp for the set of all alphabets. Alp is countably infinite.

We define alphabet ∈ Str→Alp by right recursion on strings:

alphabet(%) = ∅,

alphabet(ax) = {a} ∪ alphabet(x), for all a ∈ Sym and x ∈ Str.

(We would have called it left recursion, if the recursive call had been
alphabet(xa) = {a} ∪ alphabet(x).) I.e., alphabet(w) consists of all
of the symbols occurring in the string w. E.g., alphabet(01101) = {0, 1}.
We say that alphabet(x) is the alphabet of x.

If Σ is an alphabet, then we write Σ∗ for

{w ∈ Str | alphabet(w) ⊆ Σ }.

I.e., Σ∗ consists of all of the strings that can be built using the symbols of
Σ. For example, the elements of {0, 1}∗ are:

%, 0, 1, 00, 01, 10, 11, 000, . . .

CHAPTER 2. FORMAL LANGUAGES 25

We say that L is a formal language (or just language) iff L ⊆ Σ∗, for
some Σ ∈ Alp. In other words, a language is a set of strings over some
alphabet. If Σ ∈ Alp, then we say that L is a Σ-language iff L ⊆ Σ∗.

Here are some example languages (all are {0, 1}-languages):

• ∅;

• {0, 1}∗;

• {010, 1001, 1101};

• { 0n1n | n ∈ N } = {0010, 0111, 0212, . . .} = {%, 01, 0011, . . .};

• {w ∈ {0, 1}∗ | w is a palindrome }.

(A palindrome is a string that reads the same backwards and forwards, i.e.,
that is equal to its own reversal.) On the other hand, the set of strings
X = {〈〉, 〈0〉, 〈00〉, . . .}, is not a language, since it involves infinitely many
symbols, i.e., since there is no alphabet Σ such that X ⊆ Σ∗.

Since Str is countably infinite and every language is a subset of Str,
it follows that every language is countable. Furthermore, Σ∗ is countably
infinite, as long as the alphabet Σ is nonempty (∅∗ = {%}).

We write Lan for the set of all languages. It turns out that Lan is
uncountable. In fact even P({0, 1}∗), the set of all {0, 1}-languages, has the
same size as P(N), and is thus uncountable.

Given a language L, we write alphabet(L) for the alphabet

⋃

{alphabet(w) | w ∈ L }.

of L. I.e., alphabet(L) consists of all of the symbols occurring in the strings
of L. For example,

alphabet({011, 112}) =
⋃

{alphabet(011),alphabet(112)}

=
⋃

{{0, 1}, {1, 2}} = {0, 1, 2}.

If A is an infinite subset of Sym (and so is not an alphabet), we allow
ourselves to write A∗ for

{x ∈ Str | alphabet(x) ⊆ A }.

I.e., A∗ consists of all of the strings that can be built using the symbols of
A. For example, Sym∗ = Str.

CHAPTER 2. FORMAL LANGUAGES 26

2.2 String Induction Principles

In this section, we introduce three string induction principles: left string in-
duction, right string induction and strong string induction. These induction
principles are ways of showing that every string w ∈ A∗ has property P (w),
where A is some set of symbols. Typically, A will be an alphabet, i.e., a
finite set of symbols. But when we want to prove that all strings have some
property, we can let A = Sym, so that A∗ = Str.

The first two of our string induction principles are similar to mathemat-
ical induction, whereas the third principle is similar to strong induction. In
fact, we could easily turn proofs using the first two string induction princi-
ples into proofs by mathematical induction on the length of w, and could
turn proofs using the third string induction principle into proofs using strong
induction on the length of w.

In this section, we will also see two more examples of how inductive
definitions give rise to induction principles.

Suppose A ⊆ Sym. The principle of left string induction for A says that

for all w ∈ A∗, P (w)

follows from showing

• (basis step)

P (%);

• (inductive step)

for all a ∈ A and w ∈ A∗, if (†) P (w), then P (wa).

We refer to the formula (†) as the inductive hypothesis. This principle is
called “left” string induction, because w is on the left of wa.

In other words, to show that every w ∈ A∗ has property P , we show
that the empty string has property P , assume that a ∈ A, w ∈ A∗ and that
(the inductive hypothesis) w has property P , and then show that wa has
property P .

By switching wa to aw in the inductive step, we get the principle of right
string induction. Suppose A ⊆ Sym. The principle of right string induction
for A says that

for all w ∈ A∗, P (w)

follows from showing

CHAPTER 2. FORMAL LANGUAGES 27

• (basis step)

P (%);

• (inductive step)

for all a ∈ A and w ∈ A∗, if P (w), then P (aw).

Before going on to strong string induction, we look at some examples of
how left/right string induction can be used. We define the reversal xR of a
string x by right recursion on strings:

%R = %;

(ax)R = xRa, for all a ∈ Sym and x ∈ Str.

Thus, e.g., (021)R = 120. And, an easy calculation shows that, for all
a ∈ Sym, aR = a. We let the reversal operation have higher precedence
than string concatenation, so that, e.g., xxR = x(xR).

Proposition 2.2.1
For all x, y ∈ Str, (xy)R = yRxR.

As usual, we must start by figuring out which of x and y to do induction
on, as well as what sort of induction to use. Because we defined string
reversal using right string recursion, it turns out that we should do right
string induction on x.

Proof. Suppose y ∈ Str. Since Sym∗ = Str, it will suffice to show that,
for all x ∈ Sym∗, (xy)R = yRxR. We proceed by right string induction.

(Basis Step) We have that (%y)R = yR = yR% = yR%R.
(Inductive Step) Suppose a ∈ Sym and x ∈ Sym∗. Assume the induc-

tive hypothesis: (xy)R = yRxR. Then,

((ax)y)R = (a(xy))R

= (xy)Ra (definition of (a(xy))R)

= (yRxR)a (inductive hypothesis)

= yR(xRa)

= yR(ax)R (definition of (ax)R).

2

CHAPTER 2. FORMAL LANGUAGES 28

Proposition 2.2.2
For all x ∈ Str, (xR)R = x.

Proof. Follows by an easy right string induction, making use of Proposi-
tion 2.2.1. 2

In Section 2.1, we used right string recursion to define the function
alphabet ∈ Str→Alp. Thus, we can use right string induction to show
that:

Proposition 2.2.3
For all x, y ∈ Str, alphabet(xy) = alphabet(x) ∪ alphabet(y).

Now we come to the string induction principle that is analogous to strong
induction. Suppose A ⊆ Sym. The principle of strong string induction for
A says that

for all w ∈ A∗, P (w)

follows from showing

for all w ∈ A∗,
if (‡) for all x ∈ A∗, if |x| < |w|, then P (x),
then P (w).

We refer to the formula (‡) as the inductive hypothesis.
In other words, to show that every w ∈ A∗ has property P , we let

w ∈ A∗, and assume (the inductive hypothesis) that every x ∈ A∗ that is
strictly shorter than w has property P . Then, we must show that w has
property P .

Let’s consider a first—and very simple—example of strong string induc-
tion. Let X be the least subset of {0, 1}∗ such that:

(1) % ∈ X;

(2) for all a ∈ {0, 1} and x ∈ X, axa ∈ X.

This is another example of an inductive definition: X consists of just those
strings of 0’s and 1’s that can be constructed using (1) and (2). For example,
by (1) and (2), we have that 00 = 0%0 ∈ X. Thus, by (2), we have that
1001 = 1(00)1 ∈ X. In general, we have that X contains the elements:

%, 00, 11, 0000, 0110, 1001, 1111, . . .

We will show that X = Y , where Y = {w ∈ {0, 1}∗ | w
is a palindrome and |w| is even }.

CHAPTER 2. FORMAL LANGUAGES 29

Lemma 2.2.4
Y ⊆ X.

Proof. Since Y ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ Y, then w ∈ X.

We proceed by strong string induction.
Suppose w ∈ {0, 1}∗, and assume the inductive hypothesis: for all x ∈

{0, 1}∗, if |x| < |w|, then

if x ∈ Y, then x ∈ X.

We must show that

if w ∈ Y, then w ∈ X.

Suppose w ∈ Y , so that w is a palindrome and |w| is even. It remains to
show that w ∈ X. If w = %, then w = % ∈ X, by Part (1) of the definition
of X. So, suppose w 6= %. Since |w| ≥ 2, we have that w = axb for some
a, b ∈ {0, 1} and x ∈ {0, 1}∗. And, |x| is even. Furthermore, because w is a
palindrome, it follows that a = b and x is a palindrome. Thus w = axa and
x ∈ Y . Since |x| < |w|, the inductive hypothesis tells us that

if x ∈ Y, then x ∈ X.

But x ∈ Y , and thus x ∈ X. Thus, by Part (2) of the definition of X, we
have that w = axa ∈ X. 2

Lemma 2.2.5
X ⊆ Y .

We could prove this lemma by strong string induction. But it is simpler
and more elegant to use an alternative approach. The inductive definition of
X gives rise to the following induction principle. The principle of induction
on X says that

for all w ∈ X, P (w)

follows from showing

(1)

P (%)

(by Part (1) of the definition of X, % ∈ X, and thus we should expect
to have to show P (%));

CHAPTER 2. FORMAL LANGUAGES 30

(2)

for all a ∈ {0, 1} and x ∈ X, if (†) P (x), then P (axa)

(by Part (2) of the definition of X, if a ∈ {0, 1} and x ∈ X, then
axa ∈ X; when proving that the “new” element axa has property P ,
we’re allowed to assume that the “old” element x has the property).

We refer to the formula (†) as the inductive hypothesis.
We will use induction on X to prove Lemma 2.2.5.

Proof. We use induction on X to show that, for all w ∈ X, w ∈ Y .
There are two steps to show.

(1) Since % is a palindrome and |%| = 0 is even, we have that % ∈ Y .

(2) Let a ∈ {0, 1} and x ∈ X. Assume the inductive hypothesis: x ∈ Y .
Since x is a palindrome, we have that axa is also a palindrome. And,
because |axa| = |x| + 2 and |x| is even, it follows that |axa| is even.
Thus axa ∈ Y , as required.

2

Proposition 2.2.6
X = Y .

Proof. Follows immediately from Lemmas 2.2.4 and 2.2.5. 2

We end this section by proving a more complex proposition concerning
a “difference” function on strings, which we will use a number of times in
later chapters. Given a string w ∈ {0, 1}∗, we write diff(w) for

the number of 1’s in w − the number of 0’s in w.

Then:

• diff(%) = 0;

• diff(1) = 1;

• diff(0) = −1;

• for all x, y ∈ {0, 1}∗, diff(xy) = diff(x) + diff(y).

CHAPTER 2. FORMAL LANGUAGES 31

Note that, for all w ∈ {0, 1}∗, diff(w) = 0 iff w has an equal number of 0’s
and 1’s.

Let X (forget the previous definition of X) be the least subset of {0, 1}∗

such that:

(1) % ∈ X;

(2) for all x, y ∈ X, xy ∈ X;

(3) for all x ∈ X, 0x1 ∈ X;

(4) for all x ∈ X, 1x0 ∈ X.

Let Y = {w ∈ {0, 1}∗ | diff(w) = 0 }.
For example, since % ∈ X, it follows, by (3) and (4) that 01 = 0%1 ∈ X

and 10 = 1%0 ∈ X. Thus, by (2), we have that 0110 = (01)(10) ∈ X. And,
Y consists of all strings of 0’s and 1’s with an equal number of 0’s and 1’s.

Our goal is to prove that X = Y , i.e., that: (the easy direction) every
string that can be constructed using X’s rules has an equal number of 0’s
and 1’s; and (the hard direction) that every string of 0’s and 1’s with an
equal number of 0’s and 1’s can be constructed using X’s rules.

Because X was defined inductively, it gives rise to an induction principle,
which we will use to prove the following lemma. (Because of Part (2) of the
definition of X, we wouldn’t be able to prove this lemma using strong string
induction.)

Lemma 2.2.7
X ⊆ Y .

Proof. We use induction on X to show that, for all w ∈ X, w ∈ Y . There
are four steps to show, corresponding to the four rules of X’s definition.

(1) We must show % ∈ Y . Since % ∈ {0, 1}∗ and diff(%) = 0, we have
that % ∈ Y .

(2) Suppose x, y ∈ X, and assume our inductive hypothesis: x, y ∈ Y .
We must show that xy ∈ Y . Since X ⊆ {0, 1}∗, it follows that
xy ∈ {0, 1}∗. Since x, y ∈ Y , we have that diff(x) = diff(y) = 0.
Thus diff(xy) = diff(x) + diff(y) = 0 + 0 = 0, showing that xy ∈ Y .

(3) Suppose x ∈ X, and assume the inductive hypothesis: x ∈ Y . We
must show that 0x1 ∈ Y . Since X ⊆ {0, 1}∗, it follows that 0x1 ∈
{0, 1}∗. Since x ∈ Y , we have that diff(x) = 0. Thus diff(0x1) =
diff(0) + diff(x) + diff(1) = −1 + 0 + 1 = 0. Thus 0x1 ∈ Y .

CHAPTER 2. FORMAL LANGUAGES 32

(4) Suppose x ∈ X, and assume the inductive hypothesis: x ∈ Y . We
must show that 1x0 ∈ Y . Since X ⊆ {0, 1}∗, it follows that 1x0 ∈
{0, 1}∗. Since x ∈ Y , we have that diff(x) = 0. Thus diff(1x0) =
diff(1) + diff(x) + diff(0) = 1 + 0 +−1 = 0. Thus 1x0 ∈ Y .

2

Lemma 2.2.8
Y ⊆ X.

Proof. Since Y ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ Y, then w ∈ X.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume
the inductive hypothesis: for all x ∈ {0, 1}∗, if |x| < |w|, then

if x ∈ Y, then x ∈ X.

We must show that
if w ∈ Y, then w ∈ X.

Suppose w ∈ Y . We must show that w ∈ X. There are three cases to
consider.

• (w = %) Then w = % ∈ X, by Part (1) of the definition of X.

• (w = 0t for some t ∈ {0, 1}∗) Since w ∈ Y , we have that −1 +
diff(t) = diff(0) + diff(t) = diff(0t) = diff(w) = 0, and thus that
diff(t) = 1.

Let u be the shortest prefix of t such that diff(u) ≥ 1. (Since t is a
prefix of itself and diff(t) = 1 ≥ 1, it follows that u is well-defined.)
Let z ∈ {0, 1}∗ be such that t = uz. Clearly, u 6= %, and thus u = yb
for some y ∈ {0, 1}∗ and b ∈ {0, 1}. Hence t = uz = ybz. Since y is a
shorter prefix of t than u, we have that diff(y) ≤ 0.

Suppose, toward a contradiction, that b = 0. Then diff(y) + −1 =
diff(y) +diff(0) = diff(y) +diff(b) = diff(yb) = diff(u) ≥ 1, so that
diff(y) ≥ 2. But diff(y) ≤ 0—contradiction. Hence b = 1.

Summarizing, we have that u = yb = y1, t = uz = y1z and w = 0t =
0y1z. Since diff(y)+1 = diff(y)+diff(1) = diff(y1) = diff(u) ≥ 1, it
follows that diff(y) ≥ 0. But diff(y) ≤ 0, and thus diff(y) = 0. Thus

CHAPTER 2. FORMAL LANGUAGES 33

y ∈ Y . Since 1+diff(z) = 0+1+diff(z) = diff(y)+diff(1)+diff(z) =
diff(y1z) = diff(t) = 1, it follows that diff(z) = 0. Thus z ∈ Y .

Because |y| < |w| and |z| < |w|, and y, z ∈ Y , the inductive hypothesis
tells us that y, z ∈ X. Thus, by Part (3) of the definition of X, we
have that 0y1 ∈ X. Hence, Part (2) of the definition of X tells us that
w = 0y1z = (0y1)z ∈ X.

• (w = 1t for some t ∈ {0, 1}∗) Since w ∈ Y , we have that 1+diff(t) =
diff(1)+diff(t) = diff(1t) = diff(w) = 0, and thus that diff(t) = −1.

Let u be the shortest prefix of t such that diff(u) ≤ −1. (Since t is a
prefix of itself and diff(t) = −1 ≤ −1, it follows that u is well-defined.)
Let z ∈ {0, 1}∗ be such that t = uz. Clearly, u 6= %, and thus u = yb
for some y ∈ {0, 1}∗ and b ∈ {0, 1}. Hence t = uz = ybz. Since y is a
shorter prefix of t than u, we have that diff(y) ≥ 0.

Suppose, toward a contradiction, that b = 1. Then diff(y) + 1 =
diff(y) + diff(1) = diff(y) + diff(b) = diff(yb) = diff(u) ≤ −1, so
that diff(y) ≤ −2. But diff(y) ≥ 0—contradiction. Hence b = 0.

Summarizing, we have that u = yb = y0, t = uz = y0z and w =
1t = 1y0z. Since diff(y) + −1 = diff(y) + diff(0) = diff(y0) =
diff(u) ≤ −1, it follows that diff(y) ≤ 0. But diff(y) ≥ 0, and thus
diff(y) = 0. Thus y ∈ Y . Since −1 + diff(z) = 0 + −1 + diff(z) =
diff(y) + diff(0) + diff(z) = diff(y0z) = diff(t) = −1, it follows that
diff(z) = 0. Thus z ∈ Y .

Because |y| < |w| and |z| < |w|, and y, z ∈ Y , the inductive hypothesis
tells us that y, z ∈ X. Thus, by Part (4) of the definition of X, we
have that 1y0 ∈ X. Hence, Part (2) of the definition of X tells us that
w = 1y0z = (1y0)z ∈ X.

2

In the proof of the preceding lemma we made use of all four rules of X’s
definition. If this had not been the case, we would have known that the
unused rules were redundant (or that we had made a mistake in our proof!).

Proposition 2.2.9
X = Y .

Proof. Follows immediately from Lemmas 2.2.7 and 2.2.8. 2

CHAPTER 2. FORMAL LANGUAGES 34

2.3 Introduction to Forlan

The Forlan toolset is implemented as a set of Standard ML (SML) modules.
It’s used interactively. In fact, a Forlan session is nothing more than a
Standard ML session in which the Forlan modules are available.

Instructions for installing Forlan on machines running Linux and Win-
dows can be found on the WWW at http://www.cis.ksu.edu/~allen/

forlan/.
We begin this section by giving a quick introduction to SML. We then

show how symbols, strings, finite sets of symbols and strings, and finite
relations on symbols can be manipulated using Forlan.

To invoke Forlan under Linux, type the command forlan:

% forlan

Standard ML of New Jersey Version n with Forlan

Version m loaded

val it = () : unit

-

To invoke Forlan under Windows, (double-)click on the Forlan icon.
The identifier it is normally bound to the value of the most recently

evaluated expression. Initially, though, its value is the empty tuple (), the
single element of the type unit. The value () is used in circumstances when
a value is required, but it makes no difference what that value is. SML’s
prompt is “-”. To exit SML, type CTRL-d under Linux, and CTRL-z under
Windows. To interrupt back to the SML top-level, type CTRL-c.

The simplest way of using SML is as a calculator:

- 4 + 5;

val it = 9 : int

- it * it;

val it = 81 : int

- it - 1;

val it = 80 : int

SML responds to each expression by printing its value and type, and noting
that the expression’s value has been bound to the identifier it. Expressions
must be terminated with semicolons.

SML also has the types string and bool, as well as product types t1 ∗
· · · ∗ tn, whose values consist of n-tuples:

- "hello" ^ " " ^ "there";

val it = "hello there" : string

- true andalso (false orelse true);

CHAPTER 2. FORMAL LANGUAGES 35

val it = true : bool

- if 5 < 7 then "hello" else "bye";

val it = "hello" : string

- (3 + 1, 4 = 4, "a" ^ "b");

val it = (4,true,"ab") : int * bool * string

The operator ^ is string concatenation.
It is possible to bind the value of an expression to an identifier using a

value declaration:

- val x = 3 + 4;

val x = 7 : int

- val y = x + 1;

val y = 8 : int

One can even give names to the components of a tuple:

- val (x, y, z) = (3 + 1, 4 = 4, "a" ^ "b");

val x = 4 : int

val y = true : bool

val z = "ab" : string

One can declare functions, and apply those functions to arguments:

- fun f n = n + 1;

val f = fn : int -> int

- f 3;

val it = 4 : int

- f(4 + 5);

val it = 10 : int

- fun g(x, y) = (x ^ y, y ^ x);

val g = fn : string * string -> string * string

- val (u, v) = g("a", "b");

val u = "ab" : string

val v = "ba" : string

The function f maps its input n to its output n+1. All function values are
printed as fn. A type t1 -> t2 is the type of all functions taking arguments of
type t1 and producing results (if they terminate without raising exceptions)
of type t2. Note that SML infers the types of functions, and that the type
operator * has higher precedence than the operator ->. When applying a
funtion to a single argument, the argument may be enclosed in parentheses,
but doesn’t have to be parenthesized.

It’s also possible to declare recursive functions, like the factorial func-
tion:

CHAPTER 2. FORMAL LANGUAGES 36

- fun fact n =

= if n = 0

= then 1

= else n * fact(n - 1);

val fact = fn : int -> int

- fact 4;

val it = 24 : int

When a declaration or expression spans more than one line, SML prints its
secondary prompt, =, on all of the lines except for the first one. SML doesn’t
process a declaration or expression until it is terminated with a semicolon.

One can load the contents of a file into SML using the function

val use : string -> unit

For example, if the file fact.sml contains the declaration of the facto-
rial function, then this declaration can be loaded into the system as fol-
lows:

- use "fact.sml";

[opening fact.sml]

val fact = fn : int -> int

val it = () : unit

- fact 4;

val it = 24 : int

The values of an option type t option are built using the type’s two con-
structors: NONE of type t option, and SOME of type t -> t option. So, e.g.,
NONE, SOME 1 and SOME ~6 are three of the values of type int option, and
NONE, SOME true and SOME false are the only values of type bool option.

Given functions f and g of types t1 -> t2 and t2 -> t3, respectively, g o f
is the composition of g and f , the function of type t1 -> t3 that, when given
an argument x of type t1, evaluates the expression g(f x).

The Forlan module Sym defines an abstract type sym of symbols, as well
as some functions for processing symbols, including:

val input : string -> sym

val output : string * sym -> unit

val compare : sym * sym -> order

These functions behave as follows:

• inputfil reads a symbol from file fil ; if fil = "", then the symbol is
read from the standard input;

CHAPTER 2. FORMAL LANGUAGES 37

• output(fil, a) writes the symbol a to the file fil ; if fil = "", then the
string is written to the standard output;

• compare compares two symbols, yielding LESS, EQUAL or GREATER.

The type sym is bound in the top-level environment. On the other hand,
one must write Sym.f to select the function f of module Sym. Whitespace
characters are ignored by Forlan’s input routines. Interactive input is ter-
minated by a line consisting of a single “.” (dot, period). Forlan’s prompt
is @.

The module Sym also provides the functions

val fromString : string -> sym

val toString : sym -> string

where fromString is like input, except that it takes its input from a string,
and toString is like output, except that it writes its output to a string.
These functions are especially useful when defining functions. In the future,
whenever a module/type has input and output functions, you may assume
that it also has fromString and toString functions.

Here are some example uses of the functions of Sym:

- val a = Sym.input "";

@ <id>

@ .

val a = - : sym

- val b = Sym.input "";

@ <num>

@ .

val b = - : sym

- Sym.output("", a);

<id>

val it = () : unit

- Sym.compare(a, b);

val it = LESS : order

Values of abstract types (like sym) are printed as “-”.
Expressions in SML are evaluated from left to right, which explains why

the following transcript results in the value GREATER, rather than LESS:

- Sym.compare(Sym.input "", Sym.input "");

@ <can>

@ .

@ <be>

@ .

CHAPTER 2. FORMAL LANGUAGES 38

val it = GREATER : order

The module Set defines an abstract type

type ’a set

of finite sets of elements of type ’a. It is bound in the top-level environment.
E.g., int set is the type of sets of integers. Set also defines a variety of
functions for processing sets. But we will only make direct use of a few of
them, including:

val toList : ’a set -> ’a list

val size : ’a set -> int

val empty : ’a set

val sing : ’a -> ’a set

These functions are “polymorphic”: they are applicable to values of type
int set, sym set, etc. The function sing makes a value x into the singleton
set {x}.

The module SymSet defines various functions for processing finite sets of
symbols (elements of type sym set; alphabets), including:

val input : string -> sym set

val output : string * sym set -> unit

val fromList : sym list -> sym set

val memb : sym * sym set -> bool

val subset : sym set * sym set -> bool

val equal : sym set * sym set -> bool

val union : sym set * sym set -> sym set

val inter : sym set * sym set -> sym set

val minus : sym set * sym set -> sym set

Sets of symbols are expressed in Forlan as sequences of symbols, separated
by commas. When a set is outputted, or converted to a list, its elements are
listed in ascending order.

Here are some example uses of the functions of SymSet:

- val bs = SymSet.input "";

@ a, <id>, 0, <num>

@ .

val bs = - : sym set

- SymSet.output("", bs);

0, a, <id>, <num>

val it = () : unit

- val cs = SymSet.input "";

CHAPTER 2. FORMAL LANGUAGES 39

@ a, <char>

@ .

val cs = - : sym set

- SymSet.subset(cs, bs);

val it = false : bool

- SymSet.output("", SymSet.union(bs, cs));

0, a, <id>, <num>, <char>

val it = () : unit

- SymSet.output("", SymSet.inter(bs, cs));

a

val it = () : unit

- SymSet.output("", SymSet.minus(bs, cs));

0, <id>, <num>

val it = () : unit

We will be working with two kinds of strings:

• SML strings, i.e., elements of type string;

• The strings of formal language theory, which we call “formal language
strings”, when necessary.

The module Str defines the type str of formal language strings, as well
as some functions for processing strings, including:

val input : string -> str

val output : string * str -> unit

val alphabet : str -> sym set

val compare : str * str -> order

val prefix : str * str -> bool

val suffix : str * str -> bool

val substr : str * str -> bool

val power : str * int -> str

prefix(x, y) tests whether x is a prefix of y, and suffix and substring

work similarly. power(x, n) raises x to the power n.
The type str is bound in the top-level environment, and is equal to

sym list, the type of lists of symbols. Every value of type str has the form
[a1, ..., an], where n ∈ N and the ai are symbols. The usual list processing
functions, such as @ (append) and length, are applicable to elements of type
str, and the empty string can be written as either [] or nil.

Every string can be expressed in Forlan’s input syntax as either a single
% or a nonempty sequence of symbols. For convenience, though, string
expressions may be built up from symbols and % using parentheses (for
grouping) and concatenation. During input processing, the parentheses are

CHAPTER 2. FORMAL LANGUAGES 40

removed and the concatenations are carried out, producing lists of symbols.
E.g., %(hell)%o describes the same string as hello.

Here are some example uses of the functions of Str:

- val x = Str.input "";

@ hello<there>

@ .

val x = [-,-,-,-,-,-] : str

- length x;

val it = 6 : int

- Str.output("", x);

hello<there>

val it = () : unit

- SymSet.output("", Str.alphabet x);

e, h, l, o, <there>

val it = () : unit

- Str.output("", Str.power(x, 3));

hello<there>hello<there>hello<there>

val it = () : unit

- val y = Str.input "";

@ %(hell)%o

@ .

val y = [-,-,-,-,-] : str

- Str.output("", y);

hello

val it = () : unit

- Str.compare(x, y);

val it = GREATER : order

- Str.output("", x @ y);

hello<there>hello

val it = () : unit

- Str.prefix(y, x);

val it = true : bool

- Str.substr(y, x);

val it = true : bool

The module StrSet defines various functions for processing finite sets of
strings (elements of type str set; finite languages), including:

val input : string -> str set

val output : string * str set -> unit

val fromList : str list -> str set

val memb : str * str set -> bool

val subset : str set * str set -> bool

val equal : str set * str set -> bool

CHAPTER 2. FORMAL LANGUAGES 41

val union : str set * str set -> str set

val inter : str set * str set -> str set

val minus : str set * str set -> str set

val alphabet : str set -> sym set

Sets of strings are expressed in Forlan as sequences of strings, separated by
commas. When a set is outputted, or converted to a list, its elements are
listed in ascending order. Here are some example uses of the functions of
StrSet:

- val xs = StrSet.input "";

@ hello, <id><num>, %

@ .

val xs = - : str set

- val ys = StrSet.input "";

@ <id>%<num>, ano%ther

@ .

val ys = - : str set

- val zs = StrSet.union(xs, ys);

val zs = - : str set

- Set.size zs;

val it = 4 : int

- StrSet.output("", zs);

%, <id><num>, hello, another

val it = () : unit

- SymSet.output("", StrSet.alphabet zs);

a, e, h, l, n, o, r, t, <id>, <num>

val it = () : unit

The module SymRel defines a type sym_rel of finite relations on symbols.
It is bound in the top-level environment, and is equal to (sym * sym)set,
i.e., its elements are finite sets of pairs of symbols. SymRel also defines
various functions for processing finite relations on symbols, including:

val input : string -> sym_rel

val output : string * sym_rel -> unit

val fromList : (sym * sym)list -> sym_rel

val memb : (sym * sym) * sym_rel -> bool

val subset : sym_rel * sym_rel -> bool

val equal : sym_rel * sym_rel -> bool

val union : sym_rel * sym_rel -> sym_rel

val inter : sym_rel * sym_rel -> sym_rel

val minus : sym_rel * sym_rel -> sym_rel

val domain : sym_rel -> sym set

val range : sym_rel -> sym set

CHAPTER 2. FORMAL LANGUAGES 42

val reflexive : sym_rel * sym set -> bool

val symmetric : sym_rel -> bool

val transitive : sym_rel -> bool

val function : sym_rel -> bool

val applyFunction : sym_rel -> sym -> sym

Relations on symbols are expressed in Forlan as sequences of ordered
pairs (a,b) of symbols, separated by commas. When a relation is outputted,
or converted to a list, its pairs are listed in ascending order, first according to
their left-sides, and then according to their right sides. reflexive(rel, bs)
tests whether rel is reflexive on bs. The function applyFunction is curried,
i.e., it is a function that returns a function. Given a relation rel , it checks
that rel is a function, issuing an error message, and raising an exception,
otherwise. If it is a function, it returns a function of type sym -> sym that,
when called with a symbol a, will apply the function rel to a.

Here are some example uses of the functions of SymRel:

- val rel = SymRel.input "";

@ (1, 2), (2, 3), (3, 4), (4, 5)

@ .

val rel = - : sym_rel

- SymRel.output("", rel);

(1, 2), (2, 3), (3, 4), (4, 5)

val it = () : unit

- SymSet.output("", SymRel.domain rel);

1, 2, 3, 4

val it = () : unit

- SymSet.output("", SymRel.range rel);

2, 3, 4, 5

val it = () : unit

- SymRel.reflexive(rel, SymSet.fromString "1, 2");

val it = false : bool

- SymRel.symmetric rel;

val it = false : bool

- SymRel.transitive rel;

val it = false : bool

- SymRel.function rel;

val it = true : bool

- val f = SymRel.applyFunction rel;

val f = fn : sym -> sym

- Sym.output("", f(Sym.fromString "3"));

4

val it = () : unit

- Sym.output("", f(Sym.fromString "4"));

CHAPTER 2. FORMAL LANGUAGES 43

5

val it = () : unit

- Sym.output("", f(Sym.fromString "5"));

argument not in domain

uncaught exception Error

Chapter 3

Regular Languages

In this chapter, we study: regular expressions and languages; four kinds
of finite automata; algorithms for processing regular expressions and finite
automata; properties of regular languages; and applications of regular ex-
pressions and finite automata to searching in text files and lexical analysis.

3.1 Regular Expressions and Languages

In this section, we: define several operations on languages; say what regular
expressions are, what they mean, and what regular languages are; and begin
to show how regular expressions can be processed by Forlan.

The union, intersection and set-difference operations on sets are also
operations on languages, i.e., if L1, L2 ∈ Lan, then L1 ∪ L2, L1 ∩ L2 and
L1 − L2 are all languages. (Since L1, L2 ∈ Lan, we have that L1 ⊆ Σ∗

1

and L2 ⊆ Σ∗
2, for alphabets Σ1 and Σ2. Let Σ = Σ1 ∪ Σ2, so that Σ is an

alphabet, L1 ⊆ Σ∗ and L2 ⊆ Σ∗. Thus L1 ∪L2, L1 ∩L2 and L1 −L2 are all
subsets of Σ∗, and so are all languages.)

The first new operation on languages is language concatenation. The
concatenation of languages L1 and L2 (L1 @ L2) is the language

{x1 @ x2 | x1 ∈ L1 and x2 ∈ L2 }.

I.e., L1 @ L2 consists of all strings that can be formed by concatenating an
element of L1 with an element of L2. For example,

{ab, abc}@ {cd, d} = {(ab)(cd), (ab)(d), (abc)(cd), (abc)(d)}

= {abcd, abd, abccd}.

44

CHAPTER 3. REGULAR LANGUAGES 45

Concatenation of languages is associative: for all L1, L2, L3 ∈ Lan,

(L1 @ L2) @ L3 = L1 @ (L2 @ L3).

And, {%} is the identify for concatenation: for all L ∈ Lan,

{%}@ L = L@ {%} = L.

Furthermore, ∅ is the zero for concatenation: for all L ∈ Lan,

∅@ L = L@ ∅ = ∅.

We often abbreviate L1 @ L2 to L1L2.
Now that we know what language concatenation is, we can say what it

means to raise a language to a power. We define the language Ln formed by
raising language L to a power n ∈ N by recursion on n:

L0 = {%}, for all L ∈ Lan;

Ln+1 = LLn, for all L ∈ Lan and n ∈ N.

We assign this operation higher precedence than concatenation, so that LLn

means L(Ln) in the above definition. For example, we have that

{a, b}2 = {a, b}{a, b}1 = {a, b}{a, b}{a, b}0

= {a, b}{a, b}{%} = {a, b}{a, b}

= {aa, ab, ba, bb}.

Proposition 3.1.1
For all L ∈ Lan and n,m ∈ N, Ln+m = LnLm.

Proof. An easy mathematical induction on n. The language L and the
natural number m can be fixed at the beginning of the proof. 2

Thus, if L ∈ Lan and n ∈ N, then

Ln+1 = LLn (definition),

and

Ln+1 = LnL1 = LnL (Proposition 3.1.1).

Another useful fact about language exponentiation is:

CHAPTER 3. REGULAR LANGUAGES 46

Proposition 3.1.2
For all w ∈ Str and n ∈ N, {w}n = {wn}.

Proof. By mathematical induction on n. 2

For example, we have that {01}4 = {(01)4} = {01010101}.
Now we consider a language operation that is named after Stephen Cole

Kleene, one of the founders of formal language theory. The Kleene closure
(or just closure) of a language L (L∗) is the language

⋃

{Ln | n ∈ N }.

Thus, for all w,

w ∈ L∗ iff w ∈ A, for some A ∈ {Ln | n ∈ N }

iff w ∈ Ln for some n ∈ N.

Or, in other words:

• L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·;

• L∗ consists of all strings that can be formed by concatenating together
some number (maybe none) of elements of L (the same element of L
can be used as many times as is desired).

For example,

{a, ba}∗ = {a, ba}0 ∪ {a, ba}1 ∪ {a, ba}2 ∪ · · ·

= {%} ∪ {a, ba} ∪ {aa, aba, baa, baba} ∪ · · ·

Suppose w ∈ Str. By Proposition 3.1.2, we have that, for all x,

x ∈ {w}∗ iff x ∈ {w}n, for some n ∈ N,

iff x ∈ {wn}, for some n ∈ N,

iff x = wn, for some n ∈ N.

If we write {0, 1}∗, then this could mean:

• All strings over the alphabet {0, 1} (Section 2.1); or

• The closure of the language {0, 1}.

Fortunately, these languages are equal (both are all strings of 0’s and 1’s),
and this kind of ambiguity is harmless.

We assign our operations on languages relative precedences as follows:

CHAPTER 3. REGULAR LANGUAGES 47

• Highest: closure ((·)∗) and raising to a power ((·)n);

• Intermediate: concatenation (@, or just juxtapositioning);

• Lowest: union (∪), intersection (∩) and difference (−).

For example, if n ∈ N and A,B,C ∈ Lan, then A∗BCn ∪ B abbreviates
((A∗)B(Cn)) ∪ B. The language ((A ∪ B)C)∗ can’t be abbreviated, since
removing either pair of parentheses will change its meaning. If we removed
the outer pair, then we would have (A ∪ B)(C∗), and removing the inner
pair would yield (A ∪ (BC))∗.

In Section 2.3, we introduced the Forlan module StrSet, which defines
various functions for processing finite sets of strings, i.e., finite languages.
This module also defines the functions

val concat : str set * str set -> str set

val power : str set * int -> str set

which implement our concatenation and exponentiation operations on fi-
nite languages. Here are some examples of how these functions can be
used:

- val xs = StrSet.fromString "ab, cd";

val xs = - : str set

- val ys = StrSet.fromString "uv, wx";

val ys = - : str set

- StrSet.output("", StrSet.concat(xs, ys));

abuv, abwx, cduv, cdwx

val it = () : unit

- StrSet.output("", StrSet.power(xs, 0));

%

val it = () : unit

- StrSet.output("", StrSet.power(xs, 1));

ab, cd

val it = () : unit

- StrSet.output("", StrSet.power(xs, 2));

abab, abcd, cdab, cdcd

val it = () : unit

Next, we define the set of all regular expressions. Let the set RegLab
of regular expression labels be

Sym ∪ {%, $, ∗,@,+}.

Let the set Reg of regular expressions be the least subset of TreeRegLab

such that:

CHAPTER 3. REGULAR LANGUAGES 48

• (empty string) % ∈ Reg;

• (empty set) $ ∈ Reg;

• (symbol) for all a ∈ Sym, a ∈ Reg;

• (closure) for all α ∈ Reg, ∗(α) ∈ Reg;

• (concatenation) for all α, β ∈ Reg, @(α, β) ∈ Reg;

• (union) for all α, β ∈ Reg, +(α, β) ∈ Reg.

This is yet another example of an inductive definition. The elements of
Reg are precisely those RegLab-trees (trees (See Section 1.3) whose labels
come from RegLab) that can be built using these six rules. Whenever
possible, we will use the mathematical variables α, β and γ to name regular
expressions. Since regular expressions are RegLab-trees, we may talk of
their sizes and heights.

For example,

+(@(∗(0),@(1, ∗(0))),%),

i.e.,

+

@ %

∗

0

@

1 ∗

0

is a regular expression. On the other hand, the RegLab-tree ∗(∗, ∗) is not
a regular expression, since it can’t be built using our six rules.

BecauseReg is defined inductively, it gives rise to an induction principle.
The principle of induction on Reg says that

for all α ∈ Reg, P (α)

follows from showing

• P (%);

CHAPTER 3. REGULAR LANGUAGES 49

• P ($);

• for all a ∈ Sym, P (a);

• for all α ∈ Reg, if P (α), then P (∗(α));

• for all α, β ∈ Reg, if P (α) and P (β), then P (@(α, β));

• for all α, β ∈ Reg, if P (α) and P (β), then P (+(α, β)).

To increase readability, we use infix and postfix notation, abbreviating:

• ∗(α) to α∗ or α∗;

• @(α, β) to α @ β;

• +(α, β) to α + β.

We assign the operators (·)∗, @ and + the following precedences and asso-
ciativities:

• Highest: (·)∗;

• Intermediate: @ (right associative);

• Lowest: + (right associative).

We parenthesize regular expressions when we need to override the default
precedences and associativities, and for reasons of clarity. Furthermore, we
often abbreviate α @ β to αβ.

For example, we can abbreviate the regular expression

+(@(∗(0),@(1, ∗(0))),%)

to 0∗ @ 1 @ 0∗ +% or 0∗10∗ +%. On the other hand, the regular expres-
sion ((0 + 1)2)∗ can’t be further abbreviated, since removing either pair of
parentheses would result in a different regular expression. Removing the
outer pair would result in (0 + 1)(2∗) = (0 + 1)2∗, and removing the inner
pair would yield (0 + (12))∗ = (0 + 12)∗.

We order the elements of RegLab as follows:

% < $ < symbols in order < ∗ < @ < +.

We order regular expressions first by their root labels, and then, recursively,
by their children, working from left to right. For example, we have that

% < ∗(%) < ∗(@($, ∗($))) < ∗(@(a,%)) < @(%, $),

CHAPTER 3. REGULAR LANGUAGES 50

i.e.,

% < %∗ < ($$∗)∗ < (a%)∗ < %$.

Now we can say what regular expressions mean, using some of our lan-
guage operations. The language generated by a regular expression α (L(α))
is defined by recursion:

L(%) = {%};

L($) = ∅;

L(a) = {a}, for all a ∈ Sym;

L(∗(α)) = L(α)∗, for all α ∈ Reg;

L(@(α, β)) = L(α) @ L(β), for all α, β ∈ Reg;

L(+(α, β)) = L(α) ∪ L(β), for all α, β ∈ Reg.

This is a good definition since, if L is a language, then so is L∗, and, if L1

and L2 are languages, then so are L1L2 and L1 ∪ L2. We say that w is
generated by α iff w ∈ L(α).

For example,

L(0∗10∗ +%) = L(+(@(∗(0),@(1, ∗(0))),%))

= L(@(∗(0),@(1, ∗(0)))) ∪ L(%)

= L(∗(0))L(@(1, ∗(0))) ∪ {%}

= L(0)∗L(1)L(∗(0)) ∪ {%}

= {0}∗{1}L(0)∗ ∪ {%}

= {0}∗{1}{0}∗ ∪ {%}

= { 0n10m | n,m ∈ N } ∪ {%}.

E.g., 0001000, 10, 001 and % are generated by 0∗10∗ +%.
We define functions symToReg ∈ Sym→Reg and strToReg ∈ Str→

Reg, as follows. Given a symbol a ∈ Sym, symToReg(a) is the regular
expression that looks like a. And, given symbols a1, . . . , an, for n ∈ N,
strToReg(a1 . . . an) is the regular expression %, if n = 0, and is the regular
expression a1 . . . an, otherwise (remember that this is a tree, of size n+(n−
1)). It is easy to see that, for all a ∈ Sym, L(symToReg(a)) = {a}, and,
for all x ∈ Str, L(strToReg(x)) = {x}.

We define the regular expression αn formed by raising a regular expres-

CHAPTER 3. REGULAR LANGUAGES 51

sion α to a power n ∈ N by recursion on n:

α0 = %, for all α ∈ Reg;

α1 = α, for all α ∈ Reg;

αn+1 = ααn, for all α ∈ Reg and n ∈ N− {0}.

We assign this operation the same precedence as closure, so that ααn means
α(αn) in the above definition. Note that, in contrast to the definitions of xn

and Ln, we have made use of two base cases, so that α1 is α, not α%. For
example, (0 + 1)3 = (0 + 1)(0 + 1)(0 + 1).

Proposition 3.1.3
For all α ∈ Reg and n ∈ N, L(αn) = L(α)n.

Proof. An easy mathematical induction on n. α may be fixed at the
beginning of the proof. 2

An example consequence of the lemma is that L((0 + 1)3) = L(0 + 1)3 =
{0, 1}3.

We define the alphabet of a regular expression α (alphabet(α)) by re-
cursion:

alphabet(%) = ∅;

alphabet($) = ∅;

alphabet(a) = {a} for all a ∈ Sym;

alphabet(∗(α)) = alphabet(α), for all α ∈ Reg;

alphabet(@(α, β)) = alphabet(α) ∪ alphabet(β), for all α, β ∈ Reg;

alphabet(+(α, β)) = alphabet(α) ∪ alphabet(β), for all α, β ∈ Reg.

This is a good definition, since the union of two alphabets is an alphabet.
For example, alphabet(0∗10∗ +%) = {0, 1}.

Proposition 3.1.4
For all α ∈ Reg, alphabet(L(α)) ⊆ alphabet(α).

In other words, the proposition says that every symbol of every string in
L(α) comes from alphabet(α).

Proof. An easy induction on α, i.e., a proof using the principle of induction
on Reg. 2

CHAPTER 3. REGULAR LANGUAGES 52

For example, since L(1$) = {1}∅ = ∅, we have that

alphabet(L(0∗ + 1$)) = alphabet({0}∗)

= {0}

⊆ {0, 1}

= alphabet(0∗ + 1$).

Now we are able to say what it means for a language to be regular: a
language L is regular iff L = L(α) for some α ∈ Reg. We define

RegLan = {L(α) | α ∈ Reg }

= {L ∈ Lan | L is regular }.

Since every regular expression can be described by a finite sequence of
ASCII characters, we have that Reg is countably infinite. Since {00}, {01},
{02}, . . . , are all regular languages, we have that RegLan is infinite.

To see that RegLan is countably infinite, imagine the following way of
listing all of the regular languages. One works through the regular expres-
sions, one after the other. Given a regular expression α, one asks whether
the language L(α) has already appeared in our list. If not, we add it to the
list, and then go on to the next regular expression. Otherwise, we simply
go on to the next regular expression. It is easy to see that each regular
language will appear exactly once in this infinite list. Thus RegLan is
countably infinite.

Since Lan is uncountable, it follows that RegLan (Lan, i.e., there are
non-regular languages. In Section 3.13, we will see a concrete example of a
non-regular language.

Let’s consider the problem of finding a regular expression that generates
the set X of all strings of 0’s and 1’s with an even number of 0’s. A string
with this property would begin with some number of 1’s (possibly none).
After this, the string would have some number of parts (possibly none),
each consisting of a 0, followed by some number of 1’s, followed by a 0,
followed by some number of 1’s. The above considerations lead us to the
regular expression α = 1∗(01∗01∗)∗. To convince ourselves that this answer is
correct, we must think about why L(α) = X, i.e., why L(α) ⊆ X (everything
generated by α is in X) and X ⊆ L(α) (everything in X is generated by α).
In the next section, we’ll consider proof methods for showing the correctness
of regular expressions.

Now, we turn to the Forlan implementation of regular expressions. The
Forlan module Reg defines an abstract type reg (in the top-level environ-

CHAPTER 3. REGULAR LANGUAGES 53

ment) of regular expressions, as well as various functions and constants for
processing regular expressions, including:

val input : string -> reg

val output : string * reg -> unit

val size : reg -> int

val compare : reg * reg -> order

val alphabet : reg -> sym set

val emptyStr : reg

val emptySet : reg

val fromSym : sym -> reg

val fromStr : str -> reg

val closure : reg -> reg

val concat : reg * reg -> reg

val union : reg * reg -> reg

val power : reg * int -> reg

The Forlan syntax for regular expressions is our abbreviated linear notation.
E.g., one must write 0*1 instead of @(*(0),1). When regular expressions
are outputted, as few parentheses as possible are used. The values emptyStr
and emptySet represent % and $, respectively. The functions fromSym and
fromStr implement the functions symToReg and strToReg, respectively,
and are also bound in the top-level environment as symToReg and strToReg.
The function closure takes in a regular expression α and returns ∗(α), and
concat and union work similarly.

Here are some example uses of the functions of Reg:

- val reg = Reg.input "";

@ 0*10* + %

@ .

val reg = - : reg

- Reg.size reg;

val it = 9 : int

- val reg’ = Reg.fromStr(Str.power(Str.input "", 3));

@ 01

@ .

val reg’ = - : reg

- Reg.output("", reg’);

010101

val it = () : unit

- Reg.size reg’;

val it = 11 : int

- Reg.compare(reg, reg’);

val it = GREATER : order

- val reg’’ = Reg.concat(Reg.closure reg, reg’);

CHAPTER 3. REGULAR LANGUAGES 54

val reg’’ = - : reg

- Reg.output("", reg’’);

(0*10* + %)*010101

val it = () : unit

- SymSet.output("", Reg.alphabet reg’’);

0, 1

val it = () : unit

- val reg’’’ = Reg.power(reg, 3);

val reg’’’ = - : reg

- Reg.output("", reg’’’);

(0*10* + %)(0*10* + %)(0*10* + %)

val it = () : unit

- Reg.size reg’’’;

val it = 29 : int

3.2 Equivalence and Simplification of Regular Ex-
pressions

In this section, we: say what it means for regular expressions to be equiva-
lent; show a series of results about regular expression equivalence; look at an
example of regular expression synthesis/proof of correctness; and describe
two algorithms for the simplification of regular expressions. The first algo-
rithm is weak, but efficient; the second is stronger, but inefficient. We also
show how these algorithms can be used in Forlan.

We begin by saying what it means for two regular expressions to be
equivalent. Regular expressions α and β are equivalent iff L(α) = L(β). In
other words, α and β are equivalent iff α and β denote the same language.
We define a relation ≈ on Reg by: α ≈ β iff α and β are equivalent.

For example, L((00)∗ +%) = L((00)∗), and thus (00)∗ +% ≈ (00)∗.
One approach to showing that α ≈ β is to show that L(α) ⊆ L(β)

and L(β) ⊆ L(α). The following proposition is useful for showing language
inclusions, not just ones involving regular languages.

Proposition 3.2.1
(1) For all A1, A2, B1, B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then A1 ∪A2 ⊆

B1 ∪B2.

(2) For all A1, A2, B1, B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then A1 ∩A2 ⊆
B1 ∩B2.

(3) For all A1, A2, B1, B2 ∈ Lan, if A1 ⊆ B1 and B2 ⊆ A2, then A1 −A2 ⊆
B1 −B2.

CHAPTER 3. REGULAR LANGUAGES 55

(4) For all A1, A2, B1, B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then A1A2 ⊆
B1B2.

(5) For all A,B ∈ Lan and n ∈ N, if A ⊆ B, then An ⊆ Bn.

(6) For all A,B ∈ Lan, if A ⊆ B, then A∗ ⊆ B∗.

Proof. (1) and (2) are straightforward. We show (3) as an example,
below. (4) is easy. (5) is proved by mathematical induction, using (4). (6)
is proved using (5).

For (3), suppose that A1, A2, B1, B2 ∈ Lan, A1 ⊆ B1 and B2 ⊆ A2. To
show that A1 − A2 ⊆ B1 − B2, suppose w ∈ A1 − A2. We must show that
w ∈ B1 −B2. It will suffice to show that w ∈ B1 and w 6∈ B2.

Since w ∈ A1 − A2, we have that w ∈ A1 and w 6∈ A2. Since A1 ⊆ B1,
it follows that w ∈ B1. Thus, it remains to show that w 6∈ B2.

Suppose, toward a contradiction, that w ∈ B2. Since B2 ⊆ A2, it follows
that w ∈ A2—contradiction. Thus we have that w 6∈ B2. 2

Next we show that our relation ≈ has some of the familiar properties of
equality.

Proposition 3.2.2
(1) ≈ is reflexive on Reg, symmetric and transitive.

(2) For all α, β ∈ Reg, if α ≈ β, then α∗ ≈ β∗.

(3) For all α1, α2, β1, β2 ∈ Reg, if α1 ≈ β1 and α2 ≈ β2, then α1α2 ≈ β1β2.

(4) For all α1, α2, β1, β2 ∈ Reg, if α1 ≈ β1 and α2 ≈ β2, then α1 + α2 ≈
β1 + β2.

Proof. Follows from the properties of =. As an example, we show Part (4).
Suppose α1, α2, β1, β2 ∈ Reg, and assume that α1 ≈ β1 and α2 ≈ β2.

Then L(α1) = L(β1) and L(α2) = L(β2), so that

L(α1 + α2) = L(α1) ∪ L(α2) = L(β1) ∪ L(β2)

= L(β1 + β2).

Thus α1 + α2 ≈ β1 + β2. 2

A consequence of Proposition 3.2.2 is the following proposition, which
says that, if we replace a subtree of a regular expression α by an equivalent
regular expression, that the resulting regular expression is equivalent to α.

CHAPTER 3. REGULAR LANGUAGES 56

Proposition 3.2.3
Suppose α, β, β′ ∈ Reg, β ≈ β′, pat ∈ Path is valid for α, and β is the
subtree of α at position pat . Let α′ be the result of replacing the subtree at
position pat in α by β′. Then α ≈ α′.

Proof. By induction on α. 2

Next, we state and prove some equivalences involving union.

Proposition 3.2.4
(1) For all α, β ∈ Reg, α + β ≈ β + α.

(2) For all α, β, γ ∈ Reg, (α + β) + γ ≈ α + (β + γ).

(3) For all α ∈ Reg, $ + α ≈ α.

(4) For all α ∈ Reg, α + α ≈ α.

(5) If L(α) ⊆ L(β), then α + β ≈ β.

Proof.

(1) Follows from the commutativity of ∪.

(2) Follows from the associativity of ∪.

(3) Follows since ∅ is the identity for ∪.

(4) Follows since ∪ is idempotent: A ∪A = A, for all sets A.

(5) Follows since, if L1 ⊆ L2, then L1 ∪ L2 = L2.

2

Next, we consider equivalences for concatenation.

Proposition 3.2.5
(1) For all α, β, γ ∈ Reg, (αβ)γ ≈ α(βγ).

(2) For all α ∈ Reg, %α ≈ α ≈ α%.

(3) For all α ∈ Reg, $α ≈ $ ≈ α$.

Proof.

(1) Follows from the associativity of language concatenation.

CHAPTER 3. REGULAR LANGUAGES 57

(2) Follows since {%} is the identity for language concatenation.

(3) Follows since ∅ is the zero for language concatenation.

2

Next we consider the distributivity of concatenation over union. First,
we prove a proposition concerning languages. Then, we use this proposition
to show the corresponding proposition for regular expressions.

Proposition 3.2.6
(1) For all L1, L2, L3 ∈ Lan, L1(L2 ∪ L3) = L1L2 ∪ L1L3.

(2) For all L1, L2, L3 ∈ Lan, (L1 ∪ L2)L3 = L1L3 ∪ L2L3.

Proof. We show the proof of Part (1); the proof of the other part is
similar. Suppose L1, L2, L3 ∈ Lan. It will suffice to show that

L1(L2 ∪ L3) ⊆ L1L2 ∪ L1L3 ⊆ L1(L2 ∪ L3).

To see that L1(L2 ∪ L3) ⊆ L1L2 ∪ L1L3, suppose w ∈ L1(L2 ∪ L3). We
must show that w ∈ L1L2 ∪ L1L3. By our assumption, w = xy for some
x ∈ L1 and y ∈ L2 ∪ L3. There are two cases to consider.

• Suppose y ∈ L2. Then w = xy ∈ L1L2 ⊆ L1L2 ∪ L1L3.

• Suppose y ∈ L3. Then w = xy ∈ L1L3 ⊆ L1L2 ∪ L1L3.

To see that L1L2 ∪ L1L3 ⊆ L1(L2 ∪ L3), suppose w ∈ L1L2 ∪ L1L3. We
must show that w ∈ L1(L2 ∪ L3). There are two cases to consider.

• Suppose w ∈ L1L2. Then w = xy for some x ∈ L1 and y ∈ L2. Thus
y ∈ L2 ∪ L3, so that w = xy ∈ L1(L2 ∪ L3).

• Suppose w ∈ L1L3. Then w = xy for some x ∈ L1 and y ∈ L3. Thus
y ∈ L2 ∪ L3, so that w = xy ∈ L1(L2 ∪ L3).

2

Proposition 3.2.7
(1) For all α, β, γ ∈ Reg, α(β + γ) ≈ αβ + αγ.

(2) For all α, β, γ ∈ Reg, (α + β)γ ≈ αγ + βγ.

CHAPTER 3. REGULAR LANGUAGES 58

Proof. Follows from Proposition 3.2.6. Consider, e.g., the proof of
Part (1). By Proposition 3.2.6(1), we have that

L(α(β + γ)) = L(α)L(β + γ)

= L(α)(L(β) ∪ L(γ))

= L(α)L(β) ∪ L(α)L(γ)

= L(αβ) ∪ L(αγ)

= L(αβ + αγ)

Thus α(β + γ) ≈ αβ + αγ. 2

Finally, we turn our attention to equivalences for Kleene closure, first
stating and proving some results for languages, and then stating and proving
the corresponding results for regular expressions.

Proposition 3.2.8
(1) ∅∗ = {%}.

(2) {%}∗ = {%}.

(3) For all L ∈ Lan, L∗L = LL∗.

(4) For all L ∈ Lan, L∗L∗ = L∗.

(5) For all L ∈ Lan, (L∗)∗ = L∗.

Proof. The five parts can be proven in order using Proposition 3.2.1. All
parts but (2) and (5) can be proved without using induction.

As an example, we show the proof of Part (5). To show that (L∗)∗ = L∗,
it will suffice to show that (L∗)∗ ⊆ L∗ ⊆ (L∗)∗.

To see that (L∗)∗ ⊆ L∗, we use mathematical induction to show that,
for all n ∈ N, (L∗)n ⊆ L∗.

(Basis Step) We have that (L∗)0 = {%} = L0 ⊆ L∗.
(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:

(L∗)n ⊆ L∗. We must show that (L∗)n+1 ⊆ L∗. By the inductive hypoth-
esis, Proposition 3.2.1(4) and Part (4), we have that (L∗)n+1 = L∗(L∗)n ⊆
L∗L∗ = L∗.

Now, we use the result of the induction to prove that (L∗)∗ ⊆ L∗. Sup-
pose w ∈ (L∗)∗. We must show that w ∈ L∗. Since w ∈ (L∗)∗, we have
that w ∈ (L∗)n for some n ∈ N. Thus, by the result of the induction,
w ∈ (L∗)n ⊆ L∗.

Finally, for the other inclusion, we have that L∗ = (L∗)1 ⊆ (L∗)∗. 2

CHAPTER 3. REGULAR LANGUAGES 59

By Proposition 3.2.8(4), we have that, for all L ∈ Lan, LL∗ ⊆ L∗ and
L∗L ⊆ L∗. (LL∗ = L1L∗ ⊆ L∗L∗ = L∗, and the other inclusion follows
similarly).

Proposition 3.2.9
(1) $∗ ≈ %.

(2) %∗ ≈ %.

(3) For all α ∈ Reg, α∗α ≈ αα∗.

(4) For all α ∈ Reg, α∗α∗ ≈ α∗.

(5) For all α ∈ Reg, (α∗)∗ ≈ α∗.

Proof. Follows from Proposition 3.2.8. Consider, e.g., the proof of
Part (5). By Proposition 3.2.8(5), we have that

L((α∗)∗) = L(α∗)∗ = (L(α)∗)∗ = L(α)∗ = L(α∗).

Thus (α∗)∗ ≈ α∗. 2

Before going on to regular expression simplification, let’s consider an
example regular expression synthesis/proof of correctness problem. Let

A = {001, 011, 101, 111},

B = {w ∈ {0, 1}∗ | every occurrence of 0 in w

is immediately followed by an element of A }.

The elements of A can be thought of as the odd numbers between 1 and 7,
expressed in binary. E.g., % ∈ B, since the empty string has no occurrences
of 0, and 00111 is in B, since its first 0 is followed by 011 and its second 0

is followed by 111. But 0000111 is not in B, since its first 0 is followed by
000, which is not in A. And 011 is not in B, since |11| < 3.

Note that, for all x, y ∈ B, xy ∈ B, i.e., BB ⊆ B. This holds, since:
each occurrence of 0 in x is followed by an element of A in x, and is thus
followed by the same element of A in xy; and each occurrence of 0 in y is
followed by an element of A in y, and is thus followed by the same element
of A in xy.

Furthermore, for all strings x, y, if xy ∈ B, then y is in B, i.e., every
suffix of an element of B is also in B. This holds since if there was an
occurrence of 0 in y that wasn’t followed by an element of A, then this same

CHAPTER 3. REGULAR LANGUAGES 60

occurrence of 0 in the suffix y of xy would also not be followed by an element
of A, contradicting xy ∈ B.

How should we go about finding a regular expression α such that L(α) =
B? Because % ∈ B, for all x, y ∈ B, xy ∈ B, and for all strings x, y, if
xy ∈ B then y ∈ B, our regular expression can have the form β∗, where β
denotes all the strings that are basic in the sense that they are nonempty
elements of B with no non-empty proper prefixes that are in B. Let’s try to
understand what the basic strings look like. Clearly, 1 is basic, so there will
be no more basic strings that begin with 1. But what about the basic strings
beginning with 0? No sequence of 0’s is basic, and any string that begins
with four or more 0’s will not be basic. It is easy to see that 000111 is basic.
In fact, it is the only basic string of the form 0001u. (The second 0 forces
u to begin with 1, and the third forces u to begin with 11. And, if |u| > 2,
then the overall string would have a nonempty, proper prefix in B, and so
wouldn’t be basic.) Similarly, 00111 is the only basic string beginning with
001. But what about the basic strings beginning with 01? It’s not hard
to see that there are infinitely many such strings: 0111, 010111, 01010111,
0101010111, etc. Fortunately, there is a simple pattern here: we have all
strings of the form 0(10)n111 for n ∈ N.

By the above considerations, it seems that we should let our regular
expression be

(1 + 0(10)∗111 + 00111 + 000111)∗.

But, using some of the equivalences we learned about above, we can turn
this regular expression into

(1 + 0(0 + 00 + (10)∗)111)∗,

which we take as our α. Now, we prove that L(α) = B.
Let

X = {0} ∪ {00} ∪ {10}∗, Y = {1} ∪ {0}X{111}.

Then, we have that

X = L(0 + 00 + (10)∗),

Y = L(1 + 0(0 + 00 + (10)∗)111),

Y ∗ = L((1 + 0(0 + 00 + (10)∗)111)∗).

Thus, it will suffice to show that Y ∗ = B. We will show that Y ∗ ⊆ B ⊆ Y ∗.
Let

C = {w ∈ B | w begins with 01 }.

CHAPTER 3. REGULAR LANGUAGES 61

Lemma 3.2.10
For all n ∈ N, {0}{10}n{111} ⊆ C.

Proof. We proceed by mathematical induction.
(Basis Step) We have that 0111 ∈ C. Hence {0}{10}0{111} =

{0}{%}{111} = {0}{111} = {0111} ⊆ C.
(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:

{0}{10}n{111} ⊆ C. We must show that {0}{10}n+1{111} ⊆ C. Since

{0}{10}n+1{111} = {0}{10}{10}n{111}

= {01}{0}{10}n{111}

⊆ {01}C (inductive hypothesis),

it will suffice to show that {01}C ⊆ C. Suppose w ∈ {01}C. We must show
that w ∈ C. We have that w = 01x for some x ∈ C. Thus w begins with
01. It remains to show that w ∈ B. Since x ∈ C, we have that x begins
with 01. Thus the first occurrence of 0 in w = 01x is followed by 101 ∈ A.
Furthermore, every other occurrence of 0 in w = 01x is within x, and so is
followed by an element of A because x ∈ C ⊆ B. Thus w ∈ B. 2

Lemma 3.2.11
Y ⊆ B.

Proof. Suppose w ∈ Y . We must show that w ∈ B. If w = 1, then w ∈ B.
Otherwise, we have that w = 0x111 for some x ∈ X. There are three cases
to consider.

• Suppose x = 0. Then w = 00111 is in B.

• Suppose x = 00. Then w = 000111 is in B.

• Suppose x ∈ {10}∗. Then x ∈ {10}n for some n ∈ N. By
Lemma 3.2.10, we have that w = 0x111 ∈ {0}{10}n{111} ⊆ C ⊆ B.

2

Lemma 3.2.12
For all n ∈ N, Y n ⊆ B.

Proof. We proceed by mathematical induction.
(Basis Step) Since % ∈ B, we have that Y 0 = {%} ⊆ B.

CHAPTER 3. REGULAR LANGUAGES 62

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
Y n ⊆ B. Then

Y n+1 = Y Y n

⊆ BB (Lemma 3.2.11 and the inductive hypothesis)

⊆ B.

2

Lemma 3.2.13
Y ∗ ⊆ B.

Proof. Suppose w ∈ Y ∗. We must show that w ∈ B. We have that
w ∈ Y n for some n ∈ N. By Lemma 3.2.12, we have that w ∈ Y n ⊆ B. 2

Lemma 3.2.14
B ⊆ Y ∗.

Proof. Since B ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ B, then w ∈ Y ∗.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume
the inductive hypothesis: for all x ∈ {0, 1}∗, if |x| < |w|, then

if x ∈ B, then x ∈ Y ∗.

We must show that
if w ∈ B, then w ∈ Y ∗.

Suppose w ∈ B. We must show that w ∈ Y ∗. There are three main cases
to consider.

(1) Suppose w = %. Then w = % ∈ {%} = Y 0 ⊆ Y ∗.

(2) Suppose w = 1x for some x ∈ {0, 1}∗. Since x is a suffix of w, we have
that x ∈ B. Because |x| < |w|, the inductive hypothesis tells us that x ∈ Y ∗.
Thus w = 1x ∈ Y Y ∗ ⊆ Y ∗.

(3) Suppose w = 0x for some x ∈ {0, 1}∗. Since w ∈ B, the first 0 of w must
be followed by an element of A. Hence x 6= %, so that there are two cases
to consider.

CHAPTER 3. REGULAR LANGUAGES 63

• Suppose x = 1y for some y ∈ {0, 1}∗. Thus w = 0x = 01y. Since
w ∈ B, we have that y 6= %. Thus, there are two cases to consider.

– Suppose y = 1z for some z ∈ {0, 1}∗. Thus w = 011z. Since the
first 0 of w is followed by an element of A, and 111 is the only
element of A that begins with 11, we have that z = 1u for some
u ∈ {0, 1}∗. Thus w = 0111u. Since % ∈ {10}∗ ⊆ X, we have
that 0111 = (0)(%)(111) ∈ {0}X{111} ⊆ Y . Because u is a suffix
of w, it follows that u ∈ B. Thus, since |u| < |w|, the inductive
hypothesis tells us that u ∈ Y ∗. Hence w = (0111)u ∈ Y Y ∗ ⊆ Y ∗.

– Suppose y = 0z for some z ∈ {0, 1}∗. Thus w = 010z. Let u be
the longest prefix of z that is in {10}∗. (Since % is a prefix of z
and is in {10}∗, it follows that u is well-defined.) Let v ∈ {0, 1}∗

be such that z = uv. Thus w = 010z = 010uv.

Suppose, toward a contradiction, that v begins with 10. Then
u10 is a prefix of z = uv that is longer than |u|. Furthermore
u10 ∈ {10}∗{10} ⊆ {10}∗, contradicting the definition of u. Thus
we have that v does not begin with 10.

Next, we show that 010u ends with 010. Since u ∈ {10}∗, we
have that u ∈ {10}n for some n ∈ N. There are three cases to
consider.

∗ Suppose n = 0. Since u ∈ {10}0 = {%}, we have that u = %.
Thus 010u = 010 ends with 010.

∗ Suppose n = 1. Since u ∈ {10}1 = {10}, we have that
u = 10. Hence 010u = 01010 ends with 010.

∗ Suppose n ≥ 2. Then n − 2 ≥ 0, so that u ∈ {10}(n−2)+2 =
{10}n−2{10}2. Hence u ends with 1010, showing that 010u
ends with 010.

Summarizing, we have that w = 010uv, u ∈ {10}∗, 010u ends
with 010, and v does not begin with 10. Since the second-to-last
0 in 010u is followed in w by an element of A, and 101 is the
only element of A that begins with 10, we have that v = 1s for
some s ∈ {0, 1}∗. Thus w = 010u1s, and 010u1 ends with 0101.
Since the second-to-last symbol of 010u1 is a 0, we have that
s 6= %. Furthermore, s does not begin with 0, since, if it did,
then v = 1s would begin with 10. Thus we have that s = 1t for
some t ∈ {0, 1}∗. Hence w = 010u11t. Since 010u11 ends with
011, it follows that the last 0 in 010u11 must be followed in w
by an element of A. Because 111 is the only element of A that

CHAPTER 3. REGULAR LANGUAGES 64

begins with 11, we have that t = 1r for some r ∈ {0, 1}∗. Thus
w = 010u111r. Since (10)u ∈ {10}{10}∗ ⊆ {10}∗ ⊆ X, we have
that 010u111 = (0)((10)u)111 ∈ {0}X{111} ⊆ Y . Since r is a
suffix of w, it follows that r ∈ B. Thus, the inductive hypothesis
tells us that r ∈ Y ∗. Hence w = (010u111)r ∈ Y Y ∗ ⊆ Y ∗.

• Suppose x = 0y for some y ∈ {0, 1}∗. Thus w = 0x = 00y. Since
00y = w ∈ B, we have that y 6= %. Thus, there are two cases to
consider.

– Suppose y = 1z for some z ∈ {0, 1}∗. Thus w = 00y = 001z.
Since the first 0 in 001z = w is followed by an element of A, and
the only element of A that begins with 01 is 011, we have that
z = 1u for some u ∈ {0, 1}∗. Thus w = 0011u. Since the second
0 in 0011u = w is followed by an element of A, and 111 is the
only element of A that begins with 11, we have that u = 1v for
some v ∈ {0, 1}∗. Thus w = 00111v. Since 0 ∈ X, we have that
00111 = (0)(0)(111) ∈ {0}X{111} ⊆ Y . Because v is a suffix of
w, it follows that v ∈ B. Thus the inductive hypothesis tells us
that v ∈ Y ∗. Hence w = (00111)v ∈ Y Y ∗ ⊆ Y ∗.

– Suppose y = 0z for some z ∈ {0, 1}∗. Thus w = 00y = 000z.
Since the first 0 in 000z = w is followed by an element of A,
and the only element of A that begins with 00 is 001, we have
that z = 1u for some u ∈ {0, 1}∗. Thus w = 0001u. Since the
second 0 in 0001u = w is followed by an element of A, and 011 is
the only element of A that begins with 01, we have that u = 1v
for some v ∈ {0, 1}∗. Thus w = 00011v. Since the third 0 in
00011v = w is followed by an element of A, and 111 is the only
element of A that begins with 11, we have that v = 1t for some
t ∈ {0, 1}∗. Thus w = 000111t. Since 00 ∈ X, we have that
000111 = (0)(00)(111) ∈ {0}X{111} ⊆ Y . Because t is a suffix
of w, it follows that t ∈ B. Thus the inductive hypothesis tells
us that t ∈ Y ∗. Hence w = (000111)t ∈ Y Y ∗ ⊆ Y ∗.

2

By Lemmas 3.2.13 and 3.2.14, we have that Y ∗ ⊆ B ⊆ Y ∗, i.e., Y ∗ =
B. This completes our regular expression synthesis/proof of correctness
example.

Next, we consider our first simplification algorithm—a weak, but efficient
one. We define a function weakSimplify ∈ Reg→Reg by recursion. For

CHAPTER 3. REGULAR LANGUAGES 65

all α ∈ Reg, weakSimplify(α) is defined as follows.

• If α = %, then weakSimplify(α) = %.

• If α = $, then weakSimplify(α) = $.

• If α ∈ Sym, then weakSimplify(α) = α.

• Suppose α = β∗, for some β ∈ Reg. Let β′ = weakSimplify(β).
There are four cases to consider.

– If β′ = %, then weakSimplify(α) = %.

– If β′ = $, then weakSimplify(α) = %.

– If β′ = γ∗, for some γ ∈ Reg, then weakSimplify(α) = β ′.

– Otherwise, weakSimplify(α) = β ′∗.

• Suppose α = βγ, for some β, γ ∈ Reg. Let β ′ = weakSimplify(β)
and γ′ = weakSimplify(γ). There are four cases to consider.

– If β′ = %, then weakSimplify(α) = γ ′.

– Otherwise, if γ′ = %, then weakSimplify(α) = β ′.

– Otherwise, if β′ = $ or γ′ = $, then weakSimplify(α) = $.

– Otherwise, let β′
1, . . . , β

′
n, for n ≥ 1, be such that β ′ = β′

1 · · ·β
′
n

and β′
n is not a concatenation, and let γ ′

1, . . . , γ
′
m, for m ≥ 1,

be such that γ′ = γ′1 · · · γ
′
m and γ′m is not a concatenation.

Then weakSimplify(α) is the result of repeatedly walking down
β′

1 · · ·β
′
nγ

′
1 · · · γ

′
m and replacing adjacent regular expressions of

the form α′∗α′ by α′α′∗.

(For example, if β′ = 011∗ and γ′ = 10, then weakSimplify(α)
is 0111∗0, not (011∗)10 = (011∗)(10).)

• Suppose α = β + γ, for some β, γ ∈ Reg. Let β ′ = weakSimplify(β)
and γ′ = weakSimplify(γ). There are three cases to consider.

– If β′ = $, then weakSimplify(α) = γ ′.

– Otherwise, if γ′ = $, then weakSimplify(α) = β ′.

– Otherwise, let β′
1, . . . , β

′
n, for n ≥ 1, be such that β ′ = β′

1+· · ·+β′
n

and β′
n is not a union, and let γ ′1, . . . , γ

′
m, for m ≥ 1, be such that

γ′ = γ′1+· · ·+γ′m and γ′m is not a union. Then weakSimplify(α)
is the result of putting the summands in

β′
1 + · · ·+ β′

n + γ′1 + · · ·+ γ′m

CHAPTER 3. REGULAR LANGUAGES 66

in order without duplicates.

(For example, if β′ = 1 + 2 + 3 and γ ′ = 0 + 1, then
weakSimplify(α) = 0 + 1 + 2 + 3.)

On the one hand, weakSimplify is just a mathematical function. But,
because we have defined it recursively, we can use its definition to compute
the result of calling it on a regular expression. Thus, we may regard the
definition of weakSimplify as an algorithm.

Proposition 3.2.15
For all α ∈ Reg:

(1) weakSimplify(α) ≈ α;

(2) alphabet(weakSimplify(α)) ⊆ alphabet(α);

(3) The size of weakSimplify(α) is less-than-or-equal-to the size of α;

(4) The number of concatenations in weakSimplify(α) is less-than-or-
equal-to the number of concatenations of α.

Proof. By induction on Reg. 2

We say that a regular expression α is weakly simplified iff none of α’s
subtrees have any of the following forms:

• $ + β or β + $;

• (β1 + β2) + β3;

• β1 + β2, where β1 ≥ β2, or β1 + (β2 + β3), where β1 ≥ β2;

• %β or β%;

• $β or β$;

• (β1β2)β3;

• β∗β or β∗(βγ);

• %∗ or $∗ or (β∗)∗.

Thus, if a regular expression α is weakly simplified, then each of its subtrees
will also be weakly simplified.

CHAPTER 3. REGULAR LANGUAGES 67

Proposition 3.2.16
For all α ∈ Reg, weakSimplify(α) is weakly simplified.

Proof. By induction on Reg. 2

It turns out the weakly simplified regular expressions have some pleasing
properties:

Proposition 3.2.17
For all α ∈ Reg:

(1) If α is weakly simplified and L(α) = {%}, then α = %;

(2) If α is weakly simplified and L(α) = ∅, then α = $;

(3) For all a ∈ Sym, if α is weakly simplified and L(α) = {a}, then
α = a.

E.g., Part (1) of the proposition says that, if α is weakly simplified and
L(α) is the language whose only string is %, then α is %.

Proof. By simultaneous induction on Reg, i.e., using the principle of
induction on Reg. We show part of the proof of the concatenation case.
Suppose α, β ∈ Reg and assume the inductive hypothesis, that Parts (1)–
(3) hold for α and β. One must show that Parts (1)–(3) hold for αβ. We
will show that Part (3) holds for αβ. Suppose a ∈ Sym, and assume that
αβ is weakly simplified and L(αβ) = {a}. We must show that αβ = a.

Since L(α)L(β) = L(αβ) = {a}, there are two cases to consider.

• Suppose L(α) = {a} and L(β) = {%}. Since β is weakly simplified
and L(β) = {%}, Part (1) of the inductive hypothesis on β tells us
that β = %. But this means that αβ = α% is not weakly simplified
after all—contradiction. Thus we can conclude that αβ = a.

• Suppose L(α) = {%} and L(β) = {a}. The proof of this case is similar
to that of the other one.

2

The next proposition says that $ need only be used at the top-level of a
regular expression.

Proposition 3.2.18
For all α ∈ Reg, if α is weakly simplified and α has one or more occurrences
of $, then α = $.

CHAPTER 3. REGULAR LANGUAGES 68

Proof. An easy induction on Reg. 2

Using our simplification algorithm, we can define an algorithm for calcu-
lating the language generated by a regular expression, when this language
is finite, and for announcing that this language is infinite, otherwise.

First, we weakly simplify our regular expression, α, and call the resulting
regular expression β. If β contains no closures, then we compute its meaning
in the usual way. But, if β contains one or more closures, then its language
will be infinite (see below), and thus we can output a message saying that
L(α) is infinite.

We can use induction on Reg to prove that, for all α ∈ Reg, if α is
weakly simplified and contains one more closures, then L(α) is infinite. The
interesting cases are when α is a closure or a concatenation.

If α∗ is weakly simplified, then α is weakly simplified and is not % or $.
Thus, by Proposition 3.2.17, L(α) contains at least one non-empty string,
and thus L(α∗) = L(α)∗ is infinite.

And, if αβ is weakly simplified and contains one or more closures, then
α and β are weakly simplified, and either α or β will have a closure. Let’s
consider the case when α has a closure, the other case being similar. Then
L(α) will be infinite. Since αβ is weakly simplified, it follows that β is not
$. Thus, by Proposition 3.2.17, L(β) contains at least one string, and thus
L(αβ) = L(α)L(β) is infinite.

In preparation for the definition of our stronger simplification algorithm,
we must define some auxiliary functions (algorithms). First, we show how
we can recursively test whether % ∈ L(α) for a regular expression α. We
define a function

hasEmp ∈ Reg→{true, false}

by recursion:

hasEmp(%) = true;

hasEmp($) = false;

hasEmp(a) = false, for all a ∈ Sym;

hasEmp(α∗) = true, for all α ∈ Reg;

hasEmp(αβ) = hasEmp(α) and hasEmp(β), for all α, β ∈ Reg;

hasEmp(α + β) = hasEmp(α) or hasEmp(β), for all α, β ∈ Reg.

Proposition 3.2.19
For all α ∈ Reg, % ∈ L(α) iff hasEmp(α) = true.

CHAPTER 3. REGULAR LANGUAGES 69

Proof. By induction on α. 2

Next, we show how we can recursively test whether a ∈ L(α) for a symbol
a and a regular expression α. We define a function

hasSym ∈ Sym×Reg→{true, false}

by recursion:

hasSym(a,%) = false, for all a ∈ Sym;

hasSym(a, $) = false, for all a ∈ Sym;

hasSym(a, b) = a = b, for all a, b ∈ Sym;

hasSym(a, α∗) = hasSym(a, α), for all a ∈ Sym and α ∈ Reg;

hasSym(a, αβ) = (hasSym(a, α) and hasEmp(β)) or

(hasEmp(α) and hasSym(a, β)),

for all a ∈ Sym and α, β ∈ Reg;

hasSym(a, α + β) = hasSym(a, α) or hasSym(a, β),

for all a ∈ Sym and α, β ∈ Reg.

Proposition 3.2.20
For all a ∈ Sym and α ∈ Reg, a ∈ L(α) iff hasSym(a, α) = true.

Proof. By induction on Reg, using Proposition 3.2.19. 2

Next, we define a function

weakSubset ∈ Reg ×Reg→{true, false}

that meets the following specification: for all α, β ∈ Reg, if
weakSubset(α, β) = true, then L(α) ⊆ L(β). I.e., this function con-
servatively approximates a test for L(α) ⊆ L(β). The function that al-
ways returns false would meet this specification, but our function will do
much better than this, and will be reasonably efficient. In Section 3.12, we
will learn of a less efficient algorithm that will provide a complete test for
L(α) ⊆ L(β).

Given α, β ∈ Reg, we define weakSubset(α, β) as follows. First, we
let α′ = weakSimplify(α) and β′ = weakSimplify(β). Then we return
weakSub(α′, β′), where

weakSub ∈ Reg ×Reg→{true, false}

CHAPTER 3. REGULAR LANGUAGES 70

is the function defined below.
Given α, β ∈ Reg, we define weakSub(α, β) by recursion on the sum of

the sizes of α and β. If α = β, then we return true; otherwise, we consider
the possible forms of α.

• (α = %) We return hasEmp(β).

• (α = $) We return true.

• (α = a, for some a ∈ Sym) We return hasSym(a, β).

• (α = α1
∗, for some α1 ∈ Reg) Here we must look at the form of β.

– (β = %) We return false. (In practice, α will be weakly simpli-
fied, and so α won’t denote {%}.)

– (β = $) We return false.

– (β = a, for some a ∈ Sym) We return false.

– (β is a closure) We return weakSub(α1, β).

– (β = β1β2, for some β1, β2 ∈ Reg) If hasEmp(β1) = true
and weakSub(α, β2), then we return true. Otherwise, if
hasEmp(β2) = true and weakSub(α, β1), then we return true.
Otherwise, we return false, even though the answer sometimes
should be true.

– (β = β1 + β2, for some β1, β2 ∈ Reg) We return

weakSub(α, β1) or weakSub(α, β2),

even though this is false too often.

• (α = α1α2, for some α1, α2 ∈ Reg) Here we must look at the form
of β.

– (β = %) We return false. (In practice, α will be weakly simpli-
fied, and so α won’t denote {%}.)

– (β = $) We return false. (In practice, α will be weakly simpli-
fied, and so α won’t denote ∅.)

– (β = a, for some a ∈ Sym) We return false. (In practice, α
will be weakly simplified, and so α won’t denote {a}.)

CHAPTER 3. REGULAR LANGUAGES 71

– (β = β1
∗, for some β1 ∈ Reg) We return

weakSub(α, β1) or

(weakSub(α1, β) and weakSub(α2, β)),

even though this returns false too often.

– (β = β1β2, for some β1, β2 ∈ Reg) If weakSub(α1, β1) = true
and weakSub(α2, β2) = true, then we return true. Other-
wise, if hasEmp(β1) = true and weakSub(α, β2) = true,
then we return true. Otherwise, if hasEmp(β2) = true and
weakSub(α, β1) = true, then we return true. Otherwise, if β1

is a closure, then we return

weakSub(α1, β1) and weakSub(α2, β),

even though this returns false too often. Otherwise, we return
false, even though sometimes we would like the answer to be
true.

– (β = β1 + β2, for some β1, β2 ∈ Reg) We return

weakSub(α, β1) or weakSub(α, β2),

even though this is false too often.

• (α = α1 + α2) We return

weakSub(α1, β) and weakSub(α2, β).

Proposition 3.2.21
For all α, β ∈ Reg, if weakSubset(α, β) = true, then L(α) ⊆ L(β).

Proof. First, we use induction on the sum of the sizes of α and β to
show that, for all α, β ∈ Reg, if weakSub(α, β) = true, then L(α) ⊆ L(β).
Then result then follows by Proposition 3.2.15. 2

On the positive side, we have that, e.g., weakSubset(0∗011∗1, 0∗1∗).
On the other hand, weakSubset((01)∗, (% + 0)(10)∗(% + 1)) = false, even
though L((01)∗) ⊆ L((% + 0)(10)∗(% + 1)).

Now, we give the definition of our stronger simplification function (algo-
rithm):

simplify ∈ (Reg ×Reg→{true, false})→Reg→Reg.

CHAPTER 3. REGULAR LANGUAGES 72

This function takes in a function sub (like weakSubset) that conservatively
approximates the test for one regular expression’s language being a subset
of another expression’s language, and returns a function that uses sub in
order to simplify regular expressions.

Our definition of simplify is based on the following twenty-one simpli-
fication rules, which may be applied to arbitrary subtrees of regular expres-
sions. Each simplification rule either:

• strictly decreases the size of a regular expression; or

• preserves the size of a regular expression, but decreases the number of
concatenations in the regular expression (see Rules 7 and 8).

In the rules, we abbreviate hasEmp(α) = true and sub(α, β) = true to
hasEmp(α) and sub(α, β), respectively.

(1) α∗(βα∗)∗→ (α + β)∗.

(2) (α∗β)∗α∗→ (α + β)∗.

(3) If hasEmp(α) and sub(α, β∗), then αβ∗→ β∗.

(4) If hasEmp(β) and sub(β, α∗), then α∗β→ α∗.

(5) If sub(α, β∗), then (α + β)∗→ β∗.

(6) (α + β∗)∗→ (α + β)∗.

(7) If hasEmp(α) and hasEmp(β), then (αβ)∗→ (α + β)∗.

(8) If hasEmp(α) and hasEmp(β), then (αβ + γ)∗→ (α + β + γ)∗.

(9) If hasEmp(α) and sub(α, β∗), then (αβ)∗→ β∗.

(10) If hasEmp(β) and sub(β, α∗), then (αβ)∗→ α∗.

(11) If hasEmp(α) and sub(α, (β + γ)∗), then (αβ + γ)∗→ (β + γ)∗.

(12) If hasEmp(β) and sub(β, (α + γ)∗), then (αβ + γ)∗→ (α + γ)∗.

(13) If sub(α, β), then α + β→ β.

(14) αβ1 + αβ2 → α(β1 + β2).

(15) α1β + α2β→ (α1 + α2)β.

CHAPTER 3. REGULAR LANGUAGES 73

(16) If sub(αβ1, αβ2), then α(β1 + β2)→ αβ2.

(17) If sub(α1β, α2β), then (α1 + α2)β→ α2β.

(18) If sub(αα∗, β), then α∗ + β→%+ β.

(19) If hasEmp(β) and sub(ααα∗, β), then α∗ + β→ α + β.

(20) If hasEmp(β), then αα∗ + β→ α∗ + β.

(21) If n ≥ 1 and sub(αn, β), then αn+1α∗ + β→ αnα∗ + β.

Consider, e.g., rule (3). Suppose hasEmp(α) = true and sub(α, β∗) =
true, so that that % ∈ L(α) and L(α) ⊆ L(β∗). We need that αβ∗ ≈ β∗

and that the size of β∗ is strictly less than the size of αβ∗.
To obtain αβ∗ ≈ β∗, it will suffice to show that, for all A,B ∈ Lan,

if % ∈ A and A ⊆ B∗, then AB∗ = B∗. Suppose A,B ∈ Lan, % ∈ A
and A ⊆ B∗. We show that AB∗ ⊆ B∗ ⊆ AB∗. Suppose w ∈ AB∗, so
that w = xy, for some x ∈ A and y ∈ B∗. Since A ⊆ B∗, it follows that
w = xy ∈ B∗B∗ = B∗. Suppose w ∈ B∗. Then w = %w ∈ AB∗.

The size of αβ∗ is the size of α plus the size of β plus 1 (for the closure)
plus 1 (for the concatenation). But the size of β∗ is the size of β plus one,
and thus the size of β∗ is strictly less than the size of αβ∗.

We also make use of the following nine closure rules, which may be ap-
plied to any subtree of a regular expression, and which preserve the alphabet,
size and number of concatenations of a regular expression:

(1) (α + β) + γ→ α + (β + γ).

(2) α + (β + γ)→ (α + β) + γ.

(3) α(βγ)→ (αβ)γ.

(4) (αβ)γ→ α(βγ).

(5) α + β→ β + α.

(6) α∗α→ αα∗.

(7) αα∗→ α∗α.

(8) α(βα)∗→ (αβ)∗α.

(9) (αβ)∗α→ α(βα)∗.

CHAPTER 3. REGULAR LANGUAGES 74

Our simplification algorithm works as follows, given a regular expression
α. We first replace α by weakSimplify(α). Then we enter our main loop:

• We start working our way through all of the finitely many regular
expressions β that α can be transformed to using our closure rules. (At
each point in the generation of this sequence of regular expressions,
we have a list of regular expressions that have already been chosen
(initially, empty), plus a sorted (without duplicates) list of regular
expressions that we have yet to process (initially, β). When the second
of these lists becomes empty, we are done. Otherwise, we process
the first element, γ, of this list. If γ is in our list of already chosen
regular expressions, then we do nothing. Otherwise, γ is our next
regular expression. We then add γ to the list of already chosen regular
expressions, compute a sorted list consisting of all the ways of changing
γ by single applications of closure rules, and add this sorted list at the
end of the list of regular expressions that we have yet to process.)

• If one of our simplification rules applies to such a β, then we apply the
rule to β, yielding the result γ, set α to weakSimplify(γ), and branch
back to the beginning of our loop. (We start by working through
the simplification rules, in order, looking for one that applied to the
top-level of β. If we don’t find one, the we carry out this process,
recursively, on the children of β, working from left to right.)

• Otherwise, we select the next value of β, and continue this process.

• If we exhaust all of the β’s, then we return α as our answer.

Each iteration of our loop either decreases the size of our regular expres-
sion, or maintains the size, but decreases the number of its concatenations.
This explains why our algorithm always terminates. On the other hand, in
some cases there will be so many ways of reorganizing a regular expression
using the closure rules that one won’t be able to wait for the algorithm to
terminate. For example, if α = α1+ · · ·+αn, then there are at least n! ways
of reorganizing α using Closure Rules (1), (2) and (5) alone. On the other
hand, the algorithm will terminate sufficiently quickly on some large regular
expressions, especially since the closure rules are applied lazily.

We say that a regular expression α is sub-simplified iff

• α is weakly simplified, and

• α can’t be transformed by our closure rules into a regular expression
to which one of our simplification rules applies.

CHAPTER 3. REGULAR LANGUAGES 75

Thus, if α is sub-simplified, then every subtree of α is also sub-simplified.

Theorem 3.2.22
For all α ∈ Reg:

(1) simplify(sub)(α) ≈ α;

(2) alphabet(simplify(sub)(α)) ⊆ alphabet(α);

(3) The size of simplify(sub)(α) is less-than-or-equal-to the size of α;

(4) simplify(sub)(α) is sub-simplified.

Now, we turn out attention to the implementation of regular expression
simplification in Forlan. The Forlan module Reg also defines the functions:

val weakSimplify : reg -> reg

val weakSubset : reg * reg -> bool

val simplify : (reg * reg -> bool) -> reg -> reg

val traceSimplify : (reg * reg -> bool) -> reg -> reg

val fromStrSet : str set -> reg

val toStrSet : reg -> str set

The function traceSimplify is like simplify, except that it outputs a
trace of the simplification process. The function fromStrSet converts a
finite language into a regular expression denoting that language in the most
obvious way, and the function toStrSet returns the language generated by
a regular expression, when that language is finite, and informs the user that
the language is infinite, otherwise.

Here are some example uses of these functions:

- val reg = Reg.input "";

@ (% + $0)(% + 00*0 + 0**)*

@ .

val reg = - : reg

- Reg.output("", Reg.weakSimplify reg);

(% + 0* + 000*)*

val it = () : unit

- Reg.output("", Reg.simplify Reg.weakSubset reg);

0*

val it = () : unit

- Reg.toStrSet reg;

language is infinite

uncaught exception Error

CHAPTER 3. REGULAR LANGUAGES 76

- val reg’’ = Reg.input "";

@ (1+%)(2+$)(3+%*)(4+$*)

@ .

val reg’’ = - : reg

- StrSet.output("", Reg.toStrSet reg’’);

2, 12, 23, 24, 123, 124, 234, 1234

val it = () : unit

- Reg.output("", Reg.weakSimplify reg’’);

(% + 1)2(% + 3)(% + 4)

val it = () : unit

- Reg.output("", Reg.fromStrSet(StrSet.input ""));

@ hello, there, again

@ .

again + hello + there

val it = () : unit

- val reg’’’ = Reg.input "";

@ 1 + (% + 0 + 2)(% + 0 + 2)*1 +

@ (1 + (% + 0 + 2)(% + 0 + 2)*1)

@ (% + 0 + 2 + 1(% + 0 + 2)*1)

@ (% + 0 + 2 + 1(% + 0 + 2)*1)*

@ .

val reg’’’ = - : reg

- Reg.size reg’’’;

val it = 68 : int

- Reg.size(Reg.weakSimplify reg’’’);

val it = 68 : int

- Reg.output("", Reg.simplify Reg.weakSubset reg’’’);

(0 + 2)*1(0 + 2 + 1(0 + 2)*1)*

val it = () : unit

The last of these regular expressions denotes the set of all strings of 0’s,
1’s and 2’s with an odd number of 1’s. Here is an example use of the
traceSimplify function:

- Reg.traceSimplify Reg.weakSubset (Reg.input "");

@ (0+1)*0*0

@ .

(0 + 1)*0*0

weakly simplifies to

(0 + 1)*00*

is transformed by closure rules to

((0 + 1)*0*)0

is transformed by simplification rule 4 to

(0 + 1)*0

weakly simplifies to

CHAPTER 3. REGULAR LANGUAGES 77

(0 + 1)*0

is simplified

val it = - : reg

For even some surprisingly small regular expressions, like

0001(001)∗01(001)∗,

working through all the ways that the regular expressions may be trans-
formed using our closure rules may take too long. Consequently there is a
Forlan parameter that controls the number of closure rule steps these func-
tions are willing to carry out, at each iteration of the main simplification
loop. The default maximum number of closure rule steps is 3000. This limit
may be changed or eliminated using the function

val setRegClosureSteps : int option -> unit

of the Params module. Calling this function with argument NONE causes the
limit to be eliminated. Calling it with argument SOME n causes the limit to
be set to n. When the application of closure rules is aborted, the answer will
still have all of the properties of Theorem 3.2.22, except for being completely
sub-simplified.

Here is how the above regular expression is handled by simplify and
traceSimplify:

- Reg.simplify Reg.weakSubset (Reg.input "");

@ 0001(001)*01(001)*

@ .

val it = - : reg

- Reg.traceSimplify Reg.weakSubset (Reg.input "");

@ 0001(001)*01(001)*

@ .

0001(001)*01(001)*

weakly simplifies to

0001(001)*01(001)*

is simplified (rule closure aborted)

val it = - : reg

If one eliminates the limit on the number of closure steps that may be
applied at each iteration of the main simplification loop, then, after a fairly
long time (e.g., about half an hour of CPU time on my laptop), one learns
that

0001(001)∗01(001)∗

is weakSubset-simplified (assuming, of course, that Forlan is correct).

CHAPTER 3. REGULAR LANGUAGES 78

3.3 Finite Automata and Labeled Paths

In this section, we: say what finite automata (FA) are, and give an intro-
duction to how they can be processed using Forlan; say what labeled paths
are, and show how they can be processed using Forlan; and use the notion
of labeled path to say what finite automata mean.

First, we say what finite automata are. A finite automaton (FA) M
consists of:

• a finite set QM of symbols (we call the elements of QM the states of
M);

• an element sM of QM (we call sM the start state of M);

• a subset AM of QM (we call the elements of AM the accepting states
of M);

• a finite subset TM of { (q, x, r) | q, r ∈ QM and x ∈ Str } (we call the
elements of TM the transitions of M).

In a context where we are only referring to a single FA, M , we sometimes
abbreviate QM , sM , AM and TM to Q, s, A and T , respectively. Whenever
possible, we will use the mathematical variables p, q and r to name states.
We write FA for the set of all finite automata, which is a countably infinite
set. Two FAs are equal iff they have the same states, start states, accepting
states, and transitions.

As an example, we can define an FA M as follows:

• QM = {A,B,C};

• sM = A;

• AM = {A,C};

• TM = {(A, 1,A), (B, 11,B), (C, 111,C), (A, 0,B), (A, 2,B), (A, 0,C),
(A, 2,C), (B, 0,C), (B, 2,C)}.

Shortly, we will use the notion of labeled path to formally explain what
finite automata mean. Before we are able to do that, however, it is useful
to have an informal understanding of the meaning of FAs. Finite automata
are nondeterministic machines that take strings as inputs. When a machine
is run on a given input, it begins in its start state.

If, after some number of steps, the machine is in state p, the machine’s re-
maining input begins with x, and one of the machine’s transitions is (p, x, q),

CHAPTER 3. REGULAR LANGUAGES 79

then the machine may read x from its input and switch to state q. If (p, y, r)
is also a transition, and the remaining input begins with y, then consuming
y and switching to state r will also be possible, etc.

If at least one execution sequence consumes all of the machine’s input
and takes it to one of its accepting states, then we say that the input is
accepted by the machine; otherwise, we say that the input is rejected. The
meaning of a machine is the language consisting of all strings that it accepts.

The Forlan syntax for FAs can be explained using an example. Here is
how our example FA M can be expressed in Forlan’s syntax:

{states}

A, B, C

{start state}

A

{accepting states}

A, C

{transitions}

A, 1 -> A; B, 11 -> B; C, 111 -> C;

A, 0 -> B; A, 2 -> B;

A, 0 -> C; A, 2 -> C;

B, 0 -> C; B, 2 -> C

Since whitespace characters are ignored by Forlan’s input routines, the pre-
ceding description of M could have been formatted in many other ways.
States are separated by commas, and transitions are separated by semi-
colons. The order of states and transitions is irrelevant.

Transitions that only differ in their right-hand states can be merged into
single transition families. E.g., we can merge

A, 0 -> B

and

A, 0 -> C

into the transition family

A, 0 -> B | C

The Forlan module FA defines an abstract type fa (in the top-level en-
vironment) of finite automata, as well as a large number of functions and
constants for processing FAs, including:

val input : string -> fa

val output : string * fa -> unit

CHAPTER 3. REGULAR LANGUAGES 80

As usual, the input and output functions can be given either the names
of the files they should read from or write to, or the null string "", which
stands for the standard input or output. During printing, Forlan merges
transitions into transition families whenever possible.

Suppose that our example FA is in the file 3.3-fa. We can input this
FA into Forlan, and then output it to the standard output, as follows:

- val fa = FA.input "3.3-fa";

val fa = - : fa

- FA.output("", fa);

{states}

A, B, C

{start state}

A

{accepting states}

A, C

{transitions}

A, 0 -> B | C; A, 1 -> A; A, 2 -> B | C; B, 0 -> C;

B, 2 -> C; B, 11 -> B; C, 111 -> C

val it = () : unit

We also make use of graphical notation for finite automata. Each of the
states of a machine is circled, and its accepting states are double-circled.
The machine’s start state is pointed to by an arrow coming from “Start”,
and each transition (p, x, q) is drawn as an arrow from state p to state q
that is labeled by the string x. Multiple labeled arrows from one state to
another can be abbreviated to a single arrow, whose label consists of the
comma-separated list of the labels of the original arrows.

For example, here is how our FA M can be described graphically:

0, 2

11

0, 2
Start A B C

0, 2

1111

The alphabet of a finite automaton M (alphabet(M)) is { a ∈ Sym |
there are q, x, r such that (q, x, r) ∈ TM and a ∈ alphabet(x) }. I.e.,
alphabet(M) is all of the symbols appearing in the strings of M ’s tran-
sitions. For example, the alphabet of our example FA M is {0, 1, 2}.

The Forlan module FA contains the functions

val alphabet : fa -> sym set

CHAPTER 3. REGULAR LANGUAGES 81

val numStates : fa -> int

val numTransitions : fa -> int

val equal : fa * fa -> bool

The function alphabet returns the alphabet of an FA, the functions
numStates and numTransitions count the number of states and transi-
tions, respectively, of an FA, and the function equal tests whether two FAs
are identical, i.e., have the same states, start states, accepting states and
transitions.

We will explain when strings are accepted by finite automata using the
notion of a labeled path. A labeled path lp has the form

q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn,

where n ∈ N − {0}, the qi’s (which we think of as states) are symbols, and
the xi’s are strings. We can think of a path of this form as describing a way
of getting from state q1 to state qn, in some unspecified machine, by reading
the strings x1, . . . , xn−1 from the machine’s input. We start out in state q1,
make use of the transition (q1, x1, q2) to read x1 from the input and switch
to state q2, etc. We write LP for the set of all labeled paths, which is a
countably infinite set.

Let lp be the labeled path

q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn,

We say that:

• the start state of lp (startState(lp)) is q1;

• the end state of lp (endState(lp)) is qn;

• the length of lp (|lp|) is n− 1;

• the label of lp (label(lp)) is x1x2 · · ·xn−1 (%, when n = 1).

For example

A

is a labeled path whose start and end states are both A, whose length is 0,
and whose label is %. And

A
0

⇒ B
11

⇒ B
2

⇒ C

CHAPTER 3. REGULAR LANGUAGES 82

is a labeled path whose start state is A, end state is C, length is 3, and label
is 0(11)2 = 0112. Note that every labeled path of length 0 has % as its
label.

Paths

q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn and p1

y1

⇒ p2

y2

⇒ · · · pm−1

ym−1

⇒ pm

are equal iff

• n = m;

• for all 1 ≤ i ≤ n, qi = pi; and

• for all 1 ≤ i ≤ n− 1, xi = yi.

We sometimes (e.g., when using Forlan) write a path

q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn

as

q1, x1 ⇒ q2, x2 ⇒ · · · qn−1, xn−1 ⇒ qn.

If lp1 and lp2 are the labeled paths

q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn and p1

y1

⇒ p2

y2

⇒ · · · pm−1

ym−1

⇒ pm,

respectively, and qn = p1, then the join of lp1 and lp2 (join(lp1, lp2)) is the
labeled path

q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn

y1

⇒ p2

y2

⇒ · · · pm−1

ym−1

⇒ pm.

For example, the join of

A
0

⇒ B
11

⇒ B
2

⇒ C and C
111

⇒ C

is

A
0

⇒ B
11

⇒ B
2

⇒ C
111
⇒ C.

CHAPTER 3. REGULAR LANGUAGES 83

A labeled path

q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn,

is valid for an FA M iff, for all 1 ≤ i ≤ n− 1,

(qi, xi, qi+1) ∈ TM ,

and qn ∈ QM . When n > 1, the requirement that qn ∈ QM is redundant,
since it will be implied by qn−1, xn−1 ⇒ qn ∈ TM . But, when n = 1, there
is no i such that 1 ≤ i ≤ n − 1. Thus, if we didn’t require that qn ∈ QM ,
then all labeled paths of length 0 would be valid for all FAs.

For example, the labeled paths

A and A
0

⇒ B
11

⇒ B
2

⇒ C

are valid for our example FA M . But the labeled path

A
%
⇒ A

is not valid for M , since (A,%,A) 6∈ TM .
Now we are in a position to say what finite automata mean. A string w

is accepted by a finite automaton M iff there is a labeled path lp such that

• the label of lp is w;

• lp is valid for M ;

• the start state of lp is the start state of M ; and

• the end state of lp is an accepting state of M .

Clearly, if w is accepted by M , then alphabet(w) ⊆ alphabet(M). The
language accepted by a finite automaton M (L(M)) is

{w ∈ Str | w is accepted by M }.

Consider our example FA M :

0, 2

11

0, 2
Start A B C

0, 2

1111

CHAPTER 3. REGULAR LANGUAGES 84

We have that

L(M) = {1}∗ ∪

{1}∗{0, 2}{11}∗{0, 2}{111}∗ ∪

{1}∗{0, 2}{111}∗.

For example, %, 11, 110112111 and 2111111 are accepted by M .

Proposition 3.3.1
SupposeM is a finite automaton. Then alphabet(L(M)) ⊆ alphabet(M).

In other words, the proposition says that every symbol of every string
that is accepted by M comes from the alphabet of M , i.e., appears in the
label of one of M ’s transitions.

We say that finite automata M and N are equivalent iff L(M) = L(N).
In other words, M and N are equivalent iff M and N accept the same
language. We define a relation ≈ on FA by: M ≈ N iff M and N are
equivalent. It is easy to see that ≈ is reflexive on FA, symmetric and
transitive.

The Forlan module LP defines an abstract type lp (in the top-level envi-
ronment) of labeled paths, as well as various functions for processing labeled
paths, including:

val input : string -> lp

val output : string * lp -> unit

val equal : lp * lp -> bool

val startState : lp -> sym

val endState : lp -> sym

val label : lp -> str

val length : lp -> int

val join : lp * lp -> lp

val sym : sym -> lp

val cons : sym * str * lp -> lp

val divideAfter : lp * int -> lp * lp

The specification of most of these functions is obvious. The function join

issues an error message, if the end state of its first argument isn’t the same
as the start state of its second argument. The function sym turns a symbol
a into the labeled path of length 0 whose start and end states are both a.
The function cons adds a new transition to the left of a labeled path. And,
divideAfter(lp, n) splits lp into a labeled path of length n and a labeled
path of length |lp| − n, when 0 ≤ n ≤ |lp|, and issues an error message,
otherwise.

The module FA also defines the functions

CHAPTER 3. REGULAR LANGUAGES 85

val checkLP : fa -> lp -> unit

val validLP : fa -> lp -> bool

for checking whether a labeled path is valid in a finite automaton. These
are curried functions—functions that return functions as their results. The
function checkLP takes in an FA M and returns a function that checks
whether a labeled path lp is valid for M . When lp is not valid for M , the
function explains why it isn’t; otherwise, it prints nothing. And, the function
validLP takes in an FA M and returns a function that tests whether a
labeled path lp is valid for M , silently returning true, if it is, and silently
returning false, otherwise.

Here are some examples of labeled path and FA processing (fa is still
our example FA):

- val lp = LP.input "";

@ A, 1 => A, 0 => B, 11 => B, 2 => C, 111 => C

@ .

val lp = - : lp

- Sym.output("", LP.startState lp);

A

val it = () : unit

- Sym.output("", LP.endState lp);

C

val it = () : unit

- LP.length lp;

val it = 5 : int

- Str.output("", LP.label lp);

10112111

val it = () : unit

- val checkLP = FA.checkLP fa;

val checkLP = fn : lp -> unit

- checkLP lp;

val it = () : unit

- val lp’ = LP.fromString "A";

val lp’ = - : lp

- LP.length lp’;

val it = 0 : int

- Str.output("", LP.label lp’);

%

val it = () : unit

- checkLP lp’;

val it = () : unit

- checkLP(LP.input "");

@ A, % => A, 1 => A

CHAPTER 3. REGULAR LANGUAGES 86

@ .

invalid transition : "A, % -> A"

uncaught exception Error

- val lp’’ = LP.join(lp, LP.input "");

@ C, 111 => C

@ .

val lp’’ = - : lp

- LP.output("", lp’’);

A, 1 => A, 0 => B, 11 => B, 2 => C, 111 => C, 111 => C

val it = () : unit

- checkLP lp’’;

val it = () : unit

- val (lp1, lp2) = LP.divideAfter(lp’’, 2);

val lp1 = - : lp

val lp2 = - : lp

- LP.output("", lp1);

A, 1 => A, 0 => B

val it = () : unit

- LP.output("", lp2);

B, 11 => B, 2 => C, 111 => C, 111 => C

val it = () : unit

To conclude this section, let’s consider the problem of finding a finite
automaton that accepts the set of all strings of 0’s and 1’s with an even
number of 0’s. It seems reasonable that our machine have two states: a
state A corresponding to the strings of 0’s and 1’s with an even number of
zeros, and a state B corresponding to the strings of 0’s and 1’s with an odd
number of zeros. Processing a 1 in either state should cause us to stay in
that state, but processing a 0 in one of the states should cause us to switch
to the other state. Because % has an even number of 0’s, the start state,
and only accepting state, will be A. The above considerations lead us to the
FA:

1

Start A

1

0

0

B

In Section 3.7, we’ll study techniques for proving the correctness of FAs.

3.4 Isomorphism of Finite Automata

Let M and N be the finite automata

CHAPTER 3. REGULAR LANGUAGES 87

C

1 1

C

0 1

and

(N)(M)

Start A B
0

0

Start A B
1

0

How are M and N related? Although they are not equal, they do have the
same “structure”, in that M can be turned into N by replacing A, B and
C by A, C and B, respectively. When FAs have the same structure, we will
say they are “isomorphic”.

In order to say more formally what it means for two FAs to be isomor-
phic, we define the notion of an isomorphism from one FA to another. An
isomorphism h from an FA M to an FA N is a bijection from QM to QN

such that

• h(sM) = sN ;

• {h(q) | q ∈ AM } = AN ;

• { (h(q), x, h(r)) | (q, x, r) ∈ TM } = TN .

We define a relation iso on FA by: M isoN iff there is an isomorphism from
M to N . We say that M and N are isomorphic iff M isoN .

Consider our example FAs M and N , and let h be the function

{(A,A), (B,C), (C,B)}.

Then it is easy to check that h is an isomorphism from M to N . Hence
M isoN .

Proposition 3.4.1
The relation iso is reflexive on FA, symmetric and transitive.

Proof. If M is an FA, then the identity function on QM is an isomorphism
from M to M .

If M,N are FAs, and h is a isomorphism from M to N , then the inverse
of h is an isomorphism from N to M .

If M1,M2,M3 are FAs, f is an isomorphism from M1 to M2, and g is
an isomorphism from M2 to M3, then the composition of g and f is an
isomorphism from M1 to M3. 2

CHAPTER 3. REGULAR LANGUAGES 88

Next, we see that, if M and N are isomorphic, then every string accepted
by M is also accepted by N .

Proposition 3.4.2
Suppose M and N are isomorphic FAs. Then L(M) ⊆ L(N).

Proof. Let h be an isomorphism from M to N . Suppose w ∈ L(M).
Then, there is a labeled path

lp = q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn,

such that w = x1x2 · · ·xn−1, lp is valid for M , q1 = sM and qn ∈ AM . Let

lp ′ = h(q1)
x1

⇒ h(q2)
x2

⇒ · · · h(qn−1)
xn−1

⇒ h(qn).

Then the label of lp ′ is w, lp ′ is valid for N , h(q1) = h(sM) = sN and
h(qn) ∈ AN , showing that w ∈ L(N). 2

A consequence of the two preceding propositions is that isomorphic FAs
are equivalent. Of course, the converse is not true, in general, since there
are many FAs that accept the same language and yet don’t have the same
structure.

Proposition 3.4.3
Suppose M and N are isomorphic FAs. Then M ≈ N .

Proof. Since M iso N , we have that N iso M , by Proposition 3.4.1.
Thus, by Proposition 3.4.2, we have that L(M) ⊆ L(N) ⊆ L(M). Hence
L(M) = L(N), i.e., M ≈ N . 2

Let X = { (M,f) | M ∈ FA and f is a bijection from QM

to some set of symbols }. The function renameStates ∈ X → FA takes
in a pair (M,f) and returns the FA produced from M by renaming M ’s
states using the bijection f .

Proposition 3.4.4
Suppose M is an FA and f is a bijection from QM to some set of symbols.
Then renameStates(M,f) isoM .

The following function is a special case of renameStates. The function
renameStatesCanonically ∈ FA→ FA renames the states of an FA M
to:

CHAPTER 3. REGULAR LANGUAGES 89

• A, B, etc., when the automaton has no more than 26 states (the small-
est state of M will be renamed to A, the next smallest one to B, etc.);
or

• 〈1〉, 〈2〉, etc., otherwise.

Of course, the resulting automaton will always be isomorphic to the original
one.

Next, we consider an algorithm that finds an isomorphism from an FA
M to an FA N , if one exists, and that indicates that no such isomorphism
exists, otherwise.

Our algorithm is based on the following lemma.

Lemma 3.4.5
Suppose that h is a bijection from QM to QN . Then

{ (h(q), x, h(r)) | (q, x, r) ∈ TM } = TN

iff, for all (q, r) ∈ h and x ∈ Str, there is a subset of h that is a bijection
from

{ p ∈ QM | (q, x, p) ∈ TM }

to

{ p ∈ QN | (r, x, p) ∈ TN }.

If any of the following conditions are true, then we report that there is
no isomorphism from M to N :

• |QM | 6= |QN |;

• |AM | 6= |AN |;

• |TM | 6= |TN |;

• sM ∈ AM , but sN 6∈ AN ;

• sN ∈ AN , but sM 6∈ AM .

Otherwise, we call our main, recursive function, findIso, which takes the
following data:

• A bijection F from a subset of QM to a subset of QN .

CHAPTER 3. REGULAR LANGUAGES 90

• A list C1, . . . , Cn of constraints of the form (X,Y), where X ⊆ QM ,
Y ⊆ QN and |X| = |Y |.

We say that a bijection satisfies a constraint (X,Y) iff it has a subset that
is a bijection from X to Y . findIso is supposed to return an isomorphism
from M to N that is a superset of F and satisfies the constraints C1, . . . , Cn,
if such an isomorphism exists; otherwise, it must return indicating failure.

We say that the weight of a constraint (X,Y) is 3|X|. Thus, we have the
following facts:

• If (X,Y) is a constraint, then its weight is at least 30 = 1.

• If ({p} ∪X, {q} ∪ Y) is a constraint, p 6∈ X, q 6∈ Y and |X| ≥ 1, then
the weight of ({p} ∪ X, {q} ∪ Y) is 31+|X| = 3 · 3|X|, the weight of
({p}, {q}) is 31 = 3, and the weight of (X,Y) is 3|X|. Because |X| ≥ 1,
it follows that the sum of the weights of ({p}, {q}) and (X,Y) (3+3|X|)
is strictly less-than the weight of ({p} ∪X, {q} ∪ Y).

Each argument to a recursive call of findIso will be strictly smaller
than the argument to the original call in the termination order in which
data F,C1, . . . , Cn is less-than data F ′, C ′

1, . . . , C ′
m iff either:

• |F | > |F ′| (remember that |F | ≤ |QM | = |QN |); or

• |F | = |F ′| but the sum of the weights of the constraints C1, . . . , Cn is
strictly less-than the sum of the weights of the constraints C ′

1, . . . , C ′
m.

Thus every call of findIso will terminate.
When findIso is called with data F,C1, . . . , Cn, we will have that the

following property, which we call (*), holds: for all bijections h from a subset
of QM to a subset of QN , if F ⊆ h and h satisfies all of the Ci’s, then:

• h is a bijection from QM to QN ; and

• h(sM) = sN ;

• {h(q) | q ∈ AM } = AN ;

• for all (q, r) ∈ F and x ∈ Str, there is a subset of h that is a bijection
from { p ∈ QM | (q, x, p) ∈ TM } to { p ∈ QN | (r, x, p) ∈ TN }.

Thus, if findIso is called with a bijection F and an empty list of constraints,
then it will follow, by Lemma 3.4.5, that F is an isomorphism from M to
N , and findIso will simply return F .

Initially, we call findIso with the following data:

CHAPTER 3. REGULAR LANGUAGES 91

• The bijection F = ∅;

• The list of constraints consisting of ({sM}, {sN}), (A1, A2), (B1, B2),
where A1 and A2 are the accepting but non-start states of M and N ,
respectively, and B1 and B2 are the non-accepting, non-start states of
M and N , respectively.

If findIso is called with data F, (∅, ∅), C2, . . . , Cn, then it calls itself
recursively with data F,C2, . . . , Cn. (The size of the bijection has been
preserved, but the sum of the weights of the constraints has gone down by
one.)

If findIso is called with data F, ({q}, {r}), C2, . . . , Cn, then it proceeds
as follows:

• If (q, r) ∈ F , then it calls itself recursively with data F,C2, . . . , Cn

and returns what the recursive call returns. (The size of the bijection
has been preserved, but the sum of the weights of the constraints has
gone down by three.)

• Otherwise, if q ∈ domain(F) or r ∈ range(F), then findIso returns
indicating failure.

• Otherwise, it works its way through the strings appearing in the tran-
sitions of M and N , forming a list of new constraints, C ′

1, . . . , C ′
m.

Given such a string, x, it lets Ax
1 = { p ∈ QM | (q, x, p) ∈ TM } and

Ax
2 = { p ∈ QN | (r, x, p) ∈ TN }. If |Ax

1 | 6= |Ax
2 |, then it returns

indicating failure. Otherwise, it adds the constraint (Ax
1 , A

x
2) to our

list of new constraints. When all such strings have been exhausted, it
calls itself recursively with data F ∪ {(q, r)}, C ′

1, . . . , C ′
m, C2, . . . , Cn

and returns what this recursive call returns. (The size of the bijection
has been increased by one.)

If findIso is called with data F, (A1, A2), C2, . . . , Cn, where |A1| > 1,
then it proceeds as follows. It picks the smallest symbol q ∈ A1, and lets
B1 = A1 − {q}. Then, it works its way through the elements of A2. Given
r ∈ A2, it lets B2 = A2 − {r}. Then, it tries calling itself recursively with
data F, ({q}, {r}), (B1, B2), C2, . . . , Cn. If this call returns an isomorphism
h, then it returns it to its caller. (The size of the bijection has been preserved,
but the sum of the sizes of the weights of the constraints has gone down by
2 · 3|B1| − 3 ≥ 3.) Otherwise, if this recursive call indicates failure, then
it tries the next element of A2. If it exhausts the elements of A2, then it
returns indicating failure.

CHAPTER 3. REGULAR LANGUAGES 92

Lemma 3.4.6
If findIso is called with data F,C1, . . . , Cn satisfying property (*), then it
returns an isomorphism from M to N that is a superset of F and satisfies
the constraints Ci, if one exists, and returns indicating failure, otherwise.

Proof. By well-founded induction on our termination ordering. I.e., when
proving the result for F,C1, . . . , Cn, we may assume that the result holds for
all data F ′, C ′

1, . . . , C ′
m that is strictly smaller in our termination ordering.

2

Theorem 3.4.7
If findIso is called with its initial data, then it returns an isomorphism from
M to N , if one exists, and returns indicating failure, otherwise.

Proof. Follows easily from Lemma 3.4.6. 2

The Forlan module FA also defines the functions

val isomorphism : fa * fa * sym_rel -> bool

val findIsomorphism : fa * fa -> sym_rel

val isomorphic : fa * fa -> bool

val renameStates : fa * sym_rel -> fa

val renameStatesCanonically : fa -> fa

The function isomorphism checks whether a relation on symbols is an iso-
morphism from one FA to another. The function findIsomorphism tries to
find an isomorphism from one FA to another; it issues an error message if it
fails to find one. The function isomorphic checks whether two FAs are iso-
morphic. The function renameStates issues an error message if the supplied
relation isn’t a bijection from the set of states of the supplied FA to some
set; otherwise, it returns the result of renameStates. And the function
renameStatesCanonically acts like renameStatesCanonically.

Suppose that fa1 and fa2 have been bound to our example finite au-
tomata M and N , respectively. Then, here are some example uses of the
above functions:

- val rel = FA.findIsomorphism(fa1, fa2);

val rel = - : sym_rel

- SymRel.output("", rel);

(A, A), (B, C), (C, B)

val it = () : unit

- FA.isomorphism(fa1, fa2, rel);

val it = true : bool

- FA.isomorphic(fa1, fa2);

CHAPTER 3. REGULAR LANGUAGES 93

val it = true : bool

- val rel’ = FA.findIsomorphism(fa1, fa1);

val rel’ = - : sym_rel

- SymRel.output("", rel’);

(A, A), (B, B), (C, C)

val it = () : unit

- FA.isomorphism(fa1, fa1, rel’);

val it = true : bool

- FA.isomorphism(fa1, fa2, rel’);

val it = false : bool

- val rel’’ = SymRel.input "";

@ (A, 2), (B, 1), (C, 0)

@ .

val rel’’ = - : sym_rel

- val fa3 = FA.renameStates(fa1, rel’’);

val fa3 = - : fa

- FA.output("", fa3);

{states}

0, 1, 2

{start state}

2

{accepting states}

0, 1, 2

{transitions}

0, 1 -> 1; 2, 0 -> 1 | 2; 2, 1 -> 0

val it = () : unit

- val fa4 = FA.renameStatesCanonically fa3;

val fa4 = - : fa

- FA.output("", fa4);

{states}

A, B, C

{start state}

C

{accepting states}

A, B, C

{transitions}

A, 1 -> B; C, 0 -> B | C; C, 1 -> A

val it = () : unit

- FA.equal(fa4, fa1);

val it = false : bool

- FA.isomorphic(fa4, fa1);

val it = true : bool

CHAPTER 3. REGULAR LANGUAGES 94

3.5 Algorithms for Checking Acceptance and
Finding Accepting Paths

In this section we study algorithms for: checking whether a string is accepted
by a finite automaton; and finding a labeled path that explains why a string
is accepted by a finite automaton.

Suppose M is a finite automaton. We define a function ∆M ∈ P(QM)×
Str→P(QM) by: ∆M (P,w) is the set of all r ∈ QM such that there is an
lp ∈ LP such that

• w is the label of lp;

• lp is valid for M ;

• the start state of lp is in P ;

• r is the end state of lp.

In other words, ∆M (P,w) consists of all of the states that can be reached
from elements of P by labeled paths that are labeled by w and valid for M .
When the FA M is clear from the context, we sometimes abbreviate ∆M to
∆.

Suppose M is the finite automaton

0, 2

11

0, 2
Start A B C

0, 2

1111

Then, ∆M ({A}, 12111111) = {B,C}, since

A
1

⇒ A
2

⇒ B
11

⇒ B
11

⇒ B
11

⇒ B and A
1

⇒ A
2

⇒ C
111

⇒ C
111

⇒ C

are all of the labeled paths that are labeled by 12111111, valid in M and
whose start states are A. Furthermore, ∆M ({A,B,C}, 11) = {A,B}, since

A
1

⇒ A
1

⇒ A and B
11

⇒ B

are all of the labeled paths that are labeled by 11 and valid in M .
Suppose M is a finite automaton, P ⊆ QM and w ∈ Str. We can

calculate ∆M (P,w) as follows.

CHAPTER 3. REGULAR LANGUAGES 95

Let S be the set of all suffixes of w. Given y ∈ S, we write pre(y) for
the unique x such that w = xy.

First, we generate the least subset X of QM × S such that:

(1) for all p ∈ P , (p, w) ∈ X;

(2) for all q, r ∈ QM and x, y ∈ Str, if (q, xy) ∈ X and (q, x, r) ∈ TM , then
(r, y) ∈ X.

We start by using rule (1), adding (p, w) to X, whenever p ∈ P . Then X
(and any superset of X) will satisfy property (1). Then, rule (2) is used
repeatedly to add more pairs to X. Since QM × S is a finite set, eventually
X will satisfy property (2).

If M is our example finite automaton, then here are the elements of X,
when P = {A} and w = 2111:

• (A, 2111);

• (B, 111), because of (A, 2111) and the transition (A, 2,B);

• (C, 111), because of (A, 2111) and the transition (A, 2,C) (now, we’re
done with (A, 2111));

• (B, 1), because of (B, 111) and the transition (B, 11,B) (now, we’re
done with (B, 111));

• (C,%), because of (C, 111) and the transition (C, 111,C) (now, we’re
done with (C, 111));

• nothing can be added using (B, 1) and (C,%), and so we’ve found all
the elements of X.

The following lemma explains when pairs show up in X.

Lemma 3.5.1
For all q ∈ QM and y ∈ S,

(q, y) ∈ X iff q ∈ ∆M (P,pre(y)).

Proof. The “only if” (left-to-right) direction is by induction on X: we
show that, for all (q, y) ∈ X, q ∈ ∆M (P,pre(y)).

• Suppose p ∈ P . Then p ∈ ∆M (P,%). But pre(w) = %, so that
p ∈ ∆M (P,pre(w)).

CHAPTER 3. REGULAR LANGUAGES 96

• Suppose q, r ∈ QM , x, y ∈ Str, (q, xy) ∈ X and (q, x, r) ∈ TM . As-
sume the inductive hypothesis: q ∈ ∆M (P,pre(xy)). Thus there is an
lp ∈ LP such that pre(xy) is the label of lp, lp is valid for M , the
start state of lp is in P , and q is the end state of lp. Let lp′ ∈ LP be
the result of adding the step q, x⇒ r at the end of lp. Thus pre(y) is
the label of lp ′, lp ′ is valid for M , the start state of lp ′ is in P , and r
is the end state of lp ′, showing that r ∈ ∆M (P,pre(y)).

For the ‘if” (right-to-left) direction, we have that there is a labeled path

q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn,

that is valid for M and where pre(y) = x1x2 · · ·xn−1, q1 ∈ P and
qn = q. Since q1 ∈ P and w = pre(y)y = x1x2 · · ·xn−1y, we have
that (q1, x1x2 · · ·xn−1y) = (q1, w) ∈ X. But (q1, x1, q2) ∈ TM , and thus
(q2, x2 · · ·xn−1y) ∈ X. Continuing on in this way, (we could do this by
mathematical induction), we finally get that (q, y) = (qn, y) ∈ X. 2

Lemma 3.5.2
For all q ∈ QM , (q,%) ∈ X iff q ∈ ∆M (P,w).

Proof. Suppose (q,%) ∈ X. Lemma 3.5.1 tells us that q ∈
∆M (P,pre(%)). But pre(%) = w, and thus q ∈ ∆M (P,w).

Suppose q ∈ ∆M (P,w). Since w = pre(%), we have that q ∈
∆M (P,pre(%)). Lemma 3.5.1 tells us that (q,%) ∈ X. 2

By Lemma 3.5.2, we have that

∆M (P,w) = { q ∈ QM | (q,%) ∈ X }.

Thus, we return the set of all states q that are paired with % in X.

Proposition 3.5.3
Suppose M is a finite automaton. Then

L(M) = {w ∈ Str | ∆M ({sM}, w) ∩AM 6= ∅ }.

Proof. Suppose w ∈ L(M). Then w is the label of a labeled path lp such
that lp is valid in M , the start state of lp is sM and the end state of lp is
in AM . Let q be the end state of lp. Thus q ∈ ∆M ({sM}, w) and q ∈ AM ,
showing that ∆M ({sM}, w) ∩AM 6= ∅.

Suppose ∆M ({sM}, w) ∩ AM 6= ∅, so that there is a q such that q ∈
∆M ({sM}, w) and q ∈ AM . Thus w is the label of a labeled path lp such
that lp is valid in M , the start state of lp is sM , and the end state of lp is
q ∈ AM . Thus w ∈ L(M). 2

CHAPTER 3. REGULAR LANGUAGES 97

According to Proposition 3.5.3, to check if a string w is accepted by a
finite automaton M , we simply use our algorithm to generate ∆M ({sM}, w),
and then check if this set contains at least one accepting state.

Given a finite automaton M , subsets P,R of QM and a string w, how
do we search for a labeled path that is labeled by w, valid in M , starts from
an element of P , and ends with an element of R? What we need to do is
associate with each pair

(q, y)

of the set X that we generate when computing ∆M (P,w) a labeled path lp
such that lp is labeled by pre(y), lp is valid in M , the start state of lp is
an element of P , and the end state of lp is q. If we process the elements of
X in a breadth-first (rather than depth-first) manner, this will ensure that
these labeled paths are as short as possible. As we generate the elements of
X, we look for a pair of the form (q,%), where q ∈ R. Our answer will then
be the labeled path associated with this pair.

The Forlan module FA also contains the following functions for processing
strings and checking string acceptance:

val processStr : fa -> sym set * str -> sym set

val processStrBackwards : fa -> sym set * str -> sym set

val accepted : fa -> str -> bool

The function processStr takes in a finite automaton M , and returns a
function that takes in a pair (P,w) and returns ∆M (P,w). The function
processStrBackwards is similar, except that it works its way backwards
through the w, i.e, acts as if the transitions of M were reversed. The function
accepted takes in a finite automaton M , and returns a function that checks
whether a string x is accepted by M .

The Forlan module FA also contains the following functions for finding
labeled paths:

val findLP : fa -> sym set * str * sym set -> lp

val findAcceptingLP : fa -> str -> lp

The function findLP takes in a finite automaton M , and returns a function
that takes in a triple (P,w,R) and tries to find a labeled path lp that is
labeled by w, valid for M , starts out with an element of P , and ends up at
an element of R. It issues an error message when there is no such labeled
path. The function findAcceptingLP takes in a finite automaton M , and
returns a function that looks for a labeled path lp that explains why a string

CHAPTER 3. REGULAR LANGUAGES 98

w is accepted by M . It issues an error message when there is no such labeled
path. The labeled paths returned by these functions are always of minimal
length.

Suppose fa is the finite automaton

0, 2

11

0, 2
Start A B C

0, 2

1111

We begin by applying our five functions to fa, and giving names to the
resulting functions:

- val processStr = FA.processStr fa;

val processStr = fn : sym set * str -> sym set

- val processStrBackwards = FA.processStrBackwards fa;

val processStrBackwards = fn : sym set * str -> sym set

- val accepted = FA.accepted fa;

val accepted = fn : str -> bool

- val findLP = FA.findLP fa;

val findLP = fn : sym set * str * sym set -> lp

- val findAcceptingLP = FA.findAcceptingLP fa;

val findAcceptingLP = fn : str -> lp

Next, we’ll define a set of states and a string to use later:

- val bs = SymSet.input "";

@ A, B, C

@ .

val bs = - : sym set

- val x = Str.input "";

@ 11

@ .

val x = [-,-] : str

Here are some example uses of our functions:

- SymSet.output("", processStr(bs, x));

A, B

val it = () : unit

- SymSet.output("", processStrBackwards(bs, x));

A, B

val it = () : unit

- accepted(Str.input "");

CHAPTER 3. REGULAR LANGUAGES 99

@ 12111111

@ .

val it = true : bool

- accepted(Str.input "");

@ 1211

@ .

val it = false : bool

- LP.output("", findLP(bs, x, bs));

B, 11 => B

val it = () : unit

- LP.output("", findAcceptingLP(Str.input ""));

@ 12111111

@ .

A, 1 => A, 2 => C, 111 => C, 111 => C

val it = () : unit

- LP.output("", findAcceptingLP(Str.input ""));

@ 222

@ .

no such labeled path exists

uncaught exception Error

3.6 Simplification of Finite Automata

In this section, we: say what it means for a finite automaton to be simpli-
fied; study an algorithm for simplifying finite automata; and see how finite
automata can be simplified in Forlan.

Suppose M is the finite automaton

D E

0

0

1

%
Start A B C

%

20

M is odd for two distinct reasons. First, there are no valid labeled paths
from the start state to D and E, and so these states are redundant. Second,
there are no valid labeled paths from C to an accepting state, and so it is
also redundant. We will say that C is not “live” (C is “dead”), and that D

and E are not “reachable”.
Suppose M is a finite automaton. We say that a state q ∈ QM is:

CHAPTER 3. REGULAR LANGUAGES 100

• reachable iff there is a labeled path lp such that lp is valid for M , the
start state of lp is sM , and the end state of lp is q;

• live iff there is a labeled path lp such that lp is valid for M , the start
state of lp is q, and the end state of lp is in AM ;

• dead iff q is not live;

• useful iff q is both reachable and live.

Let M be our example finite automaton. The reachable states of M are:
A, B and C. The live states of M are: A, B, D and E. And, the useful states
of M are: A and B.

There is a simple algorithm for generating the set of reachable states of
a finite automaton M . We generate the least subset X of QM such that:

• sM ∈ X;

• for all q, r ∈ QM and x ∈ Str, if q ∈ X and (q, x, r) ∈ TM , then r ∈ X.

The start state of M is added to X, since sM is always reachable, by the zero-
length labeled path sM . Then, if q is reachable, and (q, x, r) is a transition
of M , then r is clearly reachable. Thus all of the elements of X are indeed
reachable. And, it’s not hard to show that every reachable state will be
added to X.

Similarly, there is a simple algorithm for generating the set of live states
of a finite automaton M . We generate the least subset Y of QM such that:

• AM ⊆ Y ;

• for all q, r ∈ QM and x ∈ Str, if r ∈ Y and (q, x, r) ∈ TM , then q ∈ Y .

This time it’s the accepting states of M that initially added to our set, since
each accepting state is trivially live. Then, if r is live, and (q, x, r) is a
transition of M , then q is clearly live.

We say that a finite automaton M is simplified iff either

• every state of M is useful; or

• |QM | = 1 and |AM | = |TM | = 0.

Let N be the finite automaton

Start A

CHAPTER 3. REGULAR LANGUAGES 101

Then N is simplified, even though sN = A is not live, and thus is not useful.

Proposition 3.6.1
Suppose M is a simplified finite automaton. Then alphabet(M) =
alphabet(L(M)).

We always have that alphabet(L(M)) ⊆ alphabet(M). But, when M
is simplified, we also have that alphabet(M) ⊆ alphabet(L(M)), i.e., that
every symbol appearing in a string of one of M ’s transitions also appears in
one of the strings accepted by M .

Now we can give an algorithm for simplifying finite automata. We define
a function simplify ∈ FA→ FA by: simplify(M) is the finite automaton
N such that:

• if sM is useful in M , then:

– QN = { q ∈ QM | q is useful in M };

– sN = sM ;

– AN = AM ∩QN = { q ∈ AM | q ∈ QN };

– TN = { (q, x, r) ∈ TM | q, r ∈ QN }; and

• if sM is not useful in M , then:

– QN = {sM};

– sN = sM ;

– AN = ∅;

– TN = ∅.

Proposition 3.6.2
Suppose M is a finite automaton. Then:

(1) simplify(M) is simplified;

(2) simplify(M) ≈M .

Suppose M is the finite automaton

D E

0

0

1

%
Start A B C

%

20

CHAPTER 3. REGULAR LANGUAGES 102

Then simplify(M) is the finite automaton

1

Start A B
%

0

The Forlan module FA includes the following function for simplifying
finite automata:

val simplify : fa -> fa

In the following, suppose fa is the finite automaton

D E

0

0

1

%
Start A B C

%

20

Here are some example uses of simplify:

- val fa’ = FA.simplify fa;

val fa’ = - : fa

- FA.output("", fa’);

{states}

A, B

{start state}

A

{accepting states}

B

{transitions}

A, % -> B; A, 0 -> A; B, 1 -> B

val it = () : unit

- val fa’’ = FA.input "";

@ {states} A, B {start state} A {accepting states}

@ {transitions} A, 0 -> B; B, 0 -> A

@ .

val fa’’ = - : fa

- FA.output("", FA.simplify fa’’);

{states}

A

{start state}

CHAPTER 3. REGULAR LANGUAGES 103

A

{accepting states}

{transitions}

val it = () : unit

3.7 Proving the Correctness of Finite Automata

In this section, we consider techniques for proving the correctness of finite
automata, i.e., for proving that finite automata accept the languages we
want them to. We begin with some propositions concerning the ∆ function.

Proposition 3.7.1
Suppose M is a finite automaton.

(1) For all q ∈ QM , q ∈ ∆M ({q},%).

(2) For all q, r ∈ QM and w ∈ Str, if (q, w, r) ∈ TM , then r ∈ ∆M ({q}, w).

(3) For all p, q, r ∈ QM and x, y ∈ Str, if q ∈ ∆M ({p}, x) and r ∈
∆M ({q}, y), then r ∈ ∆M ({p}, xy).

Proposition 3.7.2
Suppose M is a finite automaton. For all p, r ∈ QM and w ∈ Str, if
r ∈ ∆M ({p}, w), then either:

• r = p and w = %; or

• there are q ∈ QM and x, y ∈ Str such that w = xy, (p, x, q) ∈ TM and
r ∈ ∆M ({q}, y).

The preceding proposition identifies the first step in a labeled path ex-
plaining how one gets from p to r by doing w. In contrast, the following
proposition focuses on the last step of such a labeled path.

Proposition 3.7.3
Suppose M is a finite automaton. For all p, r ∈ QM and w ∈ Str, if
r ∈ ∆M ({p}, w), then either:

• r = p and w = %; or

CHAPTER 3. REGULAR LANGUAGES 104

• there are q ∈ QM and x, y ∈ Str such that w = xy, q ∈ ∆M ({p}, x)
and (q, y, r) ∈ TM .

Now we consider a first, almost trivial, example of the correctness proof
of an FA. Let M be the finite automaton

222

Start A B
11

0

To prove that L(M) = {0}∗{11}{222}∗, it will suffice to show that L(M) ⊆
{0}∗{11}{222}∗ and {0}∗{11}{222}∗ ⊆ L(M).

First, we show that {0}∗{11}{222}∗ ⊆ L(M); then, we show that
L(M) ⊆ {0}∗{11}{222}∗.

Lemma 3.7.4
For all n ∈ N, A ∈ ∆({A}, 0n).

Proof. We proceed by mathematical induction.
(Basis Step) By Proposition 3.7.1(1), we have that A ∈ ∆({A},%).

But 00 = %, and thus A ∈ ∆({A}, 00).
(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:

A ∈ ∆({A}, 0n). We must show that A ∈ ∆({A}, 0n+1). Since (A, 0,A) ∈ T ,
Proposition 3.7.1(2) tells us that A ∈ ∆({A}, 0). Since A ∈ ∆({A}, 0) and
A ∈ ∆({A}, 0n), Proposition 3.7.1(3) tells us that A ∈ ∆({A}, 00n). Since
0n+1 = 00n, it follows that A ∈ ∆({A}, 0n+1). 2

Lemma 3.7.5
For all n ∈ N, B ∈ ∆({B}, (222)n).

Proof. Similar to the proof of Lemma 3.7.4. 2

Now, suppose w ∈ {0}∗{11}{222}∗. Then w = 0n11(222)m for some
n,m ∈ N. By Lemma 3.7.4, we have that A ∈ ∆({A}, 0n). Since (A, 11,B) ∈
T , we have that B ∈ ∆({A}, 11), by Proposition 3.7.1(2). Thus, by Propo-
sition 3.7.1(3), we have that B ∈ ∆({A}, 0n11). By Lemma 3.7.5, we have
that B ∈ ∆({B}, (222)m). Thus, by Proposition 3.7.1(3), we have that
B ∈ ∆({A}, 0n11(222)m). But w = 0n11(222)m, and thus B ∈ ∆({A}, w).
Since A is M ’s start state and B is an accepting state of M , it follows that
∆({sM}, w) ∩AM 6= ∅, so that (by Proposition 3.5.3) w ∈ L(M).

CHAPTER 3. REGULAR LANGUAGES 105

Now we show that L(M) ⊆ {0}∗{11}{222}∗. Since alphabet(M) =
{0, 1, 2}, it will suffice to show that, for all w ∈ {0, 1, 2}∗,

if B ∈ ∆({A}, w), then w ∈ {0}∗{11}{222}∗.

(To see that this is so, suppose w ∈ L(M). Then ∆({A}, w) ∩ {B} 6= ∅, so
that B ∈ ∆({A}, w). By Proposition 3.3.1, we have that

alphabet(w) ⊆ alphabet(L(M)) ⊆ alphabet(M) = {0, 1, 2},

so that w ∈ {0, 1, 2}∗. Thus w ∈ {0}∗{11}{222}∗.)
Unfortunately, if we try to prove the above formula true, using strong

string induction, we will get stuck, having a prefix of our string w that takes
us from A to A, but not being able to conclude anything useful about this
string. For our strong string induction to succeed, we will need to strengthen
the property of w that we are proving. This leads us to a proof method in
which we say, for each state q of the FA at hand, what we know about the
strings that take us from the start state of the machine to q.

Lemma 3.7.6
For all w ∈ {0, 1, 2}∗:

(A) if A ∈ ∆({A}, w), then w ∈ {0}∗;

(B) if B ∈ ∆({A}, w), then w ∈ {0}∗{11}{222}∗.

Proof. We proceed by strong string induction. Suppose w ∈ {0, 1, 2}∗,
and assume the inductive hypothesis: for all x ∈ {0, 1, 2}∗, if |x| < |w|, then

(A) if A ∈ ∆({A}, x), then x ∈ {0}∗;

(B) if B ∈ ∆({A}, x), then x ∈ {0}∗{11}{222}∗.

We must show that

(A) if A ∈ ∆({A}, w), then w ∈ {0}∗;

(B) if B ∈ ∆({A}, w), then w ∈ {0}∗{11}{222}∗.

(A) Suppose A ∈ ∆({A}, w). We must show that w ∈ {0}∗. By Proposi-
tion 3.7.3, there are two cases to consider.

• Suppose A = A and w = %. Then w = % ∈ {0}∗.

CHAPTER 3. REGULAR LANGUAGES 106

• Suppose there are q ∈ Q and x, y ∈ Str such that w = xy, q ∈
∆({A}, x) and (q, y,A) ∈ T . Since (q, y,A) ∈ T , we have that q = A

and y = 0, so that w = x0 and A ∈ ∆({A}, x). Since |x| < |w|,
Part (A) of the inductive hypothesis tells us that x ∈ {0}∗. Thus
w = x0 ∈ {0}∗{0} ⊆ {0}∗.

(B) Suppose B ∈ ∆({A}, w). We must show that w ∈ {0}∗{11}{222}∗.
Since B 6= A, Proposition 3.7.3 tells us that there are q ∈ Q and x, y ∈ Str
such that w = xy, q ∈ ∆({A}, x) and (q, y,B) ∈ T . Thus there are two cases
to consider.

• Suppose q = A and y = 11. Thus w = x11 and A ∈ ∆({A}, x). Since
|x| < |w|, Part (A) of the inductive hypothesis tells us that x ∈ {0}∗.
Thus w = x11% ∈ {0}∗{11}{222}∗.

• Suppose q = B and y = 222. Thus w = x222 and B ∈ ∆({A}, x).
Since |x| < |w|, Part (B) of the inductive hypothesis tells us that
x ∈ {0}∗{11}{222}∗. Thus w = x222 ∈ {0}∗{11}{222}∗{222} ⊆
{0}∗{11}{222}∗.

2

We could also prove {0}∗{11}{222}∗ ⊆ L(M) by strong string induc-
tion. To prove that L(M) ⊆ {0}∗{11}{222}∗, we proved that, for all
w ∈ {0, 1, 2}∗:

(A) if A ∈ ∆({A}, w), then w ∈ {0}∗;

(B) if B ∈ ∆({A}, w), then w ∈ {0}∗{11}{222}∗.

To prove that {0}∗{11}{222}∗ ⊆ L(M), we could simply reverse the impli-
cations in (A) and (B) of this formula, proving that for all w ∈ {0, 1, 2}∗:

(A) if w ∈ {0}∗, then A ∈ ∆({A}, w);

(B) if w ∈ {0}∗{11}{222}∗, then B ∈ ∆({A}, w).

As a second example FA correctness proof, suppose N is the finite au-
tomaton

1

Start A B
%

0

CHAPTER 3. REGULAR LANGUAGES 107

To prove that L(N) = {0}∗{1}∗, it will suffice to show that L(N) ⊆ {0}∗{1}∗

and {0}∗{1}∗ ⊆ L(N). The proof that {0}∗{1}∗ ⊆ L(N) is similar to our
proof that {0}∗{11}{222}∗ ⊆ L(M).

To show that L(N) ⊆ {0}∗{1}∗, it would suffice to show that, for all
w ∈ {0, 1}∗:

(A) if A ∈ ∆({A}, w), then w ∈ {0}∗;

(B) if B ∈ ∆({A}, w), then w ∈ {0}∗{1}∗.

Unfortunately, we can’t prove this using strong string induction: because
of the transition (A,%,B), the proof of Part (B) will fail. Here is how the
failed proof begins.

There are q ∈ Q and x, y ∈ Str such that w = xy, q ∈ ∆({A}, x)
and (q, y,B) ∈ T . Since (q, y,B) ∈ T , there are two cases to
consider. Let’s consider the case when q = A and y = %. Then
w = x% and A ∈ ∆({A}, x).

Unfortunately, |x| = |w|, and so we won’t be able to use Part (A) of the
inductive hypothesis to conclude that x ∈ {0}∗.

Instead, we must do our proof using mathematical induction on the
length of labeled paths. We use mathematical induction to prove that, for
all n ∈ N, for all w ∈ Str:

(A) if there is an lp ∈ LP such that |lp| = n, label(lp) = w, lp is valid
for N , startState(lp) = A and endState(lp) = A, then w ∈ {0}∗;

(B) if there is an lp ∈ LP such that |lp| = n, label(lp) = w, lp is valid for
N , startState(lp) = A and endState(lp) = B, then w ∈ {0}∗{1}∗.

We can use the above formula to prove L(N) ⊆ {0}∗{1}∗, as follows.
Suppose w ∈ L(N). Then, there is an lp ∈ LP such that label(lp) = w,
lp is valid for N , startState(lp) = A and endState(lp) = B. Let n = |lp|.
Thus, Part (B) of the above formula holds. Hence w ∈ {0}∗{1}∗.

In the inductive step, we assume that n ∈ N and that the inductive
hypothesis holds: for all w ∈ Str, (A) and (B) hold. We must show that for
all w ∈ Str, (A) and (B) hold, where n+ 1 has been substituted for n. So,
we suppose that w ∈ Str, and show that (A) and (B) hold, where n+1 has
been substituted for n:

(A) if there is an lp ∈ LP such that |lp| = n+1, label(lp) = w, lp is valid
for N , startState(lp) = A and endState(lp) = A, then w ∈ {0}∗;

CHAPTER 3. REGULAR LANGUAGES 108

(B) if there is an lp ∈ LP such that |lp| = n + 1, label(lp) = w, lp
is valid for N , startState(lp) = A and endState(lp) = B, then
w ∈ {0}∗{1}∗.

Let’s consider the proof of Part (B), where n+1 has been substituted for
n. We assume that there is an lp ∈ LP such that |lp| = n+1, label(lp) = w,
lp is valid for N , startState(lp) = A and endState(lp) = B. Let lp ′ ∈ LP
be the first n steps of lp, and let x = label(lp ′) and q = endState(lp ′).
Let y be such that the last step of lp uses the transition (q, y,B) ∈ T . Then
w = xy, lp ′ is valid for N and startState(lp ′) = A. Let’s consider the case
when q = A and y = %. Then w = x% and endState(lp ′) = A. By the
inductive hypothesis, we know that (A) holds, where x has been substituted
for w. Since |lp ′| = n, label(lp ′) = x, lp ′ is valid for N , startState(lp ′) = A

and endState(lp ′) = A, it follows that x ∈ {0}∗. Thus w = x% ∈ {0}∗{1}∗.
The proof of the other case is easy.

We conclude this section by considering one more example. Recall the
definition of the “difference” function that was introduced in Section 2.2:
given a string w ∈ {0, 1}∗, we write diff(w) for

the number of 1’s in w − the number of 0’s in w.

Define X = {w ∈ {0, 1}∗ | diff(w) = 0 and, for all prefixes v of w, 0 ≤
diff(v) ≤ 3 }.

For example, 110100 ∈ X, since diff(110100) = 0 and every prefix of
110100 has a diff between 0 and 3 (the diff’s of %, 1, 11, 110, 1101, 11010

and 110100 are 0, 1, 2, 1, 2, 1 and 0, respectively). On the other hand,
1001 6∈ X, even though diff(1001) = 0, because 100 is a prefix of 1001,
diff(100) = −1 and −1 < 0.

First, let’s consider the problem of synthesizing an FA M such that
L(M) = X. What we can do is think of each state of our machine as
“keeping track” of the diff of the strings that take us to that state. Because
every prefix of an element of X has a diff between 0 and 3, this would lead
to our having four states: A, B, C and D, corresponding to diff’s of 0, 1, 2
and 3, respectively. If we are in state A, there will be a transition labeled 1

that takes us to B. From B, there will be a transition labeled 0, that takes
us back to A, as well as a transition labeled 1, that takes us to C, and so on.
It turns out, however, that we can dispense with the state D, by having a
transition labeled 10 from C back to itself. Thus, our machine is

C 10Start A B
1

0

1

0

CHAPTER 3. REGULAR LANGUAGES 109

Now we show that M is correct, i.e., that L(M) = X. Define Zi, for
i ∈ {0, 1, 2}, by: Zi = {w ∈ {0, 1}∗ | diff(w) = i and, for all prefixes v of
w, 0 ≤ diff(v) ≤ 3 }. Since Z0 = X, it will suffice to show that L(M) = Z0.

Lemma 3.7.7
For all w ∈ {0, 1}∗:

(0) w ∈ Z0 iff w = % or w = x0, for some x ∈ Z1;

(1) w ∈ Z1 iff w = x1, for some x ∈ Z0, or w = x0, for some x ∈ Z2;

(2) w ∈ Z2 iff w = x1, for some x ∈ Z1, or w = x10, for some x ∈ Z2.

Proof. (0, “only if”) Suppose w ∈ Z0. If w = %, then w = % or w = x0,
for some x ∈ Z1. So, suppose w 6= %. Thus w = xa, for some x ∈ {0, 1}∗

and a ∈ {0, 1}.
Suppose, toward a contradiction, that a = 1. Then diff(x) + 1 =

diff(x1) = diff(xa) = diff(w) = 0, so that diff(x) = −1. But this is
impossible, since x is a prefix of w, and w ∈ Z0. Thus a = 0, so that
w = x0.

Since diff(x) − 1 = diff(x0) = diff(w) = 0, we have that diff(x) = 1.
To complete the proof that x ∈ Z1, suppose v is a prefix of x. Thus v is
a prefix of w. But w ∈ Z0, and thus 0 ≤ diff(v) ≤ 3. Since w = x0 and
x ∈ Z1, we have that w = % or w = x0, for some x ∈ Z1.

(0, “if”) Suppose w = % or w = x0, for some x ∈ Z1. There are two cases
to consider.

• Suppose w = %. Then diff(w) = diff(%) = 0. To complete the
proof that w ∈ Z0, suppose v is a prefix of w. Then v = %, so that
diff(v) = 0, and thus 0 ≤ diff(v) ≤ 3.

• Suppose w = x0, for some x ∈ Z1. Then diff(w) = diff(x0) =
diff(x)− 1 = 1− 1 = 0. To complete the proof that w ∈ Z0, suppose
v is a prefix of w. If v is a prefix of x, then 0 ≤ diff(v) ≤ 3, since
x ∈ Z1. And, if v = x0 = w, then diff(v) = diff(w) = 0, so that
0 ≤ diff(v) ≤ 3.

(1, “only if”) Suppose w ∈ Z1. Then diff(w) = 1, so that w 6= %. There
are two cases to consider.

• Suppose w = x1, for some x ∈ {0, 1}∗. Since diff(x)+1 = diff(w) = 1,
we have that diff(x) = 0. Since x is a prefix of w and w ∈ Z1, it follows
that x ∈ Z0. Since w = x1 and x ∈ Z0, we have that w = x1, for some
x ∈ Z0, or w = x0, for some x ∈ Z2.

CHAPTER 3. REGULAR LANGUAGES 110

• Suppose w = x0, for some x ∈ {0, 1}∗. Since diff(x)−1 = diff(w) = 1,
we have that diff(x) = 2. Since x is a prefix of w and w ∈ Z1, it follows
that x ∈ Z2. Since w = x0 and x ∈ Z2, we have that w = x1, for some
x ∈ Z0, or w = x0, for some x ∈ Z2.

(1, “if”) Suppose w = x1, for some x ∈ Z0, or w = x0, for some x ∈ Z2.
There are two cases to consider.

• Suppose w = x1, for some x ∈ Z0. Then diff(w) = diff(x) + 1 =
0 + 1 = 1. To complete the proof that w ∈ Z1, suppose v is a prefix
of w. If v is a prefix of x, then 0 ≤ diff(v) ≤ 3, since x ∈ Z0. And, if
v = x1 = w, then diff(v) = diff(w) = 1, so that 0 ≤ diff(v) ≤ 3.

• Suppose w = x0, for some x ∈ Z2. Then diff(w) = diff(x) − 1 =
2 − 1 = 1. To complete the proof that w ∈ Z1, suppose v is a prefix
of w. If v is a prefix of x, then 0 ≤ diff(v) ≤ 3, since x ∈ Z2. And, if
v = x0 = w, then diff(v) = diff(w) = 1, so that 0 ≤ diff(v) ≤ 3.

(2, “only if”) Suppose w ∈ Z2. Then diff(w) = 2, so that w 6= %. There
are two cases to consider.

• Suppose w = x1, for some x ∈ {0, 1}∗. Since diff(x)+1 = diff(w) = 2,
we have that diff(x) = 1. Since x is a prefix of w and w ∈ Z2, it follows
that x ∈ Z1. Since w = x1 and x ∈ Z1, we have that w = x1, for some
x ∈ Z1, or w = x10, for some x ∈ Z2.

• Suppose w = y0, for some y ∈ {0, 1}∗. Since diff(y)−1 = diff(w) = 2,
we have that diff(y) = 3. Thus y 6= %, so that y = xa, for some
x ∈ {0, 1}∗ and a ∈ {0, 1}. Hence w = y0 = xa0. If a = 0, then
diff(x) − 1 = diff(x0) = diff(y) = 3, so that diff(x) = 4. But x is a
prefix of w and w ∈ Z2, and thus this is impossible. Thus a = 1, so
that w = x10. Since diff(x) = diff(x) + 1 + −1 = diff(w) = 2, x is
a prefix of w, and w ∈ Z2, we have that x ∈ Z2. Since w = x10 and
x ∈ Z2, we have that w = x1, for some x ∈ Z1, or w = x10, for some
x ∈ Z2.

(2, “if”) Suppose w = x1, for some x ∈ Z1, or w = x10, for some x ∈ Z2.
There are two cases to consider.

• Suppose w = x1, for some x ∈ Z1. Then diff(w) = diff(x) + 1 =
1 + 1 = 2. To complete the proof that w ∈ Z2, suppose v is a prefix
of w. If v is a prefix of x, then 0 ≤ diff(v) ≤ 3, since x ∈ Z1. And, if
v = x1 = w, then diff(v) = diff(w) = 2, so that 0 ≤ diff(v) ≤ 3.

CHAPTER 3. REGULAR LANGUAGES 111

• Suppose w = x10, for some x ∈ Z2. Then diff(w) = diff(x)+1+−1 =
2 + 1 + −1 = 2. To complete the proof that w ∈ Z2, suppose v is a
prefix of w. If v is a prefix of x, then 0 ≤ diff(v) ≤ 3, since x ∈ Z2.
And, if v = x1, then diff(v) = diff(x) + 1 = 2 + 1 = 3, so that
0 ≤ diff(v) ≤ 3. Finally, if v = x10 = w, then diff(v) = diff(w) = 2,
so that 0 ≤ diff(v) ≤ 3.

2

Now we prove a lemma that will allow us to establish that L(M) ⊆ Z0.

Lemma 3.7.8
For all w ∈ {0, 1}∗:

(A) if A ∈ ∆({A}, w), then w ∈ Z0;

(B) if B ∈ ∆({A}, w), then w ∈ Z1;

(C) if C ∈ ∆({A}, w), then w ∈ Z2.

Proof. We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and
assume the inductive hypothesis: for all x ∈ {0, 1}∗, if |x| < |w|, then:

(A) if A ∈ ∆({A}, x), then x ∈ Z0;

(B) if B ∈ ∆({A}, x), then x ∈ Z1;

(C) if C ∈ ∆({A}, x), then x ∈ Z2.

We must show that:

(A) if A ∈ ∆({A}, w), then w ∈ Z0;

(B) if B ∈ ∆({A}, w), then w ∈ Z1;

(C) if C ∈ ∆({A}, w), then w ∈ Z2.

(A) Suppose A ∈ ∆({A}, w). We must show that w ∈ Z0. Since A ∈
∆({A}, w), there are two cases to consider.

• Suppose A = A and w = %. By Lemma 3.7.7(0), w ∈ Z0.

• Suppose there are q ∈ Q and x, y ∈ Str such that w = xy, q ∈
∆({A}, x) and (q, y,A) ∈ T . Since (q, y,A) ∈ T , we have that q = B

and y = 0. Thus w = x0 and B ∈ ∆({A}, x). Since |x| < |w|,
Part (B) of the inductive hypothesis tells us that x ∈ Z1. Hence, by
Lemma 3.7.7(0), we have that w ∈ Z0.

CHAPTER 3. REGULAR LANGUAGES 112

(B) Suppose B ∈ ∆({A}, w). We must show that w ∈ Z1. Since B ∈
∆({A}, w) and A 6= B, we have that there are q ∈ Q and x, y ∈ Str such
that w = xy, q ∈ ∆({A}, x) and (q, y,B) ∈ T . Since (q, y,B) ∈ T , there are
two cases to consider.

• Suppose q = A and y = 1. Thus w = x1 and A ∈ ∆({A}, x). Since
|x| < |w|, Part (A) of the inductive hypothesis tells us that x ∈ Z0.
Hence, by Lemma 3.7.7(1), we have that w ∈ Z1.

• Suppose q = C and y = 0. Thus w = x0 and C ∈ ∆({A}, x). Since
|x| < |w|, Part (C) of the inductive hypothesis tells us that x ∈ Z2.
Hence, by Lemma 3.7.7(1), we have that w ∈ Z1.

(C) Suppose C ∈ ∆({A}, w). We must show that w ∈ Z2. Since C ∈
∆({A}, w) and A 6= C, we have that there are q ∈ Q and x, y ∈ Str such
that w = xy, q ∈ ∆({A}, x) and (q, y,C) ∈ T . Since (q, y,C) ∈ T , there are
two cases to consider.

• Suppose q = B and y = 1. Thus w = x1 and B ∈ ∆({A}, x). Since
|x| < |w|, Part (B) of the inductive hypothesis tells us that x ∈ Z1.
Hence, by Lemma 3.7.7(2), we have that w ∈ Z2.

• Suppose q = C and y = 10. Thus w = x10 and C ∈ ∆({A}, x). Since
|x| < |w|, Part (C) of the inductive hypothesis tells us that x ∈ Z2.
Hence, by Lemma 3.7.7(2), we have that w ∈ Z2.

2

Now, we use the preceding lemma to show that L(M) ⊆ Z0. Suppose
w ∈ L(M). Hence ∆({A}, w) ∩ {A} 6= ∅, so that A ∈ ∆({A}, w). Since
alphabet(M) = {0, 1}, we have that w ∈ {0, 1}∗. Thus, we have that
Parts (A)–(C) of Lemma 3.7.8 hold. By Part (A), it follows that w ∈ Z0.

To show that Z0 ⊆ L(M), we show a lemma that is what could be called
the converse of Lemma 3.7.8: we simply reverse each of the implications of
the lemma’s statement.

Lemma 3.7.9
First, we show that, for all w ∈ {0, 1}∗:

(A) if w ∈ Z0, then A ∈ ∆({A}, w);

(B) if w ∈ Z1, then B ∈ ∆({A}, w);

(C) if w ∈ Z2, then C ∈ ∆({A}, w).

CHAPTER 3. REGULAR LANGUAGES 113

Proof. We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and
assume the inductive hypothesis: for all x ∈ {0, 1}∗, if |x| < |w|, then:

(A) if x ∈ Z0, then A ∈ ∆({A}, x);

(B) if x ∈ Z1, then B ∈ ∆({A}, x);

(C) if x ∈ Z2, then C ∈ ∆({A}, x).

We must show that:

(A) if w ∈ Z0, then A ∈ ∆({A}, w);

(B) if w ∈ Z1, then B ∈ ∆({A}, w);

(C) if w ∈ Z2, then C ∈ ∆({A}, w).

(A) Suppose w ∈ Z0. We must show that A ∈ ∆({A}, w). By
Lemma 3.7.7(0), there are two cases to consider.

• Suppose w = %. We have that A ∈ ∆({A},%), and thus that A ∈
∆({A}, w).

• Suppose w = x0, for some x ∈ Z1. Since |x| < |w|, Part (B) of the
inductive hypothesis tells us that B ∈ ∆({A}, x). Since (B, 0,A) ∈
T , we have that A ∈ ∆({B}, 0). Thus A ∈ ∆({A}, x0), i.e., A ∈
∆({A}, w).

(B) Suppose w ∈ Z1. We must show that B ∈ ∆({A}, w). By
Lemma 3.7.7(1), there are two cases to consider.

• Suppose w = x1, for some x ∈ Z0. Since |x| < |w|, Part (A) of the
inductive hypothesis tells us that A ∈ ∆({A}, x). Since (A, 1,B) ∈
T , we have that B ∈ ∆({A}, 1). Thus B ∈ ∆({A}, x1), i.e., B ∈
∆({A}, w).

• Suppose w = x0, for some x ∈ Z2. Since |x| < |w|, Part (C) of the
inductive hypothesis tells us that C ∈ ∆({A}, x). Since (C, 0,B) ∈
T , we have that B ∈ ∆({C}, 0). Thus B ∈ ∆({A}, x0), i.e., B ∈
∆({A}, w).

(C) Suppose w ∈ Z2. We must show that C ∈ ∆({A}, w). By
Lemma 3.7.7(2), there are two cases to consider.

CHAPTER 3. REGULAR LANGUAGES 114

• Suppose w = x1, for some x ∈ Z1. Since |x| < |w|, Part (B) of the
inductive hypothesis tells us that B ∈ ∆({A}, x). Since (B, 1,C) ∈
T , we have that C ∈ ∆({B}, 1). Thus C ∈ ∆({A}, x1), i.e., C ∈
∆({A}, w).

• Suppose w = x10, for some x ∈ Z2. Since |x| < |w|, Part (C) of the
inductive hypothesis tells us that C ∈ ∆({A}, x). Since (C, 10,C) ∈
T , we have that C ∈ ∆({C}, 10). Thus C ∈ ∆({A}, x10), i.e., C ∈
∆({A}, w).

2

Now, we use the preceding lemma to show that Z0 ⊆ L(M). Suppose
w ∈ Z0. Since Z0 ⊆ {0, 1}∗, we have that Parts (A)–(C) of Lemma 3.7.9
hold. By Part (A), we have that A ∈ ∆({A}, w). Thus ∆({A}, w)∩{A} 6= ∅,
showing that w ∈ L(M).

Putting Lemmas 3.7.8 and 3.7.9 together, we have that, for all w ∈
{0, 1}∗:

(A) A ∈ ∆({A}, w) iff w ∈ Z0;

(B) B ∈ ∆({A}, w) iff w ∈ Z1;

(C) C ∈ ∆({A}, w) iff w ∈ Z2.

Thus, the strings that take us to state A are exactly the ones that are in Z0,
etc.

3.8 Empty-string Finite Automata

In this and the following two sections, we will study three progressively more
restricted kinds of finite automata:

• Empty-string finite automata (EFAs);

• Nondeterministic finite automata (NFAs);

• Deterministic finite automata (DFAs).

Every DFA will be an NFA; every NFA will be an EFA; and every EFA will
be an FA. Thus, L(M) will be well-defined, if M is a DFA, NFA or EFA. The
more restricted kinds of automata will be easier to process on the computer
than the more general kinds; they will also have nicer reasoning principles

CHAPTER 3. REGULAR LANGUAGES 115

than the more general kinds. We will give algorithms for converting the
more general kinds of automata into the more restricted kinds. Thus even
the deterministic finite automata will accept the same set of languages as
the finite automata. On the other hand, it will sometimes be easier to find
one of the more general kinds of automata that accepts a given language
rather than one of the more restricted kinds accepting the language. And,
there are languages where the smallest DFA accepting the language is much
bigger than the smallest FA accepting the language.

In this section, we will focus on EFAs. An empty-string finite automaton
(EFA) M is a finite automaton such that

TM ⊆ { (q, x, r) | q, r ∈ Sym and x ∈ Str and |x| ≤ 1 }.

In other words, an FA is an EFA iff every string of every transition of the
FA is either % or has a single symbol. For example, (A,%,B) and (A, 1,B)
are legal EFA transitions, but (A, 11,B) is not legal. We write EFA for the
set of all empty-string finite automata. Thus EFA (FA.

Now, we consider a proposition that holds for EFAs but not for all FAs.

Proposition 3.8.1
SupposeM is an EFA. For all p, r ∈ QM and x, y ∈ Str, if r ∈ ∆M ({p}, xy),
then there is a q ∈ QM such that q ∈ ∆M ({p}, x) and r ∈ ∆M ({q}, y).

Proof. Suppose p, r ∈ QM , x, y ∈ Str and r ∈ ∆M ({p}, xy). Thus there
is an lp ∈ LP such that xy is the label of lp, lp is valid for M , the start
state of lp is p, and r is the end state of lp. Because M is an EFA, the
label of each step of lp is either % or consists of a single symbol. Thus we
can divide lp into two labeled paths that explain why q ∈ ∆M ({p}, x) and
r ∈ ∆M ({q}, y), for some q ∈ QM . 2

To see that this proposition doesn’t hold for arbitrary FAs, let M be the
FA

345

Start A B
12

0

Let x = 1 and y = 2345. Then xy = (12)(345) and so B ∈ ∆({A}, xy). But
there is no q ∈ Q such that q ∈ ∆M ({A}, x) and B ∈ ∆M ({q}, y), since there
is no valid labeled path for M that starts at A and has label 1.

The following proposition obviously holds.

CHAPTER 3. REGULAR LANGUAGES 116

Proposition 3.8.2
Suppose M is an EFA.

• For all N ∈ FA, if M isoN , then N is an EFA.

• For all bijections f from QM to some set of symbols,
renameStates(M,f) is an EFA.

• renameStatesCanonically(M) is an EFA.

• simplify(M) is an EFA.

If we want to convert an FA into an equivalent EFA, we can proceed
as follows. Every state of the FA will be a state of the EFA, the start and
accepting states are unchanged, and every transition of the FA that is a legal
EFA transition will be a transition of the EFA. If our FA has a transition

(p, b1b2 · · · bn, r),

where n ≥ 2 and the bi are symbols, then we replace this transition with the
transitions

(p, b1, q1), (q1, b2, q2), . . . , (qn−1, bn, r),

where q1, . . . , qn−1 are new, non-accepting, states.
For example, we can convert the FA

345

Start A B
12

0

into the EFA

3

45

21

Start A B

0

C

D

E

CHAPTER 3. REGULAR LANGUAGES 117

In order to turn our informal conversion procedure into an algorithm,
we must say how we go about choosing our new states. The symbols we
choose can’t be states of the original machine, and we can’t choose the same
symbol twice.

It turns out to be convenient to rename each old state q to 〈1, q〉. Then
we can replace a transition

(p, b1b2 · · · bn, r),

where n ≥ 2 and the bi are symbols, with the transitions

(〈1, p〉, b1, 〈2, 〈p, b1, b2 · · · bn, r〉〉),

(〈2, 〈p, b1, b2 · · · bn, r〉〉, b2, 〈2, 〈p, b1b2, b3 · · · bn, r〉〉),

. . . ,

(〈2, 〈p, b1b2 · · · bn−1, bn, r〉〉, bn, 〈1, r〉).

We define a function faToEFA ∈ FA→ EFA that converts FAs into
EFAs by saying that faToEFA(M) is the result of running the above algo-
rithm on input M .

Theorem 3.8.3
For all M ∈ FA:

• faToEFA(M) ≈M ; and

• alphabet(faToEFA(M)) = alphabet(M).

Proof. Suppose M ∈ FA, and let N = faToEFA(M). Because M and N
differ only in that each M -transition of the form

(p, b1b2 · · · bn, r),

where n ≥ 2 and the bi are symbols, was replaced by N -transitions of the
form

(p, b1, q1), (q1, b2, q2), . . . , (qn−1, bn, r),

where q1, . . . , qn−1 are new, non-accepting, states, it is clear that L(N) =
L(M) and alphabet(N) = alphabet(M). (If the qi’s were preexisting or
accepting states, then L(M) ⊆ L(N) would still hold, but there might be
elements of L(M) that were not in L(N).) 2

CHAPTER 3. REGULAR LANGUAGES 118

The Forlan module EFA defines an abstract type efa (in the top-level
environment) of empty-string finite automata, along with various functions
for processing EFAs. Values of type efa are implemented as values of type
fa, and the module EFA provides functions

val injToFA : efa -> fa

val projFromFA : fa -> efa

for making a value of type efa have type fa, i.e., “injecting” an efa into
type fa, and for making a value of type fa that is an EFA have type efa, i.e.,
“projecting” an fa that is an EFA to type efa. If one tries to project an fa

that is not an EFA to type efa, an error is signaled. The functions injToFA
and projFromFA are available in the top-level environment as injEFAToFA
and projFAToEFA, respectively.

The module EFA also defines the functions:

val input : string -> efa

val fromFA : fa -> efa

The function input is used to input an EFA, i.e., to input a value of type fa
using FA.input, and then attempt to project it to type efa. The function
fromFA corresponds to our conversion function faToEFA, and is available
in the top-level environment with that name:

val faToEFA : fa -> efa

Finally, most of the functions for processing FAs that were introduced
in previous sections are inherited by EFA:

val output : string * efa -> unit

val numStates : efa -> int

val numTransitions : efa -> int

val alphabet : efa -> sym set

val equal : efa * efa -> bool

val isomorphism : efa * efa * sym_rel -> bool

val findIsomorphism : efa * efa -> sym_rel

val isomorphic : efa * efa -> bool

val renameStates : efa * sym_rel -> efa

val renameStatesCanonically : efa -> efa

val processStr : efa -> sym set * str -> sym set

val processStrBackwards : efa -> sym set * str -> sym set

val accepted : efa -> str -> bool

val checkLP : efa -> lp -> unit

val validLP : efa -> lp -> bool

val findLP : efa -> sym set * str * sym set -> lp

val findAcceptingLP : efa -> str -> lp

val simplify : efa -> efa

CHAPTER 3. REGULAR LANGUAGES 119

Suppose that fa is the finite automaton

345

Start A B
12

0

Here are some example uses of a few of the above functions:

- projFAToEFA fa;

invalid label in transition : "12"

uncaught exception Error

- val efa = faToEFA fa;

val efa = - : efa

- EFA.output("", efa);

{states}

<1,A>, <1,B>, <2,<A,1,2,B>>, <2,<B,3,45,B>>, <2,<B,34,5,B>>

{start state}

<1,A>

{accepting states}

<1,B>

{transitions}

<1,A>, 0 -> <1,A>; <1,A>, 1 -> <2,<A,1,2,B>>;

<1,B>, 3 -> <2,<B,3,45,B>>; <2,<A,1,2,B>>, 2 -> <1,B>;

<2,<B,3,45,B>>, 4 -> <2,<B,34,5,B>>;

<2,<B,34,5,B>>, 5 -> <1,B>

val it = () : unit

- val efa’ = EFA.renameStatesCanonically efa;

val efa’ = - : efa

- EFA.output("", efa’);

{states}

A, B, C, D, E

{start state}

A

{accepting states}

B

{transitions}

A, 0 -> A; A, 1 -> C; B, 3 -> D; C, 2 -> B; D, 4 -> E;

E, 5 -> B

val it = () : unit

- val rel = EFA.findIsomorphism(efa, efa’);

val rel = - : sym_rel

- SymRel.output("", rel);

(<1,A>, A), (<1,B>, B), (<2,<A,1,2,B>>, C),

CHAPTER 3. REGULAR LANGUAGES 120

(<2,<B,3,45,B>>, D), (<2,<B,34,5,B>>, E)

val it = () : unit

- LP.output("", FA.findAcceptingLP fa (Str.input ""));

@ 012345

@ .

A, 0 => A, 12 => B, 345 => B

val it = () : unit

- LP.output("", EFA.findAcceptingLP efa’ (Str.input ""));

@ 012345

@ .

A, 0 => A, 1 => C, 2 => B, 3 => D, 4 => E, 5 => B

val it = () : unit

3.9 Nondeterministic Finite Automata

In this section, we study the second of our more restricted kinds of finite
automata: nondeterministic finite automata. A nondeterministic finite au-
tomaton (NFA) M is a finite automaton such that

TM ⊆ { (q, x, r) | q, r ∈ Sym and x ∈ Str and |x| = 1 }.

In other words, an FA is an NFA iff every string of every transition of the
FA has a single symbol. For example, (A, 1,B) is a legal NFA transition,
but (A,%,B) and (A, 11,B) are not legal. We write NFA for the set of all
nondeterministic finite automata. Thus NFA (EFA (FA.

Now we consider several propositions that don’t hold for arbitrary EFAs.

Proposition 3.9.1
Suppose M is an NFA. For all p, q ∈ QM , if q ∈ ∆({p},%), then q = p.

Proposition 3.9.2
Suppose M is an NFA. For all p, r ∈ QM , a ∈ Sym and x ∈ Str, if r ∈
∆M ({p}, ax), then there is a q ∈ QM such that (p, a, q) ∈ TM and r ∈
∆M ({q}, x).

Proposition 3.9.3
Suppose M is an NFA. For all p, r ∈ QM , a ∈ Sym and x ∈ Str, if
r ∈ ∆M ({p}, xa), then there is a q ∈ QM such that q ∈ ∆M ({p}, x) and
(q, a, r) ∈ TM .

The following proposition obviously holds.

CHAPTER 3. REGULAR LANGUAGES 121

Proposition 3.9.4
Suppose M is an NFA.

• For all N ∈ FA, if M isoN , then N is an NFA.

• For all bijections f from QM to some set of symbols,
renameStates(M,f) is an NFA.

• renameStatesCanonically(M) is an NFA.

• simplify(M) is an NFA.

Since none of the strings of the transitions of an NFA are %, when proving
L(M) ⊆ X, for an NFA M and a language X, we can always use strong
string induction, instead of having to resort to using induction on the length
of labeled paths. In fact, since every string of every transition consists of
a single symbol, we can use left string induction rather than strong string
induction.

Next, we give an example of an NFA-correctness proof using left string
induction. Let M be the NFA

Start A B

0

0

1

To show that L(M) = {0}∗{0}{1}∗, it will suffice to show that L(M) ⊆
{0}∗{0}{1}∗ and {0}∗{0}{1}∗ ⊆ L(M). We will show the proof of L(M) ⊆
{0}∗{0}{1}∗.

Lemma 3.9.5
L(M) ⊆ {0}∗{0}{1}∗.

Proof. Since alphabet(M) = {0, 1}, it will suffice to show that, for all
w ∈ {0, 1}∗:

(A) if A ∈ ∆({A}, w), then w ∈ {0}∗;

(B) if B ∈ ∆({A}, w), then w ∈ {0}∗{0}{1}∗.

We proceed by left string induction.

(Basis Step) We must show that:

(A) if A ∈ ∆({A},%), then % ∈ {0}∗;

CHAPTER 3. REGULAR LANGUAGES 122

(B) if B ∈ ∆({A},%), then % ∈ {0}∗{0}{1}∗.

(A) Suppose A ∈ ∆({A},%). Then % ∈ {0}∗.

(B) Suppose B ∈ ∆({A},%). By Proposition 3.9.1, we have that B = A—
contradiction. Thus % ∈ {0}∗{0}{1}∗.

(Inductive Step) Suppose a ∈ {0, 1} and w ∈ {0, 1}∗. Assume the inductive
hypothesis:

(A) if A ∈ ∆({A}, w), then w ∈ {0}∗;

(B) if B ∈ ∆({A}, w), then w ∈ {0}∗{0}{1}∗.

We must show that:

(A) if A ∈ ∆({A}, wa), then wa ∈ {0}∗;

(B) if B ∈ ∆({A}, wa), then wa ∈ {0}∗{0}{1}∗.

(A) Suppose A ∈ ∆({A}, wa). We must show that wa ∈ {0}∗. By Propo-
sition 3.9.3, there is a q ∈ Q such that q ∈ ∆({A}, w) and (q, a,A) ∈ T .
Thus q = A and a = 0, so that A ∈ ∆({A}, w). By part (A) of the inductive
hypothesis, we have that w ∈ {0}∗. Thus wa = w0 ∈ {0}∗{0} ⊆ {0}∗.

(B) Suppose B ∈ ∆({A}, wa). We must show that wa ∈ {0}∗{0}{1}∗. By
Proposition 3.9.3, there is a q ∈ Q such that q ∈ ∆({A}, w) and (q, a,B) ∈ T .
There are two subcases to consider.

• Suppose q = A and a = 0. Then A ∈ ∆({A}, w). Part (A) of the induc-
tive hypothesis tell us that w ∈ {0}∗. Thus wa = w0% ∈ {0}∗{0}{1}∗.

• Suppose q = B and a = 1. Then B ∈ ∆({A}, w). Part (B) of the
inductive hypothesis tell us that w ∈ {0}∗{0}{1}∗. Thus wa = w1 ∈
{0}∗{0}{1}∗{1} ⊆ {0}∗{0}{1}∗.

2

Next, we consider the problem of converting EFAs to NFAs. Suppose M
is the EFA

Start A B

0

%

1

C

2

%

CHAPTER 3. REGULAR LANGUAGES 123

To convert M into an equivalent NFA, we will have to:

• replace the transitions (A,%,B) and (B,%,C) with legal transitions
(for example, because of the valid labeled path

A
%
⇒ B

1

⇒ B
%
⇒ C,

we will add the transition (A, 1,C));

• make (at least) A be an accepting state (so that % is accepted by the
NFA).

Before defining our general procedure for converting EFAs to NFAs,
we first say what we mean by the empty-closure of a set of states. Sup-
pose M is a finite automaton and P ⊆ QM . The empty-closure of P
(emptyCloseM (P)) is the least subset X of QM such that

• P ⊆ X;

• for all q, r ∈ QM , if q ∈ X and (q,%, r) ∈ TM , then r ∈ X.

We sometimes abbreviate emptyCloseM (P) to emptyClose(P).
For example, if M is our example EFA and P = {A}, then:

• A ∈ X;

• B ∈ X, since A ∈ X and (A,%,B) ∈ TM ;

• C ∈ X, since B ∈ X and (B,%,C) ∈ TM .

Thus emptyClose(P) = {A,B,C}.

Proposition 3.9.6
Suppose M is a finite automaton. For all P ⊆ QM , emptyCloseM (P) =
∆M (P,%).

In other words, emptyCloseM (P) is all of the states that can be reached
from elements of P by sequences of empty moves.

Next, we consider backwards empty-closure. Suppose M is a fi-
nite automaton and P ⊆ QM . The backwards empty-closure of P
(emptyCloseBackwardsM (P)) is the least subset X of QM such that

• P ⊆ X;

• for all q, r ∈ QM , if r ∈ X and (q,%, r) ∈ TM , then q ∈ X.

CHAPTER 3. REGULAR LANGUAGES 124

We sometimes abbreviate emptyCloseBackwardsM (P) to
emptyCloseBackwards(P).

For example, if M is our example EFA and P = {C}, then:

• C ∈ X;

• B ∈ X, since C ∈ X and (B,%,C) ∈ TM ;

• A ∈ X, since B ∈ X and (A,%,B) ∈ TM .

Thus emptyCloseBackwards(P) = {A,B,C}.

Proposition 3.9.7
Suppose M is a finite automaton. For all P ⊆ QM ,
emptyCloseBackwardsM (P) = { q ∈ QM | ∆M ({q},%) ∩ P 6= ∅ }.

In other words, emptyCloseBackwardsM (P) is all of the states from
which it is possible to reach elements of P by sequences of empty moves.

Now we use our auxiliary functions in order to define our algorithm for
converting EFAs to NFAs. We define a function efaToNFA ∈ EFA→NFA
that converts EFAs into NFAs by saying that efaToNFA(M) is the NFA
N such that:

• QN = QM ;

• sN = sM ;

• AN = emptyCloseBackwardsM (AM);

• TN is the set of all triples (q′, a, r′) such that q′, r′ ∈ QM , a ∈ Sym,
and there are q, r ∈ QM such that:

– (q, a, r) ∈ TM ;

– q′ ∈ emptyCloseBackwardsM ({q}); and

– r′ ∈ emptyCloseM ({r}).

If, in the definition of TN , we had required that r′ = r, then N would
still have been equivalent to M . Our definition has the advantage of being
symmetric.

To compute the set TN , we process each transition (q, x, r) of M as
follows. If x = %, then we generate no transitions. Otherwise, our transition
is (q, a, r) for some symbol a. We then compute the backwards empty-closure

CHAPTER 3. REGULAR LANGUAGES 125

of {q}, and call the result X, and compute the (forwards) empty-closure of
{r}, and call the result Y . We then add all of the elements of

{ (q′, a, r′) | q′ ∈ X and r′ ∈ Y }

to TN .
Let M be our example EFA

Start A B

0

%

1

C

2

%

and let N = efaToNFA(M). Then

• QN = QM = {A,B,C};

• sN = sM = A;

• AN = emptyCloseBackwardsM (AM) =
emptyCloseBackwardsM ({C}) = {A,B,C}.

Now, let’s work out what TN is, by processing each of M ’s transitions.

• From the transitions (A,%,B) and (B,%,C), we get no elements of
TN .

• Consider the transition (A, 0,A). Since emptyCloseBackwardsM ({A}) =
{A} and emptyCloseM ({A}) = {A,B,C}, we add (A, 0,A), (A, 0,B)
and (A, 0,C) to TN .

• Consider the transition (B, 1,B). Since emptyCloseBackwardsM ({B}) =
{A,B} and emptyCloseM ({B}) = {B,C}, we add (A, 1,B), (A, 1,C),
(B, 1,B) and (B, 1,C) to TN .

• Consider the transition (C, 2,C). Since emptyCloseBackwardsM ({C}) =
{A,B,C} and emptyCloseM ({C}) = {C}, we add (A, 2,C), (B, 2,C)
and (C, 2,C) to TN .

Thus our NFA N is

0, 1, 2

Start A B

0

0, 1

1

C

2

1, 2

CHAPTER 3. REGULAR LANGUAGES 126

Theorem 3.9.8
For all M ∈ EFA:

• efaToNFA(M) ≈M ; and

• alphabet(efaToNFA(M)) = alphabet(M).

Proof. Suppose M ∈ EFA and let N = efaToNFA(M). Because each
transition (q, a, r) of M is turned into one or more N -transitions with string
a, it’s clear that alphabet(N) = alphabet(M). It remains to show that
L(N) = L(M).

Suppose w ∈ L(N), so that there is an lp ∈ LP such that the label of
lp is w, lp is valid for N , the start state of lp is the start state of N (which
is also the start state of M), and the end state of lp is an accepting state
of N . To show that w ∈ L(M), we explain how lp may be turned into a
valid labeled path of M with the same label and start state, and with an
end state that is one of M ’s accepting states. If we are at the end, q, of our
labeled path lp, then q ∈ AN = emptyCloseBackwardsM (AM), so that
we can tack on to the labeled path we are constructing enough %-transitions
to take us from q to an accepting state of M . Otherwise, we have a step
of lp corresponding to an N -transition (q′, a, r′). Then there are q, r ∈ QM

such that:

• (q, a, r) ∈ TM ;

• q′ ∈ emptyCloseBackwardsM ({q}); and

• r′ ∈ emptyCloseM ({r}).

Thus the step corresponding to (q′, a, r′) may be expanded into the following
sequence of steps corresponding to M -transitions. We start with the %-
transitions that take us from q′ to q. Then we use (q, a, r). Then we use
the %-transitions taking us from r to r′. (We could turn all of this into an
induction on the length of lp.)

Suppose w ∈ L(M), so that there is an lp ∈ LP such that the label of
lp is w, lp is valid for M , the start state of lp is the start state of M (which
is also the start state of N), and the end state of lp is an accepting state
of M . To show that w ∈ L(N), we explain how lp may be turned into a
valid labeled path of N with the same label and start state, and with an end
state that’s one of N ’s accepting states. At some stage of this conversion
process, suppose q′ is the next state of lp to be dealt with. First, we pull
off as many %-transitions as possible, taking us to a state q. Thus, we have

CHAPTER 3. REGULAR LANGUAGES 127

that q′ ∈ emptyCloseBackwardsM ({q}). If this exhausts our labeled
path lp, then q ∈ AM , so that q′ ∈ emptyCloseBackwardsM (AM) = AN ;
thus, we add nothing to the labeled path we are constructing, and we are
done. Otherwise, the next step in lp uses an M -transition (q, a, r). Since
r ∈ emptyCloseM ({r}), we have that (q′, a, r) ∈ TN . Thus the next step
of the labeled path we’re constructing uses this transition. (We could turn
all of this into an induction of the length of lp.) 2

The Forlan module FA defines the following functions for computing for-
wards and backwards empty-closures:

val emptyClose : fa -> sym set -> sym set

val emptyCloseBackwards : fa -> sym set -> sym set

It turns out that, emptyClose is implemented using processStr, and
emptyCloseBackwards is implemented using processStrBackwards. For
example, if fa is bound to the finite automaton

Start A B

0

%

1

C

2

%

then we can compute the empty-closure of {A} as follows:

- SymSet.output("", FA.emptyClose fa (SymSet.input ""));

@ A

@ .

A, B, C

val it = () : unit

The Forlan module NFA defines an abstract type nfa (in the top-level
environment) of nondeterministic finite automata, along with various func-
tions for processing NFAs. Values of type nfa are implemented as values of
type fa, and the module NFA provides the following injection and projection
functions:

val injToFA : nfa -> fa

val injToEFA : nfa -> efa

val projFromFA : fa -> nfa

val projFromEFA : efa -> nfa

The functions injToFA, injToEFA, projFromFA and projFromEFA are
available in the top-level environment as injNFAToFA, injNFAToEFA,
projFAToNFA and projEFAToNFA, respectively.

The module NFA also defines the functions:

CHAPTER 3. REGULAR LANGUAGES 128

val input : string -> nfa

val fromEFA : efa -> nfa

The function input is used to input an NFA, and the function fromEFA

corresponds to our conversion function efaToNFA, and is available in the
top-level environment with that name:

val efaToNFA : efa -> nfa

Most of the functions for processing FAs that were introduced in previous
sections are inherited by NFA:

val output : string * nfa -> unit

val numStates : nfa -> int

val numTransitions : nfa -> int

val alphabet : nfa -> sym set

val equal : nfa * nfa -> bool

val isomorphism : nfa * nfa * sym_rel -> bool

val findIsomorphism : nfa * nfa -> sym_rel

val isomorphic : nfa * nfa -> bool

val renameStates : nfa * sym_rel -> nfa

val renameStatesCanonically : nfa -> nfa

val processStr : nfa -> sym set * str -> sym set

val processStrBackwards : nfa -> sym set * str -> sym set

val accepted : nfa -> str -> bool

val checkLP : nfa -> lp -> unit

val validLP : nfa -> lp -> bool

val findLP : nfa -> sym set * str * sym set -> lp

val findAcceptingLP : nfa -> str -> lp

val simplify : nfa -> nfa

Finally, the functions for computing forwards and backwards empty-closures
are inherited by the EFA module

val emptyClose : efa -> sym set -> sym set

val emptyCloseBackwards : efa -> sym set -> sym set

and by the NFA module

val emptyClose : nfa -> sym set -> sym set

val emptyCloseBackwards : nfa -> sym set -> sym set

(of course, the NFA versions of these functions don’t do anything interest-
ing).

Suppose that efa is the efa

CHAPTER 3. REGULAR LANGUAGES 129

Start A B

0

%

1

C

2

%

Here are some example uses of a few of the above functions:

- projEFAToNFA efa;

invalid label in transition : "%"

uncaught exception Error

- val nfa = efaToNFA efa;

val nfa = - : nfa

- NFA.output("", nfa);

{states}

A, B, C

{start state}

A

{accepting states}

A, B, C

{transitions}

A, 0 -> A | B | C; A, 1 -> B | C; A, 2 -> C;

B, 1 -> B | C; B, 2 -> C; C, 2 -> C

val it = () : unit

- LP.output("", EFA.findAcceptingLP efa (Str.input ""));

@ 012

@ .

A, 0 => A, % => B, 1 => B, % => C, 2 => C

val it = () : unit

- LP.output("", NFA.findAcceptingLP nfa (Str.input ""));

@ 012

@ .

A, 0 => A, 1 => B, 2 => C

val it = () : unit

3.10 Deterministic Finite Automata

In this section, we study the third of our more restricted kinds of finite
automata: deterministic finite automata. A deterministic finite automaton
(DFA) M is a finite automaton such that:

• TM ⊆ { (q, x, r) | q, r ∈ Sym and x ∈ Str and |x| = 1 };

• for all q ∈ QM and a ∈ alphabet(M), there is a unique r ∈ QM such
that (q, a, r) ∈ TM .

CHAPTER 3. REGULAR LANGUAGES 130

In other words, an FA is a DFA iff it is an NFA and, for every state q of
the automaton and every symbol a of the automaton’s alphabet, there is
exactly one state that can be entered from state q by reading a from the
automaton’s input. We write DFA for the set of all deterministic finite
automata. Thus DFA (NFA (EFA (FA.

Let M be the finite automaton

C
0

1

Start A B

1

0

1

It turns out, as we will later prove, that L(M) = {w ∈ {0, 1}∗ | 000

is not a substring of w }. M is almost a DFA; there is never more than one
way of processing a symbol from one of M ’s states. On the other hand,
there is no transition of the form (C, 0, r), and so M is not a DFA, since
0 ∈ alphabet(M).

We can make M into a DFA by adding a dead state D:

DC
00

1

0, 1Start A B

1

0

1

We will never need more than one dead state in a DFA.
The following proposition obviously holds.

Proposition 3.10.1
Suppose M is a DFA.

• For all N ∈ FA, if M isoN , then N is a DFA.

• For all bijections f fromQM to some set of symbols, renameStates(M,f)
is a DFA.

• renameStatesCanonically(M) is a DFA.

Now we prove a proposition that doesn’t hold for arbitrary NFAs.

Proposition 3.10.2
Suppose M is a DFA. For all q ∈ QM and w ∈ alphabet(M)∗,
|∆M ({q}, w)| = 1.

CHAPTER 3. REGULAR LANGUAGES 131

Proof. An easy left string induction on w. 2

Suppose M is a DFA. Because of Proposition 3.10.2, we can define a
function δM ∈ QM × alphabet(M)∗→QM by:

δM (q, w) = the unique r ∈ QM such that r ∈ ∆M ({q}, w).

In other words, δM (q, w) is the unique state r of M that is the end of a
valid labeled path for M that starts at q and is labeled by w. Thus, for all
q, r ∈ QM and w ∈ alphabet(M)∗,

δM (q, w) = r iff r ∈ ∆M ({q}, w).

We sometimes abbreviate δM (q, w) to δ(q, w). For example, if M is the DFA

DC
00

1

0, 1Start A B

1

0

1

then

• δ(A,%) = A;

• δ(A, 0100) = C;

• δ(B, 000100) = D.

Having defined the δ function, we can study its properties.

Proposition 3.10.3
Suppose M is a DFA.

(1) For all q ∈ QM , δM (q,%) = q.

(2) For all q ∈ QM and a ∈ alphabet(M), δM (q, a) = the unique r ∈
QM such that (q, a, r) ∈ TM .

(3) For all q ∈ QM and x, y ∈ alphabet(M)∗, δM (q, xy) =
δM (δM (q, x), y).

CHAPTER 3. REGULAR LANGUAGES 132

Suppose M is a DFA. By Part (2) of the preceding proposition, we have
that, for all q, r ∈ QM and a ∈ alphabet(M),

δM (q, a) = r iff (q, a, r) ∈ TM .

Now we can use the δ function to explain when a string is accepted by
an FA.

Proposition 3.10.4
Suppose M is a DFA. L(M) = {w ∈ alphabet(M)∗ | δM (sM , w) ∈ AM }.

Proof. Let X = {w ∈ alphabet(M)∗ | δM (sM , w) ∈ AM }. We must
show that L(M) ⊆ X ⊆ L(M).

(L(M) ⊆ X) Suppose w ∈ L(M). Then w ∈ alphabet(M)∗ and there
is a q ∈ AM such that q ∈ ∆M ({sM}, w). Thus δM (sM , w) = q ∈ AM , so
that w ∈ X.

(X ⊆ L(M)) Suppose w ∈ X, so that w ∈ alphabet(M)∗ and
δM (sM , w) ∈ AM . Then δM (sM , w) ∈ ∆M ({sM}, w), and thus w ∈ L(M).
2

The preceding propositions give us an efficient algorithm for checking
whether a string is accepted by a DFA. For example, suppose M is the DFA

DC
00

1

0, 1Start A B

1

0

1

To check whether 0100 is accepted by M , we need to determine whether
δ(A, 0100) ∈ {A,B,C}. We have that:

δ(A, 0100) = δ(δ(A, 0), 100)

= δ(B, 100)

= δ(δ(B, 1), 00)

= δ(A, 00)

= δ(δ(A, 0), 0)

= δ(B, 0)

= C

∈ {A,B,C}.

CHAPTER 3. REGULAR LANGUAGES 133

Thus 0100 is accepted by M .
Since every DFA is an NFA, we could prove the correctness of DFAs

using the techniques that we have already studied. We can often avoid a lot
of work, however, by exploiting the fact that we are working with DFAs. It
will also be convenient to express things using the δM function rather than
the ∆M function.

Next, we do an example DFA correctness proof. Suppose M is the DFA

DC
00

1

0, 1Start A B

1

0

1

and let X = {w ∈ {0, 1}∗ | 000 is not a substring of w }. We will show that
L(M) = X.

Lemma 3.10.5
For all w ∈ {0, 1}∗:

(A) if δ(A, w) = A, then w ∈ X and 0 is not a suffix of w;

(B) if δ(A, w) = B, then w ∈ X and 0, but not 00, is a suffix of w;

(C) if δ(A, w) = C, then w ∈ X and 00 is a suffix of w;

(D) if δ(A, w) = D, then w 6∈ X.

Because A, B and C are accepting states, it’s important that the right-
sides of (A)–(C) imply that w ∈ X. And, since D is not an accepting state,
it’s important that the right-side of (D) implies that w 6∈ X. The rest of
the right-sides of (A)–(C) have been chosen so that it’s possible to prove the
lemma by left string induction.

Proof. We proceed by left string induction.

(Basis Step) We must show that

(A) if δ(A,%) = A, then % ∈ X and 0 is not a suffix of %;

(B) if δ(A,%) = B, then % ∈ X and 0, but not 00, is a suffix of %;

(C) if δ(A,%) = C, then % ∈ X and 00 is a suffix of %;

(D) if δ(A,%) = D, then % 6∈ X.

CHAPTER 3. REGULAR LANGUAGES 134

Part (A) holds since % has no 0’s. Parts (B)–(D) hold “vacuously”, since
δ(A,%) = A, by Proposition 3.10.3(1).

(Inductive Step) Suppose a ∈ {0, 1} and w ∈ {0, 1}∗. Assume the inductive
hypothesis:

(A) if δ(A, w) = A, then w ∈ X and 0 is not a suffix of w;

(B) if δ(A, w) = B, then w ∈ X and 0, but not 00, is a suffix of w;

(C) if δ(A, w) = C, then w ∈ X and 00 is a suffix of w;

(D) if δ(A, w) = D, then w 6∈ X.

We must show that:

(A) if δ(A, wa) = A, then wa ∈ X and 0 is not a suffix of wa;

(B) if δ(A, wa) = B, then wa ∈ X and 0, but not 00, is a suffix of wa;

(C) if δ(A, wa) = C, then wa ∈ X and 00 is a suffix of wa;

(D) if δ(A, wa) = D, then wa 6∈ X.

(A) Suppose δ(A, wa) = A. We must show that wa ∈ X and 0 is not a suffix
of wa. By Proposition 3.10.3(3), we have that δ(δ(A, w), a) = δ(A, wa) = A.
Thus (δ(A, w), a,A) ∈ T , by Proposition 3.10.3(2). Thus there are three
cases to consider.

• Suppose δ(A, w) = A and a = 1. By Part (A) of the inductive hypoth-
esis, we have that w ∈ X. Thus wa = w1 ∈ X and 0 is not a suffix of
w1 = wa.

• Suppose δ(A, w) = B and a = 1. By Part (B) of the inductive hypoth-
esis, we have that w ∈ X. Thus wa = w1 ∈ X and 0 is not a suffix of
w1 = wa.

• Suppose δ(A, w) = C and a = 1. By Part (C) of the inductive hypoth-
esis, we have that w ∈ X. Thus wa = w1 ∈ X and 0 is not a suffix of
w1 = wa.

(B) Suppose δ(A, wa) = B. We must show that wa ∈ X and 0, but not
00, is a suffix of wa. Since δ(δ(A, w), a) = δ(A, wa) = B, we have that
(δ(A, w), a,B) ∈ T . Thus δ(A, w) = A and a = 0. By Part (A) of the

CHAPTER 3. REGULAR LANGUAGES 135

inductive hypothesis, we have that w ∈ X and 0 is not a suffix of w. Thus
wa = w0 ∈ X, 0 is a suffix of w0 = wa, and 00 is not a suffix of w0 = wa.

(C) Suppose δ(A, wa) = C. We must show that wa ∈ X and 00 is a suffix
of wa. Since δ(δ(A, w), a) = δ(A, wa) = C, we have that (δ(A, w), a,C) ∈ T .
Thus δ(A, w) = B and a = 0. By Part (B) of the inductive hypothesis, we
have that w ∈ X and 0, but not 00, is a suffix of w. Since w ∈ X and 00 is
not a suffix of w, we have that wa = w0 ∈ X. And, since 0 is a suffix of w,
we have that 00 is a suffix of w0 = wa.

(D) Suppose δ(A, wa) = D. We must show that wa 6∈ X. Since
δ(δ(A, w), a) = δ(A, wa) = D, we have that (δ(A, w), a,D) ∈ T . Thus there
are three cases to consider.

• Suppose δ(A, w) = C and a = 0. By Part (C) of the inductive hypoth-
esis, we have that 00 is a suffix of w. Thus wa = w0 6∈ X.

• Suppose δ(A, w) = D and a = 0. By Part (D) of the inductive hypoth-
esis, we have that w 6∈ X. Thus wa 6∈ X.

• Suppose δ(A, w) = D and a = 1. By Part (D) of the inductive hypoth-
esis, we have that w 6∈ X. Thus wa 6∈ X.

2

Now, we use the result of the preceding lemma to show that L(M) = X.
Note how we are able to show that X ⊆ L(M) using proof-by-contradiction.

Lemma 3.10.6
L(M) = X.

Proof. (L(M) ⊆ X) Suppose w ∈ L(M). Then w ∈ alphabet(M)∗ =
{0, 1}∗ and δ(A, w) ∈ {A,B,C}. By Parts (A)–(C) of Lemma 3.10.5, we have
that w ∈ X.

(X ⊆ L(M)) Suppose w ∈ X. Since X ⊆ {0, 1}∗, we have that w ∈
{0, 1}∗. Suppose, toward a contradiction, that w 6∈ L(M). Thus δ(A, w) 6∈
{A,B,C}, so that δ(A, w) = D. But then Part (D) of Lemma 3.10.5 tells us
that w 6∈ X—contradiction. Thus w ∈ L(M). 2

Next, we consider the simplification of DFAs. Let M be our example
DFA

CHAPTER 3. REGULAR LANGUAGES 136

DC
00

1

0, 1Start A B

1

0

1

Then M is not simplified, since the state D is dead. But if we get rid of D,
then we won’t have a DFA anymore. Thus, we will need:

• a notion of when a DFA is simplified that is more liberal than our
standard notion;

• a corresponding simplification procedure for DFAs.

We say that a DFA M is deterministically simplified iff

• every element of QM is reachable; and

• at most one element of QM is dead.

For example, consider the following DFAs, which both accept ∅:

(M1) (M2)

Start A

0

Start A

M1 is simplified (recall that any FA with a single state and no transitions
is simplified), but M2 is not simplified. On the other hand, both of these
DFAs are deterministically simplified, since A is reachable in both machines,
and is the only dead state of each machine.

We define a simplification algorithm for DFAs that takes in

• a DFA M and

• an alphabet Σ

and returns a DFA N such that

• N is deterministically simplified,

• N is equivalent to M ,

• alphabet(N) = alphabet(L(M)) ∪ Σ.

CHAPTER 3. REGULAR LANGUAGES 137

Thus, the alphabet of N will consist of all symbols that either appear in
strings that are accepted by M or are in Σ.

We begin by letting the FA M ′ be simplify(M), i.e., the result of run-
ning our simplification algorithm for FAs on M . M ′ will have the following
properties.

• M ′ is simplified.

• M ′ ≈M .

• alphabet(M ′) = alphabet(L(M ′)) = alphabet(L(M)).

• For all q ∈ QM ′ and a ∈ alphabet(M ′), there is at most one r ∈ QM ′

such that (q, a, r) ∈ TM ′ . This property holds since M is a DFA and
M ′ was formed by removing states and transitions from M .

Let Σ′ = alphabet(M ′) ∪ Σ = alphabet(L(M)) ∪ Σ. If M ′ is a DFA
and alphabet(M ′) = Σ′, then we return M ′ as our DFA, N . Otherwise, we
must turn M ′ into a DFA whose alphabet is Σ′. We have that

• alphabet(M ′) ⊆ Σ′; and

• for all q ∈ QM ′ and a ∈ Σ′, there is at most one r ∈ QM ′ such that
(q, a, r) ∈ TM ′ .

Since M ′ is simplified, there are two cases to consider.
If M ′ has no accepting states, then sM ′ is the only state of M ′ and M ′

has no transitions. Thus we can define our DFA N by:

• QN = QM ′ = {sM ′};

• sN = sM ′ ;

• AN = AM ′ = ∅;

• TN = { (sM ′ , a, sM ′) | a ∈ Σ′ }.

Alternatively, M ′ has at least one accepting state. Thus, M ′ has no dead
states. We define our DFA N by:

• QN = QM ′∪{〈dead〉} (actually, we put enough brackets around 〈dead〉
so that it’s not in QM ′);

• sN = sM ′ ;

• AN = AM ′ ;

CHAPTER 3. REGULAR LANGUAGES 138

• TN = TM ′ ∪T ′, where T ′ is the set of all triples (q, a, 〈dead〉) such that
either

– q ∈ QM ′ and a ∈ Σ′, but there is no r ∈ QM ′ such that (q, a, r) ∈
TM ′ ; or

– q = 〈dead〉 and a ∈ Σ′.

We define a function determSimplify ∈ DFA × Alp → DFA by:
determSimplify(M,Σ) is the result of running the above algorithm on
M and Σ.

Theorem 3.10.7
For all M ∈ DFA and Σ ∈ Alp:

• determSimplify(M,Σ) is deterministically simplified;

• determSimplify(M,Σ) is equivalent to M ; and

• alphabet(determSimplify(M,Σ)) = alphabet(L(M)) ∪ Σ.

For example, suppose M is the DFA

DC
00

1

0, 1Start A B

1

0

1

Then determSimplify(M, {2}) is the DFA

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1

Now we consider the problem of converting NFAs to DFAs. Suppose M
is the NFA

C
1

0

Start A B

1

1

CHAPTER 3. REGULAR LANGUAGES 139

How can we convert M into a DFA? Our approach will be to convert M into
a DFA N whose states represent the elements of the set

{∆M ({A}, w) | w ∈ {0, 1}∗ }.

For example, one the states of N will be 〈A,B〉, which represents {A,B} =
∆M ({A}, 1). This is the state that our DFA will be in after processing 1

from the start state.
Before describing our conversion algorithm, we first consider a propo-

sition concerning the ∆ function for NFAs and say how we will represent
finite sets of symbols as symbols.

Proposition 3.10.8
Suppose M is an NFA.

(1) For all P ⊆ QM , ∆M (P,%) = P .

(2) For all P ⊆ QM and a ∈ alphabet(M), ∆M (P, a) = { r ∈ QM |
(p, a, r) ∈ TM , for some p ∈ P }.

(3) For all P ⊆ QM and x, y ∈ alphabet(M)∗, ∆M (P, xy) =
∆M (∆M (P, x), y).

Given a finite set of symbols P , we write P for the symbol

〈a1, . . . , an〉,

where a1, . . . , an are all of the elements of P , in order according to our
ordering on Sym, and without repetition. For example, {B,A} = 〈A,B〉
and ∅ = 〈〉. It is easy to see that, if P and R are finite sets of symbols, then
P = R iff P = R.

We convert an NFA M into a DFA N as follows. First, we generate the
least subset X of P(QM) such that:

• {sM} ∈ X;

• for all P ∈ X and a ∈ alphabet(M), ∆M (P, a) ∈ X.

Then we define the DFA N as follows:

• QN = {P | P ∈ X };

• sN = {sM} = 〈sM 〉;

• AN = {P | P ∈ X and P ∩AM 6= ∅ };

CHAPTER 3. REGULAR LANGUAGES 140

• TN = { (P , a,∆M (P, a)) | P ∈ X and a ∈ alphabet(M) }.

Then N is a DFA with alphabet alphabet(M) and, for all P ∈ X and
a ∈ alphabet(M), δN (P , a) = ∆M (P, a).

Now, we show how our example NFA can be converted into a DFA.
Suppose M is the NFA

C
1

0

Start A B

1

1

Let’s work out what the DFA N is.

• To begin with, {A} ∈ X, so that 〈A〉 ∈ QN . And 〈A〉 is the start state
of N . It is not an accepting state, since A 6∈ AM .

• Since {A} ∈ X, and ∆({A}, 0) = ∅, we add ∅ to X, 〈〉 to QN and
(〈A〉, 0, 〈〉) to TN .

Since {A} ∈ X, and ∆({A}, 1) = {A,B}, we add {A,B} to X, 〈A,B〉
to QN and (〈A〉, 1, 〈A,B〉) to TN .

• Since ∅ ∈ X, ∆(∅, 0) = ∅ and ∅ ∈ X, we don’t have to add anything
to X or QN , but we add (〈〉, 0, 〈〉) to TN .

Since ∅ ∈ X, ∆(∅, 1) = ∅ and ∅ ∈ X, we don’t have to add anything
to X or QN , but we add (〈〉, 1, 〈〉) to TN .

• Since {A,B} ∈ X, ∆({A,B}, 0) = ∅ and ∅ ∈ X, we don’t have to add
anything to X or QN , but we add (〈A,B〉, 0, 〈〉) to TN .

Since {A,B} ∈ X, ∆({A,B}, 1) = {A,B} ∪ {C} = {A,B,C}, we add
{A,B,C} to X, 〈A,B,C〉 to QN , and (〈A,B〉, 1, 〈A,B,C〉) to TN . Since
{A,B,C} contains (the only) one of M ’s accepting states, we add
〈A,B,C〉 to AN .

• Since {A,B,C} ∈ X and ∆({A,B,C}, 0) = ∅ ∪ ∅ ∪ {C} = {C}, we add
{C} to X, 〈C〉 to QN and (〈A,B,C〉, 0, 〈C〉) to TN . Since {C} contains
one of M ’s accepting states, we add 〈C〉 to AN .

Since {A,B,C} ∈ X, ∆({A,B,C}, 1) = {A,B} ∪ {C} ∪ ∅ = {A,B,C}
and {A,B,C} ∈ X, we don’t have to add anything to X or QN , but
we add (〈A,B,C〉, 1, 〈A,B,C〉) to TN .

CHAPTER 3. REGULAR LANGUAGES 141

• Since {C} ∈ X, ∆({C}, 0) = {C} and {C} ∈ X, we don’t have to add
anything to X or QN , but we add (〈C〉, 0, 〈C〉) to TN .

Since {C} ∈ X, ∆({C}, 1) = ∅ and ∅ ∈ X, we don’t have to add
anything to X or QN , but we add (〈C〉, 1, 〈〉) to TN .

Since there are no more elements to add to X, we are done. Thus, the DFA
N is

1

1

0

0

0, 1

0 10

〈A,
B,C〉 〈C〉

〈〉

Start
1

〈A,B〉〈A〉

The following two lemmas show why our conversion process is correct.

Lemma 3.10.9
For all w ∈ alphabet(M)∗:

• ∆M ({sM}, w) ∈ X; and

• δN (sN , w) = ∆M ({sM}, w).

Proof. By left string induction.

(Basis Step) We have that ∆M ({sM},%) = {sM} ∈ X and δN (sN ,%) =
sN = {sM} = ∆M ({sM},%).

(Inductive Step) Suppose a ∈ alphabet(M) and w ∈ alphabet(M)∗.
Assume the inductive hypothesis: ∆M ({sM}, w) ∈ X and δN (sN , w) =
∆M ({sM}, w).

Since ∆M ({sM}, w) ∈ X and a ∈ alphabet(M), we have that
∆M ({sM}, wa) = ∆M (∆M ({sM}, w), a) ∈ X. Thus

δN (sN , wa) = δN (δN (sN , w), a)

= δN (∆M ({sM}, w), a) (inductive hypothesis)

= ∆M (∆M ({sM}, w), a)

= ∆M ({sM}, wa).

2

CHAPTER 3. REGULAR LANGUAGES 142

Lemma 3.10.10
L(N) = L(M).

Proof. (L(M) ⊆ L(N)) Suppose w ∈ L(M), so that w ∈
alphabet(M)∗ = alphabet(N)∗ and ∆M ({sM}, w) ∩ AM 6= ∅. By
Lemma 3.10.9, we have that ∆M ({sM}, w) ∈ X and δN (sN , w) =
∆M ({sM}, w). Since ∆M ({sM}, w) ∈ X and ∆M ({sM}, w) ∩ AM 6= ∅, it
follows that δN (sN , w) = ∆M ({sM}, w) ∈ AN . Thus w ∈ L(N).

(L(N) ⊆ L(M)) Suppose w ∈ L(N), so that w ∈ alphabet(N)∗ =
alphabet(M)∗ and δN (sN , w) ∈ AN . By Lemma 3.10.9, we have
that δN (sN , w) = ∆M ({sM}, w). Thus ∆M ({sM}, w) ∈ AN , so that
∆M ({sM}, w) ∩AM 6= ∅. Thus w ∈ L(M). 2

We define a function nfaToDFA ∈ NFA→DFA by: nfaToDFA(M)
is the result of running the preceding algorithm with input M .

Theorem 3.10.11
For all M ∈ NFA:

• nfaToDFA(M) ≈M ; and

• alphabet(nfaToDFA(M)) = alphabet(M).

The Forlan module DFA defines an abstract type dfa (in the top-level
environment) of deterministic finite automata, along with various functions
for processing DFAs. Values of type dfa are implemented as values of type
fa, and the module DFA provides the following injection and projection
functions:

val injToFA : dfa -> fa

val injToNFA : dfa -> nfa

val injToEFA : dfa -> efa

val projFromFA : fa -> dfa

val projFromNFA : nfa -> dfa

val projFromEFA : efa -> dfa

These functions are available in the top-level environment with the names
injDFAToFA, injDFAToNFA, injDFAToEFA, projFAToDFA, projNFAToDFA and
projEFAToDFA.

The module DFA also defines the functions:

val input : string -> dfa

val determProcStr : dfa -> sym * str -> sym

val determAccepted : dfa -> str -> bool

val determSimplify : dfa * sym set -> dfa

val fromNFA : nfa -> dfa

CHAPTER 3. REGULAR LANGUAGES 143

The function input is used to input a DFA. The function determProcStr

is used to compute δM (q, w) for a DFA M , using the definition of δM .
The function determAccepted uses determProcStr to check whether a
string is accepted by a DFA. The function determSimplify corresponds
to determSimplify. The function fromNFA corresponds to our conversion
function nfaToDFA, and is available in the top-level environment with that
name:

val nfaToDFA : nfa -> dfa

Most of the functions for processing FAs that were introduced in previous
sections are inherited by DFA:

val output : string * dfa -> unit

val numStates : dfa -> int

val numTransitions : dfa -> int

val alphabet : dfa -> sym set

val equal : dfa * dfa -> bool

val isomorphism : dfa * dfa * sym_rel -> bool

val findIsomorphism : dfa * dfa -> sym_rel

val isomorphic : dfa * dfa -> bool

val renameStates : dfa * sym_rel -> dfa

val renameStatesCanonically : dfa -> dfa

val processStr : dfa -> sym set * str -> sym set

val processStrBackwards : dfa -> sym set * str -> sym set

val accepted : dfa -> str -> bool

val emptyClose : dfa -> sym set -> sym set

val emptyCloseBackwards : dfa -> sym set -> sym set

val checkLP : dfa -> lp -> unit

val validLP : dfa -> lp -> bool

val findLP : dfa -> sym set * str * sym set -> lp

val findAcceptingLP : dfa -> str -> lp

Suppose dfa is the dfa

DC
00

1

0, 1Start A B

1

0

1

We can turn dfa into an equivalent deterministically simplified DFA whose
alphabet is the union of the alphabet of the language of dfa and {2}, i.e.,
whose alphabet is {0, 1, 2}, as follows:

CHAPTER 3. REGULAR LANGUAGES 144

- val dfa’ = DFA.determSimplify(dfa, SymSet.input "");

@ 2

@ .

val dfa’ = - : dfa

- DFA.output("", dfa’);

{states}

A, B, C, <dead>

{start state}

A

{accepting states}

A, B, C

{transitions}

A, 0 -> B; A, 1 -> A; A, 2 -> <dead>; B, 0 -> C;

B, 1 -> A; B, 2 -> <dead>; C, 0 -> <dead>; C, 1 -> A;

C, 2 -> <dead>; <dead>, 0 -> <dead>; <dead>, 1 -> <dead>;

<dead>, 2 -> <dead>

val it = () : unit

Thus dfa’ is

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1

Suppose that nfa is the nfa

C
1

0

Start A B

1

1

We can convert nfa to a DFA as follows:

- val dfa = nfaToDFA nfa;

val dfa = - : dfa

- DFA.output("", dfa);

{states}

<>, <A>, <C>, <A,B>, <A,B,C>

{start state}

CHAPTER 3. REGULAR LANGUAGES 145

<A>

{accepting states}

<C>, <A,B,C>

{transitions}

<>, 0 -> <>; <>, 1 -> <>; <A>, 0 -> <>; <A>, 1 -> <A,B>;

<C>, 0 -> <C>; <C>, 1 -> <>; <A,B>, 0 -> <>;

<A,B>, 1 -> <A,B,C>; <A,B,C>, 0 -> <C>;

<A,B,C>, 1 -> <A,B,C>

val it = () : unit

Thus dfa is

1

1

0

0

0, 1

0 10

〈A,
B,C〉 〈C〉

〈〉

Start
1

〈A,B〉〈A〉

3.11 Closure Properties of Regular Languages

In this section, we show how to convert regular expressions to finite au-
tomata, as well as how to convert finite automata to regular expressions. As
a result, we will be able to conclude that the following statements about a
language L are equivalent:

• L is regular;

• L is generated by a regular expression;

• L is accepted by a finite automaton;

• L is accepted by an EFA;

• L is accepted by an NFA;

• L is accepted by a DFA.

Also, we will introduce:

• operations on FAs corresponding to union, concatenation and closure;

CHAPTER 3. REGULAR LANGUAGES 146

• an operation on EFAs corresponding to intersection;

• an operation on DFAs corresponding to set difference.

As a result, we will have that the set RegLan of regular languages is closed
under union, concatenation, closure, intersection and set difference. I.e., we
will have that, if L,L1, L2 ∈ RegLan, then L1 ∪L2, L1L2, L

∗, L1 ∩L2 and
L1 − L2 are in RegLan.

We will also show several additional closure properties of regular lan-
guages, in addition to giving the corresponding operations on regular ex-
pressions and automata.

In order to give an algorithm for converting regular expressions to finite
automata, we must first define several constants and operations on FAs.

We write emptyStr for the DFA

Start A

and emptySet for the DFA

Start A

Thus, we have that L(emptyStr) = {%} and L(emptySet) = ∅. Of course
emptyStr and emptySet are also NFAs, EFAs and FAs.

Next, we define a function fromStr ∈ Str→FA by: fromStr(x) is the
FA

B
x

Start A

Thus, for all x ∈ Str, L(fromStr(x)) = {x}. It is also convenient to define
a function fromSym ∈ Sym→ NFA by: fromSym(a) = fromStr(a).
Of course, fromSym is also an element of Sym→ EFA and Sym→ FA.
Furthermore, for all a ∈ Sym, L(fromSym(a)) = {a}.

Next, we define a function union ∈ FA × FA → FA such that
L(union(M1,M2)) = L(M1)∪L(M2), for all M1,M2 ∈ FA. In other words,
a string will be accepted by union(M1,M2) iff it is accepted by M1 or M2.
If M1,M2 ∈ FA, then union(M1,M2) is the FA N such that:

• QN = {A} ∪ { 〈1, q〉 | q ∈ QM1
} ∪ { 〈2, q〉 | q ∈ QM2

};

• sN = A;

CHAPTER 3. REGULAR LANGUAGES 147

• AN = { 〈1, q〉 | q ∈ AM1
} ∪ { 〈2, q〉 | q ∈ AM2

};

• TN =

{(A,%, 〈1, sM1
〉), (A,%, 〈2, sM2

〉)}

∪ { (〈1, q〉, a, 〈1, r〉) | (q, a, r) ∈ TM1
}

∪ { (〈2, q〉, a, 〈2, r〉) | (q, a, r) ∈ TM2
}.

For example, if M1 and M2 are the FAs

B
11

0

(M1)

Start A B
11

0

(M2)

Start A

then union(M1,M2) is the FA

〈1, A〉 〈1, B〉

0

0

11

11

〈2, A〉 〈2, B〉

%

%

Start A

Proposition 3.11.1
For all M1,M2 ∈ FA:

• L(union(M1,M2)) = L(M1) ∪ L(M2);

• alphabet(union(M1,M2)) = alphabet(M1) ∪ alphabet(M2).

Proposition 3.11.2
For all M1,M2 ∈ EFA, union(M1,M2) ∈ EFA.

Next, we define a function concat ∈ FA × FA → FA such that
L(concat(M1,M2)) = L(M1)L(M2), for all M1,M2 ∈ FA. In other words,
a string will be accepted by concat(M1,M2) iff it can be divided into two
parts in such a way that the first part is accepted by M1 and the second
part is accepted by M2. If M1,M2 ∈ FA, then concat(M1,M2) is the FA
N such that:

• QN = { 〈1, q〉 | q ∈ QM1
} ∪ { 〈2, q〉 | q ∈ QM2

};

CHAPTER 3. REGULAR LANGUAGES 148

• sN = 〈1, sM1
〉;

• AN = { 〈2, q〉 | q ∈ AM2
};

• TN =

{ (〈1, q〉,%, 〈2, sM2
〉) | q ∈ AM1

}

∪ { (〈1, q〉, a, 〈1, r〉) | (q, a, r) ∈ TM1
}

∪ { (〈2, q〉, a, 〈2, r〉) | (q, a, r) ∈ TM2
}.

For example, if M1 and M2 are the FAs

B
11

0

(M1)

Start A B
11

0

(M2)

Start A

then concat(M1,M2) is the FA

%

%

0

11
〈1, A〉 〈1, B〉 〈2, B〉

0

11
〈2, A〉Start

Proposition 3.11.3
For all M1,M2 ∈ FA:

• L(concat(M1,M2)) = L(M1)L(M2);

• alphabet(concat(M1,M2)) = alphabet(M1) ∪ alphabet(M2).

Proposition 3.11.4
For all M1,M2 ∈ EFA, concat(M1,M2) ∈ EFA.

As the last of our operations on FAs, we define a function closure ∈
FA→ FA such that L(closure(M)) = L(M)∗, for all M ∈ FA. In other
words, a string will be accepted by closure(M) iff it can be formed by
concatenating together some number of strings that are accepted by M . If
M ∈ FA, then closure(M) is the FA N such that:

• QN = {A} ∪ { 〈q〉 | q ∈ QM };

• sN = A;

CHAPTER 3. REGULAR LANGUAGES 149

• AN = {A};

• TN =

{(A,%, 〈sM 〉)}

∪ { (〈q〉,%,A) | q ∈ AM }

∪ { (〈q〉, a, 〈r〉) | (q, a, r) ∈ TM }.

For example, if M is the FA

B
11

0

0

0

C

1

Start A

then closure(M) is the FA

A 〈B〉
11

0

%

%

%

1

〈C〉
00

0
Start 〈A〉

Proposition 3.11.5
For all M ∈ FA,

• L(closure(M)) = L(M)∗;

• alphabet(closure(M)) = alphabet(M).

Proposition 3.11.6
For all M ∈ EFA, closure(M) ∈ EFA.

Now, we use our FA constants and operations on FAs in order to give
an algorithm for converting regular expressions to FAs. We define a func-
tion regToFA ∈ Reg → FA by recursion, as follows. The goal is for
L(regToFA(α)) to be equal to L(α), for all regular expressions α.

(1) regToFA(%) = emptyStr;

(2) regToFA($) = emptySet;

(3) for all α ∈ Reg, regToFA(α∗) = closure(regToFA(α));

(4) for all α, β ∈ Reg, regToFA(α + β) =
union(regToFA(α), regToFA(β));

CHAPTER 3. REGULAR LANGUAGES 150

(5) for all n ∈ N − {0} and a1, . . . , an ∈ Sym, regToFA(a1 · · · an) =
fromStr(a1 · · · an);

(6) for all n ∈ N − {0}, a1, . . . , an ∈ Sym and α ∈ Reg, if α
doesn’t consist of a single symbol, and α doesn’t have the form b β
for some b ∈ Sym and β ∈ Reg, then regToFA(a1 · · · an α) =
concat(fromStr(a1 · · · an), regToFA(α));

(7) for all α, β ∈ Reg, if α doesn’t consist of a single symbol, then
regToFA(αβ) = concat(regToFA(α), regToFA(β)).

For example, by Rule (6), we have that regToFA(0101∗) =
concat(fromStr(010), regToFA(1∗)). Rule (5), when n = 1, handles reg-
ular expressions consisting of single symbols. Rule (5), when n ≥ 2, plus
Rules (6)–(7) handle all concatenations. Of course, it would be possible to
replace Rule (5) by a rule handling single symbols only, delete Rule (6), and
remove the pre-condition on Rule (7). But this would have been at the cost
of never introducing transitions with labels consists of multiple symbols.

Theorem 3.11.7
For all α ∈ Reg:

• L(regToFA(α)) = L(α);

• alphabet(regToFA(α)) = alphabet(α).

Proof. Because of the form of recursion used, the proof uses induction on
the height of α. 2

For example, regToFA(0∗11 + 001∗) is isomorphic to the FA in Fig-
ure 3.1.

The Forlan module FA includes these constants and functions for building
finite automata and converting regular expressions to finite automata:

val emptyStr : fa

val emptySet : fa

val fromStr : str -> fa

val fromSym : sym -> fa

val union : fa * fa -> fa

val concat : fa * fa -> fa

val closure : fa -> fa

val fromReg : reg -> fa

The function fromReg corresponds to regToFA and is available in the top-
level environment with that name:

CHAPTER 3. REGULAR LANGUAGES 151

B

H I

C D

E F G

J K

%

%

% %

0

% 11

00 %

%

1

%

Start A

Figure 3.1: Regular Expression to FA Conversion Example

val regToFA : reg -> fa

The constants emptyStr and emptySet are inherited by the modules DFA,
NFA and EFA. The function fromSym is inherited by the modules NFA and
EFA. The functions union, concat and closure are inherited by the module
EFA.

Here is how the regular expression 0∗11 + 001∗ can be converted to an
FA in Forlan:

- val reg = Reg.input "";

@ 0*11 + 001*

@ .

val reg = - : reg

- val fa = regToFA reg;

val fa = - : fa

- FA.output("", fa);

{states}

A, <1,<1,A>>, <1,<2,A>>, <1,<2,B>>, <2,<1,A>>, <2,<1,B>>,

<2,<2,A>>, <1,<1,<A>>>, <1,<1,>>, <2,<2,<A>>>,

<2,<2,>>

{start state}

A

{accepting states}

<1,<2,B>>, <2,<2,A>>

{transitions}

A, % -> <1,<1,A>> | <2,<1,A>>;

CHAPTER 3. REGULAR LANGUAGES 152

<1,<1,A>>, % -> <1,<2,A>> | <1,<1,<A>>>;

<1,<2,A>>, 11 -> <1,<2,B>>; <2,<1,A>>, 00 -> <2,<1,B>>;

<2,<1,B>>, % -> <2,<2,A>>; <2,<2,A>>, % -> <2,<2,<A>>>;

<1,<1,<A>>>, 0 -> <1,<1,>>;

<1,<1,>>, % -> <1,<1,A>>;

<2,<2,<A>>>, 1 -> <2,<2,>>; <2,<2,>>, % -> <2,<2,A>>

val it = () : unit

- val fa’ = FA.renameStatesCanonically fa;

val fa’ = - : fa

- FA.output("", fa’);

{states}

A, B, C, D, E, F, G, H, I, J, K

{start state}

A

{accepting states}

D, G

{transitions}

A, % -> B | E; B, % -> C | H; C, 11 -> D; E, 00 -> F;

F, % -> G; G, % -> J; H, 0 -> I; I, % -> B; J, 1 -> K;

K, % -> G

val it = () : unit

Thus fa’ is the finite automaton in Figure 3.1.
We will now work towards the description of an algorithm for converting

FAs to Regular Expressions. To see how the algorithm will work, we need
to study a set of languages that are derived from finite automata, which we
refer to as “between languages”.

We begin by defining two auxiliary functions. Suppose M is an FA.
We define a function ordM ∈ QM → {1, . . . , |QM |} by: ordM (q) = |{ r ∈
QM | r ≤ q }|. Here ≤ is our standard ordering on symbols. We refer to
ordM (q) as the ordinal number of q in M . For example, if QM = {A,B,C},
then ordM (A) = 1, ordM (B) = 2 and ordM (C) = 3. Clearly, ordM is
a bijection from QM to {1, . . . , |QM |}. Thus we can define a function
stateM ∈ {1, . . . , |QM |} → QM by: stateM (n) = the unique q such that
ordM (q) = n. For example, if QM = {A,B,C}, then stateM (2) = B. We
often abbreviate ordM and stateM to ord and state, respectively.

Suppose M is an FA. We define a function

BtwM ∈ {1, . . . , |QM |} × {1, . . . , |QM |} × {0, . . . , |QM |} → Lan

by: BtwM (i, j, k) is the set of all w ∈ Str such that there is a labeled path

lp = q1

x1

⇒ q2

x2

⇒ · · · qn−1

xn−1

⇒ qn,

CHAPTER 3. REGULAR LANGUAGES 153

such that

• lp is valid for M ;

• w = x1x2 · · ·xn−1 = label(lp);

• ord(q1) = i;

• ord(qn) = j;

• for all 1 < l < n, ord(ql) ≤ k.

In other words, BtwM (i, j, k) consists of the labels of all of the valid
labeled paths for M that take us between the i’th state and the j’th state
without going through any intermediate states whose ordinal numbers are
greater than k. Here, intermediate doesn’t include the labeled path’s start
or end states. We think of the BtwM (i, j, k) as “between languages”. We
often abbreviate BtwM to Btw.

Suppose M is the finite automaton

B

0 11

0

%
Start A

• 0 ∈ Btw(1, 2, 0), because of the labeled path

A
0
⇒ B

(which has no intermediate states).

• % ∈ Btw(2, 2, 0), because of the labeled path

B

(which has no intermediate states).

• 00 ∈ Btw(2, 2, 1) because of the labeled path

B
%
⇒ A

0

⇒ A
0

⇒ B,

(both of the intermediate states are A, and A’s ordinal number is 1,
which is less-than-or-equal-to 1).

CHAPTER 3. REGULAR LANGUAGES 154

• 1111 6∈ Btw(2, 2, 1) because the only valid labeled path between B

and B whose label is 1111 is

B
11

⇒ B
11

⇒ B,

and this labeled path has an intermediate state whose ordinal number,
2, is greater-than 1.

Consider our example FA M again:

B

0 11

0

%
Start A

What is another way of describing the language BtwM (1, 1, 2) ∪
BtwM (1, 2, 2)? Since the first argument of each call to Btw is the ordi-
nal number of M ’s start state, the second arguments consist of the ordinal
numbers of M ’s accepting states, and the third argument of each call is
2 = |Q|, the answer is L(M). Thus, if we can figure out how to translate the
between languages of a finite automaton to regular expressions, we will be
able to translate the FA to a regular expression. The key to translating be-
tween languages to regular expressions is the following lemma, which shows
how to express Btw(i, j, k) recursively.

Lemma 3.11.8
Suppose M is an FA.

• For all 1 ≤ i, j ≤ |Q|, BtwM (i, j, 0) =

{w ∈ Str | (state(i), w, state(j)) ∈ TM } ∪ {% | i = j }.

• For all 1 ≤ i, j ≤ |Q| and 0 ≤ k < |Q|, BtwM (i, j, k + 1) =

BtwM (i, j, k)

∪BtwM (i, k + 1, k)BtwM (k + 1, k + 1, k)∗BtwM (k + 1, j, k).

Now we are ready to give our algorithm for converting FAs to regular
expressions. We define a function

faToReg ∈ (Reg→Reg)→ FA→Reg.

CHAPTER 3. REGULAR LANGUAGES 155

This function takes in a function simp (like the functions weakSimplify
or simplify(weakSubset) defined in Section 3.2) for simplifying regular
expressions, and returns a function that uses simp in order to turn an FA
M into a regular expression.

Suppose simp ∈ Reg→ Reg and M is an FA. We must say what the
regular expression faToReg(simp)(M) is. First, we define a function

btw ∈ {1, . . . , |QM |} × {1, . . . , |QM |} × {0, . . . , |QM |} →Reg

by recursion on its third argument.

• For all 1 ≤ i, j ≤ |QM |, btw(i, j, 0) is formed by turning each element
of Btw(i, j, 0) into a regular expression in the obvious way, putting
these regular expressions in order and summing them together (yield-
ing $ if there aren’t any of them), and applying simp to this regular
expression.

• For all 1 ≤ i, j ≤ |QM | and 0 ≤ k < |QM |, btw(i, j, k+1) is the result
of applying simp to

btw(i, j, k) + btw(i, k + 1, k)btw(k + 1, k + 1, k)∗ btw(k + 1, j, k)).

Actually, we use memoization to avoid computing the result of a given re-
cursive call more than once.

Lemma 3.11.9
Suppose that simp(α) ≈ α, for all α ∈ Reg. For all 1 ≤ i, j ≤ |QM | and
0 ≤ k ≤ |QM |, L(btw(i, j, k)) = Btw(i, j, k).

Proof. By mathematical induction on k. 2

Let q1, . . . , qn be the accepting states of M . Then faToReg(simp)(M)
is the result of applying simp to

btw(ord(sM),ord(q1), |QM |) + · · ·+ btw(ord(sM),ord(qn), |QM |).

(Actually, the btw(ord(sM),ord(qi), |QM |)’s are put in order before being
summed and then simplified.)

Thus, assuming that simp(α) ≈ α, for all α ∈ Reg, we will have that

L(faToReg(simp)(M)) = L(btw(ord(sM),ord(q1), |QM |)) ∪ · · · ∪

L(btw(ord(sM),ord(qn), |QM |))

= Btw(ord(sM),ord(q1), |QM |) ∪ · · · ∪

Btw(ord(sM),ord(qn), |QM |)

= L(M).

CHAPTER 3. REGULAR LANGUAGES 156

Theorem 3.11.10
For all simp ∈ Reg→Reg such that,

for all α ∈ Reg, simp(α) ≈ α and alphabet(simp(α)) ⊆
alphabet(α),

and M ∈ FA:

• L(faToReg(simp)(M)) = L(M);

• faToReg(simp)(M) = simp(α), for some α ∈ Reg;

• alphabet(faToReg(simp)(M)) ⊆ alphabet(M);

• ifM is simplified, then alphabet(faToReg(simp)(M)) = alphabet(M).

Now, let’s work through an FA-to-regular expression conversion exam-
ple. Suppose simp ∈ Reg→Reg is simplify(weakSubset) and M is our
example FA:

B

0 11

0

%
Start A

Since both A and B are accepting states, faToReg(simp)(M) will be

simp(btw(1, 1, 2) + btw(1, 2, 2)).

(Actually, btw(1, 1, 2) and btw(1, 2, 2) should be put in order, before be-
ing summed and then simplified.) Thus we must work out the values of
btw(1, 1, 2) and btw(1, 2, 2).

We begin by working top-down:

btw(1, 1, 2) = simp(btw(1, 1, 1) + btw(1, 2, 1)btw(2, 2, 1)∗ btw(2, 1, 1)),

btw(1, 2, 2) = simp(btw(1, 2, 1) + btw(1, 2, 1)btw(2, 2, 1)∗ btw(2, 2, 1)),

btw(1, 1, 1) = simp(btw(1, 1, 0) + btw(1, 1, 0)btw(1, 1, 0)∗ btw(1, 1, 0)),

btw(1, 2, 1) = simp(btw(1, 2, 0) + btw(1, 1, 0)btw(1, 1, 0)∗ btw(1, 2, 0)),

btw(2, 1, 1) = simp(btw(2, 1, 0) + btw(2, 1, 0)btw(1, 1, 0)∗ btw(1, 1, 0)),

btw(2, 2, 1) = simp(btw(2, 2, 0) + btw(2, 1, 0)btw(1, 1, 0)∗ btw(1, 2, 0)).

Next, we need to work out the values of btw(1, 1, 0), btw(1, 2, 0),
btw(2, 1, 0) and btw(2, 2, 0).

CHAPTER 3. REGULAR LANGUAGES 157

• Since Btw(1, 1, 0) = {%, 0}, we have that btw(1, 1, 0) = %+ 0.

• Since Btw(1, 2, 0) = {0}, we have that btw(1, 2, 0) = 0.

• Since Btw(2, 1, 0) = {%}, we have that btw(2, 1, 0) = %.

• Since Btw(2, 2, 0) = {%, 11}, we have that btw(2, 2, 0) = %+ 11.

Thus, working bottom-up, and using Forlan to do the simplification, we
have:

btw(1, 1, 1) = simp(btw(1, 1, 0) + btw(1, 1, 0)btw(1, 1, 0)∗ btw(1, 1, 0))

= simp((% + 0) + (% + 0)(% + 0)∗(% + 0))

= 0∗,

btw(1, 2, 1) = simp(btw(1, 2, 0) + btw(1, 1, 0)btw(1, 1, 0)∗ btw(1, 2, 0))

= simp(0 + (% + 0)(% + 0)∗0)

= 00∗,

btw(2, 1, 1) = simp(btw(2, 1, 0) + btw(2, 1, 0)btw(1, 1, 0)∗ btw(1, 1, 0))

= simp(% +%(% + 0)∗(% + 0))

= 0∗,

btw(2, 2, 1) = simp(btw(2, 2, 0) + btw(2, 1, 0)btw(1, 1, 0)∗ btw(1, 2, 0))

= simp((% + 11) + %(% + 0)∗0)

= 0∗ + 11.

Continuing further, we have:

btw(1, 1, 2) = simp(btw(1, 1, 1) + btw(1, 2, 1)btw(2, 2, 1)∗ btw(2, 1, 1))

= simp(0∗ + (00∗)(0∗ + 11)∗0∗)

= % + 0(0 + 11)∗,

btw(1, 2, 2) = simp(btw(1, 2, 1) + btw(1, 2, 1)btw(2, 2, 1)∗ btw(2, 2, 1))

= simp(00∗ + (00∗)(0∗ + 11)∗(0∗ + 11))

= 0(0 + 11)∗.

Finally, (since btw(1, 1, 2) is greater-than btw(1, 2, 2)) we have that:

faToReg(simp)(M) = simp(btw(1, 2, 2) + btw(1, 1, 2))

= simp(0(0 + 11)∗ + (% + 0(0 + 11)∗))

= % + 0(0 + 11)∗.

The Forlan module FA contains the function

CHAPTER 3. REGULAR LANGUAGES 158

val toReg : (reg -> reg) -> fa -> reg

which corresponds to our function faToReg and is available in the top-level
environment with that name:

val faToReg : (reg -> reg) -> fa -> reg

The modules DFA, NFA and EFA inherit the toReg function from FA, and
these functions are available in the top-level environment with the names
dfaToReg, nfaToReg and efaToReg. Suppose fa is bound to our example
FA

B

0 11

0

%
Start A

We can convert fa into a regular expression as follows:

- val reg = faToReg (Reg.simplify Reg.weakSubset) fa;

val reg = - : reg

- Reg.output("", reg);

% + 0(0 + 11)*

val it = () : unit

Since we have algorithms for converting back and forth between regular
expressions and finite automata, as well as algorithms for converting FAs to
EFAs, EFAs to NFAs, and NFAs to DFAs, we have the following theorem:

Theorem 3.11.11
Suppose L is a language. The following statements are equivalent:

• L is regular;

• L is generated by a regular expression;

• L is accepted by a finite automaton;

• L is accepted by an EFA;

• L is accepted by an NFA;

• L is accepted by a DFA.

Now we consider an intersection operation on EFAs. Consider the EFAs
M1 and M2:

CHAPTER 3. REGULAR LANGUAGES 159

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

How can we construct an EFA N such that L(N) = L(M1)∩L(M2), i.e., so
that a string is accepted by N iff it is accepted by both M1 and M2? The idea
is to make the states of N represent certain pairs of the form (q, r), where
q ∈ QM1

and r ∈ QM2
. Since L(M1) = {0}

∗{1}∗ and L(M2) = {1}
∗{0}∗, we

will have that L(N) = {0}∗{1}∗ ∩ {1}∗{0}∗ = {0}∗ ∪ {1}∗.
In order to define our intersection operation on EFAs, we first need to

define two auxiliary functions. Suppose M1 and M2 are EFAs. We define a
function

nextSymM1,M2
∈ (QM1

×QM2
)× Sym→P(QM1

×QM2
)

by nextSymM1,M2
((q, r), a) =

{ (q′, r′) | (q, a, q′) ∈ TM1
and (r, a, r′) ∈ TM2

}.

We often abbreviate nextSymM1,M2
to nextSym. If M1 and M2 are our

example EFAs, then

• nextSym((A,A), 0) = ∅, since there is no 0-transition in M2 from A;

• nextSym((A,B), 0) = {(A,B)}, since the only 0-transition from A in
M1 leads to A, and the only 0-transition from B in M2 leads to B.

Suppose M1 and M2 are EFAs. We define a function

nextEmpM1,M2
∈ (QM1

×QM2
)→P(QM1

×QM2
)

by nextEmpM1,M2
(q, r) =

{ (q′, r) | (q,%, q′) ∈ TM1
} ∪ { (q, r′) | (r,%, r′) ∈ TM2

}.

We often abbreviate nextEmpM1,M2
to nextEmp. If M1 and M2 are our

example EFAs, then

• nextEmp(A,A) = {(B,A), (A,B)} (we either do a %-transition on the
left, leaving the right-side unchanged, or leave the left-side unchanged,
and do a %-transition on the right);

CHAPTER 3. REGULAR LANGUAGES 160

• nextEmp(A,B) = {(B,B)};

• nextEmp(B,A) = {(B,B)};

• nextEmp(B,B) = ∅.

Now, we define a function inter ∈ EFA × EFA → EFA such that
L(inter(M1,M2)) = L(M1) ∩ L(M2), for all M1,M2 ∈ EFA. Given EFAs
M1 and M2, inter(M1,M2) is the EFA N that is constructed as follows.

First, we let Σ = alphabet(M1) ∩ alphabet(M2). Next, we generate
the least subset X of QM1

×QM2
such that

• (sM1
, sM2

) ∈ X;

• for all q ∈ QM1
, r ∈ QM2

and a ∈ Σ, if (q, r) ∈ X, then
nextSym((q, r), a) ⊆ X;

• for all q ∈ QM1
and r ∈ QM2

, if (q, r) ∈ X, then nextEmp(q, r) ⊆ X.

Then, the EFA N is defined by:

• QN = { 〈q, r〉 | (q, r) ∈ X };

• sN = 〈sM1
, sM2

〉;

• AN = { 〈q, r〉 | (q, r) ∈ X and q ∈ AM1
and r ∈ AM2

};

• TN =

{ (〈q, r〉, a, 〈q′, r′〉) | (q, r) ∈ X and a ∈ Σ and

(q′, r′) ∈ nextSym((q, r), a) }

∪ { (〈q, r〉,%, 〈q′, r′〉) | (q, r) ∈ X and

(q′, r′) ∈ nextEmp(q, r) }.

Suppose M1 and M2 are our example EFAs. Then inter(M1,M2) is

%

% %

%

1

0

Start 〈A, A〉

〈B, A〉

〈A, B〉

〈B, B〉

CHAPTER 3. REGULAR LANGUAGES 161

Theorem 3.11.12
For all M1,M2 ∈ EFA:

• L(inter(M1,M2)) = L(M1) ∩ L(M2); and

• alphabet(inter(M1,M2)) ⊆ alphabet(M1) ∩ alphabet(M2).

Proposition 3.11.13
For all M1,M2 ∈ NFA, inter(M1,M2) ∈ NFA.

Proposition 3.11.14
For all M1,M2 ∈ DFA, inter(M1,M2) ∈ DFA.

Next, we consider a complementation operation on DFAs. We define a
function complement ∈ DFA×Alp→DFA such that, for all M ∈ DFA
and Σ ∈ Alp,

L(complement(M,Σ)) = (alphabet(L(M)) ∪ Σ)∗ − L(M).

In other words, a string will be accepted by complement(M,Σ) iff its
symbols all come from the alphabet alphabet(L(M)) ∪ Σ and w is not
accepted by M . In the common case when L(M) ⊆ Σ∗, we will have that
alphabet(L(M)) ⊆ Σ, and thus that (alphabet(L(M))∪Σ)∗ = Σ∗. Hence,
it will be the case that

L(complement(M,Σ)) = Σ∗ − L(M).

Given a DFA M and an alphabet Σ, complement(M,Σ) is the
DFA N that is produced as follows. First, we let the DFA M ′ =
determSimplify(M,Σ). Thus:

• M ′ is equivalent to M ;

• alphabet(M ′) = alphabet(L(M)) ∪ Σ.

Then, we define N by:

• QN = QM ′ ;

• sN = sM ′ ;

• AN = QM ′ −AM ′ ;

• TN = TM ′ .

CHAPTER 3. REGULAR LANGUAGES 162

In other words, N is equal to M ′, except that its accepting states are the
non-accepting states of M ′.

Then, for all w ∈ alphabet(M ′)∗ = alphabet(N)∗ = (alphabet(L(M))∪
Σ)∗,

w ∈ L(N) iff δN (sN , w) ∈ AN

iff δN (sN , w) ∈ QM ′ −AM ′

iff δM ′(sM ′ , w) 6∈ AM ′

iff w 6∈ L(M ′)

iff w 6∈ L(M).

Now, we can check that L(N) ⊆ (alphabet(L(M)) ∪ Σ)∗ − L(M) ⊆
L(N), so that L(N) = (alphabet(L(M)) ∪ Σ)∗ − L(M).

Suppose w ∈ L(N). Then w ∈ alphabet(N)∗ = (alphabet(L(M)) ∪
Σ)∗, so that, by the above fact, w 6∈ L(M). Thus w ∈ (alphabet(L(M)) ∪
Σ)∗ − L(M).

Suppose w ∈ (alphabet(L(M)) ∪ Σ)∗ − L(M). Thus w ∈
(alphabet(L(M)) ∪ Σ)∗ and w 6∈ L(M). Hence, by the above fact, we
have that w ∈ L(N).

Thus, we have that:

Theorem 3.11.15
For all M ∈ DFA and Σ ∈ Alp:

• L(complement(M,Σ)) = (alphabet(L(M)) ∪ Σ)∗ − L(M);

• alphabet(complement(M,Σ)) = alphabet(L(M)) ∪ Σ.

For example, suppose the DFA M is

DC
00

1

0, 1Start A B

1

0

1

Then determSimplify(M, {2}) is the DFA

CHAPTER 3. REGULAR LANGUAGES 163

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1

Let the DFA N = complement(M, {2}). Thus N is

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1

Let X = {w ∈ {0, 1}∗ | 000 is not a substring of w }. By Lemma 3.10.6, we
have that L(M) = X. Thus, by Theorem 3.11.15,

L(N) = L(complement(M, {2}))

= (alphabet(L(M)) ∪ {2})∗ − L(M)

= ({0, 1} ∪ {2})∗ −X

= {w ∈ {0, 1, 2}∗ | w 6∈ X }

= {w ∈ {0, 1, 2}∗ | 2 ∈ alphabet(w) or 000 is a substring of w }.

Next, we consider a set difference operation on DFAs. We define a func-
tion minus ∈ DFA×DFA→DFA by:

minus(M1,M2) = inter(M1, complement(M2,alphabet(M1))).

Theorem 3.11.16
For all M1,M2 ∈ DFA, L(minus(M1,M2)) = L(M1)− L(M2).

In other words, a string is accepted by minus(M1,M2) iff it is accepted
by M1 but is not accepted by M2.

CHAPTER 3. REGULAR LANGUAGES 164

Proof. Suppose w ∈ Str. Then

w ∈ L(minus(M1,M2))

iff w ∈ L(inter(M1, complement(M2,alphabet(M1))))

iff w ∈ L(M1) and w ∈ L(complement(M2,alphabet(M1)))

iff w ∈ L(M1) and w ∈ (alphabet(L(M2)) ∪ alphabet(M1))
∗ and

w 6∈ L(M2)

iff w ∈ L(M1) and w 6∈ L(M2)

iff w ∈ L(M1)− L(M2).

2

To see why the second argument to complement is alphabet(M1), in
the definition of minus(M1,M2), look at the “if” direction of the second-
to-last step of the preceding proof: since w ∈ L(M1), we have that w ∈
alphabet(M1)

∗, so that w ∈ (alphabet(L(M2)) ∪ alphabet(M1))
∗.

For example, let M1 and M2 be the EFAs

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

Since L(M1) = {0}
∗{1}∗ and L(M2) = {1}

∗{0}∗, we have that

L(M1)− L(M2) = {0}
∗{1}∗ − {1}∗{0}∗ = {0}{0}∗{1}{1}∗.

Define the DFAs N1 and N2 by:

N1 = nfaToDFA(efaToNFA(M1)),

N2 = nfaToDFA(efaToNFA(M2)).

Thus we have that

L(N1) = L(nfaToDFA(efaToNFA(M1)))

= L(efaToNFA(M1)) (Theorem 3.10.11)

= L(M1) (Theorem 3.9.8)

L(N2) = L(nfaToDFA(efaToNFA(M2)))

= L(efaToNFA(M2)) (Theorem 3.10.11)

= L(M2) (Theorem 3.9.8).

CHAPTER 3. REGULAR LANGUAGES 165

Let the DFA N =minus(N1, N2). Then

L(N) = L(minus(N1, N2))

= L(N1)− L(N2) (Theorem 3.11.16)

= L(M1)− L(M2)

= {0}{0}∗{1}{1}∗.

Next, we consider the reversal of languages and regular expressions. The
reversal of a language L (LR) is {w | wR ∈ L } = {wR | w ∈ L }. I.e., LR is
formed by reversing all of the elements of L. For example, {011, 1011}R =
{110, 1101}.

We define the reversal of a regular expression α (rev(α)) by recursion:

rev(%) = %;

rev($) = $;

rev(a) = a, for all a ∈ Sym;

rev(α∗) = rev(α)∗, for all α ∈ Reg;

rev(αβ) = rev(β) rev(α), for all α, β ∈ Reg;

rev(α + β) = rev(α) + rev(β), for all α, β ∈ Reg.

For example rev(01 + (10)∗) = 10 + (01)∗.

Theorem 3.11.17
For all α ∈ Reg:

• L(rev(α)) = L(α)R;

• alphabet(rev(α)) = alphabet(α).

Next, we consider the prefix-, suffix- and substring-closures of languages,
as well as the associated operations on automata. Suppose L is a language.
Then:

• The prefix-closure of L (LP) is {x | xy ∈ L, for some y ∈ Str }.
I.e., LP is all of the prefixes of elements of L. E.g., {012, 3}P =
{%, 0, 01, 012, 3}.

• The suffix-closure of L (LS) is { y | xy ∈ L, for some x ∈ Str }.
I.e., LS is all of the suffixes of elements of L. E.g., {012, 3}S =
{%, 2, 12, 012, 3}.

CHAPTER 3. REGULAR LANGUAGES 166

• The substring-closure of L (LSS) is { y | xyz ∈ L, for some x, z ∈
Str }. I.e., LSS is all of the substrings of elements of L. E.g.,
{012, 3}SS = {%, 0, 1, 2, 01, 12, 012, 3}.

The following proposition shows that we can express suffix- and
substring-closure in terms of prefix-closure and language reversal.

Proposition 3.11.18
For all languages L:

• LS = ((LR)P)R;

• LSS = (LP)S .

Now, we define a function prefix ∈ NFA → NFA such that
L(prefix(M)) = L(M)P , for all M ∈ NFA. Given an NFA M , prefix(M)
is the NFA N that is constructed as follows. First, we simplify M , produc-
ing an NFA M ′ that is equivalent to M and either has no useless states,
or consists of a single dead state and no-transitions. If M ′ has no useless
states, then we let N be the same as M ′ except that AN = QN = QM ′ , i.e.,
all states of N are accepting states. If M ′ consists of a single dead state and
no transitions, then we let N = M ′.

For example, suppose M is the NFA

C
0

1

D
1

Start A B
0

so that L(M) = {001}∗. Then prefix(M) is the NFA

C
0

1

Start A B
0

which accepts {001}∗{%, 0, 00}.

Theorem 3.11.19
For all M ∈ NFA:

• L(prefix(M)) = L(M)P ;

• alphabet(prefix(M)) = alphabet(L(M)).

CHAPTER 3. REGULAR LANGUAGES 167

Now we can define reversal, suffix-closure and substring-closure opera-
tions on NFAs as follows. The functions rev, suffix, substring ∈ NFA→
NFA are defined by:

rev(M) = efaToNFA(faToEFA(regToFA(rev(faToReg(M))))),

suffix(M) = rev(prefix(rev(M))),

substring(M) = suffix(prefix(M)).

Theorem 3.11.20
For all M ∈ NFA:

• L(rev(M)) = L(M)R;

• L(suffix(M)) = L(M)S ;

• L(substring(M)) = L(M)SS .

Suppose L is a language, and f is a bijection from a set of symbols that
is a superset of alphabet(L) (maybe alphabet(L) itself) to some set of
symbols. Then the renaming of L using f (Lf) is formed by applying f
to every symbol of every string of L. For example, if L = {012, 12} and
f = {(0, 1), (1, 2), (2, 3)}, then Lf = {123, 23}.

Let X = { (α, f) | α ∈ Reg and f is a bijection from a set of symbols
that is a superset of alphabet(α) to some set of symbols }. The func-
tion renameAlphabet ∈ X → Reg takes in a pair (α, f) and
returns the regular expression produced from α by renaming each
sub-tree of the form a, for a ∈ Sym, to f(a). For example,
renameAlphabet(012 + 12, {(0, 1), (1, 2), (2, 3)}) = 123 + 23.

Theorem 3.11.21
For all α ∈ Reg and bijections f from sets of symbols that are supersets of
alphabet(α) to sets of symbols:

• L(renameAlphabet(α, f)) = L(α)f ;

• alphabet(renameAlphabet(α, f)) = { f(a) | a ∈ alphabet(α) }.

For example, if f = {(0, 1), (1, 2), (2, 3)}, then

L(renameAlphabet(012 + 12, f)) = L(012 + 12)f = {012, 12}f

= {123, 23}.

Let X = { (M,f) | M ∈ FA and f is a bijection from a set of symbols
that is a superset of alphabet(M) to some set of symbols }. The function

CHAPTER 3. REGULAR LANGUAGES 168

renameAlphabet ∈ X → FA takes in a pair (M,f) and returns the FA
produced from M by renaming each symbol of each label of each transition
using f . For example, if M is the FA

C
11

101

Start A B
0

and f = {(0, 1), (1, 2)}, then renameAlphabet(M,f) is the FA

C
22

212

Start A B
1

Theorem 3.11.22
For all M ∈ FA and bijections f from sets of symbols that are supersets of
alphabet(M) to sets of symbols:

• L(renameAlphabet(M,f)) = L(M)f ;

• alphabet(renameAlphabet(M,f)) = { f(a) | a ∈ alphabet(M) };

• if M is an EFA, then renameAlphabet(M,f) is an EFA;

• if M is an NFA, then renameAlphabet(M,f) is an NFA;

• if M is a DFA, then renameAlphabet(M,f) is a DFA.

The preceding operations on regular expressions and finite automata give
us the following theorems.

Theorem 3.11.23
Suppose L,L1, L2 ∈ RegLan. Then:

(1) L1 ∪ L2 ∈ RegLan;

(2) L1L2 ∈ RegLan;

(3) L∗ ∈ RegLan;

(4) L1 ∩ L2 ∈ RegLan;

(5) L1 − L2 ∈ RegLan.

CHAPTER 3. REGULAR LANGUAGES 169

Proof. Parts (1)–(5) hold because of the operations union, concat and
closure on FAs, the operation inter on EFAs, the operation minus on
DFAs, and Theorem 3.11.11. 2

Theorem 3.11.24
Suppose L ∈ RegLan. Then:

(1) LR ∈ RegLan;

(2) LP ∈ RegLan;

(3) LS ∈ RegLan;

(4) LSS ∈ RegLan;

(5) Lf ∈ RegLan, where f is a bijection from a set of symbols that is a
superset of alphabet(L) to some set of symbols.

Proof. Parts (1)–(5) hold because of the operation rev on regular expres-
sions, the operations prefix, suffix and substring on NFAs, the operation
renameAlphabet on regular expressions, and Theorem 3.11.11. 2

The Forlan module EFA defines the function

val inter : efa * efa -> efa

which corresponds to inter. It is also inherited by the modules DFA and
NFA. The Forlan module DFA defines the functions

val complement : dfa * sym set -> dfa

val minus : dfa * dfa -> dfa

which correspond to complement and minus.
Suppose the identifiers efa1 and efa2 of type efa are bound to our

example EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

Then, we can construct inter(M1,M2) as follows:

- val efa = EFA.inter(efa1, efa2);

CHAPTER 3. REGULAR LANGUAGES 170

val efa = - : efa

- EFA.output("", efa);

{states}

<A,A>, <A,B>, <B,A>, <B,B>

{start state}

<A,A>

{accepting states}

<B,B>

{transitions}

<A,A>, % -> <A,B> | <B,A>; <A,B>, % -> <B,B>;

<A,B>, 0 -> <A,B>; <B,A>, % -> <B,B>; <B,A>, 1 -> <B,A>

val it = () : unit

Thus efa is bound to the EFA

%

% %

%

1

0

Start 〈A, A〉

〈B, A〉

〈A, B〉

〈B, B〉

Suppose dfa is bound to our example DFA M

DC
00

1

0, 1Start A B

1

0

1

Then we can construct the DFA complement(M, {2}) as follows:

- val dfa’ = DFA.complement(dfa, SymSet.input "");

@ 2

@ .

val dfa’ = - : dfa

- DFA.output("", dfa’);

{states}

A, B, C, <dead>

{start state}

A

CHAPTER 3. REGULAR LANGUAGES 171

{accepting states}

<dead>

{transitions}

A, 0 -> B; A, 1 -> A; A, 2 -> <dead>; B, 0 -> C;

B, 1 -> A; B, 2 -> <dead>; C, 0 -> <dead>; C, 1 -> A;

C, 2 -> <dead>; <dead>, 0 -> <dead>; <dead>, 1 -> <dead>;

<dead>, 2 -> <dead>

val it = () : unit

Thus dfa’ is bound to the DFA

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1

Suppose the identifiers efa1 and efa2 of type efa are bound to our
example EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

We can construct an EFA that accepts L(M1)− L(M2) as follows:

- val dfa1 = nfaToDFA(efaToNFA efa1);

val dfa1 = - : dfa

- val dfa2 = nfaToDFA(efaToNFA efa2);

val dfa2 = - : dfa

- val dfa = DFA.minus(dfa1, dfa2);

val dfa = - : dfa

- val efa = injDFAToEFA dfa;

val efa = - : efa

- EFA.accepted efa (Str.input "");

@ 01

@ .

val it = true : bool

- EFA.accepted efa (Str.input "");

@ 0

CHAPTER 3. REGULAR LANGUAGES 172

@ .

val it = false : bool

Note that we had to first convert efa1 and efa2 to DFAs, because the
module EFA doesn’t include an intersection operation.

Next, we see how we can carry out the reversal and alphabet-renaming of
regular expressions in Forlan. The Forlan module Reg defines the functions

val rev : reg -> reg

val renameAlphabet : reg * sym_rel -> reg

which correspond to rev and renameAlphabet (renameAlphabet issues
an error message and raises an exception if its second argument isn’t legal).
Here is an example of how these functions can be used:

- val reg = Reg.fromString "(012)*(21)";

val reg = - : reg

- val rel = SymRel.fromString "(0, 1), (1, 2), (2, 3)";

val rel = - : sym_rel

- Reg.output("", Reg.rev reg);

(12)((21)0)*

val it = () : unit

- Reg.output("", Reg.renameAlphabet(reg, rel));

(123)*32

val it = () : unit

Next, we see how we can carry out the prefix-closure of NFAs in Forlan.
The Forlan module NFA defines the function

val prefix : nfa -> nfa

which corresponds to prefix. Here is an example of how this function can
be used:

- val nfa = NFA.input "";

@ {states}

@ A, B, C, D

@ {start state}

@ A

@ {accepting states}

@ A

@ {transitions}

@ A, 0 -> B; B, 0 -> C; C, 1 -> A; C, 1 -> D

@ .

val nfa = - : nfa

- val nfa’ = NFA.prefix nfa;

CHAPTER 3. REGULAR LANGUAGES 173

val nfa’ = - : nfa

- NFA.output("", nfa’);

{states}

A, B, C

{start state}

A

{accepting states}

A, B, C

{transitions}

A, 0 -> B; B, 0 -> C; C, 1 -> A

val it = () : unit

Finally, we see how we can carry out alphabet-renaming of finite au-
tomata using Forlan. The Forlan module FA defines the function

val renameAlphabet : FA * sym_rel -> FA

which corresponds renameAlphabet (it issues an error message and raises
an exception if its second argument isn’t legal). This function is also inher-
ited by the modules DFA, NFA and EFA. Here is an example of how one of
these functions can be used:

- val dfa = DFA.input "";

@ {states}

@ A, B

@ {start state}

@ A

@ {accepting states}

@ A

@ {transitions}

@ A, 0 -> B; B, 0 -> A;

@ A, 1 -> A; B, 1 -> B

@ .

val dfa = - : dfa

- val rel = SymRel.fromString "(0, a), (1, b)";

val rel = - : sym_rel

- val dfa’ = DFA.renameAlphabet(dfa, rel);

val dfa’ = - : dfa

- DFA.output("", dfa’);

{states}

A, B

{start state}

A

{accepting states}

A

CHAPTER 3. REGULAR LANGUAGES 174

{transitions}

A, a -> B; A, b -> A; B, a -> A; B, b -> B

val it = () : unit

3.12 Equivalence-testing and Minimization of De-
terministic Finite Automata

In this section, we give algorithms for: testing whether two DFAs are equiv-
alent; and minimizing the alphabet size and number of states of a DFA. We
also show how to use the Forlan implementations of these algorithms. In
addition, we consider an alternative way of synthesizing DFAs, using DFA
minimization plus the operations on automata and regular expressions of
the previous section.

Suppose M and N are DFAs. To check whether they are equivalent, we
can proceed as follows.

First, we need to convert M and N into DFAs with identical alphabets.
Let Σ = alphabet(M) ∪ alphabet(N), and define the DFAs M ′ and N ′

by:

M ′ = determSimplify(M,Σ),

N ′ = determSimplify(N,Σ).

Since alphabet(L(M)) ⊆ alphabet(M) ⊆ Σ, we have that
alphabet(M ′) = alphabet(L(M))∪Σ = Σ. Similarly, alphabet(N ′) = Σ.
Furthermore, M ′ ≈ M and N ′ ≈ N , so that it will suffice to determine
whether M ′ and N ′ are equivalent.

For example, if M and N are the DFAs

B

1 1

0

0

(M)

B

(N)

0

C

1

1

1

00

Start A Start A

then Σ = {0, 1}, M ′ = M and N ′ = N .
Next, we generate the least subset X of QM ′ ×QN ′ such that

• (sM ′ , sN ′) ∈ X;

CHAPTER 3. REGULAR LANGUAGES 175

• for all q ∈ QM ′ , r ∈ QN ′ and a ∈ Σ, if (q, r) ∈ X, then
(δM ′(q, a), δN ′(r, a)) ∈ X.

With our example DFAs M ′ and N ′, we have that

• (A,A) ∈ X;

• since (A,A) ∈ X, we have that (B,B) ∈ X and (A,C) ∈ X;

• since (B,B) ∈ X, we have that (again) (A,C) ∈ X and (again) (B,B) ∈
X;

• since (A,C) ∈ X, we have that (again) (B,B) ∈ X and (again) (A,A) ∈
X.

Back in the general case, we have the following lemmas.

Lemma 3.12.1
For all w ∈ Σ∗, (δM ′(sM ′ , w), δN ′(sN ′ , w)) ∈ X.

Proof. By left string induction on w. 2

Lemma 3.12.2
For all q ∈ QM ′ and r ∈ QN ′ , if (q, r) ∈ X, then there is a w ∈ Σ∗ such that
q = δM ′(sM ′ , w) and r = δN ′(sN ′ , w).

Proof. By induction on X. 2

Finally, we check that, for all (q, r) ∈ X,

q ∈ AM ′ iff r ∈ AN ′ .

If this is true, we say that the machines are equivalent; otherwise we say
they are not equivalent.

Suppose every pair (q, r) ∈ X consists of two accepting states or of
two non-accepting states. Suppose, toward a contradiction, that L(M ′) 6=
L(N ′). Then there is a string w that is accepted by one of the machines
but is not accepted by the other. Since both machines have alphabet Σ,
Lemma 3.12.1 tells us that (δM ′(sM ′ , w), δN ′(sN ′ , w)) ∈ X. But one side
of this pair is an accepting state and the other is a non-accepting one—
contradiction. Thus L(M ′) = L(N ′).

Suppose we find a pair (q, r) ∈ X such that one of q and r is an accepting
state but the other is not. By Lemma 3.12.2, it will follow that there is a

CHAPTER 3. REGULAR LANGUAGES 176

string w that is accepted by one of the machines but not accepted by the
other one, i.e., that L(M ′) 6= L(N ′).

In the case of our example, we have that X = {(A,A), (B,B), (A,C)}.
Since (A,A) and (A,C) are pairs of accepting states, and (B,B) is a pair of
non-accepting states, it follows that L(M ′) = L(N ′). Hence L(M) = L(N).

We can easily modify our algorithm so that, when two machines are not
equivalent, it explains why:

• giving a string that is accepted by the first machine but not by the
second; and/or

• giving a string that is accepted by the second machine but not by the
first.

We can even arrange for these strings to be of minimum length. The Forlan
implementation of our algorithm always produces minimum-length coun-
terexamples.

The Forlan module DFA defines the functions:

val relationship : dfa * dfa -> unit

val subset : dfa * dfa -> bool

val equivalent : dfa * dfa -> bool

The function relationship figures out the relationship between the lan-
guages accepted by two DFAs (are they equal, is one a proper sub-
set of the other, do they have an empty intersection), and supplies
minimum-length counterexamples to justify negative answers. The func-
tion subset tests whether its first argument’s language is a subset of its
second argument’s language. The function equivalent tests whether two
DFAs are equivalent. Note that subset (when turned into a function
of type reg * reg -> bool—see below) can be used in conjunction with
Reg.simplify (see Section 3.2).

For example, suppose dfa1 and dfa2 of type dfa are bound to our
example DFAs M and N , respectively:

B

1 1

0

0

(M)

B

(N)

0

C

1

1

1

00

Start A Start A

CHAPTER 3. REGULAR LANGUAGES 177

We can verify that these machines are equivalent as follows:

- DFA.relationship(dfa1, dfa2);

languages are equal

val it = () : unit

On the other hand, suppose that dfa3 and dfa4 of type dfa are bound
to the DFAs:

B

1 1

0

0

B
0

C

1

1
0, 10

Start A Start A

We can find out why these machines are not equivalent as follows:

- DFA.relationship(dfa3, dfa4);

neither language is a subset of the other language : "11"

is in first language but is not in second language; "110"

is in second language but is not in first language

val it = () : unit

We can find the relationship between the languages denoted by regular
expressions reg1 and reg2 by:

• converting reg1 and reg2 to DFAs dfa1 and dfa2, and then

• running DFA.relationship(dfa1, dfa2) to find the relationship be-
tween those DFAs.

Of course, we can define an ML/Forlan function that carries out these
actions:

- val regToDFA = nfaToDFA o efaToNFA o faToEFA o regToFA;

val regToDFA = fn : reg -> dfa

- fun relationshipReg(reg1, reg2) =

= DFA.relationship(regToDFA reg1, regToDFA reg2);

val relationshipReg = fn : reg * reg -> unit

Now, we consider an algorithm for minimizing the sizes of the alpha-
bet and set of states of a DFA M . First, we minimize the size of M ’s
alphabet, and make the automaton be deterministically simplified, by let-
ting M ′ = determSimplify(M, ∅). Thus M ′ ≈ M and alphabet(M ′) =
alphabet(L(M)).

For example, if M is the DFA

CHAPTER 3. REGULAR LANGUAGES 178

B
0

0FE

D

0 0

1

1

0, 1

1

0, 1

1

C

Start A

then M ′ = M .
Next, we let X be the least subset of QM ′ ×QM ′ such that:

1. AM ′ × (QM ′ −AM ′) ⊆ X;

2. (QM ′ −AM ′)×AM ′ ⊆ X;

3. for all q, q′, r, r′ ∈ QM ′ and a ∈ alphabet(M ′), if (q, r) ∈ X, (q′, a, q) ∈
TM ′ and (r′, a, r) ∈ TM ′ , then (q′, r′) ∈ X.

We read “(q, r) ∈ X” as “q and r cannot be merged”. The idea of (1)
and (2) is that an accepting state can never be merged with a non-accepting
state. And (3) says that if q and r can’t be merged, and we can get from q ′

to q by processing an a, and from r′ to r by processing an a, then q′ and r′

also can’t be merged—since if we merged q′ and r′, there would have to be
an a-transition from the merged state to the merging of q and r.

In the case of our example M ′, (1) tells us to add the pairs (E,A), (E,B),
(E,C), (E,D), (F,A), (F,B), (F,C) and (F,D) to X. And, (2) tells us to add
the pairs (A,E), (B,E), (C,E), (D,E), (A,F), (B,F), (C,F) and (D,F) to X.

Now we use rule (3) to compute the rest of X’s elements. To begin with,
we must handle each pair that has already been added to X.

• Since there are no transitions leading into A, no pairs can be added
using (E,A), (A,E), (F,A) and (A,F).

• Since there are no 0-transitions leading into E, and there are no 1-
transitions leading into B, no pairs can be added using (E,B) and
(B,E).

• Since (E,C), (C,E) ∈ X and (B, 1,E), (D, 1,E), (F, 1,E) and (A, 1,C)
are the 1-transitions leading into E and C, we add (B,A) and (A,B),
and (D,A) and (A,D) to X; we would also have added (F,A) and
(A,F) to X if they hadn’t been previously added. Since there are no
0-transitions into E, nothing can be added to X using (E,C) and (C,E)
and 0-transitions.

CHAPTER 3. REGULAR LANGUAGES 179

• Since (E,D), (D,E) ∈ X and (B, 1,E), (D, 1,E), (F, 1,E) and (C, 1,D)
are the 1-transitions leading into E and D, we add (B,C) and (C,B),
and (D,C) and (C,D) to X; we would also have added (F,C) and
(C,F) to X if they hadn’t been previously added. Since there are no
0-transitions into E, nothing can be added to X using (E,D) and (D,E)
and 0-transitions.

• Since (F,B), (B,F) ∈ X and (E, 0,F), (F, 0,F), (A, 0,B), and (D, 0,B)
are the 0-transitions leading into F and B, we would have to add
the following pairs to X, if they were not already present: (E,A),
(A,E), (E,D), (D,E), (F,A), (A,F), (F,D), (D,F). Since there are no
1-transitions leading into B, no pairs can be added using (F,B) and
(B,F) and 1-transitions.

• Since (F,C), (C,F) ∈ X and (E, 1,F) and (A, 1,C) are the 1-transitions
leading into F and C, we would have to add (E,A) and (A,E) to X if
these pairs weren’t already present. Since there are no 0-transitions
leading into C, no pairs can be added using (F,C) and (C,F) and 0-
transitions.

• Since (F,D), (D,F) ∈ X and (E, 0,F), (F, 0,F), (B, 0,D) and (C, 0,D)
are the 0-transitions leading into F and D, we would add (E,B), (B,E),
(E,C), (C,E), (F,B), (B,F), (F,C), and (C,F) to X, if these pairs
weren’t already present. Since (F,D), (D,F) ∈ X and (E, 1,F) and
(C, 1,D) are the 1-transitions leading into F and D, we would add
(E,C) and (C,E) to X, if these pairs weren’t already in X.

We’ve now handled all of the elements of X that were added using
rules (1) and (2). We must now handle the pairs that were subsequently
added: (A,B), (B,A), (A,D), (D,A), (B,C), (C,B), (C,D), (D,C).

• Since there are no transitions leading into A, no pairs can be added
using (A,B), (B,A), (A,D) and (D,A).

• Since there are no 1-transitions leading into B, and there are no 0-
transitions leading into C, no pairs can be added using (B,C) and
(C,B).

• Since (C,D), (D,C) ∈ X and (A, 1,C) and (C, 1,D) are the 1-transitions
leading into C and D, we add the pairs (A,C) and (C,A) to X. Since
there are no 0-transitions leading into C, no pairs can be added to X
using (C,D) and (D,C) and 0-transitions.

CHAPTER 3. REGULAR LANGUAGES 180

Now, we must handle the pairs that were added in the last phase: (A,C)
and (C,A).

• Since there are no transitions leading into A, no pairs can be added
using (A,C) and (C,A).

Since we have handled all the pairs we added to X, we are now done.
Here are the 26 elements of X: (A,B), (A,C), (A,D), (A,E), (A,F), (B,A),
(B,C), (B,E), (B,F), (C,A), (C,B), (C,D), (C,E), (C,F), (D,A), (D,C),
(D,E), (D,F), (E,A), (E,B), (E,C), (E,D), (F,A), (F,B), (F,C), (F,D).

Going back to the general case, we now let the relation Y = (QM ′ ×
QM ′)−X. It turns out that Y is reflexive on QM ′ , symmetric and transitive,
i.e., it is what is called an equivalence relation on QM ′ . We read “(q, r) ∈ Y ”
as “q and r can be merged”.

Back with our example, we have that Y is

{(A,A), (B,B), (C,C), (D,D), (E,E), (F,F)}

∪

{(B,D), (D,B), (F,E), (E,F)}.

In order to define the DFA N that is the result of our minimization
algorithm, we need a bit more notation. As in Section 3.10, we write P for
the result of coding a finite set of symbols P as a symbol. E.g., {B,A} =
〈A,B〉. If q ∈ QM ′ , we write [q] for { r ∈ QM ′ | (r, q) ∈ Y }, which is called
the equivalence class of q. In other words, [q] consists of all of the states
that are mergable with q (including itself). If P is a nonempty, finite set of
symbols, then we write min(P) for the least element of P , according to our
standard ordering on symbols.

Let Z = { [q] | q ∈ QM ′ }. In the case of our example, Z is

{{A}, {B,D}, {C}, {E,F}}.

We define our DFA N as follows:

• QN = {P | P ∈ Z };

• sN = [sM ′];

• AN = {P | P ∈ Z and min(P) ∈ AM ′ };

• TN = { (P , a, [δM ′(min(P), a)]) | P ∈ Z and a ∈ alphabet(M ′) }.

CHAPTER 3. REGULAR LANGUAGES 181

(In the definitions of AN and TN any element of P could be substituted for
min(P).)

In the case of our example, we have that

• QN = {〈A〉, 〈B,D〉, 〈C〉, 〈E,F〉};

• sN = 〈A〉;

• AN = {〈E,F〉}.

We compute the elements of TN as follows.

• Since {A} ∈ Z and [δM ′(A, 0)] = [B] = {B,D}, we have that
(〈A〉, 0, 〈B,D〉) ∈ TN .

Since {A} ∈ Z and [δM ′(A, 1)] = [C] = {C}, we have that (〈A〉, 1, 〈C〉) ∈
TN .

• Since {C} ∈ Z and [δM ′(C, 0)] = [D] = {B,D}, we have that
(〈C〉, 0, 〈B,D〉) ∈ TN .

Since {C} ∈ Z and [δM ′(C, 1)] = [D] = {B,D}, we have that
(〈C〉, 1, 〈B,D〉) ∈ TN .

• Since {B,D} ∈ Z and [δM ′(B, 0)] = [D] = {B,D}, we have that
(〈B,D〉, 0, 〈B,D〉) ∈ TN .

Since {B,D} ∈ Z and [δM ′(B, 1)] = [E] = {E,F}, we have that
(〈B,D〉, 1, 〈E,F〉) ∈ TN .

• Since {E,F} ∈ Z and [δM ′(E, 0)] = [F] = {E,F}, we have that
(〈E,F〉, 0, 〈E,F〉) ∈ TN .

Since {E,F} ∈ Z and [δM ′(E, 1)] = [F] = {E,F}, we have that
(〈E,F〉, 1, 〈E,F〉) ∈ TN .

Thus our DFA N is:

〈B, D〉
0 1

1

〈C〉

〈E, F〉 0, 1

0, 1

0

Start 〈A〉

CHAPTER 3. REGULAR LANGUAGES 182

We define a function minimize ∈ DFA→DFA by: minimize(M) is
the result of running the above algorithm on input M .

We have the following theorem:

Theorem 3.12.3
For all M ∈ DFA:

• minimize(M) ≈M ;

• alphabet(minimize(M)) = alphabet(L(M));

• minimize(M) is deterministically simplified;

• for all N ∈ DFA, if N ≈ M , then alphabet(minimize(M)) ⊆
alphabet(N) and |Qminimize(M)| ≤ |QN |;

• for all N ∈ DFA, if N ≈M and N has the same alphabet and number
of states as minimize(M), then N is isomorphic to minimize(M).

Thus there are no DFAs with three or fewer states that are equivalent
to our example DFA M . And

〈B, D〉
0 1

1

〈C〉

〈E, F〉 0, 1

0, 1

0

Start 〈A〉

is, up to isomorphism, the only four state DFA with alphabet {0, 1} that is
equivalent to M .

The Forlan module DFA includes the function

val minimize : dfa -> dfa

for minimizing DFAs.
For example, if dfa of type dfa is bound to our example DFA

B
0

0FE

D

0 0

1

1

0, 1

1

0, 1

1

C

Start A

CHAPTER 3. REGULAR LANGUAGES 183

then we can minimize the alphabet size and number of states of dfa as
follows:

- val dfa’ = DFA.minimize dfa;

val dfa’ = - : dfa

- DFA.output("", dfa’);

{states}

<A>, <C>, <B,D>, <E,F>

{start state}

<A>

{accepting states}

<E,F>

{transitions}

<A>, 0 -> <B,D>; <A>, 1 -> <C>; <C>, 0 -> <B,D>;

<C>, 1 -> <B,D>; <B,D>, 0 -> <B,D>; <B,D>, 1 -> <E,F>;

<E,F>, 0 -> <E,F>; <E,F>, 1 -> <E,F>

val it = () : unit

Because of DFA minimization plus the operations on automata and reg-
ular expressions of Section 3.11, we now have an alternative way of synthe-
sizing DFAs.

For example, suppose we wish to find a DFA M such that L(M) = X,
where X = {w ∈ {0, 1}∗ | w has an even number of 0’s and an odd number
of 1’s }.

First, we can note that X = Y1 ∩ Y2, where Y1 = {w ∈
{0, 1}∗ | w has an even number of 0’s } and Y2 = {w ∈ {0, 1}∗ | w
has an odd number of 1’s }. Since we have an intersection operation on
DFAs, if we can find DFAs accepting Y1 and Y2, we can combine them
into a DFA that accepts X.

Let N1 and N2 be the DFAs

B

1 1

0

0

(N1)

B

0 0

1

1

(N2)

Start A Start A

It is easy to prove that L(N1) = Y1 and L(N2) = Y2. Let M be the DFA

renameStatesCanonically(minimize(inter(N1, N2))).

CHAPTER 3. REGULAR LANGUAGES 184

Then

L(M) = L(renameStatesCanonically(minimize(inter(N1, N2))))

= L(minimize(inter(N1, N2)))

= L(inter(N1, N2))

= L(N1) ∩ L(N2)

= Y1 ∩ Y2

= X,

showing that M is correct.
Suppose M ′ is a DFA that accepts X. Since M ′ ≈ inter(N1, N2), we

have that minimize(inter(N1, N2)), and thus M , has no more states than
M ′. Thus M has as few states as is possible.

But how do we figure out what the components of M are, so that, e.g., we
can draw M? In a simple case like this, we could apply the definitions inter,
minimize and renameStatesCanonically, and work out the answer. But,
for more complex examples, there would be far too much detail involved for
this to be a practical approach.

Instead, we can use Forlan to compute the answer. Suppose dfa1 and
dfa2 of type dfa are N1 and N2, respectively. The we can proceed as
follows:

- val dfa’ = DFA.minimize(DFA.inter(dfa1, dfa2));

val dfa’ = - : dfa

- val dfa = DFA.renameStatesCanonically dfa’;

val dfa = - : dfa

- DFA.output("", dfa);

{states}

A, B, C, D

{start state}

A

{accepting states}

B

{transitions}

A, 0 -> C; A, 1 -> B; B, 0 -> D; B, 1 -> A; C, 0 -> A;

C, 1 -> D; D, 0 -> B; D, 1 -> C

val it = () : unit

Thus M is:

CHAPTER 3. REGULAR LANGUAGES 185

Start
0

0

0

0

1 1 1 1

B

A C

D

Of course, this claim assumes that Forlan is correctly implemented.
We conclude this section by considering a second, more involved example

of DFA synthesis. Given a string w ∈ {0, 1}∗, we say that:

• w stutters iff aa is a substring of w, for some a ∈ {0, 1};

• w is long iff |w| ≥ 5.

So, e.g., 1001 and 10110 both stutter, but 01010 and 101 don’t. Saying
that strings of length 5 or more are “long” is arbitrary; what follows can be
repeated with different choices of when strings are long.

Let the language AllLongStutter be

{w ∈ {0, 1}∗ | for all substrings v of w, if v is long, then v stutters }.

In other words, a string of 0’s and 1’s is in AllLongStutter iff every
long substring of this string stutters. Since every substring of 0010110 of
length five stutters, every long substring of this string stutters, and thus
the string is in AllLongStutter. On the other hand, 0010100 is not in
AllLongStutter, because 01010 is a long, non-stuttering substring of this
string.

Let’s consider the problem of finding a DFA that accepts this language.
One possibility is to reduce this problem to that of finding a DFA that ac-
cepts the complement of AllLongStutter. Then we’ll be able to use our set
difference operation on DFAs to build a DFA that acceptsAllLongStutter.
(We’ll also need a DFA accepting {0, 1}∗.) To form the complement of
AllLongStutter, we negate the formula in AllLongStutter’s expression.
Let SomeLongNotStutter be the language

{w ∈ {0, 1}∗ | there is a substring v of w such that
v is long and doesn’t stutter }.

Lemma 3.12.4
AllLongStutter = {0, 1}∗ − SomeLongNotStutter.

CHAPTER 3. REGULAR LANGUAGES 186

Proof. Suppose w ∈ AllLongStutter, so that w ∈ {0, 1}∗ and, for
all substrings v of w, if v is long, then v stutters. Suppose, toward a
contradiction, that w ∈ SomeLongNotStutter. Then there is a sub-
string v of w such that v is long and doesn’t stutter—contradiction. Thus
w 6∈ SomeLongNotStutter, completing the proof that w ∈ {0, 1}∗ −
SomeLongNotStutter.

Suppose w ∈ {0, 1}∗−SomeLongNotStutter, so that w ∈ {0, 1}∗ and
w 6∈ SomeLongNotStutter. To see that w ∈ AllLongStutter, suppose
v is a substring of w and v is long. Suppose, toward a contradiction, that v
doesn’t stutter. Then w ∈ SomeLongNotStutter—contradiction. Hence
v stutters. 2

Next, it’s convenient to work bottom-up for a bit. Let

Long = {w ∈ {0, 1}∗ | w is long },

Stutter = {w ∈ {0, 1}∗ | w stutters },

NotStutter = {w ∈ {0, 1}∗ | w doesn’t stutter },

LongAndNotStutter = {w ∈ {0, 1}∗ | w is long and doesn’t stutter }.

The following lemma is easy to prove:

Lemma 3.12.5
(1) NotStutter = {0, 1}∗ − Stutter.

(2) LongAndNotStutter = Long ∩NotStutter.

Clearly, we’ll be able to find DFAs accepting Long and Stutter, respec-
tively. Thus, we’ll be able to use our set difference operation on DFAs to
come up with a DFA that accepts NotStutter. Then, we’ll be able to use
our intersection operation on DFAs to come up with a DFA that accepts
LongAndNotStutter.

What remains is to find a way of converting LongAndNotStutter
to SomeLongNotStutter. Clearly, the former language is a subset of
the latter one. But the two languages are not equal, since an element
of the latter language may have the form xvy, where x, y ∈ {0, 1}∗ and
v ∈ LongAndNotStutter. This suggests the following lemma:

Lemma 3.12.6
SomeLongNotStutter = {0, 1}∗ LongAndNotStutter {0, 1}∗.

CHAPTER 3. REGULAR LANGUAGES 187

Proof. Suppose w ∈ SomeLongNotStutter, so that w ∈ {0, 1}∗ and
there is a substring v of w such that v is long and doesn’t stutter. Thus
v ∈ LongAndNotStutter, and w = xvy for some x, y ∈ {0, 1}∗. Hence
w = xvy ∈ {0, 1}∗ LongAndNotStutter {0, 1}∗.

Suppose w ∈ {0, 1}∗ LongAndNotStutter {0, 1}∗, so that w = xvy for
some x, y ∈ {0, 1}∗ and v ∈ LongAndNotStutter. Hence v is long and
doesn’t stutter. Thus v is a long substring of w that doesn’t stutter, showing
that w ∈ SomeLongNotStutter. 2

Because of the preceding lemma, we can build an EFA accepting
SomeLongNotStutter from a DFA accepting {0, 1}∗ and our DFA ac-
cepting LongAndNotStutter, using our concatenation operation on EFAs.
(We haven’t given a concatenation operation on DFAs.) We can then convert
this EFA to a DFA.

Now, let’s take the preceding ideas and turn them into reality. First, we
define functions regToEFA ∈ Reg→ EFA, efaToDFA ∈ EFA→DFA,
regToDFA ∈ Reg→DFA and minAndRen ∈ DFA→DFA by:

regToEFA = faToEFA ◦ regToFA,

efaToDFA = nfaToDFA ◦ efaToNFA,

regToDFA = efaToDFA ◦ regToEFA,

minAndRen = renameStatesCanonically ◦minimize.

Lemma 3.12.7
(1) For all α ∈ Reg, L(regToEFA(α)) = L(α).

(2) For all M ∈ EFA, L(efaToDFA(M)) = L(M).

(3) For all α ∈ Reg, L(regToDFA(α)) = L(α).

(4) For all M ∈ DFA, L(minAndRen(M)) = L(M) and, for all N ∈
DFA, if L(N) = L(M), then minAndRen(M) has no more states
than N .

Proof. We show the proof of Part (4), the proofs of the other parts being
even easier. Suppose M ∈ DFA. By Theorem 3.12.3(1), we have that

L(minAndRen(M)) = L(renameStatesCanonically(minimize(M)))

= L(minimize(M))

= L(M).

CHAPTER 3. REGULAR LANGUAGES 188

Suppose N ∈ DFA and L(N) = L(M). By Theorem 3.12.3(4),
we have that minimize(M) has no more states than N . Thus
renameStatesCanonically(minimize(M)) has no more states than N ,
showing that minAndRen(M) has no more states than N . 2

Let the regular expression allStrReg be (0 + 1)∗. Clearly
L(allStrReg) = {0, 1}∗. Let the DFA allStrDFA be

minAndRen(regToDFA(allStrReg)).

Lemma 3.12.8
L(allStrDFA) = {0, 1}∗.

Proof. By Lemma 3.12.7, we have that

L(allStrDFA) = L(minAndRen(regToDFA(allStrReg)))

= L(regToDFA(allStrReg))

= L(allStrReg)

= {0, 1}∗.

2

(Not surprisingly, allStrDFA will have a single state.) Let the EFA
allStrEFA be the DFA allStrDFA. Thus L(allStrEFA) = {0, 1}∗.

Let the regular expression longReg be

(0 + 1)5(0 + 1)∗.

Lemma 3.12.9
L(longReg) = Long.

Proof. Since L(longReg) = {0, 1}5{0, 1}∗, it will suffice to show that
{0, 1}5{0, 1}∗ = Long.

Suppose w ∈ {0, 1}5{0, 1}∗, so that w = xy, for some x ∈ {0, 1}5 and
y ∈ {0, 1}∗. Thus w = xy ∈ {0, 1}∗ and |w| ≥ |x| = 5, showing that
w ∈ Long.

Suppose w ∈ Long, so that w ∈ {0, 1}∗ and |w| ≥ 5. Then w =
abcdex, for some a, b, c, d, e ∈ {0, 1} and x ∈ {0, 1}∗. Hence w = (abcde)x ∈
{0, 1}5{0, 1}∗. 2

CHAPTER 3. REGULAR LANGUAGES 189

Let the DFA longDFA be

minAndRen(regToDFA(longReg)).

An easy calculation shows that L(longDFA) = Long.
Let stutterReg be the regular expression

(0 + 1)∗(00 + 11)(0 + 1)∗.

Lemma 3.12.10
L(stutterReg) = Stutter.

Proof. Since L(stutterReg) = {0, 1}∗{00, 11}{0, 1}∗, it will suffice to
show that {0, 1}∗{00, 11}{0, 1}∗ = Stutter, and this is easy. 2

Let stutterDFA be the DFA

minAndRen(regToDFA(stutterReg)).

An easy calculation shows that L(stutterDFA) = Stutter. Let
notStutterDFA be the DFA

minAndRen(minus(allStrDFA, stutterDFA)).

Lemma 3.12.11
L(notStutterDFA) = NotStutter.

Proof. Let M be

minAndRen(minus(allStrDFA, stutterDFA)).

By Lemma 3.12.5(1), we have that

L(notStutterDFA) = L(M)

= L(minus(allStrDFA, stutterDFA))

= L(allStrDFA)− L(stutterDFA)

= {0, 1}∗ − Stutter

= NotStutter.

2

CHAPTER 3. REGULAR LANGUAGES 190

Let longAndNotStutterDFA be the DFA

minAndRen(inter(longDFA,notStutterDFA)).

Lemma 3.12.12
L(longAndNotStutterDFA) = LongAndNotStutter.

Proof. Let M be

minAndRen(inter(longDFA,notStutterDFA)).

By Lemma 3.12.5(2), we have that

L(longAndNotStutterDFA) = L(M)

= L(inter(longDFA,notStutterDFA))

= L(longDFA) ∩ L(notStutterDFA)

= Long ∩NotStutter

= LongAndNotStutter.

2

Because longAndNotStutterDFA is an EFA, we can let the
EFA longAndNotStutterEFA be longAndNotStutterDFA. Then
L(longAndNotStutterEFA) = LongAndNotStutter.

Let someLongNotStutterEFA be the EFA

renameStatesCanonically(concat(allStrEFA,
concat(longAndNotStutterEFA,

allStrEFA))).

Lemma 3.12.13
L(someLongNotStutterEFA) = SomeLongNotStutter.

Proof. We have that

L(someLongNotStutterEFA) = L(renameStatesCanonically(M))

= L(M),

CHAPTER 3. REGULAR LANGUAGES 191

where M is

concat(allStrEFA, concat(longAndNotStutterEFA,allStrEFA)).

And, by Lemma 3.12.6, we have that

L(M) = L(allStrEFA)L(longAndNotStutterEFA)L(allStrEFA)

= {0, 1}∗ LongAndNotStutter {0, 1}∗

= SomeLongNotStutter.

2

Let someLongNotStutterDFA be the DFA

minAndRen(efaToDFA(someLongNotStutterEFA)).

Lemma 3.12.14
L(someLongNotStutterDFA) = SomeLongNotStutter.

Proof. Follows by an easy calculation. 2

Finally, let allLongStutterDFA be the DFA

minAndRen(minus(allStrDFA, someLongNotStutterDFA)).

Lemma 3.12.15
L(allLongStutterDFA) = AllLongStutter and, for all N ∈ DFA, if
L(N) = AllLongStutter, then allLongStutterDFA has no more states
than N .

Proof. We have that

L(allLongStutterDFA) = L(minAndRen(M)) = L(M),

where M is

minus(allStrDFA, someLongNotStutterDFA).

Then, by Lemma 3.12.4, we have that

L(M) = L(allStrDFA)− L(someLongNotStutterDFA)

= {0, 1}∗ − SomeLongNotStutter

= AllLongStutter.

Suppose N ∈ DFA and L(N) = AllLongStutter. Thus L(N) = L(M), so
that allLongStutterDFA has no more states than N , by Lemma 3.12.7(4).
2

CHAPTER 3. REGULAR LANGUAGES 192

The preceding lemma tells us that the DFA allLongStutterDFA is
correct and has as few states as is possible. To find out what it looks like,
though, we’ll have to use Forlan. First we put the text

val regToEFA = faToEFA o regToFA

val efaToDFA = nfaToDFA o efaToNFA

val regToDFA = efaToDFA o regToEFA

val minAndRen = DFA.renameStatesCanonically o DFA.minimize

val allStrReg = Reg.fromString "(0 + 1)*"

val allStrDFA = minAndRen(regToDFA allStrReg)

val allStrEFA = injDFAToEFA allStrDFA

val longReg =

Reg.concat(Reg.power(Reg.fromString "0 + 1", 5),

Reg.fromString "(0 + 1)*")

val longDFA = minAndRen(regToDFA longReg)

val stutterReg = Reg.fromString "(0 + 1)*(00 + 11)(0 + 1)*"

val stutterDFA = minAndRen(regToDFA stutterReg)

val notStutterDFA =

minAndRen(DFA.minus(allStrDFA, stutterDFA))

val longAndNotStutterDFA =

minAndRen(DFA.inter(longDFA, notStutterDFA))

val longAndNotStutterEFA =

injDFAToEFA longAndNotStutterDFA

val someLongNotStutterEFA’ =

EFA.concat(allStrEFA,

EFA.concat(longAndNotStutterEFA,

allStrEFA))

val someLongNotStutterEFA =

EFA.renameStatesCanonically someLongNotStutterEFA’

val someLongNotStutterDFA =

minAndRen(efaToDFA someLongNotStutterEFA)

val allLongStutterDFA =

minAndRen(DFA.minus(allStrDFA, someLongNotStutterDFA))

CHAPTER 3. REGULAR LANGUAGES 193

in the file stutter.sml. Then, we proceed as follows

- use "stutter.sml";

[opening stutter.sml]

val regToEFA = fn : reg -> efa

val efaToDFA = fn : efa -> dfa

val regToDFA = fn : reg -> dfa

val minAndRen = fn : dfa -> dfa

val allStrReg = - : reg

val allStrDFA = - : dfa

val allStrEFA = - : efa

val longReg = - : reg

val longDFA = - : dfa

val stutterReg = - : reg

val stutterDFA = - : dfa

val notStutterDFA = - : dfa

val longAndNotStutterDFA = - : dfa

val longAndNotStutterEFA = - : efa

val someLongNotStutterEFA’ = - : efa

val someLongNotStutterEFA = - : efa

val someLongNotStutterDFA = - : dfa

val allLongStutterDFA = - : dfa

val it = () : unit

- DFA.output("", allLongStutterDFA);

{states}

A, B, C, D, E, F, G, H, I, J

{start state}

A

{accepting states}

A, B, C, D, E, F, G, H, I

{transitions}

A, 0 -> B; A, 1 -> C; B, 0 -> B; B, 1 -> E; C, 0 -> D;

C, 1 -> C; D, 0 -> B; D, 1 -> G; E, 0 -> F; E, 1 -> C;

F, 0 -> B; F, 1 -> I; G, 0 -> H; G, 1 -> C; H, 0 -> B;

H, 1 -> J; I, 0 -> J; I, 1 -> C; J, 0 -> J; J, 1 -> J

val it = () : unit

Thus, allLongStutterDFA is the DFA of Figure 3.2.

3.13 The Pumping Lemma for Regular Languages

In this section we consider techniques for showing that particular languages
are not regular. Consider the language

L = { 0n1n | n ∈ N } = {%, 01, 0011, 000111, . . .}.

CHAPTER 3. REGULAR LANGUAGES 194

B E F I

C D G H

0

1

101

0

1

J

0 1 0

0

1

1

0

0

1

0, 1

0

1

Start A

Figure 3.2: DFA Accepting AllLongStutter

Intuitively, an automaton would have to have infinitely many states to accept
L. A finite automaton won’t be able to keep track of how many 0’s it has
seen so far, and thus won’t be able to insist that the correct number of 1’s
follow. We could turn the preceding ideas into a direct proof that L is not
regular. Instead, we will first state a general result, called the Pumping
Lemma for regular languages, for proving that languages are non-regular.
Next, we will show how the Pumping Lemma can be used to prove that L
is non-regular. Finally, we will prove the Pumping Lemma.

Lemma 3.13.1 (Pumping Lemma for Regular Languages)
For all regular languages L, there is a n ∈ N such that, for all z ∈ Str, if
z ∈ L and |z| ≥ n, then there are u, v, w ∈ Str such that z = uvw and

(1) |uv| ≤ n;

(2) v 6= %; and

(3) uviw ∈ L, for all i ∈ N.

When we use the Pumping Lemma, we can imagine that we are inter-
acting with it. We can give the Pumping Lemma a regular language L, and
the lemma will give us back a natural number n such that the property of
the lemma holds. We have no control over the value of n. We can then give
the lemma a string z that is in L and has at least n symbols. (If L is finite,
though, there will be no elements of L with at least n symbols, and so we
won’t be able to proceed.) The lemma will then break z up into parts u,

CHAPTER 3. REGULAR LANGUAGES 195

v and w in such way that (1)–(3) hold. We have no control over how z is
broken up into these parts. (1) says that uv has no more than n symbols.
(2) says that v is nonempty. And (3) says that, if we “pump” (duplicate) v
as many times as we like, the resulting string will still be in L.

Before proving the Pumping Lemma, let’s see how it can be used to
prove that L = { 0n1n | n ∈ N } is non-regular.

Proposition 3.13.2
L is not regular.

Proof. Suppose, toward a contradiction, that L is regular. Thus there is an
n ∈ N with the property of the Pumping Lemma. Suppose z = 0n1n. Since
z ∈ L and |z| = 2n ≥ n, it follows that there are u, v, w ∈ Str such that
z = uvw and properties (1)–(3) of the lemma hold. Since 0n1n = z = uvw,
(1) tells us that there are i, j, k ∈ N such that

u = 0i, v = 0j , w = 0k1n, i+ j + k = n.

By (2), we have that j ≥ 1, and thus that i + k = n − j < n. By (3), we
have that

0i+k1n = 0i0k1n = uw = u%w = uv0w ∈ L.

Thus i+ k = n—contradiction. Thus L is not regular. 2

Now, let’s prove the Pumping Lemma.

Proof. Suppose L is a regular language. Thus there is a NFA M such
that L(M) = L. Let n = |QM |. Suppose z ∈ Str, z ∈ L and |z| ≥ n. Let
m = |z|. Thus 1 ≤ n ≤ |z| = m. Since z ∈ L = L(M), there is a valid
labeled path for M

q1

a1

⇒ q2

a2

⇒ · · · qm

am

⇒ qm+1,

that is labeled by z and where q1 = sM , qm+1 ∈ AM and ai ∈ Sym for all
1 ≤ i ≤ m. Since |QM | = n, not all of the states q1, . . . , qn+1 are distinct.
Thus, there are 1 ≤ i < j ≤ n+ 1 such that qi = qj .

Hence, our path looks like:

q1

a1

⇒ · · · qi−1

ai−1

⇒ qi

ai

⇒ · · · qj−1

aj−1

⇒ qj

aj

⇒ · · · qm

am

⇒ qm+1.

CHAPTER 3. REGULAR LANGUAGES 196

Let

u = a1 · · · ai−1, v = ai · · · aj−1, w = aj · · · am.

Then z = uvw. Since |uv| = j − 1 and j ≤ n + 1, we have that |uv| ≤ n.
Since i < j, we have that i ≤ j − 1, and thus that v 6= %.

Finally, since

qi ∈ ∆({q1}, u), qj ∈ ∆({qi}, v), qm+1 ∈ ∆({qj}, w)

and qi = qj , we have that

qj ∈ ∆({q1}, u), qj ∈ ∆({qj}, v), qm+1 ∈ ∆({qj}, w).

Thus, we have that qm+1 ∈ ∆({q1}, uv
iw) for all i ∈ N. But q1 = sM and

qm+1 ∈ AM , and thus uviw ∈ L(M) = L for all i ∈ N. 2

Suppose L′ = {w ∈ {0, 1}∗ | w has an equal number of 0’s and 1’s }. We
could show that L′ is non-regular using the Pumping Lemma. But we can
also prove this result by using some of the closure properties of Section 3.11
plus the fact that L = { 0n1n | n ∈ N } is non-regular.

Suppose, toward a contradiction, that L′ is regular. It is easy to see that
{0} and {1} are regular (e.g., they are denoted by the regular expressions 0

and 1). Thus, by Theorem 3.11.17, we have that {0}∗{1}∗ is regular. Hence,
by Theorem 3.11.17 again, it follows that L = L′ ∩ {0}∗{1}∗ is regular—
contradiction. Thus L′ is non-regular.

As a final example, let X be the least subset of {0, 1}∗ such that

(1) % ∈ X; and

(2) For all x, y ∈ X, 0x1y ∈ X.

Let’s try to prove that X is non-regular, using the Pumping Lemma. We
suppose, toward a contradiction, that X is regular, and give it to the Pump-
ing Lemma, getting back the n ∈ N with the property of the lemma, where
X has been substituted for L. But then, how do we go about choosing the
z ∈ Str such that z ∈ X and |z| ≥ n? We need to find a string expression
exp involving the variable n, such that, for all n ∈ N, exp ∈ X and |exp| ≥ n.

Because % ∈ X, we have that 01 = 0%1% ∈ X. Thus 0101 = 0%1(01) ∈
X. Generalizing, we can easily prove that, for all n ∈ N, (01)n ∈ X.
Thus we could let z = (01)n. Unfortunately, this won’t lead to the needed
contradiction, since the Pumping Lemma could break z up into u = %,
v = 01 and w = (01)n−1.

CHAPTER 3. REGULAR LANGUAGES 197

Trying again, we have that % ∈ X, 01 ∈ X and 0(01)1% = 0011 ∈ X.
Generalizing, it’s easy to prove that, for all n ∈ N, 0n1n ∈ X. Thus, we
can let z = 0n1n, so that z ∈ X and |z| ≥ n. We can then proceed as in
the proof that { 0n1n | n ∈ N } is non-regular, getting to the point where we
learn that 0i+k1n ∈ X and i + k < n. But an easy induction on X suffices
to show that, for all w ∈ X, w has an equal number of 0’s and 1’s. Hence
i+ k = n, giving us the needed contradiction.

The Forlan module LP (see Section 3.3) defines a type and several func-
tions that implement the idea behind the pumping lemma:

type pumping_division = lp * lp * lp

val checkPumpingDivision : pumping_division -> unit

val validPumpingDivision : pumping_division -> bool

val pumpingDivide : lp -> pumping_division

val strsOfPumpingDivision : pumping_division -> str * str * str

val pump : pumping_division * int -> lp

A pumping division is a triple (lp1, lp2, lp3), where lp1, lp2, lp3 ∈ LP. We
say that a pumping division (lp1, lp2, lp3) is valid iff

• the end state of lp1 is equal to the start state of lp2;

• the start state of lp2 is equal to the end state of lp2;

• |lp2| ≥ 1;

• the end state of lp2 is equal to the start state of lp3.

The function pumpingDivide takes in a labeled path lp and tries to divide
it into a valid pumping division (lp1, lp2, lp3), while minimizing the value of
|lp1|+ |lp2|. It issues an error message if lp has no repetition of states. The
function strsOfPumpingDivision simply returns the labels of the compo-
nents of a pumping division. And, the function pump takes in a pumping
division (lp1, lp2, lp3) and an integer n and returns

join(lp1, join(lp
′, join(lp3))),

where lp ′ is the result of joining lp2 with itself n times (the empty labeled
path whose single state is lp2’s start/end state, if n = 0). The function
issues an error message if the pumping division is invalid or if n is negative.

For example, suppose dfa of type dfa is bound to the DFA

CHAPTER 3. REGULAR LANGUAGES 198

B
0

C

1

1

1

00

Start A

Then we can proceed as follows:

- val lp = DFA.findAcceptingLP dfa (Str.input "");

@ 0011

@ .

val lp = - : lp

- LP.output("", lp);

A, 0 => B, 0 => C, 1 => A, 1 => C

val it = () : unit

- val pd = LP.pumpingDivide lp;

val pd = (-,-,-) : LP.pumping_division

- val (lp1, lp2, lp3) = pd;

val lp1 = - : lp

val lp2 = - : lp

val lp3 = - : lp

- LP.output("", lp1);

A

val it = () : unit

- LP.output("", lp2);

A, 0 => B, 0 => C, 1 => A

val it = () : unit

- LP.output("", lp3);

A, 1 => C

val it = () : unit

- val lp’ = LP.pump(pd, 2);

val lp’ = - : lp

- LP.output("", lp’);

A, 0 => B, 0 => C, 1 => A, 0 => B, 0 => C, 1 => A, 1 => C

val it = () : unit

- Str.output("", LP.label lp’);

0010011

val it = () : unit

CHAPTER 3. REGULAR LANGUAGES 199

3.14 Applications of Finite Automata and Regular
Expressions

In this section we consider two applications of the material from Chapter 3:
searching for regular expressions in files; and lexical analysis.

Both of our applications involve processing files whose characters come
from some character set, e.g., the ASCII character set. Although not every
character in a typical character set will be an element of our set Sym of
symbols, we can represent all the characters of a character set by elements
of Sym. E.g., we might represent the ASCII characters newline and space
by the symbols 〈newline〉 and 〈space〉, respectively.

In the remainder of this section, we will work with a mostly unspecified
alphabet Σ representing some character set. We assume that the symbols
0–9, a–z, A–Z, 〈space〉 and 〈newline〉 are elements of Σ. A line is a string
consisting of an element of (Σ− {〈newline〉})∗ followed by 〈newline〉; and, a
file consists of the concatenation of some number of lines.

In what follows, we write:

• [any] for the regular expression a1+a2+ · · ·+an, where a1, a2, . . . , an

are all of the elements of Σ except 〈newline〉, listed in the standard
order;

• [letter] for the regular expression

a + b + · · ·+ z + A + B + · · ·+ Z;

• [digit] for the regular expression

0 + 1 + · · ·+ 9.

First, we consider the problem of searching for instances of regular ex-
pressions in files. Given a file and a regular expression α whose alphabet
is a subset of Σ − {〈newline〉}, how can we find all lines of the file with
substrings in L(α)? (E.g., α might be a(b + c)∗a; then we want to find
all lines containing two a’s, separated by some number of b’s and c’s.)
It will be sufficient to find all lines in the file that are elements of L(β),
where β = [any]∗ α [any]∗ 〈newline〉. To do this, we can first translate β
to a DFA M with alphabet Σ. For each line w, we simply check whether
δM (sM , w) ∈ AM , selecting the line if it is.

If the file is short, however, it may be more efficient to convert β to
an FA N , and use the algorithm from Section 3.5 to find all lines that are
accepted by N .

CHAPTER 3. REGULAR LANGUAGES 200

Now, we turn our attention to lexical analysis. A lexical analyzer is
the part of a compiler that groups the characters of a program into lexical
items or tokens. The modern approach to specifying a lexical analyzer for a
programming language uses regular expressions. E.g., this is the approach
taken by the lexical analyzer generator Lex.

A lexical analyzer specification consists of a list of regular expressions
α1, α2, . . . , αn, together with a corresponding list of code fragments (in some
programming language) code1, code2, . . . , coden that process elements of Σ∗.
For example, we might have

α1 = 〈space〉+ 〈newline〉,

α2 = [letter] ([letter] + [digit])∗,

α3 = [digit] [digit]∗ (% + E [digit] [digit]∗),

α4 = [any].

The elements of L(α1), L(α2) and L(α3) are whitespace characters, identi-
fiers and numerals, respectively. The code associated with α4 will probably
indicate that an error has occurred.

A lexical analyzer meets such a specification iff it behaves as follows.
At each stage of processing its file, the lexical analyzer should consume the
longest prefix of the remaining input that is in the language denoted by
one of the regular expressions. It should then supply the prefix to the code
associated with the earliest regular expression whose language contains the
prefix. However, if there is no such prefix, or if the prefix is %, then the
lexical analyzer should indicate that an error has occurred.

Now, we consider what happens when the file 123Easy〈space〉1E2〈newline〉
is processed by a lexical analyzer meeting our example specification.

• The longest prefix of 123Easy〈space〉1E2〈newline〉 that is in one of our
regular expressions is 123. Since this prefix is only in α3, it is consumed
from the input and supplied to code3.

• The remaining input is now Easy〈space〉1E2〈newline〉. The longest pre-
fix of the remaining input that is in one of our regular expressions is
Easy. Since this prefix is only in α2, it is consumed and supplied to
code2.

• The remaining input is then 〈space〉1E2〈newline〉. The longest prefix of
the remaining input that is in one of our regular expressions is 〈space〉.
Since this prefix is only in α1 and α4, we consume it from the input
and supply it to the code associated with the earlier of these regular
expressions: code1.

CHAPTER 3. REGULAR LANGUAGES 201

• The remaining input is then 1E2〈newline〉. The longest prefix of the
remaining input that is in one of our regular expressions is 1E2. Since
this prefix is only in α3, we consume it from the input and supply it
to code3.

• The remaining input is then 〈newline〉. The longest prefix of the re-
maining input that is in one of our regular expressions is 〈newline〉.
Since this prefix is only in α1, we consume it from the input and sup-
ply it to the code associated with this expression: code1.

• The remaining input is now empty, and so the lexical analyzer termi-
nates.

We now give a simple method for generating a lexical analyzer that
meets a given specification. (More sophisticated methods are described in
compilers courses.) First, we convert the regular expressions α1, . . . , αn into
DFAs M1, . . . ,Mn. Next we determine which of the states of the DFAs are
dead/live.

Given its remaining input x, the lexical analyzer consumes the next token
from x and supplies the token to the appropriate code, as follows.

First, it initializes the following variables to error values:

• a string variable acc, which records the longest prefix of the prefix of
x that has been processed so far that is accepted by one of the DFAs;

• an integer variable mach, which records the smallest i such that acc ∈
L(Mi);

• a string variable aft , consisting of the suffix of x that one gets by
removing acc.

Then, the lexical analyzer enters its main loop, in which it processes x,
symbol by symbol, in each of the DFAs, keeping track of what symbols have
been processed so far, and what symbols remain to be processed.

• If, after processing a symbol, at least one of the DFAs is in an ac-
cepting state, then the lexical analyzer stores the string that has been
processed so far in the variable acc, stores the index of the first ma-
chine to accept this string in the integer variable mach, and stores
the remaining input in the string variable aft . If there is no remain-
ing input, then the lexical analyzer supplies acc to code codemach and
returns; otherwise it continues.

CHAPTER 3. REGULAR LANGUAGES 202

• If, after processing a symbol, none of the DFAs are in accepting states,
but at least one automaton is in a live state (so that, without knowing
anything about the remaining input, it’s possible that an automaton
will again enter an accepting state), then the lexical analyzer leaves
acc, mach and aft unchanged. If there is no remaining input, the
lexical analyzer supplies acc to codemach (it signals an error if acc is
still set to the error value), resets the remaining input to aft , and
returns; otherwise, it continues.

• If, after processing a symbol, all of the automata are in dead states
(and so could never enter accepting states again, no matter what the
remaining input was), the lexical analyzer supplies string acc to code
codemach (it signals an error if acc is still set to the error value), resets
the remaining input to aft , and returns.

Let’s see what happens when the file 123Easy〈newline〉 is processed by
the lexical analyzer generated from our example specification.

• After processing 1, M3 and M4 are in accepting states, and so the
lexical analyzer sets acc to 1, mach to 3, and aft to 23Easy〈newline〉.
It then continues.

• After processing 2, so that 12 has been processed so far, only M3 is in
an accepting state, and so the lexical analyzer sets acc to 12, mach to
3, and aft to 3Easy〈newline〉. It then continues.

• After processing 3, so that 123 has been processed so far, only M3 is
in an accepting state, and so the lexical analyzer sets acc to 123, mach
to 3, and aft to Easy〈newline〉. It then continues.

• After processing E, so that 123E has been processed so far, none of the
DFAs are in accepting states, but M3 is in a live state, since 123E is
a prefix of a string that is accepted by M3. Thus the lexical analyzer
continues, but doesn’t change acc, mach or aft .

• After processing a, so that 123Ea has been processed so far, all of the
machines are in dead states, since 123Ea isn’t a prefix of a string that
is accepted by one of the DFAs. Thus the lexical analyzer supplies
acc = 123 to codemach = code3, and sets the remaining input to aft =
Easy〈newline〉.

• In subsequent steps, the lexical analyzer extracts Easy from the re-
maining input, and supplies this string to code code2, and extracts

CHAPTER 3. REGULAR LANGUAGES 203

〈newline〉 from the remaining input, and supplies this string to code
code1.

Chapter 4

Context-free Languages

In this chapter, we study context-free grammars and languages. Context-
free grammars are used to describe the syntax of programming languages,
i.e., to specify parsers of programming languages.

A language is called context-free iff it is generated by a context-free
grammar. It will turn out that the set of all context-free languages is a
proper superset of the set of all regular languages. On the other hand,
the context-free languages have weaker closure properties than the regular
languages, and we won’t be able to give algorithms for checking grammar
equivalence or minimizing the size of grammars.

4.1 (Context-free) Grammars, Parse Trees and
Context-free Languages

In this section, we: say what (context-free) grammars are; use the notion of
a parse tree to say what grammars mean; say what it means for a language
to be context-free.

A context-free grammar (CFG, or just grammar) G consists of:

• a finite set QG of symbols (we call the elements of QG the variables of
G);

• an element sG of QG (we call sG the start variable of G);

• a finite subset PG of { (q, x) | q ∈ QG and x ∈ Str } (we call the
elements of PG the productions of G).

In a context where we are only referring to a single CFG, G, we some-
times abbreviate QG, sG and PG to Q, s and P , respectively. Whenever

204

CHAPTER 4. CONTEXT-FREE LANGUAGES 205

possible, we will use the mathematical variables p, q and r to name vari-
ables. We write Gram for the set of all grammars. Since every grammar
can be described by a finite sequence of ASCII characters, we have that
Gram is countably infinite.

As an example, we can define a CFG G (of arithmetic expressions) as
follows:

• QG = {E};

• sG = E;

• PG = {(E,E〈plus〉E), (E,E〈times〉E), (E, 〈openPar〉E〈closPar〉), (E, 〈id〉)}.

E.g., we can read the production (E,E〈plus〉E) as “an expression can consist
of an expression, followed by a 〈plus〉 symbol, followed by an expression”.

We typically describe a grammar by listing its productions, writing a
production (q, x) as q→x, and grouping productions with identical left-sides
into production families. Unless we say otherwise, the grammar’s variables
are the left-sides of all of its productions, and its start variable is the left-side
of its first production. Thus, our grammar G is

E→ E〈plus〉E,

E→ E〈times〉E,

E→ 〈openPar〉E〈closPar〉,

E→ 〈id〉,

or

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

The Forlan syntax for grammars is very similar. E.g., here is how our
example grammar can be described in Forlan’s syntax:

{variables}

E

{start variable}

E

{productions}

E -> E<plus>E | E<times>E | <openPar>E<closPar> | <id>

Production families are separated by semicolons.
The Forlan module Gram defines an abstract type gram (in the top-level

environment) of grammars as well as a number of functions and constants
for processing grammars, including:

CHAPTER 4. CONTEXT-FREE LANGUAGES 206

val input : string -> gram

val output : string * gram -> unit

val numVariables : gram -> int

val numProductions : gram -> int

val equal : gram * gram -> bool

The alphabet of a grammar G (alphabet(G)) is

{ a ∈ Sym | there are q, x such that (q, x) ∈ PG and

a ∈ alphabet(x) }

−QG.

I.e., alphabet(G) is all of the symbols appearing in the strings of G’s pro-
ductions that aren’t variables. For example, the alphabet of our example
grammar G is {〈plus〉, 〈times〉, 〈openPar〉, 〈closPar〉, 〈id〉}.

The Forlan module Gram defines a function

val alphabet : gram -> sym set

for calculating the alphabet of a grammar. E.g., if gram of type gram is
bound to our example grammar G, then Forlan will behave as follows:

- val bs = Gram.alphabet gram;

val bs = - : sym set

- SymSet.output("", bs);

<id>, <plus>, <times>, <closPar>, <openPar>

val it = () : unit

We will explain when strings are generated by grammars using the notion
of a parse tree. The set PT of parse trees is the least subset of TreeSym∪{%}

(the set of all (Sym ∪ {%})-trees; see Section 1.3) such that:

(1) for all a ∈ Sym, n ∈ N and pt1, . . . , ptn ∈ PT, a(pt1, . . . , ptn) ∈ PT;

(2) for all q ∈ Sym, q(%) ∈ PT.

Since n is allowed to be 0 in rule (1), for every symbol a, we have that a()
is a parse tree, which we normally abbreviate to a. On the other hand,
% = %() 6∈ PT. In rule (2), q(%) abbreviates q(%()). It is easy to see that
PT is countably infinite.

For example, A(B,A(%),B(0)), i.e.,

A

B A B

% 0

CHAPTER 4. CONTEXT-FREE LANGUAGES 207

is a parse tree. On the other hand, although A(B,%,B), i.e.,

A

B % B

is a (Sym ∪ {%})-tree, it’s not a parse tree, since it can’t be formed using
rules (1) and (2).

Since the set PT of parse trees is defined inductively, it gives rise to an
induction principle. The principle of induction on PT says that

for all pt ∈ PT, P (pt)

follows from showing

(1) for all a ∈ Sym, n ∈ N and pt1, . . . , ptn ∈ PT, if

P (pt1), . . . , P (ptn),

then

P (a(pt1, . . . , ptn));

(2) for all q ∈ Sym,

P (q(%)).

We define the yield of a parse tree, as follows. The function yield ∈
PT→ Str is defined by recursion:

• for all a ∈ Sym, yield(a) = a;

• for all q ∈ Sym, n ∈ N− {0} and pt1, . . . , ptn ∈ PT,

yield(q(pt1, . . . , ptn)) = yield(pt1) · · · yield(ptn);

• for all q ∈ Sym, yield(q(%)) = %.

We say that w is the yield of pt iff w = yield(pt).
For example, the yield of

A

B A B

% 0

CHAPTER 4. CONTEXT-FREE LANGUAGES 208

is

yield(B)yield(A(%))yield(B(0)) = B%yield(0) = B%0 = B0.

We say when a parse tree is valid for a grammar G as follows. Define a
function validG ∈ PT→{true, false} by recursion:

• for all a ∈ Sym, validG(a) = a ∈ alphabet(G) or a ∈ QG;

• for all q ∈ Sym, n ∈ N− {0} and pt1, . . . , ptn ∈ PT,

validG(q(pt1, . . . , ptn))

= (q, rootLabel(pt1) · · · rootLabel(ptn)) ∈ PG and

validG(pt1) and · · · and validG(ptn);

• for all q ∈ Sym, validG(q(%)) = (q,%) ∈ PG.

We say that pt is valid for G iff validG(pt) = true. We sometimes abbre-
viate validG to valid.

Suppose G is the grammar

A→ BAB | %,

B→ 0

(by convention, its variables are A and B and its start variable is A). Let’s
see why the parse tree A(B,A(%),B(0)) is valid for G.

• Since A→ BAB ∈ PG and the concatenation of the root labels of the
sub-trees B, A(%) and B(0) is BAB, the overall tree will be valid for
G if these sub-trees are valid for G.

• The parse tree B is valid for G since B ∈ QG.

• Since A→% ∈ PG, the parse tree A(%) is valid for G.

• Since B→ 0 ∈ PG and the root label of the sub-tree 0 is 0, the parse
tree B(0) will be valid for G if the sub-tree 0 is valid for G.

• The sub-tree 0 is valid for G since 0 ∈ alphabet(G).

Thus, we have that

CHAPTER 4. CONTEXT-FREE LANGUAGES 209

A

B A B

% 0

is valid for G.
Suppose G is our grammar of arithmetic expressions

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

Then the parse tree

E

E 〈plus〉 E

E 〈times〉 E

〈id〉 〈id〉

〈id〉

is valid for G.
Now we can say what grammars mean. A string w is generated by a

grammar G iff w ∈ alphabet(G)∗ and there is a parse tree pt such that

• pt is valid for G;

• rootLabel(pt) = sG;

• yield(pt) = w.

The language generated by a grammar G (L(G)) is

{w ∈ Str | w is generated by G }.

Proposition 4.1.1
For all grammars G, alphabet(L(G)) ⊆ alphabet(G).

Let G be the example grammar

A→ BAB | %,

B→ 0.

Then 00 is generated by G since 00 ∈ {0}∗ = alphabet(G)∗ and the parse
tree

CHAPTER 4. CONTEXT-FREE LANGUAGES 210

A

B A B

% 00

is valid for G, has sG = A as its root label, and has 00 as its yield.
Suppose G is our grammar of arithmetic expressions:

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

Then 〈id〉〈times〉〈id〉〈plus〉〈id〉 is generated byG since 〈id〉〈times〉〈id〉〈plus〉〈id〉 ∈
alphabet(G)∗ and the parse tree

E

E 〈plus〉 E

E 〈times〉 E

〈id〉 〈id〉

〈id〉

is valid for G, has sG = E as its root label, and has 〈id〉〈times〉〈id〉〈plus〉〈id〉
as its yield.

A language L is context-free iff L = L(G) for some G ∈ Gram. We
define

CFLan = {L(G) | G ∈ Gram }

= {L ∈ Lan | L is context-free }.

Since {00}, {01}, {02}, . . . , are all context-free languages, we have that
CFLan is infinite. But, since Gram is countably infinite, it follows that
CFLan is also countably infinite. Since Lan is uncountable, it follows that
CFLan (Lan, i.e., there are non-context-free languages. Later, we will
see that RegLan (CFLan.

We say that grammars G and H are equivalent iff L(G) = L(H). In other
words, G and H are equivalent iff G and H generate the same language. We
define a relation ≈ on Gram by: G ≈ H iff G and H are equivalent. It is
easy to see that ≈ is reflexive on Gram, symmetric and transitive.

The Forlan module PT defines an abstract type pt of parse trees (in the
top-level environment) along with some functions for processing parse trees:

CHAPTER 4. CONTEXT-FREE LANGUAGES 211

val input : string -> pt

val output : string * pt -> unit

val height : pt -> int

val size : pt -> int

val equal : pt * pt -> bool

val rootLabel : pt -> sym

val yield : pt -> str

The Forlan syntax for parse trees is simply the linear syntax that we’ve been
using in this section.

The Forlan module Gram also defines the functions

val checkPT : gram -> pt -> unit

val validPT : gram -> pt -> bool

The function checkPT is used to check whether a parse tree is valid for a
grammar; if the answer is “no”, it explains why not and raises an exception;
otherwise it simply returns (). The function validPT checks whether a
parse tree is valid for a grammar, silently returning true if it is, and silently
returning false if it isn’t.

Suppose the identifier gram of type gram is bound to the grammar

A→ BAB | %,

B→ 0.

And, suppose that the identifier gram’ of type gram is bound to our grammar
of arithmetic expressions

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

Here are some examples of how we can process parse trees using For-
lan:

- val pt = PT.input "";

@ A(B, A(%), B(0))

@ .

val pt = - : pt

- Sym.output("", PT.rootLabel pt);

A

val it = () : unit

- Str.output("", PT.yield pt);

B0

val it = () : unit

- Gram.validPT gram pt;

CHAPTER 4. CONTEXT-FREE LANGUAGES 212

val it = true : bool

- val pt’ = PT.input "";

@ E(E(E(<id>), <times>, E(<id>)), <plus>, E(<id>))

@ .

val pt’ = - : pt

- Sym.output("", PT.rootLabel pt’);

E

val it = () : unit

- Str.output("", PT.yield pt’);

<id><times><id><plus><id>

val it = () : unit

- Gram.validPT gram’ pt’;

val it = true : bool

- Gram.checkPT gram pt’;

invalid production : "E -> E<plus>E"

uncaught exception Error

- Gram.checkPT gram’ pt;

invalid production : "A -> BAB"

uncaught exception Error

- PT.input "";

@ A(B,%,B)

@ .

% labels inappropriate node

uncaught exception Error

We conclude this section with a grammar synthesis example. Suppose
X = { 0n1m2m3n | n,m ∈ N }. How can we find a grammar G such that
L(G) = X? The key is to think of generating the strings of X from the
outside in, in two phases. In the first phase, one generates pairs of 0’s and
3’s, and, in the second phase, one generates pairs of 1’s and 2’s. E.g., a
string could be formed in the following stages:

0 3,

00 33,

001233.

CHAPTER 4. CONTEXT-FREE LANGUAGES 213

This analysis leads us to the grammar

A→ 0A3,

A→ B,

B→ 1B2,

B→%,

where A corresponds to the first phase, and B to the second phase. For
example, here is how the string 001233 may be parsed using G:

A

A 3

A 3

B

B 2

%

0

0

1

4.2 Isomorphism of Grammars

In the section we study the isomorphism of grammars. Suppose G is the
grammar with variables A and B, start variable A and productions:

A→ 0A1 | B,

B→% | 2A.

And, suppose H is the grammar with variables B and A, start variable B

and productions:

B→ 0B1 | A,

A→% | 2B.

H can be formed from G by renaming the variables A and B of G to B and
A, respectively. As a result, we say that G and H are isomorphic.

Suppose G is as before, but that H is the grammar with variables 2 and
A, start variable 2 and productions:

2→ 021 | A,

A→% | 22.

CHAPTER 4. CONTEXT-FREE LANGUAGES 214

Then H can be formed from G by renaming the variables A and B to 2 and
A, respectively. But, because the symbol 2 is in both alphabet(G) and QH ,
we shouldn’t consider G and H to be isomorphic. In fact, G and H generate
different languages. A grammar’s variables (e.g., A) can’t be renamed to
elements of the grammar’s alphabet (e.g., 2).

An isomorphism h from a grammar G to a grammar H is a bijection
from QG to QH such that:

• h turns G into H;

• alphabet(G) ∩QH = ∅, i.e., none of the symbols in G’s alphabet are
variables of H.

We say that G and H are isomorphic iff there is an isomorphism between
G and H. As expected, we have that isomorphism implies equivalence.

Let X = { (G, f) | G ∈ Gram , f is a bijection from QG

to some set of symbols, and { f(q) | q ∈ QG } ∩ alphabet(G) 6= ∅ }. The
function renameVariables ∈ X → Gram takes in a pair (G, f) and re-
turns the grammar produced from G by renaming G’s variables using the
bijection f . Then, if G is a grammar and f is a bijection from QG to
some set of symbols such that { f(q) | q ∈ QG } ∩ alphabet(G) 6= ∅, then
renameVariables(G, f) is isomorphic to G.

The following function is a special case of renameVariables. The func-
tion renameVariablesCanonically ∈ Gram→Gram renames the vari-
ables of a grammar G to:

• A, B, etc., when the grammar has no more than 26 variables (the
smallest variable of G will be renamed to A, the next smallest one to
B, etc.); or

• 〈1〉, 〈2〉, etc., otherwise.

These variables will actually be surrounded by a uniform number of extra
brackets, if this is needed to make the new grammar’s variables and the
original grammar’s alphabet be disjoint.

The Forlan module Gram contains the following functions for finding and
processing isomorphisms in Forlan:

val isomorphism : gram * gram * sym_rel -> bool

val findIsomorphism : gram * gram -> sym_rel

val isomorphic : gram * gram -> bool

val renameVariables : gram * sym_rel -> gram

val renameVariablesCanonically : gram -> gram

CHAPTER 4. CONTEXT-FREE LANGUAGES 215

The function findIsomorphism is defined using a procedure that is simi-
lar to the one used for finding isomorphisms between finite automata, and
isomorphic is defined using findIsomorphism.

Suppose the identifier gram of type gram is bound to the grammar with
variables A and B, start variable A and productions:

A→ 0A1 | B,

B→% | 2A.

Suppose the identifier gram’ of type gram is bound to the grammar with
variables B and A, start variable B and productions:

B→ 0B1 | A,

A→% | 2B.

And, suppose the identifier gram’’ of type gram is bound to the grammar
with variables 2 and A, start variable 2 and productions:

2→ 021 | A,

A→% | 22.

Here are some examples of how the above functions can be used:

- val rel = Gram.findIsomorphism(gram, gram’);

val rel = - : sym_rel

- SymRel.output("", rel);

(A, B), (B, A)

val it = () : unit

- Gram.isomorphism(gram, gram’, rel);

val it = true : bool

- Gram.isomorphic(gram, gram’’);

val it = false : bool

- Gram.isomorphic(gram’, gram’’);

val it = false : bool

4.3 A Parsing Algorithm

In this section, we consider a simple, fairly inefficient parsing algorithm
that works for all context-free grammars. Compilers courses cover efficient
algorithms that work for various subsets of the context free grammars. The
parsing algorithm takes in a grammar G and a string w, and attempts to
find a minimally-sized parse tree pt such that:

CHAPTER 4. CONTEXT-FREE LANGUAGES 216

• pt is valid for G;

• rootLabel(pt) = sG;

• yield(pt) = w.

If there is no such pt , then the algorithm reports failure.
Let’s start by considering an algorithm for checking whether w ∈ L(G),

for a string w and grammar G. Let A = QG ∪ alphabet(w) and B = {x ∈
Str | x is a substring of w }. We generate the least subset X of A×B such
that:

• For all a ∈ alphabet(w), (a, a) ∈ X;

• For all q ∈ QG, if q→% ∈ PG, then (q,%) ∈ X;

• For all q ∈ QG, n ∈ N− {0}, a1, . . . , an ∈ A and x1, . . . , xn ∈ B, if

– q→ a1 · · · an ∈ PG,

– for all 1 ≤ i ≤ n, (ai, xi) ∈ X, and

– x1 · · ·xn ∈ B,

then (q, x1 · · ·xn) ∈ X.

Since A×B is finite, this process terminates.
For example, let G be the grammar

A→ BC | CD,

B→ 0 | CB,

C→ 1 | DD,

D→ 0 | BC,

and let w = 0010. We have that:

• (0, 0) ∈ X;

• (1, 1) ∈ X;

• (B, 0) ∈ X, since B→ 0 ∈ PG, (0, 0) ∈ X and 0 ∈ B;

• (C, 1) ∈ X, since C→ 1 ∈ PG, (1, 1) ∈ X and 1 ∈ B;

• (D, 0) ∈ X, since D→ 0 ∈ PG, (0, 0) ∈ X and 0 ∈ B;

• (A, 01) ∈ X, since A→ BC ∈ PG, (B, 0) ∈ X, (C, 1) ∈ X and 01 ∈ B;

CHAPTER 4. CONTEXT-FREE LANGUAGES 217

• (A, 10) ∈ X, since A→ CD ∈ PG, (C, 1) ∈ X, (D, 0) ∈ X and 10 ∈ B;

• (B, 10) ∈ X, since B→ CB ∈ PG, (C, 1) ∈ X, (B, 0) ∈ X and 10 ∈ B;

• (C, 00) ∈ X, since C→ DD ∈ PG, (D, 0) ∈ X, (D, 0) ∈ X and 00 ∈ B;

• (D, 01) ∈ X, since D→ BC ∈ PG, (B, 0) ∈ X, (C, 1) ∈ X and 01 ∈ B;

• (C, 001) ∈ X, since C → DD ∈ PG, (D, 0) ∈ X, (D, 01) ∈ X and
0(01) ∈ B;

• (C, 010) ∈ X, since C → DD ∈ PG, (D, 01) ∈ X, (D, 0) ∈ X and
(01)0 ∈ B;

• (A, 0010) ∈ X, since A → BC ∈ PG, (B, 0) ∈ X, (C, 010) ∈ X and
0(010) ∈ B;

• (B, 0010) ∈ X, since B → CB ∈ PG, (C, 00) ∈ X, (B, 10) ∈ X and
(00)(10) ∈ B;

• (D, 0010) ∈ X, since D → BC ∈ PG, (B, 0) ∈ X, (C, 010) ∈ X and
0(010) ∈ B;

• Nothing more can be added to X.

The following lemmas concerning X are easy to prove:

Lemma 4.3.1
For all (a, x) ∈ X, there is a pt ∈ PT such that

• pt is valid for G,

• rootLabel(pt) = a,

• yield(pt) = x.

Lemma 4.3.2
For all a ∈ A and x ∈ B, if there is a pt ∈ PT such that

• pt is valid for G,

• rootLabel(pt) = a,

• yield(pt) = x,

then (a, x) ∈ X.

CHAPTER 4. CONTEXT-FREE LANGUAGES 218

Thus, to determine if w ∈ L(G), we just have to check whether (sG, w) ∈
X. In the case of our example grammar, we have that w = 0010 ∈ L(G),
since (A, 0010) ∈ X.

If we label each element (a, x) of our set X with a parse tree pt such
that

• pt is valid for G,

• rootLabel(pt) = a,

• yield(pt) = x,

then we can return the parse tree labeling (sG, w), if this pair is in X.
Otherwise, we report failure.

With some more work, we can arrange that the parse trees returned
by our parsing algorithm are minimally-sized, and this is what the official
version of our parsing algorithm guarantees. This goal is a little tricky
to achieve, since some pairs will first be labeled by parse trees that aren’t
minimally sized.

The Forlan module Gram defines a function

val parseStr : gram -> str -> pt

that implements our algorithm for parsing strings according to grammars.
Suppose that gram of type gram is bound to the grammar

A→ BC | CD,

B→ 0 | CB,

C→ 1 | DD,

D→ 0 | BC.

We can attempt to parse some strings according to this grammar, as fol-
lows.

- fun test s =

= PT.output("",

= Gram.parseStr gram (Str.fromString s));

val test = fn : string -> unit

- test "0010";

A(B(0), C(D(B(0), C(1)), D(0)))

val it = () : unit

- test "0100";

A(C(D(B(0), C(1)), D(0)), D(0))

CHAPTER 4. CONTEXT-FREE LANGUAGES 219

val it = () : unit

- test "0101";

no such parse exists

uncaught exception Error

4.4 Simplification of Grammars

In this section, we say what it means for a grammar to be simplified, give a
simplification algorithm for grammars, and see how to use this algorithm in
Forlan.

Suppose G is the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

There are two things that are odd about this grammar. First, the
there isn’t a valid parse tree for G that starts at D and whose yield is in
alphabet(G)∗ = {0, 1, 2}∗. Second, there is no valid parse tree that starts
at G’s start variable A, has a yield that is in {0, 1, 2}∗, and makes use of C.
As a result, we will say that both C and D are “useless”.

Suppose G is a grammar. We say that a variable q of G is:

• reachable iff there is a parse tree pt such that pt is valid for G,
rootLabel(pt) = sG and q is one of the leaves of pt ;

• generating iff there is a parse tree pt such that pt is valid for G,
rootLabel(pt) = q and yield(pt) ∈ alphabet(G)∗;

• useful iff there is a parse tree pt such that pt is valid for G,
rootLabel(pt) = sG, yield(pt) ∈ alphabet(G)∗, and q appears in
pt .

Thus every useful variable is both reachable and generating, but the converse
is false. For example, the variable C of our example grammar is reachable
and generating, but isn’t useful.

A grammar G is simplified iff either

• all of G’s variables are useful; or

CHAPTER 4. CONTEXT-FREE LANGUAGES 220

• G has a single variable and no productions.

E.g., the grammar with variable A, start variable A and no productions is
simplified, even though A is useless. Of course, this grammar generates the
empty language.

To simplify a grammar G, we proceed as follows.

• First, we determine which variables of G are generating. If sG isn’t
one of these variables, then we return the grammar with variable sG

and no productions.

• Next, we turn G into a grammar G′ by deleting all non-generating
variables, and deleting all productions involving such variables.

• Then, we determine which variables of G′ are reachable.

• Finally, we turn G′ into a grammar G′′ by deleting all non-reachable
variables, and deleting all productions involving such variables.

Suppose G, once again, is the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

Here is what happens if we apply our simplification algorithm to G.
First, we determine which variables are generating. Clearly B and C are.

And, since B is, it follows that A is, because of the production A→BB1. (If
this production had been A→ BD1, we wouldn’t have added A to our set.)
Thus, we form G′ from G by deleting the variable D, yielding the grammar

A→ BB1,

B→ 0 | A,

C→ 12.

Next, we determine which variables of G′ are reachable. Clearly A is,
and thus B is, because of the production A→ BB1. Note that, if we carried
out the two stages of our simplification algorithm in the other order, then
C and its productions would never be deleted. Finally, we form G′′ from G′

by deleting the variable C, yielding the grammar

A→ BB1,

B→ 0 | A.

CHAPTER 4. CONTEXT-FREE LANGUAGES 221

We define a function simplify ∈ Gram→Gram by: for all G ∈ Gram,
simplify(G) is the result of running the above algorithm on G.

Theorem 4.4.1
For all G ∈ Gram:

(1) simplify(G) is simplified;

(2) simplify(G) ≈ G;

(3) alphabet(simplify(G)) ⊆ alphabet(G).

The Forlan module Gram defines the function

val simplify : gram -> gram

for simplifying grammars.
Suppose gram of type gram is bound to the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

We can simplify our grammar as follows:

- val gram’ = Gram.simplify gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables}

A, B

{start variable}

A

{productions}

A -> BB1; B -> 0 | A

val it = () : unit

4.5 Proving the Correctness of Grammars

In this section, we consider a technique for proving the correctness of gram-
mars. We begin with a useful definition.

Suppose G is a grammar and a ∈ QG ∪ alphabet(G). Then ΠG,a =
{w ∈ alphabet(G)∗ | there is a pt ∈ PT such that pt is valid for

CHAPTER 4. CONTEXT-FREE LANGUAGES 222

G, rootLabel(pt) = a and yield(pt) = w }. If it’s clear which grammar
we are talking about, we sometimes abbreviate ΠG,a to Πa.

For example, if G is the grammar

A→ 0A3, A→ B,

B→ 1B2, B→%,

then Π0 = {0}, Π1 = {1}, Π2 = {2}, Π3 = {3}, ΠA = { 0n1m2m3n | n,m ∈
N } = L(G) and ΠB = { 1m2m | m ∈ N }.

Proposition 4.5.1
Suppose G is a grammar.

(1) For all a ∈ alphabet(G), ΠG,a = {a}.

(2) For all q ∈ QG, ΠG,q = {w1 · · ·wn | there are a1, . . . , an ∈ Sym
such that q→ a1, . . . , an ∈ PG and w1 ∈ ΠG,a1

, . . . , wn ∈ ΠG,an }.

Suppose G is a grammar, and A→% and A→0B1C are productions of G,
where B,C ∈ QG and 0, 1 ∈ alphabet(G). By Part (2) of the proposition,
in the case when n = 0, we have that, since A→ % ∈ PG, then % ∈ ΠA.
Suppose w2 ∈ ΠB and w4 ∈ ΠC. By Part (1) of the proposition, we have that
0 ∈ Π0 and 1 ∈ Π1. Thus, since A→0B1C ∈ PG, we have that 0w21w4 ∈ ΠA.

If a grammar has no productions of the form q→ r, for a variable r, we
could use strong string induction and Proposition 4.5.1 to prove it correct.
Because this technique doesn’t work in the general case, we will introduce
an induction principle that will work in general.

Suppose G is a grammar and that, for all a ∈ QG∪alphabet(G), Pa(w)
is a property of a string w ∈ ΠG,a. The principle of induction on Π says
that

for all a ∈ QG ∪ alphabet(G), for all w ∈ ΠG,a, Pa(w)

follows from showing

(1) for all a ∈ alphabet(G), Pa(a);

(2) for all q ∈ QG, n ∈ N and a1, . . . , an ∈ Sym,
if q→ a1 · · · an ∈ PG, then

for all w1 ∈ ΠG,a1
, . . . , wn ∈ ΠG,an ,

if (†) Pa1(w1), . . . , Pan(wn),
then Pq(w1 · · ·wn).

CHAPTER 4. CONTEXT-FREE LANGUAGES 223

We refer to the formula (†) as the inductive hypothesis.
If a ∈ alphabet(G), then ΠG,a = {a}. We will only apply the property

Pa(·) to elements of ΠG,a, i.e., to a, and Part (1) requires that Pa(a) holds.
Thus, when applying our induction principle, we can implicitly assume that
Pa(w) says “w = a”. Given this assumption, we won’t have to explicitly
prove Part (1).

Furthermore, when proving Part (2), given a symbol ai ∈ alphabet(G),
we will have that wi = ai, and it will be unnecessary to assume that Pai

(ai),
since this will always be true. For example, given the production A→0B1C,
where B,C ∈ QG and 0, 1 ∈ alphabet(G), we will proceed as follows. We
will assume that w2 ∈ ΠB and w4 ∈ ΠC, and that the inductive hypothesis
holds: PB(w2) and PC(w4). Then, we will prove that PA(0w21w4). Of course,
we could use the variables x and y instead of w2 and w4.

Now, let’s do an example correctness proof. Let G be the grammar

A→ 0A3, A→ B,

B→ 1B2, B→%,

Let

X = { 0n1m2m3n | n,m ∈ N },

Y = { 1m2m | m ∈ N }.

To prove that L(G) = X, it will suffice to show that X ⊆ L(G) ⊆ X.

Lemma 4.5.2
X ⊆ L(G).

Proof. First, we prove that Y ⊆ ΠB. It will suffice to show that, for all
m ∈ N, 1m2m ∈ ΠB. We proceed by mathematical induction.

(Basis Step) Because B→% ∈ P , we have that 1020 = %% = % ∈ ΠB,
by Proposition 4.5.1.

(Inductive Step) Suppose m ∈ N, and assume the inductive hypothesis:
1m2m ∈ ΠB. Because B→1B2 ∈ P , it follows that 1m+12m+1 = 1(1m2m)2 ∈
ΠB, by Proposition 4.5.1.

Next, we prove that X ⊆ ΠA = L(G). Suppose m ∈ N. It will suffice to
show that, for all n,m ∈ N, 0n1m2m3n ∈ ΠA. Suppose m ∈ N. It will suffice
to show that, for all n ∈ N, 0n1m2m3n ∈ ΠA. We proceed by mathematical
induction.

(Basis Step) Because Y ⊆ ΠB, we have that 1m2m ∈ ΠB. Then, since
A→ B ∈ P , we have that 001m2m30 = %1m2m% = 1m2m ∈ ΠA, by Propo-
sition 4.5.1.

CHAPTER 4. CONTEXT-FREE LANGUAGES 224

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
0n1m2m3n ∈ ΠA. Because A→ 0A3 ∈ P , it follows that 0n+11m2m3n+1 =
0(0n1m2m3n)3 ∈ ΠA, by Proposition 4.5.1. 2

Lemma 4.5.3
L(G) ⊆ X.

Proof. Since ΠA = L(G), it will suffice to show that

(A) for all w ∈ ΠA, w ∈ X;

(B) for all w ∈ ΠB, w ∈ Y .

We proceed by induction on Π.
Formally, this means that we let the properties PA(w) and PB(w) be

“w ∈ X” and “w ∈ Y ”, respectively, and then use the induction principle
to prove that, for all a ∈ QG ∪alphabet(G), for all w ∈ Πa, Pa(w). But we
will actually work more informally.

There are four productions to consider.

• (A→ 0A3) Suppose w ∈ ΠA, and assume the inductive hypothesis:
w ∈ X. We must show that 0w3 ∈ X. Because w ∈ X, we have that
w = 0n1m2m3n, for some n,m ∈ N. Thus 0w3 = 0(0n1m2m3n)3 =
0n+11m2m3n+1 ∈ X.

• (A → B) Suppose w ∈ ΠB, and assume the inductive hypothesis:
w ∈ Y . We must show that w ∈ X. Because w ∈ Y , we have that
w = 1m2m, for some m ∈ N. Thus w = %w% = 001m2m30 ∈ X.

• (B→ 1B2) Suppose w ∈ ΠB, and assume the inductive hypothesis:
w ∈ Y . We must show that 1w2 ∈ Y . Because w ∈ Y , we have that
w = 1m2m, for some m ∈ N. Thus 1w2 = 1(1m2m)2 = 1m+12m+1 ∈ Y .

• (B → %) We must show that % ∈ Y , and this follows since % =
%% = 1020 ∈ Y .

2

Proposition 4.5.4
L(G) = X.

Proof. Follows from Lemmas 4.5.2 and 4.5.3. 2

If we look at the proofs of Lemmas 4.5.2 and 4.5.3, we can conclude that,
for all w ∈ Str:

CHAPTER 4. CONTEXT-FREE LANGUAGES 225

(A) w ∈ ΠA iff w ∈ X; and

(B) w ∈ ΠB iff w ∈ Y .

4.6 Ambiguity of Grammars

In this section, we say what it means for a grammar to be ambiguous. We
also consider a straightforward method for disambiguating some commonly
occurring grammars.

Suppose G is our grammar of arithmetic expressions:

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

There multiple ways of parsing the string 〈id〉〈times〉〈id〉〈plus〉〈id〉 according
to this grammar:

E

E 〈plus〉 E

E 〈times〉 E

〈id〉 〈id〉

〈id〉

E

E 〈times〉 E

E 〈plus〉 E

〈id〉 〈id〉

〈id〉

(pt1) (pt2)

In pt1, multiplication has higher precedence than addition; in pt2, the situ-
ation is reversed. Because there are multiple ways of parsing this string, we
say that our grammar is “ambiguous”. A grammar G is ambiguous iff there
is a w ∈ alphabet(G)∗ such that w is the yield of multiple valid parse trees
for G whose root labels are sG; otherwise, G is unambiguous.

Not every ambiguous grammar can be turned into an equivalent unam-
biguous one. However, we can use a simple technique to disambiguate our
grammar of arithmetic expressions. Since there are two binary operators in
our language of arithmetic expressions, we have to decide:

• whether multiplication has higher or lower precedence than addition;

• whether multiplication and addition are left or right associative.

As usual, we’ll make multiplication have higher precedence than addition,
and make both multiplication and addition be left associative.

CHAPTER 4. CONTEXT-FREE LANGUAGES 226

As a first step towards disambiguating our grammar, we can form a
new grammar with the three variables: E (expressions), T (terms) and F

(factors), start variable E and productions:

E→ T | E〈plus〉E,

T→ F | T〈times〉T,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

The idea is that the lowest precedence operator “lives” at the highest level of
the grammar, that the highest precedence operator lives at the middle level
of the grammar, and that the basic expressions, including the parenthesized
expressions, live at the lowest level of the grammar.

Now, there is only one way to parse the string 〈id〉〈times〉〈id〉〈plus〉〈id〉,
since, if we begin by using the production E→T, our yield will only include
a 〈plus〉 if this symbol occurs within parentheses. If we had more levels
of precedence in our language, we would simply add more levels to our
grammar.

On the other hand, there are still two ways of parsing the string
〈id〉〈plus〉〈id〉〈plus〉〈id〉: with left associativity or right associativity. To finish
disambiguating our grammar, we must break the symmetry of the right-sides
of the productions

E→ E〈plus〉E,

T→ T〈times〉T,

turning one of the E’s into T, and one of the T’s into F. To make our
operators be left associative, we must change the second E to T, and the
second T to F; right associativity would result from making the opposite
choices.

Thus, our unambiguous grammar of arithmetic expressions is

E→ T | E〈plus〉T,

T→ F | T〈times〉F,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

It can be proved that this grammar is indeed unambiguous, and that
it is equivalent to the original grammar. Now, the only parse of
〈id〉〈times〉〈id〉〈plus〉〈id〉 is

CHAPTER 4. CONTEXT-FREE LANGUAGES 227

T

F

〈id〉

E

〈plus〉E

T

〈id〉

〈times〉T F

F 〈id〉

And, the only parse of 〈id〉〈plus〉〈id〉〈plus〉〈id〉 is

E

〈plus〉E

〈plus〉 T

T

F

〈id〉F

〈id〉

E

T

F

〈id〉

4.7 Closure Properties of Context-free Languages

In this section, we consider several operations on grammars, including union,
concatenation and closure operations. As a result, we will have that the
context-free languages are closed under union, concatenation and closure.
Later, we will see that it is impossible to define intersection, complementa-
tion, and set difference operations on grammars. As a result, the context-free
languages won’t be closed under these operations.

First, we consider some basic grammars and operations on grammars.
The grammar with variable A and production A→% generates the language
{%}. The grammar with variable A and no productions generates the lan-
guage ∅. If w is a string, then the grammar with variable A and production
A→w generates the language {w}. Actually, we must be careful to chose a
variable that doesn’t occur in w.

Next, we define union, concatenation and closure operations on gram-
mars. Suppose G1 and G2 are grammars. We can define a grammar H

CHAPTER 4. CONTEXT-FREE LANGUAGES 228

such that L(H) = L(G1) ∪ L(G2) by unioning together the variables and
productions of G1 and G2, and adding a new start variable q, along with
productions

q→ sG1
| sG2

.

Unfortunately, for the above to be valid, we need to know that:

• QG1
∩QG2

= ∅ and q 6∈ QG1
∪QG2

;

• alphabet(G1) ∩ QG2
= ∅, alphabet(G2) ∩ QG1

= ∅ and q 6∈
alphabet(G1) ∪ alphabet(G2).

Our official union operation for grammars renames the variables of G1 and
G2, and chooses the start variable q, in a uniform way that makes the
preceding properties hold. To keep things simple, when talking about the
concatenation and closure operations on grammars, we’ll just assume that
conflicts between variables and alphabet elements don’t occur.

Suppose G1 and G2 are grammars. We can define a grammar H such that
L(H) = L(G1)L(G2) by unioning together the variables and productions of
G1 and G2, and adding a new start variable q, along with production

q→ sG1
sG2

.

Suppose G is a grammar. We can define a grammar H such that L(H) =
L(G)∗ by adding to the variables and productions of G a new start variable
q, along with productions

q→% | sGq.

Next, we consider reversal and alphabet renaming operations on gram-
mars. Given a grammar G, we can define a grammar H such that
L(H) = L(G)R by simply reversing the right-sides of G’s productions.

Given a grammar G and a bijection f from a set of symbols that is a
superset of alphabet(G) to some set of symbols, we can define a grammar H
such that L(H) = L(G)f by renaming the elements of alphabet(G) in the
right-sides of G’s productions using f . Actually, we may have to rename the
variables of G to avoid clashes with the elements of the renamed alphabet.

The Forlan module Gram defines the following constants and operations
on grammars:

val emptyStr : gram

val emptySet : gram

CHAPTER 4. CONTEXT-FREE LANGUAGES 229

val fromStr : str -> gram

val fromSym : sym -> gram

val union : gram * gram -> gram

val concat : gram * gram -> gram

val closure : gram -> gram

val rev : gram -> gram

val renameAlphabet : gram * sym_rel -> gram

For example, we can construct a grammar G such that L(G) =
{01} ∪ {10}{11}∗, as follows.

- val gram1 = Gram.fromStr(Str.fromString "01");

val gram1 = - : gram

- val gram2 = Gram.fromStr(Str.fromString "10");

val gram2 = - : gram

- val gram3 = Gram.fromStr(Str.fromString "11");

val gram3 = - : gram

- val gram =

= Gram.union(gram1,

= Gram.concat(gram2,

= Gram.closure gram3));

val gram = - : gram

- Gram.output("", gram);

{variables}

A, <1,A>, <2,A>, <2,<1,A>>, <2,<2,A>>, <2,<2,<A>>>

{start variable}

A

{productions}

A -> <1,A> | <2,A>; <1,A> -> 01;

<2,A> -> <2,<1,A>><2,<2,A>>; <2,<1,A>> -> 10;

<2,<2,A>> -> % | <2,<2,<A>>><2,<2,A>>; <2,<2,<A>>> -> 11

val it = () : unit

- val gram’ = Gram.renameVariablesCanonically gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables}

A, B, C, D, E, F

{start variable}

A

{productions}

A -> B | C; B -> 01; C -> DE; D -> 10; E -> % | FE;

F -> 11

val it = () : unit

Continuing our Forlan session, the grammar reversal and alphabet renaming
operations can be used as follows:

CHAPTER 4. CONTEXT-FREE LANGUAGES 230

- val gram’’ = Gram.rev gram’;

val gram’’ = - : gram

- Gram.output("", gram’’);

{variables}

A, B, C, D, E, F

{start variable}

A

{productions}

A -> B | C; B -> 10; C -> ED; D -> 01; E -> % | EF;

F -> 11

val it = () : unit

- val rel = SymRel.fromString "(0, A), (1, B)";

val rel = - : sym_rel

- val gram’’’ = Gram.renameAlphabet(gram’’, rel);

val gram’’’ = - : gram

- Gram.output("", gram’’’);

{variables}

<A>, , <C>, <D>, <E>, <F>

{start variable}

<A>

{productions}

<A> -> | <C>; -> BA; <C> -> <E><D>; <D> -> AB;

<E> -> % | <E><F>; <F> -> BB

val it = () : unit

4.8 Converting Regular Expressions and Finite
Automata to Grammars

There are simple algorithms for converting regular expressions and finite
automata to grammars. Since we have algorithms for converting between
regular expressions and finite automata, it is tempting to only define one of
these algorithms. But translating FAs to regular expressions is expensive,
and often yields large regular expressions. Thus it would be impractical
to translate FAs to grammars by first translating them to regular expres-
sions, and then translating the regular expressions to grammars. Hence it
is important to give a direct translation from FAs to grammars.

Although it would be satisfactory to translate regular expressions to
grammars by first translating them to FAs, and then translating the FAs
to grammars, it’s easy to define a direct translation, and the results of the
direct translation will be a little nicer.

Regular expressions are converted to grammars using a recursive algo-

CHAPTER 4. CONTEXT-FREE LANGUAGES 231

rithm that makes use of the operations on grammars that were defined in
Section 4.7. The structure of the algorithm is very similar to the structure
of our algorithm for converting regular expressions to finite automata.

The algorithm is implemented in Forlan by the function

val fromReg : reg -> gram

of the Grammodule. It’s available in the top-level environment with the name
regToGram. Here is how we can convert the regular expression 01 + 10(11)∗

to a grammar using Forlan:

- val gram = regToGram(Reg.input "");

@ 01 + 10(11)*

@ .

val gram = - : gram

- Gram.output("", Gram.renameVariablesCanonically gram);

{variables}

A, B, C, D, E, F

{start variable}

A

{productions}

A -> B | C; B -> 01; C -> DE; D -> 10; E -> % | FE;

F -> 11

val it = () : unit

We’ll explain the process of converting finite automata to grammars
using an example. Suppose M is the DFA

B

1 1

0

0

Start A

The variables of our grammar G consist of the states of M , and its start
variable is the start state A of M . (If the symbols of the labels of M ’s
transitions conflict with M ’s states, we’ll have to rename the states of M
first.) We can translate each transition (q, x, r) to a production q→xr. And,
since A is an accepting state of M , we add the production A→%. This gives
us the grammar

A→% | 0B | 1A,

B→ 0A | 1B.

CHAPTER 4. CONTEXT-FREE LANGUAGES 232

Consider, e.g., the valid labeled path for M

A
1

⇒ A
0

⇒ B
0

⇒ A,

which explains why 100 ∈ L(M). It corresponds to the valid parse tree for
G

A

1 A

0 B

0 A

% ,

which explains why 100 ∈ L(G).
The Forlan module Gram contains the function

val fromFA : fa -> gram

which implements our algorithm for converting finite automata to grammars.
It’s available in the top-level environment with the name faToGram. Suppose
fa of type fa is bound to M . Here is how we can convert M to a grammar
using Forlan:

- val gram = faToGram fa;

val gram = - : gram

- Gram.output("", gram);

{variables}

A, B

{start variable}

A

{productions}

A -> % | 0B | 1A; B -> 0A | 1B

val it = () : unit

Because of the existence of our conversion functions, we have that every
regular language is a context-free language. On the other hand, the language
{ 0n1n | n ∈ N } is context-free, because of the grammar

A→% | 0A1,

but is not regular, as we proved in Section 3.13. Thus the regular languages
are a proper subset of the context-free languages: RegLan (CFLan.

CHAPTER 4. CONTEXT-FREE LANGUAGES 233

4.9 Chomsky Normal Form

In this section, we study a special form of grammars called Chomsky Nor-
mal Form (CNF). CNF was invented by, and named after, the linguist Noam
Chomsky. Grammars in CNF have very nice formal properties. In partic-
ular, valid parse trees for grammars in CNF are very close to being binary
trees. Any grammar that doesn’t generate % can be put in CNF. And, if
G is a grammar that does generate %, it can be turned into a grammar in
CNF that generates L(G) − {%}. In the next section, we will use this fact
when proving the pumping lemma for context-free languages, a method for
showing the certain languages are not context-free.

When converting a grammar to CNF, we will first get rid of productions
of the form A→% and A→ B, where A and B are variables.

A %-production is a production of the form q → %. We will show by
example how to turn a grammar G into a simplified grammar with no %-
productions that generates L(G)− {%}. Suppose G is the grammar

A→ 0A1 | BB,

B→% | 2B.

First, we determine which variables q are nullable in the sense that % ∈
Πq, i.e., that % is the yield of a valid parse tree for G whose root label is q.
Clearly, B is nullable. And, since A→BB ∈ PG, it follows that A is nullable.

Now we use this information as follows:

• Since A is nullable, we replace the production A→ 0A1 with the pro-
ductions A→0A1 and A→01. The idea is that this second production
will make up for the fact that A won’t be nullable in the new grammar.

• Since B is nullable, we replace the production A→ BB with the pro-
ductions A→ BB and A→ B (the result of deleting either one of the
B’s).

• The production B→% is deleted.

• Since B is nullable, we replace the production B→ 2B with the pro-
ductions B→ 2B and B→ 2.

This give us the grammar

A→ 0A1 | 01 | BB | B,

B→ 2B | 2.

CHAPTER 4. CONTEXT-FREE LANGUAGES 234

In general, we finish by simplifying our new grammar. The new grammar
of our example is already simplified, however.

A unit production for a grammar G is a production of the form q→ r,
where r is a variable (possibly equal to q). We now show by example how
to turn a grammar G into a simplified grammar with no %-productions or
unit productions that generates L(G)− {%}.

Suppose G is the grammar

A→ 0A1 | 01 | BB | B,

B→ 2B | 2.

We begin by applying our algorithm for removing %-productions to our
grammar; the algorithm has no effect in this case. Next, we generate the
productions of a new grammar as follows. If

• q and r are variables of G,

• there is a valid parse tree for G whose root label is q and yield is r,

• r→ w is a production of G, and

• w is not a single variable of G,

then we add q→ w to the set of productions of our new grammar. (Deter-
mining whether there is a valid parse whose root label is q and yield is r is
easy, since we are working with a grammar with no %-productions.) This
process results in the grammar

A→ 0A1 | 01 | BB | 2B | 2,

B→ 2B | 2.

Finally, we simplify our grammar, which has no effect in this case.
A grammar G is in Chomsky Normal Form (CNF) iff each of its produc-

tions has one of the following forms:

• q→ a, where a is not a variable;

• q→ pr, where p and r are variables.

We explain by example how a grammar G can be turned into a simplified
grammar in CNF that generates L(G)− {%}.

Suppose G is the grammar

A→ 0A1 | 01 | BB | 2B | 2,

B→ 2B | 2.

CHAPTER 4. CONTEXT-FREE LANGUAGES 235

We begin by applying our algorithm for removing %-productions and unit
productions to this grammar. In this case, it has no effect. Then, we proceed
as follows:

• Since the productions A→ BB, A→ 2 and B→ 2 are legal CNF pro-
ductions, we simply transfer them to our new grammar.

• Next we add the variables 〈0〉, 〈1〉 and 〈2〉 to our grammar, along with
the productions

〈0〉 → 0, 〈1〉 → 1, 〈2〉 → 2.

• Now, we can replace the production A→ 01 with A→ 〈0〉〈1〉. We can
replace the production A→ 2B with A→ 〈2〉B. And, we can replace
the production B→ 2B with the production B→ 〈2〉B.

• Finally, we replace the production A→ 0A1 with the productions

A→ 〈0〉C, C→ A〈1〉,

and add C to the set of variables of our new grammar.

Summarizing, our new grammar is

A→ BB | 2 | 〈0〉〈1〉 | 〈2〉B | 〈0〉C,

B→ 2 | 〈2〉B,

〈0〉 → 0,

〈1〉 → 1,

〈2〉 → 2,

C→ A〈1〉.

The official version of our algorithm names variables in a different way.
The Forlan module Gram defines the following functions:

val removeEmptyProductions : gram -> gram

val removeEmptyAndUnitProductions : gram -> gram

val chomskyNormalForm : gram -> gram

Suppose gram of type gram is bound to the grammar with variables A and
B, start variable A, and productions

A→ 0A1 | BB,

B→% | 2B.

Here is how Forlan can be used to turn this grammar into a CNF grammar
that generates the nonempty strings that are generated by gram:

CHAPTER 4. CONTEXT-FREE LANGUAGES 236

- val gram’ = Gram.chomskyNormalForm gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables}

<1,A>, <1,B>, <2,0>, <2,1>, <2,2>, <3,A1>

{start variable}

<1,A>

{productions}

<1,A> ->

2 | <1,B><1,B> | <2,0><2,1> | <2,0><3,A1> | <2,2><1,B>;

<1,B> -> 2 | <2,2><1,B>; <2,0> -> 0; <2,1> -> 1;

<2,2> -> 2; <3,A1> -> <1,A><2,1>

val it = () : unit

- val gram’’ = Gram.renameVariablesCanonically gram’;

val gram’’ = - : gram

- Gram.output("", gram’’);

{variables}

A, B, C, D, E, F

{start variable}

A

{productions}

A -> 2 | BB | CD | CF | EB; B -> 2 | EB; C -> 0; D -> 1;

E -> 2; F -> AD

val it = () : unit

4.10 The Pumping Lemma for Context-free Lan-
guages

Let L be the language { 0n1n2n | n ∈ N }. Is L context-free? I.e., is there a
grammar that generates L? It seems that the answer is “no”. Although it’s
easy to keep the 0’s and 1’s matched, or to keep the 1’s and 2’s matched, or
to keep the 0’s and 2’s matched, there is no obvious way to keep all three
symbols matched simultaneously.

In this section, we will study the pumping lemma for context-free lan-
guages, which can be used to show that many languages are not context-free.
We will use the pumping lemma to prove that L is not context-free, and then
we will prove the lemma. Building on this result, we’ll be able to show that
the context-free languages are not closed under intersection, complementa-
tion or set-difference.

Lemma 4.10.1 (Pumping Lemma for Context Free Languages)
For all context-free languages L, there is a n ∈ N such that, for all z ∈ Str,

CHAPTER 4. CONTEXT-FREE LANGUAGES 237

if z ∈ L and |z| ≥ n, then there are u, v, w, x, y ∈ Str such that z = uvwxy
and

(1) |vwx| ≤ n;

(2) vx 6= %; and

(3) uviwxiy ∈ L, for all i ∈ N.

Before proving the pumping lemma, let’s see how it can be used to show
that L = { 0n1n2n | n ∈ N } is not context-free.

Proposition 4.10.2
L is not regular.

Proof. Suppose, toward a contradiction that L is context-free. Thus
there is an n ∈ N with the property of the lemma. Let z = 0n1n2n. Since
z ∈ L and |z| = 3n ≥ n, we have that there are u, v, w, x, y ∈ Str such that
z = uvwxy and

(1) |vwx| ≤ n;

(2) vx 6= %; and

(3) uviwxiy ∈ L, for all i ∈ N.

Since 0n1n2n = z = uvwxy, (1) tells us that vwx doesn’t contain both
a 0 and a 2. Thus, either vwx has no 0’s, or vwx has no 2’s, so that there
are two cases to consider.

Suppose vwx has no 0’s. Thus vx has no 0’s. By (2), we have that vx
contains a 1 or a 2. Thus uwy:

• has n 0’s;

• either has less than n 1’s or has less than n 2’s.

But (3) tells us that uwy = uv0wx0y ∈ L, so that uwy has an equal number
of 0’s, 1’s and 2’s—contradiction.

The case where vwx has no 2’s is similar.
Since we obtained a contradiction in both cases, we have an overall

contradiction. Thus L is not context-free. 2

CHAPTER 4. CONTEXT-FREE LANGUAGES 238

When we prove the pumping lemma for context-free languages, we will
make use of a fact about grammars in Chomsky Normal Form. Suppose G
is a grammar in CNF and that w ∈ alphabet(G)∗ is the yield of a valid
parse tree pt for G whose root label is a variable. For instance, if G is the
grammar with variable A and productions A→AA and A→ 0, then w could
be 0000 and pt could be the following tree of height 3:

A

A A AA

A

A

0 0 0 0

Generalizing from this example, we can see that, if pt has height 3, |w| will
never be greater than 4 = 22 = 23−1.

Lemma 4.10.3
Suppose G is a grammar in CNF, pt is a valid parse tree for G of height k, the
root label of pt is a variable of G, and the yield w of pt is in alphabet(G)∗.
Then |w| ≤ 2k−1.

Proof. By induction on pt . 2

Now, let’s prove the pumping lemma.

Proof. Suppose L is a context-free language. By the results of the
preceding section, there is a grammar G in Chomsky Normal Form such
that L(G) = L − {%}. Let k = |QG| and n = 2k. Suppose z ∈ Str, z ∈ L
and |z| ≥ n. Since n ≥ 2, we have that z 6= %. Thus z ∈ L−{%} = L(G), so
that there is a parse tree pt such that pt is valid for G, rootLabel(pt) = sG

and yield(pt) = z. By Lemma 4.10.3, we have that the height of pt is
at least k + 1. (If pt ’s height were only k, then |z| ≤ 2k−1 < n, which is
impossible.) The rest of the proof can be visualized using the diagram in
Figure 4.1.

Let pat be a valid path for pt whose length is equal to the height of
pt . Thus the length of pt is at least k + 1, so that the path visits at least
k + 1 variables, with the consequence that at least one variable must be
visited twice. Working from the last variable visited upwards, we look for
the first repetition of variables. Suppose q is this repeated variable, and let
pat ′ and pat ′′ be the initial parts of pat that take us to the upper and lower
occurrences of q, respectively.

CHAPTER 4. CONTEXT-FREE LANGUAGES 239

sG

q

q

u v w x y

pt

pt ′

pt ′′

pat

Figure 4.1: Visualization of Proof of Pumping Lemma for Context-free Lan-
guages

Let pt ′ and pt ′′ be the subtrees of pt at positions pat ′ and pat ′′, i.e., the
positions of the upper and lower occurrences of q, respectively.

Consider the tree formed from pt by replacing the subtree at position
pat ′ by q. This tree has yield uqy, for unique strings u and y.

Consider the tree formed from pt ′ by replacing the subtree pt ′′ by q.
More precisely, form the path pat ′′′ by removing pat ′ from the beginning of
pat ′′. Then replace the subtree of pt ′ at position pat ′′′ by q. This tree has
yield vqx, for unique strings v and x.

Furthermore, since |pat | is the height of pt , the length of the path formed
by removing pat ′ from pat will be the height of pt ′. But we know that this
length is at most k+1, because, when working upwards through the variables
visited by pat , we stopped as soon as we found a repetition of variables. Thus
the height of pt ′ is at most k + 1.

Let w be the yield of pt ′′. Thus vwx is the yield of pt ′, so that z = uvwxy
is the yield of pt . Because the height of pt ′ is at most k + 1, our fact about
valid parse trees of grammars in CNF, tells us that |vwx| ≤ 2(k+1)−1 = 2k =
n, showing that Part (1) holds.

Because G is in CNF, pt ′, which has q as its root label, has two children.
The child whose root node isn’t visited by pat ′′′ will have a non-empty yield,
and this yield will be a prefix of v, if this child is the left child, and will
be a suffix of x, if this child is the right child. Thus vx 6= %, showing that
Part (2) holds.

CHAPTER 4. CONTEXT-FREE LANGUAGES 240

It remains to show Part (3), i.e., that uviwxiy ∈ L(G) ⊆ L, for all i ∈ N.
We define a valid parse tree pt i for G, with root label q and yield viwxi, by
recursion on i ∈ N. We let pt0 be pt ′′. Then, if i ∈ N, we form pt i+1 from
pt ′ by replacing the subtree at position pat ′′′′ by pt i.

Suppose i ∈ N. Then the parse tree formed from pt by replacing the
subtree at position pat ′ by pt i is valid for G, has root label sG, and has yield
uviwxiy, showing that uviwxiy ∈ L(G). 2

We conclude this section by considering some consequence of the pump-
ing lemma. Suppose

L = { 0n1n2n | n ∈ N },

A = { 0n1n2m | n,m ∈ N },

B = { 0n1m2m | n,m ∈ N }.

Of course, L is not context-free. It is easy to find grammars generating A
and B, and so A and B are context-free. But A ∩ B = L, and thus the
context-free languages are not closed under intersection.

We can build on this example, in order to show that the context-free
languages are not closed under complementation or set difference. The lan-
guage

{0, 1, 2}∗ −A

is context-free, since it is the union of the context-free languages

{0, 1, 2}∗ − {0}∗{1}∗{2}∗

and

{ 0n11n22m | n1, n2,m ∈ N and n1 6= n2 },

(the first of these languages is regular), and the context-free languages are
closed under union. Similarly, we have that {0, 1, 2}∗ − B is context-free.
Let

C = ({0, 1, 2}∗ −A) ∪ ({0, 1, 2}∗ −B).

Thus C is a context-free subset of {0, 1, 2}∗. Since A,B ⊆ {0, 1, 2}∗, it is
easy to show that

A ∩B = {0, 1, 2}∗ − (({0, 1, 2}∗ −A) ∪ ({0, 1, 2}∗ −B))

= {0, 1, 2}∗ − C.

CHAPTER 4. CONTEXT-FREE LANGUAGES 241

Thus

{0, 1, 2}∗ − C = A ∩B = L

is not context-free. Thus the context-free languages aren’t closed under
complementation. And, since {0, 1, 2}∗ is regular and thus context-free, it
follows that the context-free languages are not closed under set difference.

Chapter 5

Recursive and Recursively
Enumerable Languages

In this chapter, we will study a universal programming language, which we
will use to define the recursive and recursively enumerable languages. We
will see that the context-free languages are a proper subset of the recursive
languages, that the recursive languages are a proper subset of the recursively
enumerable languages, and that there are languages that are not recursively
enumerable. Furthermore, we will learn that there are problems, like the
halting problem (the problem of determining whether a program P halts
when run on an input w), or the problem of determining if two grammars
generate the same language, that can’t be solved by programs.

Traditionally, one uses Turing machines for the universal programming
language. Turing machines are finite automata that manipulate infinite
tapes. Although Turing machines are very appealing in some ways, they are
rather far-removed from conventional programming languages, and are hard
to build and reason about.

Instead, we will work with a variant of the programming language Lisp.
This programming language will have the same power as Turing machines,
but it will be much easier to program in this language than with Turing
machines. An “implementation” of our language (or of Turing machines) on
a real computer will run out of resources on some programs.

242

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 243

5.1 A Universal Programming Language, and
Recursive and Recursively Enumerable Lan-
guages

We will work with a variant of the programming language Lisp, with the
following properties and features:

• The language is statically scoped, dynamically typed, deterministic
and functional.

• The language’s types are infinite precision integers, booleans, formal
language symbols and arbitrary-length strings, arbitrary-length lists,
and an error type (whose only value is error). There are the usual
functions for going back and forth between integers and symbols.

• A program consists of one of more function definitions. The last func-
tion definition of a program is called its principal function. This func-
tion should take in some number of strings, and return a boolean.

The set Prog of programs is a subset of Syn∗, where the alphabet Syn
consists of:

• the digits 0–9;

• the letters a–z and A–Z; and

• the symbols 〈space〉, 〈newline〉, 〈openPar〉 and 〈closPar〉.

When we present programs, however, we typically substitute a blank for
〈space〉, a newline for 〈newline〉, “(“ for 〈openPar〉, and “)” for 〈closPar〉.

More detail about our programming language will eventually be given in
this book. For example, here is a program that tests whether its argument
string is nonempty:

(defun test (x) (not (equal (size x) 0)))

Given an n ∈ N, the function runn ∈ Str × Str ↑ n →
{true, false, error,nonterm}, where Str ↑ n consists of all n-tuples
of strings, returns the following answer when called with arguments
(P, (x1, . . . , xn)):

• If P is not a program, or the principal function of P doesn’t have
exactly n arguments, then it returns error.

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 244

• Otherwise, if running P ’s principal function with arguments x1, . . . , xn

results in the value true or false being returned, then it returns this
value.

• Otherwise, if running P ’s principal function with these arguments
causes some other value to be returned, then it returns error.

• Otherwise, running P ’s principal function with these arguments never
terminates, and it returns nonterm.

Eventually, the book will contain a formal definition of the runn functions.
It is possible to write a function in our programming language that

checks whether a string is a valid program whose principal function has a
given number of arguments. This will involve writing a function for parsing
programs, where parse trees will be represented using lists.

With some effort, it is possible to write a function in our programming
language that acts as an interpreter. It takes in a string w and a list of
strings (x1, . . . , xn). If w is not a program whose principal function has n
arguments, then the interpreter returns error. Otherwise, it simulates the
running of w with input (x1, . . . , xn), returning what w returns, if w returns
a boolean, and returning error, if w returns something else. Of course, w
may also run forever, in which case the interpreter will also run forever.

We can also write a function in our programming language that acts as
an incremental interpreter. Like an ordinary interpreter, it takes in a string
w and a list of strings (x1, . . . , xn). If w is not a program whose principal
function has n arguments, then the incremental interpreter returns error.
Otherwise, it carries out a fixed number of steps of the running of w with
input (x1, . . . , xn). If w has returned a boolean by this point, then the
incremental interpreter returns this boolean. If w has returned something
else by this point, then the incremental interpreter returns error. But if w
hasn’t yet terminated, the incremental interpreter returns a function that,
when called, will continue the incremental interpretation process.

Given n ∈ N, we say that a program P is n-total iff, for all x1, . . . , xn ∈
Str, runn(P, (x1, . . . , xn)) ∈ {true, false}. A string w is accepted by a
program P iff run1(P,w) = true, i.e., iff running P with input w results in
true being returned. (We write the 1-tuple whose single component is w as
w.) The language accepted by a program P (L(P)) is

{w ∈ Str | w is accepted by P },

if this set of strings is a language (i.e.,
⋃

{alphabet(w) | w ∈ Str and w
is accepted by P } is finite); otherwise L(P) is undefined.

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 245

For example, if P ’s principal function takes in more than one argument,
then L(P) = ∅, but if P ’s principal function takes in a single argument but
always returns true, then L(P) is undefined.

We say that a language L is:

• recursive iff L = L(P) for some 1-total program P ;

• recursively enumerable (r.e.) iff L = L(P) for some program P .

(When we say L = L(P), this means that L(P) is defined, and L and L(P)
are equal.) We define

RecLan = {L ∈ Lan | L is recursive },

RELan = {L ∈ Lan | L is recursively enumerable }.

Hence RecLan ⊆ RELan. Because Prog is countably infinite, we have
that RecLan and RELan are countably infinite, so that RELan (Lan.
Later we will see that RecLan (RELan.

Proposition 5.1.1
For all L ∈ Lan, L is recursive iff there is a program P such that, for all
w ∈ Str:

• if w ∈ L, then run1(P,w) = true;

• if w 6∈ L, then run1(P,w) = false.

Proof. (“only if” direction) Since L is recursive, L = L(P) for some
1-total program P . Suppose w ∈ Str. There are two cases to show.

Suppose w ∈ L. Since L = L(P), we have that run1(P,w) = true.
Suppose w 6∈ L. Since L = L(P), we have that run1(P,w) 6= true. But

P is 1-total, and thus run1(P,w) = false.

(“if” direction) To see that P is 1-total, suppose w ∈ Str. Since w ∈ L or
w 6∈ L, we have that run1(P,w) ∈ {true, false}. Let X = {w ∈ Str | w
is accepted by P } (so far, we don’t know that X is a language). We will
show that L = X.

Suppose w ∈ L. Then run1(P,w) = true, so that w ∈ X.
Suppose w ∈ X, so that run1(P,w) = true. If w 6∈ L, then

run1(P,w) = false—contradiction. Thus w ∈ L.
Since L = X, we have that X is a language. Thus L(P) is defined and

is equal to X. Hence L = L(P), finishing the proof that L is recursive. 2

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 246

Proposition 5.1.2
For all L ∈ Lan, L is recursively enumerable iff there is a program P such
that, for all w ∈ Str,

w ∈ L iff run1(P,w) = true.

Proof. (“only if” direction) Since L is recursively enumerable, L = L(P)
for some program P . Suppose w ∈ Str.

Suppose w ∈ L. Since L = L(P), we have that run1(P,w) = true.
Suppose run1(P,w) = true. Thus w ∈ L(P) = L.

(“if” direction) Let X = {w ∈ Str | w is accepted by P } (so far, we don’t
know that X is a language). We will show that L = X.

Suppose w ∈ L. Then run1(P,w) = true, so that w ∈ X. Suppose
w ∈ X. Then run1(P,w) = true, so that w ∈ L.

Since L = X, we have that X is a language. Thus L(P) is defined and
is equal to X. Hence L = L(P), completing the proof that L is recursively
enumerable. 2

We have that every context-free language is recursive, but that not every
recursive language is context-free, i.e., CFLan (RecLan.

To see that every context-free language is recursive, let L be a context-
free language. Thus there is a grammar G such that L = L(G). With
some work, we can write and prove the correctness of a program P that
implements our algorithm (see Section 4.3) for checking whether a string is
generated by a grammar. Thus L is recursive.

To see that not every recursive language is context-free, let L =
{ 0n1n2n | n ∈ N }. In Section 4.10, we learned that L is not context-
free. And it is easy to write a program P that tests whether a string is in
L. Thus L is recursive.

5.2 Closure Properties of Recursive and Recur-
sively Enumerable Languages

In this section, we will see that the recursive and recursively enumerable
languages are closed under union, concatenation, closure and intersection.
The recursive languages are also closed under set difference and comple-
mentation. In the next section, we will see that the recursively enumerable
languages are not closed under complementation or set difference. On the
other hand, we will see in this section that, if a language and its complement
are both r.e., then the language is recursive.

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 247

Theorem 5.2.1
If L, L1 and L2 are recursive languages, then so are L1 ∪ L2, L1L2, L∗,
L1 ∩ L2 and L1 − L2.

Proof. Let’s consider the concatenation case as an example. Since L1 and
L2 are recursive languages, there are programs P1 and P2 that test whether
strings are in L1 and L2, respectively. We combine the functions of P1 and
P2 to form a program Q that takes in a string w and behaves as follows.
First, it generates all of the pairs of strings (x, y) such that xy = w. Then
it works though these pairs, one by one. Given such a pair (x, y), Q calls
the principal function of P1 to check whether x ∈ L1. If the answer is “no”,
then it goes on to the next pair. Otherwise, it calls the principal function
of P2 to check whether y ∈ L2. If the answer is “no”, then it goes on to the
next pair. Otherwise, it returns true. If Q runs out of pairs to check, then
it returns false.

We can check that, for all w ∈ Str, Q tests whether w ∈ L1L2. Thus
L1L2 is recursive. 2

Corollary 5.2.2
If Σ is an alphabet and L ⊆ Σ∗ is recursive, then so is Σ∗ − L.

Proof. Follows from Theorem 5.2.1, since Σ∗ is recursive. 2

Theorem 5.2.3
If L, L1 and L2 are recursively enumerable languages, then so are L1 ∪ L2,
L1L2, L

∗ and L1 ∩ L2.

Proof. We consider the concatenation case as an example. Since L1 and L2

are recursively enumerable, there are programs P1 and P2 such that, for all
w ∈ Str, w ∈ L1 iff run1(P1, w) = true, and w ∈ L2 iff run1(P2, w) = true.
(Remember that P1 and P2 may fail to terminate on some inputs.) To show
that L1L2 is recursively enumerable, we will construct a program Q such
that, for all w ∈ Str, w ∈ L1L2 iff run1(Q,w) = true.

When Q is called with a string w, it behaves as follows. First, it gen-
erates all the pairs of strings (x, y) such that w = xy. Let these pairs be
(x1, y1), . . . , (xn, yn). Now, Q uses our incremental interpretation function
to work its way through all the string pairs, running P1 with input x1 (for
some fixed number of steps), P2 with input y1, P1 with input x2, P2 with
input y2, . . . , P1 with input xn and P2 with input yn. It then begins a
second round of all of these incremental interpretations, followed by a third
round, and so on.

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 248

• If, at some stage, the incremental interpretation of P1 on input xi

returns true, then xi is marked as being in L1.

• If, at some stage, the incremental interpretation of P2 on input yi

returns true, then the yi is marked as being in L2.

• If, at some stage, the incremental interpretation of P1 on input xi ter-
minates with false or error, then the i’th pair is marked as discarded.

• If, at some stage, the incremental interpretation of P2 on input yi ter-
minates with false or error, then the i’th pair is marked as discarded.

• If, at some stage, xi is marked as in L1 and yi is marked as in L2, then
Q returns true.

• If, at some stage, there are no remaining pairs, then Q returns false.

We can check that for all w ∈ Str, w ∈ L1L2 iff run1(Q,w) = true. 2

Theorem 5.2.4
If Σ is an alphabet, L ⊆ Σ∗ is a recursively enumerable language, and Σ∗−L
is recursively enumerable, then L is recursive.

Proof. Since L and Σ∗−L are recursively enumerable languages, there are
programs P and P ′ such that, for all w ∈ Str, w ∈ L iff run1(P,w) = true,
and w ∈ Σ∗ − L iff run1(P

′, w) = true. We construct a program Q that
behaves as follows when called with a string w. If w 6∈ Σ∗, then Q returns
false. Otherwise, Q alternates between incrementally interpreting P with
input w and incrementally interpreting P ′ with input w.

• If, at some stage, the incremental interpretation of P returns true,
then Q returns true.

• If, at some stage, the incremental interpretation of P returns false or
error, then Q returns false.

• If, at some stage, the incremental interpretation of P ′ returns true,
then Q returns false.

• If, at some stage, the incremental interpretation of P ′ returns false or
error, then Q returns true.

We can check that, for all w ∈ Str, Q tests whether w ∈ L. 2

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 249

1 1 0

0 0 1

0 1 1

wi wj wk· · · · · · · · · · · ·

..

.

.

.

.

.

.

.

.

.

.

wi

wj

wk

Figure 5.1: Example Diagonalization Table for R.E. Languages

5.3 Diagonalization and Undecidable Problems

In this section, we will use a technique called diagonalization to find a natural
language that isn’t recursively enumerable. This will lead us to a language
that is recursively enumerable but is not recursive. It will also enable us to
prove the undecidability of the halting problem.

To find a non-r.e. language, we can use a technique called “diagonaliza-
tion”. Remember that the alphabet Syn consists of the digits, the lowercase
and uppercase letters, and the symbols 〈space〉, 〈newline〉, 〈openPar〉 and
〈closPar〉. Furthermore Prog ⊆ Syn∗.

Consider the infinite table in which both the rows and the columns
are indexed by the elements of Syn∗, listed in some order w1, w2, . . . , and
where a cell (wn, wm) contains 1 iff run1(wn, wm) = true, and contains 0 iff
run1(wn, wm) 6= true. Each recursively enumerable language is L(wn) for
some n.

Figure 5.1 shows how part of this table might look, where wi, wj and
wk are sample elements of Syn∗. Because of the table’s data, we have that
run1(wi, wi) = true and run1(wi, wj) 6= true.

To define a non-r.e. language, we work our way down the diagonal of the
table, putting wn into our language just when cell (wn, wn) of the table is

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 250

0, i.e., when run1(wn, wn) 6= true. Thus, if wn is a program, we will have
that wn is in our language exactly when wn doesn’t accept wn. This will
ensure that L(wn) (if it is defined) is not our language.

With our example table:

• L(wi) (if it is defined) is not our language, since wi ∈ L(wi), but wi is
not in our language;

• L(wj) (if it is defined) is not our language, since wj 6∈ L(wj), but wj

is in our language;

• L(wk) (if it is defined) is not our language, since wk ∈ L(wk), but wk

is not in our language.

We formalize the above ideas as follows. Define languages Ld (“d” for
“diagonal”) and La (“a” for “accepted”) by:

Ld = {w ∈ Syn∗ | run1(w,w) 6= true },

La = {w ∈ Syn∗ | run1(w,w) = true }.

Thus Ld = Syn∗ − La. Because of the way run1 is defined, we have that
every element of La is a program whose principal function has a single
argument.

Theorem 5.3.1
Ld is not recursively enumerable.

Proof. Suppose, toward a contradiction, that Ld is recursively enumerable.
Thus, there is a program P such that Ld = L(P). There are two cases to
consider.

Suppose P ∈ Ld. Then run1(P, P) 6= true, i.e., P is not accepted by P .
But then P 6∈ L(P) = Ld—contradiction.

Suppose P 6∈ Ld. Since P ∈ Syn∗, we have that run1(P, P) = true,
i.e., P is accepted by P . But then P ∈ L(P) = Ld—contradiction.

Since we obtained a contradiction in both cases, we have an overall
contradiction. Thus Ld is not recursively enumerable. 2

Theorem 5.3.2
La is recursively enumerable.

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 251

Proof. Let P be the program that, when given a string w, uses our
interpreter function to simulate the execution of w on input w, returning
true if the interpreter returns true, returning false if the interpreter returns
false or error, and running forever, if the interpreter runs forever.

We can check that, for all w ∈ Str, w ∈ La = {w ∈ Syn∗ | run1(w,w) =
true } iff run1(P,w) = true. Thus La is recursively enumerable. 2

Corollary 5.3.3
There is an alphabet Σ and a recursively enumerable language L ⊆ Σ∗ such
that Σ∗ − L is not recursively enumerable.

Proof. La ⊆ Syn
∗ is recursively enumerable, but Syn∗ − La = Ld is not

recursively enumerable. 2

Corollary 5.3.4
There are recursively enumerable languages L1 and L2 such that L1 −L2 is
not recursively enumerable.

Proof. Follows from Corollary 5.3.3, since Σ∗ is recursively enumerable.
2

Corollary 5.3.5
La is not recursive.

Proof. Suppose, toward a contradiction, that La is recursive. Since the
recursive languages are closed under complementation, and La ⊆ Syn

∗, we
have that Ld = Syn∗ − La is recursive—contradiction. Thus La is not
recursive. 2

Since La ∈ RELan, but La 6∈ RecLan, we have that RecLan (
RELan. Combining this fact with facts learned in Sections 4.8 and 5.1,
we have that

RegLan (CFLan (RecLan (RELan (Lan.

Finally, we consider the famous halting problem. We say that a program
P halts on a string w iff run1(P,w) 6= nonterm.

Theorem 5.3.6
There is no program H such that, for all programs P and strings w:

CHAPTER 5. RECURSIVE AND R.E. LANGUAGES 252

• If P halts on w, then run2(H, (P,w)) = true;

• If P does not halt on w, then run2(H, (P,w)) = false.

Proof. Suppose, toward a contradiction, that such an H does exist. We
use H to construct a program Q that behaves as follows when run on a string
w. If w is not a program whose principal function has a single argument,
then it returns false; otherwise it continues. Next, it uses our interpretation
function to simulate the execution of the program H with inputs (w,w).

If H returns true, then Q uses our interpreter function to run w with
input w. Since w halts on w, we know that this interpretation will terminate.
If it terminates with value true, then Q returns true. Otherwise, it returns
false.

Otherwise, H returns false. Then Q returns false.
We can check that, for all w ∈ Str, Q tests whether w ∈ La = {w ∈

Syn∗ | run1(w,w) = true }. Thus La is recursive—contradiction. Thus no
such H exists. 2

Here are two other undecidable problems:

• Determining whether two grammars generate the same language. (In
contrast, we gave an algorithm for checking whether two FAs are equiv-
alent, and this algorithm can be implemented as a program.)

• Determining whether a grammar is ambiguous.

Appendix A

GNU Free Documentation
License

GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111–1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0 Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

253

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 254

1 Applicability and Definitions

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Docu-
ment is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats in-
clude PNG, XCF and JPG. Opaque formats include proprietary formats that can be

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 255

read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the Doc-
ument means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3 Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 256

preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4 Modifications

You may copy and distribute a Modified Version of the Document under the con-
ditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modified Version to who-
ever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title
as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 257

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled “History” in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed
in the “History” section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be in-
cluded in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 258

Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5 Combining Documents

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the
various original documents, forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedi-
cations”. You must delete all sections Entitled “Endorsements”.

6 Collections of Documents

You may make a collection consisting of the Document and other documents re-
leased under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the docu-
ments in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 259

7 Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not ap-
ply to the other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8 Translation

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and anyWarranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9 Termination

You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided for under this License. Any other attempt to copy, modify, sub-
license or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

APPENDIX A. GNU FREE DOCUMENTATION LICENSE 260

10 Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

Addendum: How to use this License for your doc-
uments

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright c© year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version
1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with...Texts.” line with this:

with the Invariant Sections being list their titles, with the Front-Cover
Texts being list, and with the Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend

releasing these examples in parallel under your choice of free software license, such

as the GNU General Public License, to permit their use in free software.

Bibliography

[BE93] J. Barwise and J. Etchemendy. Turing’s World 3.0 for Mac: An
Introduction to Computability Theory. Cambridge University
Press, 1993.

[BLP+97] A. O. Bilska, K. H. Leider, M. Procopiuc, O. Procopiuc, S. H.
Rodger, J. R. Salemme, and E. Tsang. A collection of tools
for making automata theory and formal languages come alive.
In Twenty-eighth ACM SIGCSE Technical Symposium on Com-
puter Science Education, pages 15–19. ACM Press, 1997.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to Automata Theory, Languages and Computation. Addison-
Wesley, second edition, 2001.

[HR00] T. Hung and S. H. Rodger. Increasing visualization and in-
teraction in the automata theory course. In Thirty-first ACM
SIGCSE Technical Symposium on Computer Science Education,
pages 6–10. ACM Press, 2000.

[Lei00] H. Leiß. The Automata Library. http://www.cis.

uni-muenchen.de/~leiss/sml-automata.html, 2000.

[LP98] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory
of Computation. Prentice Hall, second edition, 1998.

[Mar91] J. C. Martin. Introduction to Languages and the Theory of
Computation. McGraw Hill, second edition, 1991.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Defi-
nition of Standard ML—Revised 1997. MIT Press, 1997.

[Pau96] L. C. Paulson. ML for the Working Programmer. Cambridge
University Press, second edition, 1996.

261

BIBLIOGRAPHY 262

[RHND99] M. B. Robinson, J. A. Hamshar, J. E. Novillo, and A. T.
Duchowski. A Java-based tool for reasoning about models of
computation through simulating finite automata and turing ma-
chines. In Thirtieth ACM SIGCSE Technical Symposium on
Computer Science Education, pages 105–109. ACM Press, 1999.

[Sar02] J. Saraiva. HaLeX: A Haskell library to model, manipulate and
animate regular languages. In ACM Workshop on Functional
and Declarative Programming in Education (FDPE/PLI’02),
Pittsburgh, October 2002.

[Sut92] K. Sutner. Implementing finite state machines. In N. Dean
and G. E. Shannon, editors, Computational Support for Dis-
crete Mathematics, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, volume 15, pages 347–363.
American Mathematical Society, 1992.

[Ull98] J. D. Ullman. Elements of ML Programming: ML97 Edition.
Prentice Hall, 1998.

[Yu02] S. Yu. Grail+: A symbolic computation environment for finite-
state machines, regular expressions, and finite languages. http:
//www.csd.uwo.ca/research/grail/, 2002.

Index

%-production, 233
@, 22, 44
·, 139, 180
◦, 5, 7
· ·, 23
→, 19
−, 3
¹, 10
(), 34
=, 1, 17
≈, 54, 84, 210
[·], 180
·(·), 7
⋂

, 5
⋃

, 5
∩, 3
(·, ·), 4, 42
(·, ·, ·), 4
%, 22
··, 12, 23, 45
×, 3, 4
(, 1
), 2
·R, 27, 165
∼=, 7
{ · · · | · · · }, 2
→, 7
| · |, 8
·∗, 24, 25
⊆, 1
⊇, 2
∪, 3

A·, 78
a, b, c, 22
abstract type, vi

accepting state, 78
algorithm, 66
α, β, γ, 48
alphabet, 24, 206

·∗, 24
language, 25
Σ, 24

alphabet, 24, 25, 28, 51
alphabet renaming

grammar, 228
language, 167

application, see function, application
applications

finite automata and regular ex-
pressions, 199–203

lexical analysis, 200
searching in files, 199

ASCII, 21, 199
associative

function composition, 7
intersection, 3
language concatenation, 45
relation composition, 5, 6
string concatenation, 22
union, 3

associativity, 225
Axiom of Choice, 11

bijection from set to set, 7
bool, 34
bound variable, 2
Btw., 152

Cantor’s Theorem, 11
cardinality, 7–11
CFG, see grammar

263

INDEX 264

CFL, see context-free language
child, 17
Chomsky Normal Form, 233, 234, 238
CFLan, 210
closure

empty-string finite automaton,
148

finite automaton, 148
grammar, 228
language, 46
regular expression, 48

closure rule, 73
CNF, see Chomsky Normal Form
commutative

intersection, 3
union, 3

complement, 161
complementation

deterministic finite automaton,
161

composition
function, see function, composi-

tion
relation, see relation, composi-

tion
concat, 190
concatenation

empty-string finite automaton,
147

finite automaton, 147
grammar, 228
language, 44

associative, 45
identity, 45
power, 45
zero, 45

regular expression, 48
string, 22

associative, 22
identity, 23
power, 23

concrete syntax, vi
constructor

path, 19
tree, 17

context-free grammar, see grammar
context-free langauge

not every recursive language is
context-free, 246

context-free language, 204, 210, 242,
246

closure properties, 227–230, 236,
240

every context-free langauge is re-
cursive, 246

not closed under complementa-
tion, 240, 241

not closed under intersection,
240

not closed under set-difference,
240, 241

pumping lemma, 236–240
regular languages proper subset

of context-free languages,
232

showing that languages not context-
free, 236–241

contradiction, 14
proof by, 8

countable, 8, 25
countably infinite, 8, 22, 24, 25
curried function, 42, 85

dead state, 100, 136, 201
∆·, 94, 103, 115, 120, 130, 139
δ·, 131
deterministic, 243
deterministic automaton

dead state, 136
reachable state, 136

deterministic finite automaton, 114,
129–145

·, 139, 180
alphabet renaming, 168
checking for string acceptance,

132
complement, 161
complementation, 161
converting NFAs to DFAs, 138
dead state, 130

INDEX 265

∆·, 130
δ·, 131
deterministic simplification, 135
deterministically simplified, 135,

174, 177, 182
determSimplify, 138, 161, 174,

177
efaToDFA, 187
emptySet, 146
emptyStr, 146
equivalence class, 180
[·], 180
inter, 160
intersection, 158
L(·), 114
merge-able states, 180
min(·), 180
minAndRen, 187
minimization, 177–183
minimize, 182, 184, 187
minus, 163, 189
nfaToDFA, 142, 187
proof of correctness, 133
properties, 130
regToDFA, 187
renameAlphabet, 168
renameStatesCanonically, 184,

187
representing sets of symbols as

symbols, 139, 180
set difference, 163
simplify, 137
testing equivalence, 174–177
un-merge-able states, 178

deterministic simplification, 135, 161,
174, 177

determSimplify, 138, 161, 174,
177

deterministically simplified, 135, 174,
177, 182

determSimplify, 138, 161, 174, 177
DFA, see deterministic finite automa-

ton
DFA, 142

accepted, 143

alphabet, 143
checkLP, 143
complement, 169
determAccepted, 143
determProcStr, 143
determSimplify, 143
dfa, 142
emptyClose, 143
emptyCloseBackwards, 143
emptySet, 151
emptyStr, 151
equal, 143
equivalent, 176
findAcceptingLP, 143
findIsomorphism, 143
findLP, 143
fromNFA, 143
injecting dfa to nfa or efa or fa,

142
injToEFA, 142
injToFA, 142
injToNFA, 142
input, 143
inter, 169
isomorphic, 143
isomorphism, 143
minus, 169
numStates, 143
numTransitions, 143
output, 143
processStr, 143
processStrBackwards, 143
projecting nfa or efa or fa to dfa,

142
projFromEFA, 142
projFromFA, 142
projFromNFA, 142
relationship, 176
renameAlphabet, 173
renameStates, 143
renameStatesCanonically, 143
subset, 176
toReg, 158
validLP, 143

dfa, 142

INDEX 266

dfaToReg, 158
diagonalization

cardinality, 8
finding non-recursively enumer-

able language, 249–250
diff , 30, 108
difference

set, 3
difference function, 30, 108
distributivity, 4
domain, 5
domain, 5
dominated by, 10
dynamic typing, 243

EFA, see empty-string finite automa-
ton

EFA, 118
accepted, 119
alphabet, 119
checkLP, 119
closure, 151
concat, 151
efa, 118
emptyClose, 128
emptyCloseBackwards, 128
emptySet, 151
emptyStr, 151
equal, 119
findAcceptingLP, 119
findIsomorphism, 119
findLP, 119
fromFA, 118
fromSym, 151
injecting efa to fa, 118
injToFA, 118
input, 118
inter, 169
isomorphic, 119
isomorphism, 119
numStates, 119
numTransitions, 119
output, 119
processStr, 119
processStrBackwards, 119

projecting fa to efa, 118
projFromFA, 118
renameStates, 119
renameStatesCanonically, 119
simplify, 119
toReg, 158
union, 151
validLP, 119

efa, 118
efaToDFA, 187
efaToNFA, 124, 187
efaToNFA, 192
efaToReg, 158
empty-string finite automata

converting FAs to EFAs, 116
empty-string finite automaton, 114–

120
alphabet renaming, 168
backwards empty-closure, 123
closure, 148
closure, 148
concat, 147, 190
concatenation, 147
converting EFAs to NFAs, 122
∆·, 115
efaToDFA, 187
efaToNFA, 124, 187
empty-closure, 123
emptyClose·(·), 123
emptyCloseBackwards·(·), 123
emptySet, 146
emptyStr, 146
faToEFA, 117, 187
fromSym, 146
inter, 160, 184, 190
intersection, 158
iso, 116
L(·), 114
nextEmp·,·, 159
nextSym·,·, 159
properties, 115
regToEFA, 187
renameAlphabet, 168
renameStates, 116

INDEX 267

renameStatesCanonically, 116,
190

renaming states, 116
simplification, 116
simplify, 116
union, 146
union, 146

emptyClose·(·), 123
emptyCloseBackwards·(·), 123
equal

finite automaton, 78
path, 19
set, 1
tree, 17

equivalence class, 180
equivalence relation, 180
error, 243
existentially quantified, 3
external node, 19

FA, see finite automaton
FA, 79, 80, 84, 92, 97, 102, 127

accepted, 97
alphabet, 81
checkLP, 85
closure, 150
concat, 150
emptyClose, 127
emptyCloseBackwards, 127
emptySet, 150
emptyStr, 150
equal, 81
fa, 79
findAcceptingLP, 97
findIsomorphism, 92
findLP, 97
fromReg, 150
fromStr, 150
fromSym, 150
input, 80
isomorphic, 92
isomorphism, 92
numStates, 81
numTransitions, 81
output, 80

processStr, 97
processStrBackwards, 97
renameAlphabet, 173
renameStates, 92
renameStatesCanonically, 92
simplify, 102
toReg, 158
union, 150
validLP, 85

fa, 79
false, 243
faToEFA, 117, 187
faToEFA, 118, 192
faToGram, 232
faToReg, 155
faToReg, 158
finite, 8
finite automata

applications, 199–203
lexical analysis, 200
searching in files, 199

converting FAs to EFAs, 116
translating FAs to grammars,

230, 231
finite automaton, 78–86

≈
reflexive, 84
symmetric, 84
transitive, 84

A·, 78
accepting state, 78
alphabet renaming, 168
backwards empty-closure, 123
between language, 152
Btw·, 152
calculating ∆·(·, ·), 94
characterizing ∆·(·, ·), 103
characterizing L(·), 96
checking for string acceptance,

94
closure, 148
closure, 148
concat, 147
concatenation, 147

INDEX 268

converting FAs to regular expres-
sions, 152

converting regular expressions to
FAs, 149–150

dead state, 100, 136, 201
∆·, 94
deterministic, see deterministic

finite automaton
empty-closure, 123
empty-string, see empty-string

finite automaton
emptyClose·(·), 123
emptyCloseBackwards·(·), 123
emptySet, 146
emptyStr, 146
equal, 78
equivalence, 84
faToEFA, 117, 187
faToReg, 155
Forlan syntax, 79
fromStr, 146
fromSym, 146
iso, 87, 116, 121
isomorphic, 87
isomorphism, 86–93

checking whether FAs are iso-
morphic, 89

isomorphism from FA to FA, 87
L(·), 83, 96, 114
language accepted by, 83
live state, 100, 201
nondeterministic, see nondeter-

ministic finite automaton
operations on(, 146
operations on), 149
ord·, 152
ordinal number of state, 152
p, q, r, 78
proof of correctness, 103–114
Q·, 78
reachable state, 100, 136
regToFA, 149, 187
renameAlphabet, 168
renameStates, 88, 116, 121

renameStatesCanonically, 88,
116, 121

renaming states, 88, 116, 121
s·, 78
searching for labeled paths, 94,

97
simplification, 99–103, 116, 121,

135
simplification algorithm, 101
simplified, 100
simplify, 101, 116, 121, 137
start state, 78
state, 78
state·, 152
synthesis, 86, 108, 183–193
T·, 78
transition, 78
union, 146
union, 146
useful state, 100

fn, 35
Forlan, vi, 34–43

FA syntax, 79
grammar syntax, 205
labeled path syntax, 82
prompt, 37
regular expression syntax, 53
string syntax, 39

formal language, see language
formal language toolset, viii
forming sets, 2–3
function, 6, 35

·(·), 7
◦, 7
··, 12
application, 7
bijection from set to set, 7
composition, 7

associative, 7
identity, 7
iterated, 11

from set to set, 7
id, 7
identity, 7
injection, 10

INDEX 269

injective, 10
functional, 243

generalized intersection, 5
generalized union, 5
generating variable, 219
Gram, 205

alphabet, 206
checkPT, 211
chomskyNormalForm, 235
closure, 229
concat, 229
emptySet, 229
emptyStr, 229
equal, 206
findIsomorphism, 215
fromFA, 232
fromReg, 231
fromStr, 229
fromSym, 229
gram, 205
input, 206
isomorphic, 215
isomorphism, 215
numProductions, 206
numVariables, 206
output, 206
parseStr, 218
removeEmptyAndUnitProductions,

235
removeEmptyProductions, 235
renameAlphabet, 229
renameVariables, 215
renameVariablesCanonically, 215
rev, 229
simplify, 221
union, 229
validPT, 211

gram, 205
grammar, 204–213

%-production, 233
≈, 210
alphabet, 206
alphabet renaming, 228
ambiguity, 225–227

ambiguous, 225
arithmetical expressions, 205
Chomsky Normal Form, 233,

234, 238
closure, 228
CNF, see grammar, Chomsky

Normal Form
concatenation, 228
disambiguating grammars, 225
equivalence, 210
Forlan syntax, 205
generated by, 209
generating variable, 219
isomorphic, 214
isomorphism, 213–215

checking whether grammars
are isomorphic, 215

isomorphism from grammar to
grammar, 214

L(·), 209
language generated by, 209
meaning, 209
notation, 205
nullable variable, 233
P·, 204
parse tree, 206–209
parsing algorithm, 215–219
production families, 205
productions, 204
proof of correctness, 221–225
Q·, 204
reachable variable, 219
removing %-productions, 233–

235
removing unit-productions, 234,

235
renameVariables, 214
renameVariablesCanonically,

214
reversal, 228
s·, 204
simplification, 219–221
simplification algorithm, 220
simplified, 219, 233, 234
simplify, 221

INDEX 270

start variable, 204
synthesis, 212–213
translating finite automata to

grammars, 230, 231
translating regular expressions to

grammars, 230
union, 228
unit production, 234
useful variable, 219
variable, 204

halting problem, 242, 249, 251
undecidability, 249, 251

hasEmp, 68
hasSym, 69
height, 20

id, 5, 7
idempotent

intersection, 4
union, 3

identity
function composition, 7
language concatenation, 45
relation composition, 6
string concatenation, 23
union, 3

identity function, 7
identity relation, 5, 7
inclusion, 54
incremental interpreter, 244, 247, 248
induction, 11–16, 26–33

induction on Π, see induction on
Π

induction on Reg, see induction
on Reg

mathematical, see mathematical
induction

string, see string induction
strong, see strong induction
tree, see tree induction

induction on Π, 222
inductive hypothesis, 223

induction on Reg, 48
inductive hypothesis, 67

inductive definition, 17, 28, 31
induction principle, 29, 31

inductive hypothesis
induction on Π, 223
induction on Reg, 67
left string induction, 26
mathematical induction, 11
strong induction, 13
strong string induction, 28
tree induction, 19

infinite, 8
countably, see countably infinite

injDFAToEFA, 142, 192
injDFAToFA, 142
injDFAToNFA, 142
injection, 10
injective, 10
injEFAToFA, 118
injNFAToEFA, 127
injNFAToFA, 127
int, 34
integers, 1
inter, 160, 184, 190
interactive input, 37
interpreter, 244
intersection

deterministic finite automaton,
158

empty-string finite automaton,
158

language, 44
nondeterministic finite automa-

ton, 158
set, 3

associative, 3
commutative, 3
generalized, 5
idempotent, 4
zero, 4

iso, 87, 116, 121
reflexive, 87
symmetric, 87
transitive, 87

isomorphic
finite automaton, 87

INDEX 271

grammar, 214
isomorphism

finite automaton, 86–93
checking whether FAs are iso-

morphic, 89
iso, 87, 116, 121
isomorphic, 87
isomorphism from FA to FA,

87
grammar, 213–215

checking whether grammars
are isomorphic, 215

isomorphic, 214
isomorphism from grammar to

grammar, 214
iterated function composition, 11

Kleene closure, see closure

L(·), 50, 83, 96, 114, 209, 244
La, 250, 252
Ld, 250
labeled path, 81–86

Forlan syntax, 82
LP, 81

Lan, 25
language, 25, 40

@, 44
··, 45
·R, 165
alphabet, 25
alphabet, 25
alphabet renaming, 167
CFL, see context-free language
closure, 58
concatenation, 44, 56

associative, 45
identity, 45
power, 45
zero, 45

context-free, see context-free lan-
guage

Lan, 25
operation precedence, 46
prefix-closure, 165

recursive, see recursive language
recursively enumerable, see re-

cursively enumerable lan-
guage

regular, see regular language
reversal, 165
Σ-language, 25
substring-closure, 165
suffix-closure, 165

leaf, 19
left string induction, 26, 121

inductive hypothesis, 26
length

path, 20
string, 22

Linux, 34
Lisp, 242, 243
live state, 100, 201
LP, 81
LP, 84

checkPumpingDivision, 197
cons, 84
divideAfter, 84
endState, 84
equal, 84
input, 84
join, 84
label, 84
length, 84
output, 84
pump, 197
pumping_division, 197
pumpingDivide, 197
startState, 84
strsOfPumpingDivision, 197
sym, 84
validPumpingDivision, 197

lp, 84

mathematical induction, 11, 12, 23
inductive hypothesis, 11

min(·), 180
minAndRen, 187
minimize, 182, 184, 187
minus, 189

INDEX 272

N, 1
natural numbers, 1, 13
nextEmp·,·, 159
nextSym·,·, 159
NFA, see nondeterministic finite au-

tomaton
NFA, 127

accepted, 128
alphabet, 128
checkLP, 128
emptyClose, 128
emptyCloseBackwards, 128
emptySet, 151
emptyStr, 151
equal, 128
findAcceptingLP, 128
findIsomorphism, 128
findLP, 128
fromEFA, 128
fromSym, 151
injecting nfa to efa or fa, 127
injToEFA, 127
injToFA, 127
input, 128
inter, 169
isomorphic, 128
isomorphism, 128
nfa, 127
numStates, 128
numTransitions, 128
output, 128
prefix, 172
processStr, 128
processStrBackwards, 128
projecting fa or efa to nfa, 127
projFromEFA, 127
projFromFA, 127
renameAlphabet, 173
renameStates, 128
renameStatesCanonically, 128
simplify, 128
toReg, 158
validLP, 128

nfa, 127
nfaToDFA, 142, 187

nfaToDFA, 143, 192
nfaToReg, 158
nil, 19
Noam Chomsky, 233
node, 19

external, 19
internal, 19

nondeterministic finite automaton,
114, 120–129

alphabet renaming, 168
backwards empty-closure, 123
converting EFAs to NFAs, 122
converting NFAs to DFAs, 138
∆·, 120, 139
efaToNFA, 124, 187
empty-closure, 123
emptyClose·(·), 123
emptyCloseBackwards·(·), 123
emptySet, 146
emptyStr, 146
fromSym, 146
inter, 160
intersection, 158
iso, 121
L(·), 114
left string induction, 121
nfaToDFA, 142, 187
prefix, 166
prefix-closure, 166
proof of correctness, 121
properties, 120, 139
renameAlphabet, 168
renameStates, 121
renameStatesCanonically, 121
renaming states, 121
representing sets of symbols as

symbols, 139
rev, 167
reversal, 167
simplification, 121
simplify, 121
substring, 167
substring-closure, 167
suffix, 167
suffix-closure, 167

INDEX 273

nonterm, 243
nullable variable, 233

one-to-one correspondence, 7
ord·, 152
ordered pair, 4, 42
ordered triple, 4

P·, 204
p, q, r, 78
palindrome, 25, 28
parse tree, 206–209

PT, 206
valid, 208
valid·, 208
yield, 207
yield, 207

parser, 244
parsing, 244
parsing algorithm, 215–219
Path, 19
path, 19–20

→, 19
equal, 19
length, 20
nil, 19
Path, 19
valid, 19

Π·,·, 222
powerset, 3
P, 3
precedence, 225
prefix, 24

proper, 24
prefix, 166
prefix-closure

language, 165
nondeterministic finite automa-

ton, 166
principle of induction on PT, 207
product, 3, 4
productions, 204
Prog, 243
program, 243

L(·), 244

language accepted by, 244
Prog, 243
run·, 243
string accepted by, 244
Syn, 243
total, 244

programming language, 200, 204
deterministic, 243
dynamic typing, 243
functional, 243
lexical analysis, 200
lexical analyzer, 200
parser, 204
parsing, 204
static scoping, 243
universal, 242–246

projEFAToDFA, 142
projEFAToNFA, 127
projFAToDFA, 142
projFAToEFA, 118
projFAToNFA, 127
projNFAToDFA, 142
prompt

Forlan, 37
Standard ML, 34

proof by contradiction, 8
proper

prefix, 24
subset, 1
substring, 24
suffix, 24
superset, 2

PT, 206
PT, 210

equal, 211
height, 211
input, 211
output, 211
pt, 210
rootLabel, 211
size, 211
yield, 211

pt, 210
pumping lemma

context-free languages, 236–240

INDEX 274

regular languages, 193–197

Q·, 78, 204
quantification

existential, 3
universal, 2

R, 1
r.e., see recursively enumerable lan-

guage
range, 5
range, 5
reachable state, 100, 136
reachable variable, 219
real numbers, 1
RecLan, 245
recursion

natural numbers, 12, 23
string, 24, 27

left, 24
right, 24, 27

recursive
not every recursive language is

context-free, 246
recursive language, 242, 245–251

characterization of, 245
closure properties, 246–248
every context-free langauge is re-

cursive, 246
not every recursively enumerable

language is recursive, 251
recursively enumerable language, 242,

245–251
closure properties, 246–248
not closed under complementa-

tion, 251
not closed under set difference,

251
not every recursively enumerable

language is recursive, 251
recursively language

characterization of, 246
reflexive on set, 6

≈, 55, 84
iso, 87

Reg, 47
Reg, 52, 75

alphabet, 53
closure, 53
compare, 53
concat, 53
emptySet, 53
emptyStr, 53
fromStr, 53
fromStrSet, 75
fromSym, 53
input, 53
output, 53
power, 53
reg, 52
renameAlphabet, 172
rev, 172
simplify, 75
size, 53
toStrSet, 75
traceSimplify, 75
union, 53
weakSimplify, 75
weakSubset, 75

reg, 52
RegLab, 47
RegLan, 52
regToDFA, 187
regToEFA, 187
regToFA, 149, 187
regToFA, 151, 192
regToGram, 231
regular expression, 47–77

≈, 54
reflexive, 55
symmetric, 55
transitive, 55

α, β, γ, 48
alphabet, 51
alphabet renaming, 167
calculating language generated

by, 68
closure, 48
closure rule, 73
concatenation, 48

INDEX 275

conservative subset test, 69
converting FAs to regular expres-

sions, 152
converting to FAs, 149–150
equivalence, 54–59
faToReg, 155
Forlan syntax, 53
hasEmp, 68
hasSym, 69
L(·), 50
label, 47
language generated by, 50
meaning, 50
notation, 49
operator associativity, 49
operator precedence, 49
order, 49
power, 51
proof of correctness, 59
regToDFA, 187
regToEFA, 187
regToFA, 149, 187
renameAlphabet, 167
rev, 165
reversal, 165
simplification, 71–77, 176
simplification rule, 72
simplified, 74
simplify, 71, 176
synthesis, 52, 59
testing equivalence, 177
testing for membership of empty

string, 68
testing for membership of sym-

bol, 69
translating regular expressions to

grammars, 230
union, 48
weak simplification, 64–68, 75
weakly simplified, 66
weakSimplify, 64, 155
weakSubset, 69, 155

regular expressions
applications, 199–203

lexical analysis, 200

searching in files, 199
regular language, 52, 145, 204

closure properties, 146, 168
equivalent characterizations, 145,

158
pumping lemma, 193–197
regular languages proper subset

of context-free languages,
232

showing that languages are non-
regular, 193–198

RELan, 245
relation, 5, 41

◦, 5, 7
composition, 5, 7

associative, 6
identity, 6

domain, 5
domain, 5
equivalence, 180
function, see function
id, 5
identity, 5, 7
inverse, 6
range, 5
range, 5
reflexive on set, 6
symmetric, 6
transitive, 6

relation from set to set, 5
renameStates, 88, 116, 121
renameStatesCanonically, 88, 116,

121, 184, 187, 190
renameVariables, 214
renameVariablesCanonically, 214
rev, 165
reversal

grammar, 228
language, 165
nondeterministic finite automa-

ton, 167
regular expression, 165
string, 27

right string induction, 26, 27
root label, 17

INDEX 276

root node, 19
run·, 243

s·, 78, 204
same size, 7
Schröder-Bernstein Theorem, 11
Set, 38

empty, 38
’a set, 38
sing, 38
size, 38
toList, 38

set, 1–11
−, 3
¹, 10
=, 1
⋂

, 5
⋃

, 5
∩, 3
×, 3, 4
(, 1
), 2
∼=, 7
{ · · · | · · · }, 2
→, 7
| · |, 8
⊆, 1
⊇, 2
∪, 3
cardinality, 7–11
countable, 8
difference, 3
dominated by, 10
equal, 1
finite, 8, 38
formation, 2–3
inclusion, 54
infinite, 8

countably, see countably infi-
nite

intersection, see intersection, set
least, 17
powerset, 3
P, 3
product, 3, 4

same size, 7
size, 7–11
subset, 1

proper, 1
superset, 2

proper, 2
uncountable, see uncountable
union, see union, set

’a set, 38, 40
set difference

deterministic finite automaton,
163

language, 44
Σ, 24
Σ-language, 25
simplification

finite automaton, 99–103, 116,
121, 135

algorithm, 101
simplified, 100
simplify, 101, 116, 121, 137

grammar, 219–221
algorithm, 220
simplified, 219, 233, 234
simplify, 221

regular expression, 71–77, 176
closure rule, 73
simplification rule, 72
simplified, 74
simplify, 71, 176
weak simplification, 64–68, 75
weakly simplified, 66
weakSimplify, 64, 155
weakSubset, 155

simplification rule, 72
simplified

finite automaton, 100
grammar, 219, 233, 234
regular expression, 74

simplify, 71, 101, 116, 121, 137, 155,
176, 221

size
set, 7–11
tree, 19

SML, see Standard ML

INDEX 277

Standard ML, vi, 34–36
o, 36
bool, 34
composition, 36
curried function, 42, 85
declaration, 35
exiting, 34
expression, 34, 37
function, 35

curried, 42, 85
recursive, 35

function type, 35
int, 34
interrupting, 34
list, 39
NONE, 36
option type, 36
product type, 34
prompt, 34

secondary, 36
;, 34, 36
NONE, 36
string, 34
string concatenation, 35
tuple, 34
type, 34
value, 34

start state, 78
start variable, 204
state, 78
state·, 152
static scoping, 243
Str, 22, 25
Str, 39

alphabet, 39
compare, 39
input, 39
output, 39
power, 39
prefix, 39
str, 39
substr, 39
suffix, 39

str, 39
Str·, 243

string, 22, 39
@, 22
· ·, 23
%, 22
··, 23
·R, 27
alphabet, 24, 28
alphabet, 24, 28
concatenation, 22

associative, 22
identity, 23
power, 23

diff , 30, 108
difference function, 30, 108
empty, 22
Forlan syntax, 39
length, 22
ordering, 22
palindrome, 25, 28
power, 23
prefix, 24

proper, 24
reversal, 27
Str, 22
Str·, 243
stuttering, 185
substring, 24

proper, 24
suffix, 24

proper, 24
u, v, w, x, y, z, 22

string, 34
string induction, 26–33

left, see left string induction
right, see right string induction
strong, see strong string induc-

tion
strong induction, 12, 13

inductive hypothesis, 13
strong string induction, 28, 32

inductive hypothesis, 28
StrSet, 40

alphabet, 41
concat, 47
equal, 41

INDEX 278

fromList, 41
input, 41
inter, 41
memb, 41
minus, 41
output, 41
power, 47
subset, 41
union, 41

strToReg, 53
stuttering, 185
subset, 1

proper, 1
substring, 24

proper, 24
substring-closure

language, 165
nondeterministic finite automa-

ton, 167
suffix, 24

proper, 24
suffix-closure

language, 165
nondeterministic finite automa-

ton, 167
superset, 2

proper, 2
Sym, 25
Sym, 36

compare, 36
fromString, 37
input, 36
output, 36
sym, 36
toString, 37

sym, 36
sym_rel, 41
symbol, 21, 36

a, b, c, 22
ordering, 22

symmetric, 6
≈, 55, 84

symmetry
iso, 87

SymRel, 41

applyFunction, 42
domain, 42
equal, 42
fromList, 42
function, 42
input, 42
inter, 42
memb, 42
minus, 42
output, 42
range, 42
reflexive, 42
subset, 42
sym_rel, 41
symmetric, 42
transitive, 42
union, 42

SymSet, 38
equal, 38
fromList, 38
input, 38
inter, 38
memb, 38
minus, 38
output, 38
subset, 38
union, 38

symToReg, 53
Syn, 243

T·, 78
transition, 78
transitive, 6

≈, 55, 84
iso, 87

tree, 16–20, 47, 206
child, 17
equal, 17
height, 20
induction, see tree induction
leaf, 19
linear notation, 18
node, 19

external, 19
internal, 19

INDEX 279

root, 19
path, see path
root label, 17
size, 19
TreeX , 16, 47, 206

tree induction, 18
inductive hypothesis, 19

TreeX , 16, 47, 206
true, 243
·-tuple, 243
Turing machine, 242

u, v, w, x, y, z, 22
uncountable, 8, 10, 25
undecidable problem, 251, 252
union

empty-string finite automaton,
146

finite automaton, 146
grammar, 228
language, 44
regular expression, 48
set, 3

associative, 3
commutative, 3
generalized, 5
idempotent, 3
identity, 3

unit, 34
unit production, 234
universal programming language, 242–

246
checking if valid program, 244
data types, 243
deterministic, 243
dynamic typing, 243
error, 243
false, 243
function, 243
functional, 243
halting problem, 249, 251

undecidability, 249, 251
incremental interpreter, 244, 247,

248
interpreter, 244

language accepted by program,
244

nonterm, 243
parser, 244
parsing, 244
principal function, 243
Prog, 243
program, see program
run·, 243
static scoping, 243
string accepted by program, 244
Syn, 243
total program, 244
true, 243
undecidable problem, 251, 252

universally quantified, 2
use, 36
useful state, 100
useful variable, 219

val, 35
valid·, 208
valid path, 19
variable, 204

weak simplification, 64–68, 75
weakly simplified, 66
weakSimplify, 64, 155
weakSubset, 69, 155
whitespace, 37
Windows, 34

X-Tree, see tree

yield, 207

Z, 1
zero

intersection, 4
language concatenation, 45

